

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

August 26, 2020

Ms. Robin Green Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Ms. Green and Mr. Hendricks:

C-746-U CONTAINED LANDFILL SECOND QUARTER CALENDAR YEAR 2020 (APRIL-JUNE) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0151/V2, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

Enclosed is the subject report for the second quarter calendar year (CY) 2020. This report is required in accordance with Permit Condition ACTV0006, Special Condition Number 3, of Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). The report includes groundwater analytical data, surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the second quarter CY 2020 monitoring well data collected from the C-746-U Landfill were performed in accordance with Monitoring Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical exceedance notification for the second quarter CY 2020, in accordance with Monitoring Condition GSTR0001, Standard Requirement 5, of the Permit.

PPPO-02-10007684-20B

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Jernifer Woodard

Jennifer Woodard Paducah Site Lead Portsmouth/Paducah Project Office

Enclosure:

C-746-U Landfill 2nd Qtr. CY 2020 Compliance Monitoring Report, FRNP-RPT-0151/V2

cc w/enclosure: abigail.parish@pppo.gov, PPPO april.ladd@pppo.gov, PPPO april.webb@ky.gov, KDEP arcorrespondence@pad.pppo.gov bill.clark@pad.pppo.gov, FRNP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov, FRNP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO david.ruckstuhl@pad.pppo.gov, FRNP dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jennifer.watson@pad.pppo.gov, FRNP jennifer.woodard@pppo.gov, PPPO jerry.arnzen@pad.pppo.gov, FRNP joel.bradburne@pppo.gov, PPPO kelly.layne@pad.pppo.gov, FRNP ken.davis@pad.pppo.gov, FRNP lauren.linehan@ky.gov, KDEP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov robert.edwards@pppo.gov, PPPO robinc.green@ky.gov, KDEP stephaniec.brock@ky.gov, KYRHB tabitha.owens@ky.gov, KDEP teresa.osborne@ky.gov, KDEP todd.hendricks@ky.gov, KDEP tracey.duncan@pppo.gov, PPPO

2

FRNP-RPT-0152/V2

C-746-S&T Landfills Second Quarter Calendar Year 2020 (April–June) **Compliance Monitoring Report**, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

FRNP Classification Support

8-19-2020 Date

FRNP-RPT-0152/V2

C-746-S&T Landfills Second Quarter Calendar Year 2020 (April–June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—August 2020

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FOUR RIVERS NUCLEAR PARTNERSHIP, LLC, managing the Deactivation and Remediation Project at the Paducah Gaseous Diffusion Plant under Contract DE-EM0004895

FIC	GURE	S		v
TA	BLES			v
AC	RON	YMS		vii
1.	INTF	RODUC	ГІОЛ	1
	1.1	BACK	GROUND	1
	1.2	MONI	FORING PERIOD ACTIVITIES	
		1.2.1	Groundwater Monitoring	
		1.2.2	Methane Monitoring	
		1.2.3	Surface Water Monitoring	
	1.3	KEY R	ESULTS	4
2.	DAT	A EVAI	LUATION/STATISTICAL SYNOPSIS	11
	2.1	STATI	STICAL ANALYSIS OF GROUNDWATER DATA	12
		2.1.1	Upper Continental Recharge System	12
		2.1.2	Upper Regional Gravel Aquifer	
		2.1.3	Lower Regional Gravel Aquifer	
	2.2	DATA	VERIFICATION AND VALIDATION	13
3.	PRO	FESSIO	NAL GEOLOGIST AUTHORIZATION	15
4.	REF	ERENCI	ES	17
AP	PENE	DIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
AP	PEND	DIX B:	FACILITY INFORMATION SHEET	B-1
AP	PEND	DIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
AP	PENE	DIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
AP	PENE	DIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
AP	PENE	DIX F:	NOTIFICATIONS	F-1
AP	PENE	DIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
AP	PENE	OIX H:	METHANE MONITORING DATA	H-1
AP	PEND	DIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
AP	PENC	DIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1
AP	PEND	DIX K:	LABORATORY ANALYTICAL METHODS	K-1
AP	PEND	DIX L:	MICRO-PURGING STABILITY PARAMETERS	L-1

CONTENTS

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	2
2.	C-746-S&T Landfills Surface Water Monitoring Locations	5

TABLES

1.	Summary of MCL Exceedances	6
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells	7
4.	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	9
6.	Monitoring Wells Included in Statistical Analysis	12

ACRONYMS

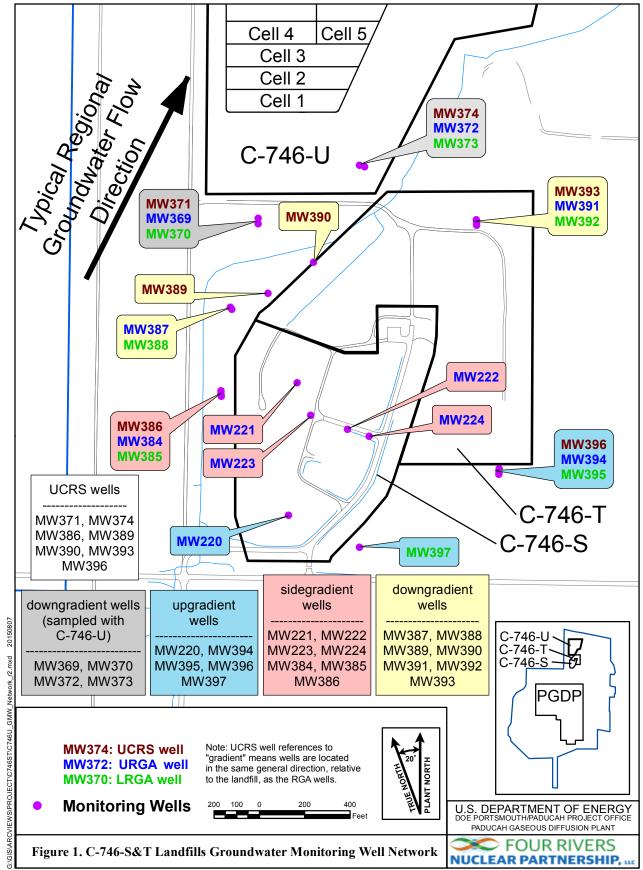
KARKentucky Administrative RegulationsKDWMKentucky Division of Waste ManagementKRSKentucky Revised StatutesLELlower explosive limitLRGALower Regional Gravel AquiferLTLlower tolerance limitMCLmaximum contaminant levelMWmonitoring wellRGARegional Gravel AquiferUCRSUpper Continental Recharge SystemURGAUpper Regional Gravel Aquifer	CFR COD	Code of Federal Regulations chemical oxygen demand
KRSKentucky Revised StatutesLELlower explosive limitLRGALower Regional Gravel AquiferLTLlower tolerance limitMCLmaximum contaminant levelMWmonitoring wellRGARegional Gravel AquiferUCRSUpper Continental Recharge SystemURGAUpper Regional Gravel Aquifer		
LELlower explosive limitLRGALower Regional Gravel AquiferLTLlower tolerance limitMCLmaximum contaminant levelMWmonitoring wellRGARegional Gravel AquiferUCRSUpper Continental Recharge SystemURGAUpper Regional Gravel Aquifer	KDWM	Kentucky Division of Waste Management
LRGALower Regional Gravel AquiferLTLlower tolerance limitMCLmaximum contaminant levelMWmonitoring wellRGARegional Gravel AquiferUCRSUpper Continental Recharge SystemURGAUpper Regional Gravel Aquifer	KRS	Kentucky Revised Statutes
LTLlower tolerance limitMCLmaximum contaminant levelMWmonitoring wellRGARegional Gravel AquiferUCRSUpper Continental Recharge SystemURGAUpper Regional Gravel Aquifer	LEL	lower explosive limit
MCLmaximum contaminant levelMWmonitoring wellRGARegional Gravel AquiferUCRSUpper Continental Recharge SystemURGAUpper Regional Gravel Aquifer	LRGA	Lower Regional Gravel Aquifer
MWmonitoring wellRGARegional Gravel AquiferUCRSUpper Continental Recharge SystemURGAUpper Regional Gravel Aquifer	LTL	lower tolerance limit
RGARegional Gravel AquiferUCRSUpper Continental Recharge SystemURGAUpper Regional Gravel Aquifer	MCL	maximum contaminant level
UCRSUpper Continental Recharge SystemURGAUpper Regional Gravel Aquifer	MW	monitoring well
URGA Upper Regional Gravel Aquifer	RGA	Regional Gravel Aquifer
	UCRS	Upper Continental Recharge System
	URGA	Upper Regional Gravel Aquifer
UTL upper tolerance limit	UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills Second Quarter Calendar Year 2020 (April–June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micropurging stability parameter results are provided in Appendix L.

1.1 BACKGROUND


The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a final cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a final cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter,

except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a water level measurement or sample; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan) (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the second quarter 2020 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on April 14 and 15, 2020, in MWs of the C-746-S&T Landfills (see Appendix E, Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Appendix E, Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During April, RGA groundwater flow in the area of the landfill was oriented northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in April was 5.09×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was approximately 3.32×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.57 to 0.96 ft/day (see Appendix E, Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the Solid Waste Landfill Permit. Landfill operations staff monitored for the occurrence of methane in one on-site building location, four locations along the landfill boundary, and 27 passive gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on June 3, 2020. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at the three locations (see Figure 2) monitored for the C-746-S&T Landfills: (1) upstream location, L135; (2) downstream location, L154; and (3) L136, a location capturing runoff from the landfill surface. Surface water was monitored, as specified in 401 *KAR* 48:300 § 2, and the approved *Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers*

KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application, Attachment 24, of the Solid Waste Landfill Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters that exceeded their MCL and also exceeded their historical background UTL, as well as other parameters that do not have MCLs but have concentrations that exceeded the statistically derived historical background UTL¹ during the second quarter 2020, as well as parameters that exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells designated as background wells (Table 3).

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), the MCL exceedances for TCE in MW391 and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedances for beta activity in MW370, MW385, MW387, and MW388 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances. To evaluate these preliminary Type 2 exceedances further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. None of the wells evaluated for beta activity showed an increasing Mann-Kendall trend and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

¹ The UTL comparison for pH uses a two-sided test, both UTL and LTL.

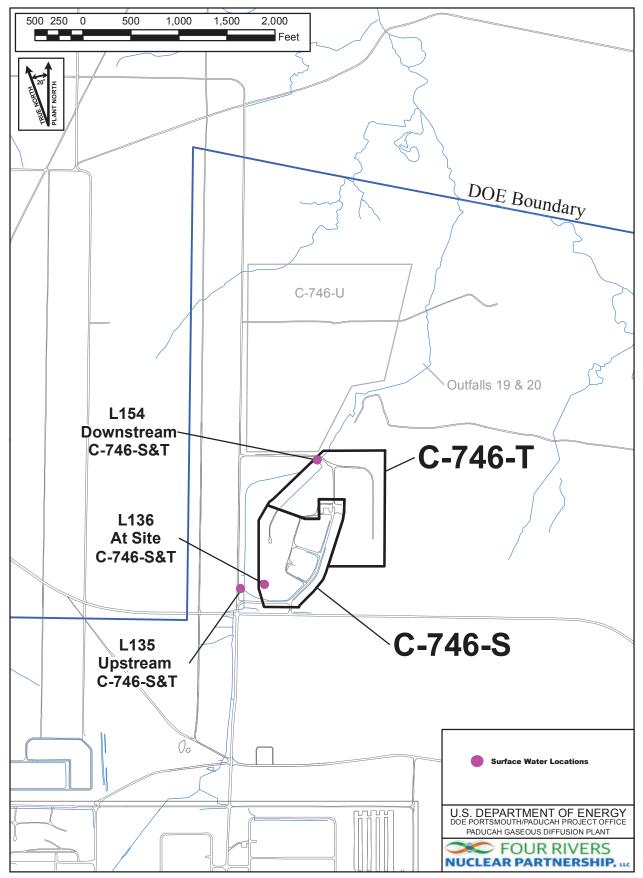


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW387: Beta activity	MW370: Beta activity
	MW391: Trichloroethene	MW385: Beta activity
		MW388: Beta activity
		MW392: Trichloroethene

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: COD, oxidation-reduction potential, radium-226, sulfate	MW370: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW390: Oxidation-reduction potential, technetium-99	MW221: Oxidation-reduction potential	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate
MW393: Oxidation-reduction potential	MW222: Oxidation-reduction potential	MW385: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW223: Oxidation-reduction potential, sulfate	MW388: Beta activity, conductivity, oxidation-reduction potential, sulfate, technetium-99
	MW224: Oxidation-reduction potential	MW392: Oxidation-reduction potential, sulfate
	MW369: Sodium	MW395: Oxidation-reduction potential
	MW372: Calcium, conductivity, dissolved solids, magnesium, sulfate, technetium-99	MW397: Oxidation-reduction potential
	MW384: Oxidation-reduction potential, sulfate, technetium-99	
	MW387: Beta activity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, technetium-99	
	MW391: Oxidation-reduction potential, sulfate	
	MW394: Oxidation-reduction potential	

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells. Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393 Background wells: MW220, MW394, MW395, MW396, MW397

URGA	LRGA
MW369: Sodium	MW370: Beta activity, sulfate, technetium-99
MW372: Calcium, conductivity, dissolved solids, magnesium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sodium, sulfate
MW387: Beta activity, dissolved solids, magnesium, sodium, technetium-99	MW388: Beta activity, conductivity, sulfate, technetium-99
	MW392: Sulfate

Table 3. Exceedances of Current Background UTL in Downgradient Wells

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S ³	Decision ⁴
	MW369	Sodium	8	0.05	0.016	19	Increasing
		Beta activity	8	0.05	0.054	-14	No Trend
	MW370	Sulfate	8	0.05	0.138	-10	No Trend
		Technetium-99	8	0.05	0.119	-8	No Trend
		Calcium	8	0.05	0.007	21	Increasing
		Conductivity	8	0.05	0.002	22	Increasing
	MW272	Dissolved Solids	8	0.05	0.138	10	No Trend
	MW372	Magnesium	8	0.05	0.007	20	Increasing
		Sulfate	8	0.05	0.089	12	No Trend
C-746-		Technetium-99	8	0.05	0.452	2	No Trend
S&T	MW373	Calcium	8	0.05	0.000	26	Increasing
Landfill		Conductivity	8	0.05	0.000	26	Increasing
		Dissolved Solids	8	0.05	0.007	20	Increasing
		Magnesium	8	0.05	0.002	22	Increasing
		Sodium	8	0.05	0.001	24	Increasing
		Sulfate	8	0.05	0.138	10	No Trend
	MW387	Beta activity	8	0.05	0.119	8	No Trend
		Dissolved Solids	8	0.05	0.031	16	Increasing
		Magnesium	8	0.05	0.089	12	No Trend
		Sodium	8	0.05	0.119	8	No Trend
		Technetium-99	8	0.05	0.016	18	Increasing

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S ³	Decision ⁴
		Beta activity	8	0.05	0.016	-18	Decreasing
C-746-	MW388	Conductivity	8	0.05	0.119	8	No Trend
S&T		Sulfate	8	0.05	0.360	-4	No Trend
Landfill		Technetium-99	8	0.05	0.089	-12	No Trend
	MW392	Sulfate	8	0.05	0.007	20	Increasing

 Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary

 Utilizing the Previous Eight Quarters (Continued)

¹ An alpha of 0.05 represents a 95% confidence interval.

 2 The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

 3 The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 4 The Mann-Kendall decision operates on two hypotheses; the H₀ and H_a. H₀ assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

Note: Statistics generated using ProUCL.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as background wells, to identify if the current downgradient well concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-S&T Landfills source; therefore, they are a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan (LATA Kentucky 2014). To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. Fourteen of the 26 preliminary Type 2 exceedances in downgradient wells did not have an increasing trend and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Twelve of the 26 preliminary Type 2 exceedances in downgradient wells have an increasing trend. Specifically, the Mann-Kendall statistical test indicates that there are increasing trends of groundwater constituents in MW369, MW372, MW373, MW387, and MW392 over the past eight quarters. MW369 showed an increasing trend for sodium. Constituents in MW372 that showed increasing trends were calcium, conductivity, and magnesium. Constituents that showed increasing trends in MW373 were calcium, conductivity, dissolved solids, magnesium, and sodium. Constituents in MW387 showed increasing trends for dissolved solids and technetium-99. Sulfate concentrations showed an increasing trend in MW392.

An increasing trend of sodium levels in MW369 was identified during the previous quarter, and the trend continues into the current quarter. These levels are within the range of previous analyses for groundwater from MW369 and reflect the normal range. This trend should be considered to be a Type 1 exceedance — not attributable to the C-746-S&T Landfills.

Levels of calcium, magnesium, and conductivity in both MW372 and MW373 and dissolved solids and sodium in MW373 all exceed the UTLs for historical and current background and exhibit similar increasing trends. These occurrences are indicators of high ionic strength of the area groundwater. Because levels of calcium, magnesium, and conductivity are lower in MW372 (URGA) than in MW373 (LRGA), these trends do not appear to be associated with the C-746-S&T Landfills. (Influence of the landfill should have a greater impact on the URGA well.) These trends should be considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.

In MW387, levels of dissolved solids and magnesium (another analyte that exceeded both historical and current background UTL) have similar trends, indicating the dissolved solids are being determined by the ionic strength of the groundwater. The levels of both analytes are within the range of previous analyses. The April 2020 levels of dissolved solids and magnesium represent the normal range of the analytes in MW387. These trends should be considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Activities of technetium-99 and beta activity (another analyte that exceeded both historical and current background UTL) have similar trends, corroborating the recent higher activities in MW387. These occurrences are attributed to a known upgradient regional source of dissolved technetium-99. In accordance with the Groundwater Monitoring Plan, the increasing trend of technetium-99 in MW387 is considered to be a Type 1 exceedance.

Sulfate levels in MW392 (LRGA) increased significantly in April 2019 and remained at higher levels subsequently. A decreasing trend for sulfate levels was observed in MW391 (URGA) over the past 8 quarters. Beginning in October 2019, the sulfate levels have remained at similar concentrations in MW391 and MW392. Sulfate levels in MW391 (URGA) and MW392 (LRGA) are near the median of sulfate levels observed in monitoring wells of the C-746-S&T Landfills in April 2020. Together, these trends indicate the increased sulfate concentrations in MW392 are reaching equilibrium with local sulfate concentrations in groundwater. These trends should be considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

In accordance with Permit Condition GSTR0003, Special Condition 2, of the Solid Waste Landfill Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified UCRS well MW390 with technetium-99 values that exceed both the historical and current backgrounds (Table 5). Because UCRS wells are not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T Landfills sources and is considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS	
MW390: technetium-99	
*In the same direction (relative to the landfill) as RGA wells.	

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the second quarter 2020 groundwater data collected from the C-746-S&T Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6, exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as downgradient wells) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient well concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance—could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance—not attributable to the landfills.

To calculate the UTL, the data were divided into censored (non-detects) and uncensored (detected) observations. The one-sided tolerance interval statistical test was conducted only on parameters that had at least one uncensored observation. Results of the one-sided tolerance interval statistical test were used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to background well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs historically included in the statistical analyses are listed in Table 6.

UCRS	URGA	LRGA
MW386	MW220 (background)	MW370
MW389 ^b	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396 ^c	MW224	MW392
	MW369	MW395 (background)
	MW372	MW397 (background)
	MW384	
	MW387	
	MW391	
	MW394 (background)	

^aA map showing the MW locations is shown on Figure 1.

^bWell had insufficient water to permit a water sample for laboratory analysis.

°In the same direction (relative to the landfill) as RGA wells considered to be background.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as background in order to determine if the current downgradient well concentrations are consistent with current background values. Table 3 summarizes the constituents that have exceeded both the historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 25 parameters, including those with MCLs, required statistical analysis in the UCRS. During the second quarter, oxidation-reduction potential and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Technetium-99 exceeded the current background UTL in downgradient wells and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the URGA. During the second quarter, beta activity, calcium, COD, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.1.3 Lower Regional Gravel Aquifer

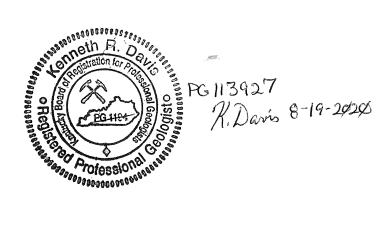
In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the LRGA. During the second quarter, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation reduction potential, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.


Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills Second Quarter Calendar Year 2020 (April–June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FRNP-RPT-0152/V2)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

R. Davis

Kenneth R. Davis

PG113927

<u>8-19-2Ø2Ø</u> Date

4. REFERENCES

- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application, Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application, Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE–Paducah	J.S. DOE–Paducah Gaseous Diffusion Plant		C-746-S&T Landfills
	(As officially shown	n on DWM Permit Face)		
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	2nd Qtr. CY 2020
Please check the	following as applicable	::		
Character	rization <u>X</u> Qua	urterly Semiannual	Annual	Assessment
Please check applicable submittal(s): X Groundwater X S				urface Water
	-	Leachate	<u> </u>	lethane Monitoring

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 *KAR* 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Myrna E. Redfield, Program Manager Four Rivers Nuclear Partnership, LLC

Jennifer Woodard, Paducah Site Lead U.S. Department of Energy Date

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY INFORMA	TION SHEET
------------------	------------

Sampling Date:	Groundwater: April 202 Surface water: April 202 Methane: June 2020		County:	McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045
Facility Name:	U.S. DOE—Paducah Ga	seous Diffusion Plant				
	(As of	fficially shown on DWM Pe	rmit Face)			
Site Address:	5600 Hobbs Road	K	Kevil, Kentucky			42053
	Street		City/State			Zip
Phone No:	(270) 441-6800	Latitude:	N 37° 07' 37	.70"	Longitude:	W 88° 47' 55.41"
		OWNER INI	FORMATION			
Facility Owner:	U.S. DOE, Robert E. Ed	wards III, Manager			Phone No:	(859) 227-5020
Contact Person:	Bruce Ford				-	(270) 441-5357
Contact Person Ti	itle: Director, Environ	mental Services, Four	Rivers Nuclear	Partnership, L		
Mailing Address:	5511 Hobbs Roa	d l	Kevil, Kentucky			42053
-	Street		City/State			Zip
	(IF C	SAMPLING OTHER THAN LAND	PERSONNEL DFILL OR LAB	ORATORY)		
Company:	GEO Consultants Corp	poration				
Contact Person:	Jason Boulton				Phone No:	(270) 816-3415
Mailing Address:		ł	Kevil, Kentucky			42053
	Street		City/State			Zip
		LABORATOR	Y RECORD #	1		
Laboratory:	GEL Laboratories, LL	С	L	ab ID No: K	XY90129	
Contact Person:	Valerie Davis				Phone No:	(843) 769-7391
Mailing Address:	2040 Savage Road	Charle	eston, South Car	rolina		29407
	Street		City/State			Zip
		LABORATOR	Y RECORD #	2		
Laboratory:	N/A			Lab ID No:	N/A	
Contact Person:	N/A				Phone No:	N/A
Mailing Address:	N/A					
	Street		City/State			Zip
		LABORATOR	Y RECORD #	3		
Laboratory:	N/A			Lab ID No:	N/A	
Contact Person:	N/A				Phone No:	N/A
Mailing Address:					1 11010 1 101	
	Street		City/State			Zip

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

THIS PAGE INTENTIONALLY LEFT BLANK

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-520	1	8000-52	202	8000-52	242	8000-524	13
Facility's Loo	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	2.)	220		221		222		223	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/21/2020 07	7:15	4/16/2020 06:40		4/16/2020	08:27	4/16/2020 0	7:45
Duplicate ("Y	" or "N") ²				N		Ν		Ν		N	
Split ("Y" or	"N") ³				N		N	Ν			N	
Facility Samp	le ID Number (if applicable)				MW220SG3	8-20	MW221SG3-20		MW222SG3-20		MW223SG	3-20
Laboratory Sar	boratory Sample ID Number (if applicable)				50987500)1	509596005		509596001		5095960	07
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	4/24/2020)	4/22/20)20	4/22/20	20	4/22/202	0
Gradient with	respect to Monitored Unit (UP, DO) wn	SIDE, UNKN	IOWN)	UP		SIDE	1	SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.242		0.471		0.432		0.394	
16887-00-6	Chloride(s)	т	mg/L	9056	18.2	*	34.8	*	31.4	*	28.2	*
16984-48-8	Fluoride	т	mg/L	9056	0.283		0.176		0.267		0.171	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.4		1.02		0.871		0.77	
14808-79-8	Sulfate	т	mg/L	9056	22.2		14.6		14.5		21.1	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.87		30.28		30.33		30.29	
S0145	Specific Conductance	т	µMH0/cm	Field	435		400		388		414	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	2	8000-5243	
Facility's Lo	ocal Well or Spring Number (e.g., MW	1-1, 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	332.37		331.95		332.11		332.19	
N238	Dissolved Oxygen	т	mg/L	Field	3.44		3.83		2.97		3.61	
S0266	Total Dissolved Solids	т	mg/L	160.1	214	В	140	*	273	*	197	*
S0296	рн	т	Units	Field	6.16		5.82		6.15		6.14	
NS215	Eh	т	mV	Field	435		429		425		415	
S0907	Temperature	т	°c	Field	15.5		14.11		15.56		14.89	
7429-90-5	Aluminum	т	mg/L	6020	0.0588		<0.05		<0.05		0.0473	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.228		0.221		0.294		0.229	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00649	J	0.0152		0.0114	J	0.00747	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	28.8		23		21.6		23.6	
7440-47-3	Chromium	т	mg/L	6020	0.00768	J	0.0111		0.00713	J	0.0173	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00135		0.00157		0.0004	J
7440-50-8	Copper	т	mg/L	6020	0.000885	J	0.00218		0.00181	J	0.000767	J
7439-89-6	Iron	т	mg/L	6020	0.107		0.0406	J	0.067	J	0.124	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.9		10	В	9.5	В	9.91	В
7439-96-5	Manganese	т	mg/L	6020	0.00233	J	0.0115		0.0209		0.0215	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-520	01	8000-52	02	8000-524	42	8000-52	43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.00121		0.00984		0.00446		0.00511	
7440-02-0	Nickel	т	mg/L	6020	0.0123		0.126		0.143		0.108	
7440-09-7	Potassium	т	mg/L	6020	2.76		2.5		0.661		2.39	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	44		49.1		48.6		47.6	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	0.00352	J	0.00452	J	0.00371	J	0.00406	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8000-520	1	8000-520)2	8000-52	242	8000-5	243
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-1	1, MW-2, et)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-7

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	42	8000-524	43
Facility's Lo	cal Well or Spring Number (e.g., M	MW-:	L, MW-2, et)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000194	*	<0.0000192		<0.0000194		<0.0000195	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-8

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5201		8000-5202	2	8000-524	12	8000-524	43
Facility's Loc	cal Well or Spring Number (e.g.	, MW-1	L, MW-2, et		220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	1.67	*	2.21	*	2.08	*	-1.67	*
12587-47-2	Gross Beta	т	pCi/L	9310	16.5	*	1.66	*	10.2	*	-1.86	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	1.04	*	0.393	*	0.258	*	0.387	*
10098-97-2	Strontium-90	т	pCi/L	905.0	2.39	*	3.6	*	1.28	*	0.0932	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	18.7	*	12.8	*	0.923	*	5.66	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.357	*	0.136	*	0.0269	*	0.00181	*
10028-17-8	Tritium	т	pCi/L	906.0	-30.5	*	-3.57	*	-15.5	*	5.28	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	114		11.7	J	28.8		33.7	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.35	BJ	1.02	BJ	0.993	BJ	1.07	BJ
S0586	Total Organic Halides	Т	mg/L	9020	0.00804	J	<0.01	*	0.0105	*	0.00376	*J

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1	, Facility Well/Spring Number				8000-5244	4	8004-48	320	8004-48	318	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	.)	224		369		370		372	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA	NA			NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/16/2020 09	9:23	4/6/2020	10:08	4/6/2020	11:56	4/6/2020 0	8:03
Duplicate ("Y	" or "N") ²				Ν		N		N		N	
Split ("Y" or	"N") ³				Ν		N		Ν		N	
Facility Samp	le ID Number (if applicable)				MW224SG3	-20	MW369UG3-20		MW370UG3-20		MW372UG	3-20
Laboratory Sa	aboratory Sample ID Number (if applicable)				50959600	9	508913001		508913003		5089130	07
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	4/22/2020)	4/9/202	20	4/9/202	20	4/9/2020)
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	SIDE		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.483		0.502	*	0.436	*	0.512	*
16887-00-6	Chloride(s)	т	mg/L	9056	35.8	*	31.2		36.7		39.5	
16984-48-8	Fluoride	т	mg/L	9056	0.218		0.154		0.144		0.17	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.98		0.604	J	1.02		0.77	J
14808-79-8	Sulfate	т	mg/L	9056	14.9		9.41		21		102	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.38		30.12		30.09		30.12	
S0145	Specific Conductance	т	µMH0/cm	Field	427		407		474		687	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

·			8000-5244 8004									
AKGWA NUMBER1	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	cal Well or Spring Number (e.g., Mw	7-1, I	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	332.27		332.57		332.61		332.6	
N238	Dissolved Oxygen	т	mg/L	Field	3.19		0.65		2.72		0.83	
S0266	Total Dissolved Solids	т	mg/L	160.1	169	*	214		246		399	
S0296	рн	т	Units	Field	6.21		6.23		6.08		6.17	
NS215	Eh	т	mV	Field	423		390		448		393	
s0907	Temperature	т	°c	Field	15.89		17.72		18.33		15.78	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0243	J	<0.05		0.0233	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00229	J	0.00239	J
7440-39-3	Barium	т	mg/L	6020	0.216		0.465		0.239		0.0681	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0235		0.0202		0.302		1.15	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	24.5		20.4		33.5		62.7	
7440-47-3	Chromium	т	mg/L	6020	0.00648	J	<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00289		0.00564		0.000469	J	0.000789	J
7440-50-8	Copper	т	mg/L	6020	0.000503	J	0.00111	J	0.000905	J	0.00052	J
7439-89-6	Iron	т	mg/L	6020	0.0576	J	0.178		0.0608	J	0.179	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.3	В	8.43		14.1		22.4	
7439-96-5	Manganese	т	mg/L	6020	0.0239		0.503		0.0121		0.00952	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	R ¹ , Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	08
Facility's I	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.0011		0.000235	J	<0.001		0.000352	J
7440-02-0	Nickel	т	mg/L	6020	0.164		0.00798		0.000725	J	0.00126	J
7440-09-7	Potassium	т	mg/L	6020	0.894		0.625		2.77		2.45	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	57.6		62		49.4		57.7	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		0.00687	J	0.00339	J	0.00503	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	Facility Well/Spring Number				8000-5244	4	8004-482	20	8004-48	318	8004-48	808
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-1	1, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00067	J	0.00066	J	0.00345	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	4	8004-4820	0	8004-481	8	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g., M	4w-:	1, MW-2, et	.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000193	*	<0.0000194	*	<0.0000195	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.1		<0.0991		<0.0972	
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.1		<0.0991		<0.0972	
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.1		<0.0991		<0.0972	
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.1		<0.0991		<0.0972	
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.1		<0.0991		<0.0972	
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.1		<0.0991		<0.0972	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-5244	ŀ	8004-4820)	8004-481	8	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et		224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.1		<0.0991		<0.0972	
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.1		<0.0991		<0.0972	
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.1		<0.0991		<0.0972	
12587-46-1	Gross Alpha	т	pCi/L	9310	0.0262	*	3.87	*	-0.343	*	3.91	*
12587-47-2	Gross Beta	т	pCi/L	9310	8.34	*	27.8	*	53	*	20.9	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	-0.0891	*	0.244	*	0.327	*	0.498	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.69	*	4.17	*	-1.21	*	-0.521	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	10.7	*	29.8	*	60.4	*	46.5	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.535	*	0.0905	*	0.1	*	0.707	*
10028-17-8	Tritium	Т	pCi/L	906.0	40.7	*	-92.9	*	4.57	*	-137	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	14.2	J	33.9		<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2	*	0.00209	*J	<0.2	*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.05	BJ	1.83	BJ	1.09	BJ	1.2	BJ
S0586	Total Organic Halides	т	mg/L	9020	0.00814	*J	0.0369		0.0131		0.0125	

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-48	309	8004-48	310	8004-480)4
Facility's Loo	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	:.)	373		384		385		386	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/6/2020 08	8:46	4/20/2020	07:53	4/20/2020	08:32	4/20/2020 0	9:08
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG3	3-20	MW384S0	G3-20	MW385S0	G3-20	MW386SG	3-20
Laboratory Sar	poratory Sample ID Number (if applicable))9	509752	003	509752	005	5097520	07
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysi						4/22/20	20	4/22/20	20	4/22/202	20
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.515	*	0.347		0.33		<0.2	
16887-00-6	Chloride (s)	т	mg/L	9056	19		30.6		28.6		11.3	
16984-48-8	Fluoride	т	mg/L	9056	0.143		0.155		0.121		0.617	
S0595	Nitrate & Nitrite	т	mg/L	9056	0.692	J	0.79		0.704		0.103	
14808-79-8	Sulfate	т	mg/L	9056	73.5		24.5		24.3		48.6	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.12		29.82		29.82		29.84	
S0145	Specific Conductance	т	µMH0/cm	Field	827		458		453		550	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

					8004-479	-	8004-480	0	8004-4810	<u> </u>	8004-4804	
AKGWA NUMBER ¹	, Facility Well/Spring Number					2		9)		
Facility's Lo	ocal Well or Spring Number (e.g., Mv	1 -1, 1	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	332.57		332.37		332.38		345.93	
N238	Dissolved Oxygen	т	mg/L	Field	1.18		3.8		2.95		5.55	
S0266	Total Dissolved Solids	т	mg/L	160.1	471		233	*	247	*	300	*
S0296	рн	т	Units	Field	6.15		6.09		6.07		6.93	
NS215	Eh	т	mV	Field	409		402		414		409	
S0907	Temperature	т	°c	Field	16.33		15.94		15.39		15.33	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0341	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00211	J	0.00246	J	0.00224	J	0.00258	J
7440-39-3	Barium	т	mg/L	6020	0.0385		0.234		0.273		0.132	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	1.83		0.06		0.0794		0.00663	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	74.6		26.9		29.6		19.6	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.00337	J	<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.000573	J	<0.001		<0.001		0.00043	J
7440-50-8	Copper	т	mg/L	6020	0.000882	J	0.00086	J	0.000665	J	0.00131	J
7439-89-6	Iron	т	mg/L	6020	0.192		0.471		0.0495	J	0.12	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	27.8		11.2		12.2		7.27	
7439-96-5	Manganese	т	mg/L	6020	0.0235		0.0114		0.00149	J	0.0458	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		<0.001		0.000421	J
7440-02-0	Nickel	т	mg/L	6020	0.00111	J	<0.002		0.000721	J	<0.002	
7440-09-7	Potassium	т	mg/L	6020	2.92		1.67		1.97		0.306	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	64.8		53		51.8		99	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		0.000084	J
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	0.00349	J	0.00549	J	0.00469	J	0.00488	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-480	09	8004-48	310	8004-48	804
Facility's Lo	cal Well or Spring Number (e.g.,)	MW-1	1, MW-2, et)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00381		0.00056	J	0.00058	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809	9	8004-48	10	8004-480	04
Facility's Loc	cal Well or Spring Number (e.g., M	4w-:	1, MW-2, et	.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000194	*	<0.0000193		<0.0000194		<0.0000193	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.097			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.097			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.097			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.097			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.097			*		*		*
12672-29-6	PCB-1248	т	ug/L	8082	<0.097			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809)	8004-481	0	8004-480)4
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et		373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.097			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.097			*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.097			*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	4.34	*	2.54	*	5.79	*	-1.03	*
12587-47-2	Gross Beta	т	pCi/L	9310	4.74	*	43.6	*	59.8	*	4.79	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.57	*	0.336	*	-0.0875	*	0.243	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-2.21	*	-2.57	*	0.923	*	2.28	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	13.8	*	83.9	*	80.8	*	0.45	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.42	*	-0.273	*	-0.0791	*	0.0272	*
10028-17-8	Tritium	т	pCi/L	906.0	-36.2	*	90	*	71.4	*	-7.22	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	27.2		14.2	J	14.2	J	19	J
57-12-5	Cyanide	т	mg/L	9012	<0.2	*	<0.2	*	<0.2	*	<0.2	*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.23	BJ	1.38	BJ	1.35	BJ	3.51	В
s0586	Total Organic Halides	т	mg/L	9020	0.00892	J	0.00762	J	0.00766	J	0.0786	

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-481	5	8004-48	316	8004-48	312	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	., MW-2, etc	.)	387		388		389		390	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/20/2020 06	6:34	4/20/2020	07:24	NA		4/21/2020 00	6:32
Duplicate ("Y	" or "N") ²				N		N		N		Ν	
Split ("Y" or	"N") ³				N		N		N		Ν	
Facility Samp	le ID Number (if applicable)		MW387SG3	-20	MW388S	G3-20	NA		MW390SG3	3-20		
Laboratory Sa	mple ID Number (if applicable)		50975200	1	509752	009	NA		50987500	03		
Date of Analys	e of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis)	4/22/20	20	NA		4/24/202	0
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	OWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.628		0.439			*	0.221	
16887-00-6	Chloride(s)	т	mg/L	9056	45.4		34.4			*	30.7	*
16984-48-8	Fluoride	т	mg/L	9056	0.442		0.244			*	0.336	
s0595	Nitrate & Nitrite	т	mg/L	9056	2.09		0.936			*	0.439	
14808-79-8	Sulfate	т	mg/L	9056	23.4		29.2			*	46.7	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.78		29.8			*	29.84	
s0145	Specific Conductance	т	µMH0/cm	Field	566		513			*	667	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

					8004-481	-	8004-481	6	8004-481	2	8004-4811	
	, Facility Well/Spring Number				387	0	388	0	389		390	
Facility's Lo	ocal Well or Spring Number (e.g., Mu	V-1 , 1	MW-2, BLANK-	F, etc.)	307	-	300		369		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	332.45		332.34			*	332.53	
N238	Dissolved Oxygen	т	mg/L	Field	1.8		3.03			*	3.52	
S0266	Total Dissolved Solids	т	mg/L	160.1	304	*	206	*		*	396	В
S0296	рн	т	Units	Field	6.03		6.14			*	6.21	
NS215	Eh	т	mV	Field	402		392			*	424	
S0907	Temperature	т	°c	Field	15.28		16.5			*	14.78	
7429-90-5	Aluminum	т	mg/L	6020	0.0831		<0.05			*	0.0425	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00417	J	0.00239	J		*	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.213		0.191			*	0.242	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0217		0.0298			*	0.0235	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	38.7		31.8			*	31.1	
7440-47-3	Chromium	т	mg/L	6020	0.00724	J	<0.01			*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000993	J	0.000487	J		*	0.000811	J
7439-89-6	Iron	т	mg/L	6020	0.839		0.107			*	0.0474	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	15.4		14.2			*	13.2	
7439-96-5	Manganese	т	mg/L	6020	0.0821		0.003	J		*	0.00247	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-48	15	8004-48	16	8004-48	12	8004-4811	
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001			*	0.000363	J
7440-02-0	Nickel	т	mg/L	6020	0.000619	J	0.000641	J		*	0.00117	J
7440-09-7	Potassium	т	mg/L	6020	1.45		2.12			*	0.388	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	т	mg/L	6020	58.3		48.9			*	93.2	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002			*	0.000201	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02			*	<0.02	
7440-66-6	Zinc	т	mg/L	6020	0.0037	J	0.0038	J		*	0.0254	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	Facility Well/Spring Number				8004-481	5	8004-48	16	8004-48	812	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g., M	MW-:	L, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00077	J	0.00048	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-481	6	8004-48	12	8004-4811	
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000193			*	<0.0000192	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4815	5	8004-4816	6	8004-481	2	8004-4811	
Facility's Lo	cility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						388		389		390	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	3.27	*	-3.48	*		*	-0.488	*
12587-47-2	Gross Beta	т	pCi/L	9310	240	*	77.4	*		*	32.4	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.392	*	0.58	*		*	0.0371	*
10098-97-2	Strontium-90	т	pCi/L	905.0	3.1	*	-1.57	*		*	-0.0487	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	335	*	106	*		*	58.1	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.458	*	-0.585	*		*	-0.428	*
10028-17-8	Tritium	т	pCi/L	906.0	29	*	71.3	*		*	28.8	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	23.9		11.7	J		*	27.7	
57-12-5	Cyanide	т	mg/L	9012	<0.2	*	<0.2	*		*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.45	BJ	1.29	BJ		*	2.76	В
S0586	Total Organic Halides	т	mg/L	9020	0.00866	J	0.00548	J		*	0.0174	

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806		8004-4807		8004-480)2
Facility's Loc	cal Well or Spring Number (e.g., M	/₩-1	, MW-2, etc	:.)	391		392		393		394	
Sample Sequence	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	4/21/2020 08	8:08	4/21/2020	4/21/2020 08:47		09:23	4/22/2020 0	06:40			
Duplicate ("Y		Ν		Ν		N		Ν				
Split ("Y" or	"N") ³		Ν		Ν		N		N			
Facility Samp	le ID Number (if applicable)				MW391SG3	-20	MW392SG3-20		MW393S0	33-20	MW394SG	3-20
Laboratory Sam	mple ID Number (if applicable)				50987500	5	509875	007	509875	009	5099480	03
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	4/24/2020)	4/24/2020		4/25/2020		4/27/202	:0
Gradient with	respect to Monitored Unit (UP, DC) WN ,	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	UP	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.596		0.628		0.188	J	0.512	
16887-00-6	Chloride(s)	т	mg/L	9056	46.3	*	48.5	*	12.3	*	42	*
16984-48-8	Fluoride	т	mg/L	9056	0.176		0.237		0.203		0.189	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.09		0.727		0.651	J	1.45	
14808-79-8	Sulfate	т	mg/L	9056	21		22.6		20.8		12.7	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.91		29.91		29.94		30.06	
S0145	Specific Conductance	т	µMH0/cm	Field	412		433		441		367	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807	7	8004-4802	
Facility's Lo	ocal Well or Spring Number (e.g., M	1-1 , 1	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	332.34		332.28		341.76		332.3	
N238	Dissolved Oxygen	т	mg/L	Field	3.45		1.53		1.75		4.53	
S0266	Total Dissolved Solids	т	mg/L	160.1	216	В	219	В	266	В	200	
S0296	рн	т	Units	Field	6.1		6.15		6.3		5.82	
NS215	Eh	т	mV	Field	457		450		443		432	
S0907	Temperature	т	°c	Field	15.11		15.56		15.83		14.56	
7429-90-5	Aluminum	т	mg/L	6020	0.0369	J	<0.05		0.0325	J	0.0399	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.0045	J	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.166		0.221		0.125		0.233	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0812		0.0287		0.021		0.022	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	29.1		31.4		15		24.9	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.001	J	0.00203		0.00064	J	0.000601	J
7439-89-6	Iron	т	mg/L	6020	0.212		0.269		1.01		0.187	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	12.6		12.2		4.45		10.7	
7439-96-5	Manganese	т	mg/L	6020	0.00597		0.0231		0.015		0.00434	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number		8004-480	05	8004-48	06	8004-48	07	8004-48	02		
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		0.000238	J	<0.001	
7440-02-0	Nickel	т	mg/L	6020	<0.002		<0.002		<0.002		0.00462	
7440-09-7	Potassium	т	mg/L	6020	1.69		1.97		0.488		1.44	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	34.6		37.6		82.7		33.4	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	0.00336	J	0.00592	J	0.00435	J	0.00487	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-480	5	8004-480)6	8004-48	307	8004-48	302		
Facility's Lo	cal Well or Spring Number (e.g., M	MW -1	L, MW-2, et)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	0.00046	J	0.00123		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0115		0.0158		<0.001		0.00191	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	6	8004-480)7	8004-48	02
Facility's Loc	cal Well or Spring Number (e.g., M	MW -1	1, MW-2, et	.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000192	*	<0.0000191	*	<0.0000192	*	<0.0000191	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1,	Facility Well/Spring Number				8004-4805	5	8004-4806	;	8004-480	7	8004-480	02
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et		391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	1.86	*	4.31	*	-1.24	*	-0.863	*
12587-47-2	Gross Beta	т	pCi/L	9310	10.4	*	3.13	*	2	*	5.27	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.487	*	0.552	*	0.524	*	0.298	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.98	*	0.716	*	3.67	*	-1.16	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-1.36	*	-2.16	*	-2.35	*	6.29	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.0657	*	-0.595	*	0.194	*	0.81	*
10028-17-8	Tritium	т	pCi/L	906.0	31.5	*	111	*	72.1	*	136	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	27.7		34.6		20.8		31.1	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	0.999	BJ	1.18	BJ	2.6	В	0.957	BJ
S0586	Total Organic Halides	т	mg/L	9020	0.0125		0.0203		0.0123		0.0114	

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (5)

1					0004 400	4	0004.44	200	0004.40	47	0000.000	0
AKGWA NUMBER',	Facility Well/Spring Number				8004-480	1	8004-48	303	8004-48	317	0000-000	0
Facility's Loc	cal Well or Spring Number (e.g., M	1W-1	., MW-2, etc	.)	395		396		397		E. BLAN	К
Sample Sequenc	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		E	
Sample Date an		4/22/2020 07	7:21	4/22/2020 07:57		4/22/2020	08:40	4/16/2020 0	5:50			
Duplicate ("Y"		N		Ν		N		N				
Split ("Y" or		N		N	N			N				
Facility Sampl	le ID Number (if applicable)				MW395SG3	-20	MW396S0	G3-20	MW397S0	G3-20	RI1SG3-2	20
Laboratory Sam	mple ID Number (if applicable)				50994800	5	509948007		509948	001	5095960 ⁻	12
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	4/27/2020		4/27/2020		4/27/2020		4/22/202	20
Gradient with	respect to Monitored Unit (UP, DO)WN ,	SIDE, UNKN	OWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.478		0.831		0.403			*
16887-00-6	Chloride(s)	т	mg/L	9056	39.4	*	56.6	*	35.4	*		*
16984-48-8	Fluoride	т	mg/L	9056	0.184		0.787		0.193			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.48		0.268		1.15			*
14808-79-8	Sulfate	т	mg/L	9056	12.4		29.8		11			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.06		30.07		30.07			*
S0145	Specific Conductance	т	µMH0/cm	Field	350		708		319			*

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 'Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: <u>None</u> For Official Use Only

					0004.400		0004.404	-				
AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	/	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., M	W-1, 1	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	332.7		374.01		332.35			*
N238	Dissolved Oxygen	т	mg/L	Field	4.48		2.6		5.2			*
S0266	Total Dissolved Solids	т	mg/L	160.1	199		364		160			*
S0296	рн	т	Units	Field	6		6.67		6.05			*
NS215	Eh	т	mV	Field	419		401		420			*
S0907	Temperature	т	°c	Field	15.22		15.39		15.59			*
7429-90-5	Aluminum	т	mg/L	6020	0.0249	J	<0.05		0.231		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.232		0.352		0.137		<0.004	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0223		0.00872	J	0.0112	J	<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	24		31.7		18.1		<0.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00052	J	0.000964	J	0.000614	J	<0.002	
7439-89-6	Iron	т	mg/L	6020	0.0693	J	0.189		0.4		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.2		13.9		7.81		<0.03	
7439-96-5	Manganese	т	mg/L	6020	0.00143	J	0.029		0.00807		<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	395		396		397		E. BLAN	١K
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000362	J	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.0068		<0.002		0.000827	J	<0.002	
7440-09-7	Potassium	т	mg/L	6020	1.55		0.921		1.82		<0.3	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	29.4		101		34.2		<0.25	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		0.00337	J
7440-66-6	Zinc	т	mg/L	6020	0.00332	J	0.0037	J	0.00433	J	<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		0.00256	J
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480	03	8004-48	317	0000-00	000
Facility's Loo	cal Well or Spring Number (e.g.,)	MW-:	1, MW-2, et)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00186		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.)	395		396		397		E. BLAN	IK
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000191		<0.0000193		<0.0000191		<0.0000194	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4801		8004-4803	1	8004-481	7	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et		395		396		397		E. BLAN	K
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	4.84	*	-0.713	*	-2.38	*	4.1	*
12587-47-2	Gross Beta	т	pCi/L	9310	7.55	*	4.38	*	8.69	*	-3.41	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.231	*	0.305	*	0.465	*	0.502	*
10098-97-2	Strontium-90	т	pCi/L	905.0	3.07	*	3.59	*	2.58	*	1.45	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	8.44	*	5.69	*	15	*	1.91	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.106	*	-0.308	*	1.33	*	0.504	*
10028-17-8	Tritium	т	pCi/L	906.0	70.5	*	55.2	*	111	*	-61.8	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	24.2		31.1		38			*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.992	BJ	4.35	В	0.972	BJ		*
s0586	Total Organic Halides	т	mg/L	9020	0.00352	J	0.0389		0.00582	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (5)

AKGWA NUMBER',	Facility Well/Spring Number				000-000	00	0000-00	00	000-000	00	0000-000	0
Facility's Loc	cal Well or Spring Number (e.g., M	w−1	., MW-2, etc	:.)	F. BLAN	К	T. BLAN	< 1	T. BLAN	٢2	T. BLANK	3
Sample Sequenc	ce #				1		1		1		1	
If sample is a E	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	F		т		т		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/16/2020 0	6:42	4/16/2020 ()5:45	4/20/2020 0)5:45	4/21/2020 0	5:45
Duplicate ("Y"	' or "N") ²				N		N		N		Ν	
Split ("Y" or	"N") ³				Ν		N		N		Ν	
Facility Sampl	le ID Number (if applicable)				FB1SG3-	20	TB1SG3-2	:0	TB2SG3-	-20	TB3SG3-	20
Laboratory Sam	aboratory Sample ID Number (if applicable)						5095960	13	5097520	11	50987502	11
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	4/22/202	0	4/22/202	20	4/22/202	20	4/25/202	0
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	OWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8						*		*		*		*
s0595	30595 Nitrate & Nitrite T mg/L					*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	µMH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 'Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., Mw	1-1, 1	MW-2, BLANK-	F, etc.)	F. BLAN	<	T. BLANK	1	T. BLANK	2	T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рН	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
S0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	т	mg/L	6020	<0.004			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	т	mg/L	6020	<0.002			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	R ¹ , Facility Well/Spring Number				0000-000	00	0000-00	00	0000-00	00	0000-00	00
Facility's 1	Local Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	F. BLAN	IK	T. BLAN	K 1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	т	mg/L	6020	0.00352	J		*		*		*
7440-66-6	Zinc	т	mg/L	6020	<0.02			*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	0.00883		0.00215	J	0.00805		0.0071	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-000	00	0000-00	000	0000-00	000
Facility's Loc	al Well or Spring Number (e.g., M	4W-1	L, MW-2, et	.c.)	F. BLANK	(T. BLANK	٢1	T. BLAN	IK 2	T. BLAN	IK 3
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g., M	1 W-1	L, MW-2, et		F. BLANK	(T. BLANK	1	T. BLANI	< 2	T. BLAN	< 3
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000199		<0.0000194		<0.0000195		<0.0000193	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-0000		0000-0000		0000-0000)
Facility's Lo	cal Well or Spring Number (e.g	., MW-1	., M₩-2, et)	F. BLANK		T. BLANK 1		T. BLANK 2	2	T. BLANK (3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-1	*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310	3.25	*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.19	*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.66	*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-8.59	*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.534	*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0	105	*		*		*		*
S0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0	<0.5			*		*		*
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	8000-520)2	Ν			/
Facility's Loo	cal Well or Spring Number (e.g., M	w−1	, MW-2, etc	.)	T. BLANK	(4	221		$\left \right\rangle$			
Sample Sequence	ce #				1		2					
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)q	quipment	Т		NA					/
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/22/2020 0	5:40	4/16/2020	06:40			/	
Duplicate ("Y	' or "N") ²				Ν		Y					
Split ("Y" or	"N") ³				Ν		N			\backslash		
Facility Sampl	le ID Number (if applicable)		TB4SG3-	-20	MW221DS	G3-20						
Laboratory Sam	mple ID Number (if applicable)		50994800)9	5095960	003						
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ysis	4/27/2020	0	4/22/20	20						
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	OWN)	NA		SIDE			\	K	
CAS RN ⁴	CONSTITUENT	Ħ D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056		*	0.456		/	ľ		
16887-00-6	Chloride (s)	т	mg/L	9056		*	34.8	*				
16984-48-8	Fluoride	т	mg/L	9056		*	0.163					
s0595	Nitrate & Nitrite	т	mg/L	9056		*	1.02					
14808-79-8	Sulfate	т	mg/L	9056		*	14.6					\backslash
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*				
S0145	Specific Conductance	т	µMH0/cm	Field		*		*	/			

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

					0000.000	-	8000 500	2	Ň			
AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				0000-000		8000-520	12				/
Facility's Lo	cal Well or Spring Number (e.g., MW	1-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	4	221					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	VALUE OR PQL ⁶	FLAGS	DETECTED VALUE OR PQL ⁶	F L A G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*			/	
N238	Dissolved Oxygen	т	mg/L	Field		*		*			/	
S0266	Total Dissolved Solids	т	mg/L	160.1		*	196	*				
S0296	рН	т	Units	Field		*		*				
NS215	Eh	т	mV	Field		*		*				
S0907	Temperature	т	°c	Field		*		*		\setminus		
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05				/	
7440-36-0	Antimony	т	mg/L	6020		*	<0.003				/	
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005				X	
7440-39-3	Barium	т	mg/L	6020		*	0.211			/		
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005			/		
7440-42-8	Boron	т	mg/L	6020		*	0.0147	J	/	/		
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001					
7440-70-2	Calcium	т	mg/L	6020		*	21.8		/			
7440-47-3	Chromium	т	mg/L	6020		*	0.00982	J				
7440-48-4	Cobalt	т	mg/L	6020		*	0.00121					
7440-50-8	Copper	т	mg/L	6020		*	0.00103	J				
7439-89-6	Iron	т	mg/L	6020		*	<0.1					
7439-92-1	Lead	т	mg/L	6020		*	<0.002					$\left[\right]$
7439-95-4	Magnesium	т	mg/L	6020		*	9.46	В				
7439-96-5	Manganese	т	mg/L	6020		*	0.0103					\square
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	00	8000-52	202	Ν	
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	T. BLAN	≺4	221		\mathbf{A}	/
CAS RN ⁴	CONSTITUENT	Ч Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED F VALUE L OR A FQL ⁶ G S	VALUE L OR A PQL ⁶ G
7439-98-7	Molybdenum	т	mg/L	6020		*	0.00915			
7440-02-0	Nickel	т	mg/L	6020		*	0.117			
7440-09-7	Potassium	т	mg/L	6020		*	2.35			
7440-16-6	Rhodium	т	mg/L	6020		*	<0.005			
7782-49-2	Selenium	т	mg/L	6020		*	<0.005		X	
7440-22-4	Silver	т	mg/L	6020		*	<0.001			
7440-23-5	Sodium	т	mg/L	6020		*	45.7			
7440-25-7	Tantalum	т	mg/L	6020		*	<0.005			
7440-28-0	Thallium	т	mg/L	6020		*	<0.002			X
7440-61-1	Uranium	т	mg/L	6020		*	<0.0002			
7440-62-2	Vanadium	т	mg/L	6020		*	<0.02			
7440-66-6	Zinc	т	mg/L	6020		*	0.00376	J		
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005			
67-64-1	Acetone	т	mg/L	8260	0.00626		<0.005			
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005			
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005			
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001			
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001			
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003			
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001			
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001			
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	0	8000-52	02	\setminus			/
Facility's Lo	cal Well or Spring Number (e.g., M	MW -1	L, MW-2, et	.c.)	T. BLANK	4	221					
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR FQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001				/	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001					
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001					
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		N			
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			\setminus		
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005					
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001					
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001					
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001				X	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001				1 \	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001					
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			/		
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			/		
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		/			
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001					
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001					
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001					
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001					
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001					$\left \right\rangle$
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001					
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001					
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-49

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	8000-5202	2	\land			/
Facility's Loc	al Well or Spring Number (e.g., M	IW -1	1, MW-2, et	.c.)	T. BLANK	4	221		$\left[\right]$			
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR POL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001				/	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005					
74-88-4	Iodomethane	т	mg/L	8260	<0.005	*	<0.005					
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001					
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			\backslash		
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			$ \rangle$		
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			$ \rangle$		
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000191		<0.0000196					
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001				Χ	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001					
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001					
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001					
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			/		
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001					
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001					
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001					
1336-36-3	PCB,Total	т	ug/L	8082		*		*				
12674-11-2	PCB-1016	т	ug/L	8082		*		*				<u>\</u>
11104-28-2	PCB-1221	т	ug/L	8082		*		*				$ \rangle$
11141-16-5	PCB-1232	т	ug/L	8082		*		*				
53469-21-9	PCB-1242	т	ug/L	8082		*		*				
12672-29-6	PCB-1248	т	ug/L	8082		*		*	/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		8000-5202		\land			/
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et		T. BLANK 4	1	221		$\left \right\rangle$			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR POL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	FLAGS
11097-69-1	PCB-1254	т	ug/L	8082		*		*			/	
11096-82-5	PCB-1260	т	ug/L	8082		*		*				
11100-14-4	PCB-1268	т	ug/L	8082		*		*				
12587-46-1	Gross Alpha	т	pCi/L	9310		*	1.52	*				
12587-47-2	Gross Beta	т	pCi/L	9310		*	5.08	*		\setminus		
10043-66-0	Iodine-131	т	pCi/L			*		*		\backslash		
13982-63-3	Radium-226	т	pCi/L	AN-1418		*	0.628	*				
10098-97-2	Strontium-90	т	pCi/L	905.0		*	-0.121	*			\bigvee	
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	0.663	*			\wedge	
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*	0.202	*				
10028-17-8	Tritium	т	pCi/L	906.0		*	39.6	*				
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*	28.8			/		
57-12-5	Cyanide	т	mg/L	9012		*	<0.2					
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5		/			ľ
s0268	Total Organic Carbon	т	mg/L	9060		*	1.01	BJ				1
s0586	Total Organic Halides	т	mg/L	9020		*	0.00578	*J				ſ
												\square
												$\Box \Box \Box$
									/			
									/			

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5201 MW22	20 MW220SG3-20	Chloride	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 5.03. Rad error is 5.02.
		Gross beta		TPU is 8.87. Rad error is 8.43.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.8. Rad error is 0.797.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.57. Rad error is 2.54.
		Technetium-99		TPU is 11.3. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.363. Rad error is 0.362.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 117. Rad error is 117.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5202 MW221	MW221SG3-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 5.83. Rad error is 5.82.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 9.28. Rad error is 9.27.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.511. Rad error is 0.511.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.74. Rad error is 2.68.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 11.8. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.879. Rad error is 0.877.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 126. Rad error is 126.
		Total Organic Halides	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5242 MW222	2 MW222SG3-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 4.02. Rad error is 4.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 8.36. Rad error is 8.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 0.476. Rad error is 0.476.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 2.91. Rad error is 2.9.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 12.7. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 0.674. Rad error is 0.672.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 123. Rad error is 123.
		Total Organic Halides	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5243 MW22	3 MW223SG3-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 3.52. Rad error is 3.51.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 8.13. Rad error is 8.13.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 0.437. Rad error is 0.436.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 2.51. Rad error is 2.51.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 0.762. Rad error is 0.761.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 123. Rad error is 123.
		Total Organic Halides	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

U U	Facility Sample ID	Constituent	Flag	Description
3000-5244 MW224 M	W224SG3-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 3.72. Rad error is 3.72.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 6.85. Rad error is 6.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 0.463. Rad error is 0.462.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 2.95. Rad error is 2.94.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 12. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 0.918. Rad error is 0.912.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 124. Rad error is 124.
		Total Organic Halides	Ν	Sample spike (MS/MSD) recovery not within control limits
3004-4820 MW369 MV	W369UG3-20	Bromide	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 4.44. Rad error is 4.39.
		Gross beta		TPU is 10.5. Rad error is 9.52.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 0.367. Rad error is 0.367.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 3.12. Rad error is 3.05.
		Technetium-99		TPU is 13.3. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 0.724. Rad error is 0.722.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 132. Rad error is 132.
		Cyanide	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4818 MW370 M	MW370UG3-20	Bromide	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 3.07. Rad error is 3.06.
		Gross beta		TPU is 13.7. Rad error is 10.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. This 0.405. Rad error is 0.405.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. This 2.37. Rad error is 2.37.
		Technetium-99		TPU is 15.6. Rad error is 14.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. Th is 0.894. Rad error is 0.892.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 136. Rad error is 136.
		Cyanide	Ν	Sample spike (MS/MSD) recovery not within control limits
8004-4808 MW372 M	MW372UG3-20	Bromide	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. This 5.99. Rad error is 5.96.
		Gross beta		TPU is 9.05. Rad error is 8.35.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.464. Rad error is 0.464.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. This 2.95. Rad error is 2.95.
		Technetium-99		TPU is 14.2. Rad error is 13.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.945. Rad error is 0.936.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 131. Rad error is 131.
		Cyanide	Ν	Sample spike (MS/MSD) recovery not within control limits
004-4792 MW373 N	MW373UG3-20	Bromide	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 7.81. Rad error is 7.78.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.22. Rad error is 6.17.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. This 0.519. Red error is 0.519.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.29. Rad error is 2.29.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 12.6. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.723. Rad error is 0.718.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 136. Rad error is 136.
		Cyanide	Ν	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4809 MW38	84 MW384SG3-20	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.08. Rad error is 5.06.
		Gross beta		TPU is 12.4. Rad error is 10.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.321. Rad error is 0.32.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.02. Rad error is 2.02.
		Technetium-99		TPU is 16.9. Rad error is 14.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.831. Rad error is 0.83.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 134. Rad error is 133.
		Cyanide	NN1	Sample spike (MS/MSD) recovery not within control limits and MS/MSD RPD outside acceptance criteria

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4810 MW38	85 MW385SG3-20	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.91. Rad error is 5.82.
		Gross beta		TPU is 15. Rad error is 11.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.299. Rad error is 0.299.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.66. Rad error is 2.66.
		Technetium-99		TPU is 17. Rad error is 14.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.06. Rad error is 1.06.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 135. Rad error is 134.
		Cyanide	NN1	Sample spike (MS/MSD) recovery not within control limits and MS/MSD RPD outside acceptance criteria

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4804 MW386 MW386SG3-20		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.89. Rad error is 3.89.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.43. Rad error is 6.38.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.308. Rad error is 0.307.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.32. Rad error is 4.31.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.1. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.04. Rad error is 1.04.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 119. Rad error is 119.
		Cyanide	NN1	Sample spike (MS/MSD) recovery not within control limits and MS/MSD RPD outside acceptance criteria

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4815 MW38	87 MW387SG3-20	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.44. Rad error is 5.41.
		Gross beta		TPU is 44.6. Rad error is 20.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.374. Rad error is 0.373.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.04. Rad error is 3.
		Technetium-99		TPU is 41.5. Rad error is 18.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.899. Rad error is 0.893.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 128. Rad error is 128.
		Cyanide	NN1	Sample spike (MS/MSD) recovery not within control limits and MS/MSD RPD outside acceptance criteria

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4816 MW388 MW388SG3-20		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.04. Rad error is 4.03.
		Gross beta		TPU is 17.7. Rad error is 12.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.569. Rad error is 0.568.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.44. Rad error is 3.44.
		Technetium-99		TPU is 18.3. Rad error is 14.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.647. Rad error is 0.645.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 136. Rad error is 135.
		Cyanide	NN1	Sample spike (MS/MSD) recovery not within control limits and MS/MSD RPD outside acceptance criteria

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample was collected.
		Chloride		During sampling, the well was dry; therefore, no sample was collected.
		Fluoride		During sampling, the well was dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample was collected.
		Sulfate		During sampling, the well was dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample was collected.
		рH		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample was collected.
		Temperature		During sampling, the well was dry; therefore, no sample was collected.
		Aluminum		During sampling, the well was dry; therefore, no sample was collected.
		Antimony		During sampling, the well was dry; therefore, no sample was collected.
		Arsenic		During sampling, the well was dry; therefore, no sample was collected.
		Barium		During sampling, the well was dry; therefore, no sample was collected.
		Beryllium		During sampling, the well was dry; therefore, no sample was collected.
		Boron		During sampling, the well was dry; therefore, no sample was collected.
		Cadmium		During sampling, the well was dry; therefore, no sample was collected.
		Calcium		During sampling, the well was dry; therefore, no sample was collected.
		Chromium		During sampling, the well was dry; therefore, no sample was collected.
		Cobalt		During sampling, the well was dry; therefore, no sample was collected.
		Copper		During sampling, the well was dry; therefore, no sample was collected.
		Iron		During sampling, the well was dry; therefore, no sample was collected.
		Lead		During sampling, the well was dry; therefore, no sample was collected.
		Magnesium		During sampling, the well was dry; therefore, no sample was collected.
		Manganese		During sampling, the well was dry; therefore, no sample was collected.
		Mercury		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample was collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample wa collected.
		Selenium		During sampling, the well was dry; therefore, no sample wa collected.
		Silver		During sampling, the well was dry; therefore, no sample wa collected.
		Sodium		During sampling, the well was dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well was dry; therefore, no sample wa collected.
		Thallium		During sampling, the well was dry; therefore, no sample wa collected.
		Uranium		During sampling, the well was dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well was dry; therefore, no sample wa collected.
		Zinc		During sampling, the well was dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample wa collected.
		Acetone		During sampling, the well was dry; therefore, no sample wa collected.
		Acrolein		During sampling, the well was dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample wa collected.
		Benzene		During sampling, the well was dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well was dry; therefore, no sample wa collected.
		Styrene		During sampling, the well was dry; therefore, no sample wa collected.
		Toluene		During sampling, the well was dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample wa collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Chloroform		During sampling, the well was dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample was collected.
		lodomethane		During sampling, the well was dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample was collected.
		Gross beta		During sampling, the well was dry; therefore, no sample was collected.
		lodine-131		During sampling, the well was dry; therefore, no sample was collected.
		Radium-226		During sampling, the well was dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample was collected.
		Tritium		During sampling, the well was dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample was collected.
		Cyanide		During sampling, the well was dry; therefore, no sample was collected.
		lodide		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4811 MW39	90 MW390SG3-20	Chloride	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 4.4. Rad error is 4.39.
		Gross beta		TPU is 11.8. Rad error is 10.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.377. Rad error is 0.377.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPl is 2.98. Rad error is 2.98.
		Technetium-99		TPU is 14.2. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 0.511. Rad error is 0.511.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 128. Rad error is 128.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4805 MW391	MW391SG3-20	Chloride	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 4.26. Rad error is 4.25.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 7.3. Rad error is 7.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.491. Rad error is 0.49.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.71. Rad error is 2.71.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.741. Rad error is 0.74.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 124. Rad error is 124.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4806 MW3	92 MW392SG3-20	Chloride	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 5.78. Rad error is 5.74.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 6.81. Rad error is 6.79.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 0.479. Rad error is 0.478.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 2.27. Rad error is 2.26.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 10.7. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 0.484. Rad error is 0.483.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 137. Rad error is 135.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4807 MW3	93 MW393SG3-20	Chloride	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 3.32. Rad error is 3.32.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 6.44. Rad error is 6.43.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.615. Rad error is 0.614.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 3.52. Rad error is 3.48.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 11.1. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.767. Rad error is 0.764.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 133. Rad error is 132.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4802 MW394	MW394SG3-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.89. Rad error is 2.89.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.52. Rad error is 7.47.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.52. Rad error is 0.52.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.7. Rad error is 3.7.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 13.8. Rad error is 13.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.931. Rad error is 0.92.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 120. Rad error is 117.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-4801 MW39	95 MW395SG3-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.29. Rad error is 6.24.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.44. Rad error is 6.31.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.293. Rad error is 0.293.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.39. Rad error is 3.36.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 13.5. Rad error is 13.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.769.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 111. Rad error is 110.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-4803 MW39	6 MW396SG3-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.26. Rad error is 3.26.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.71. Rad error is 7.68.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.291. Rad error is 0.29.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.29. Rad error is 4.25.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 14.1. Rad error is 14.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.499. Rad error is 0.499.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 113. Rad error is 112.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-4817 MW397	MW397SG3-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.24. Rad error is 2.23.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.27. Rad error is 7.13.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.629. Rad error is 0.628.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.93. Rad error is 2.9.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 14.3. Rad error is 14.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.18. Rad error is 1.16.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 114. Rad error is 112.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1SG3-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 is 5.39. Rad error is 5.35.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.98. Rad error is 6.98.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.461. Rad error is 0.46.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.91. Rad error is 2.9.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12.5. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.03. Rad error is 1.03.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 125. Rad error is 125.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1SG3-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.77. Rad error is 3.77.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.34. Rad error is 6.31.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.419. Rad error is 0.419.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.62. Rad error is 2.61.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12.2. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.06. Rad error is 1.05.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 129. Rad error is 128.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG3-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG3-20	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG3-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG3-20	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG3-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG3-20	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4SG3-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG3-20	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Methyl bromide	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		cis-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5202 MW221	MW221DSG3-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.18. Rad error is 6.18.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 8.15. Rad error is 8.11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.622. Rad error is 0.621.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.63. Rad error is 1.63.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12.4. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.779. Rad error is 0.776.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 128. Rad error is 128.
		Total Organic Halides	Ν	Sample spike (MS/MSD) recovery not within control limits

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT—QUARTERLY, 2nd CY 2020 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-980-008-982/1</u> Lab ID: <u>None</u> For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the second quarter 2020 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The second quarter 2020 data used to conduct the statistical analyses were collected in April 2020. The statistical analyses for this report first used data from the initial eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one compliance well that exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
MW390 ¹	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

¹**NOTE:** The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient. **BG:** upgradient or background wells

TW: compliance or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

 $TL = X + (K \times S)$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the background wells (identified as "BG"), the compliance or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, second quarter 2020. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation or data assessment, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations. upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Parameters
Aluminum
Beta Activity
Boron
Bromide
Calcium
Chemical Oxygen Demand (COD)
Chloride
cis-1,2-Dichloroethene
Cobalt
Conductivity
Copper
Cyanide
Dissolved Oxygen
Dissolved Solids
Iron
Magnesium
Manganese
Molybdenum
Nickel
Oxidation-Reduction Potential
pH*
Potassium
Radium-226
Sodium
Sulfate
Technetium-99
Total Organic Carbon (TOC)
Total Organic Halides (TOX)
Trichloroethene
Zinc

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	2	2	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Boron	4	0	4	Yes
Bromide	4	1	3	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	0	4	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	3	1	Yes
Conductivity	4	0	4	Yes
-	4			
Copper		0	4	Yes
Cyanide Dibromochloromethane	4 4	4 4	0	No No
Dibromocniorometnane	4 4	4	0	No
Dibromomethane Dimethylbenzene, Total	4 4	4	0	No
-				
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No
Iodide	4	4	0	No

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	0	4	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	0	4	Yes
Nickel	4	3	1	Yes
Oxidation-Reduction Potential	4	0	4	Yes
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Vanadium	4	4	0	No
Vinyl Acetate	4	4	0	No
Zinc	4	0	4	Yes

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	4	7	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Beta activity	11	6	5	Yes
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	1	10	Yes
Chloride	11	0	10	Yes
Chlorobenzene	11		0	No
		11	0	
Chloroethane	11	11		No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
<i>cis</i> -1,2-Dichloroethene	11	10	1	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	5	6	Yes
Conductivity	11	0	11	Yes
Copper	11	0	11	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	0	11	Yes
Magnesium	11	0	11	Yes
Manganese	11	0	11	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	4	7	Yes
Nickel	11	2	9	Yes
Oxidation-Reduction Potential	11	0	11	Yes
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	10	1	Yes
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	6	5	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	11	0	No
Total Organic Halides (TOX)	11	0	11	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	5	6	Yes
Trichlorofluoromethane	11	11	0	No
Vanadium	11	11	0	No
Vinyl Acetate	11	11	0	No
Zinc	11	1	10	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	4	3	Yes
Antimony	7	7	0	No
Beryllium	7	7	0	No
Beta activity	7	4	3	Yes
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	1	6	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	5	2	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	6	1	Yes
Dibromochloromethane	7	7	0	No
Dibromoethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodide	7	7	0	No
	7	0	7	
Iron	7 D 11	U	1	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Magnesium	7	0	7	Yes
Manganese	7	0	7	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	7	0	No
Nickel	7	1	6	Yes
Oxidation-Reduction Potential	7	0	7	Yes
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	4	3	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	7	0	No
Total Organic Halides (TOX)	7	0	7	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	1	6	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	7	0	No
Vinyl Acetate	7	7	0	No
Zinc	7	0	7	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 25, 28, and 27 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which include those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical background by well number is shown in Exhibit D.6.

<u>UCRS</u>

This quarter's results identified exceedances of historical background upper tolerance limit (UTL) for oxidation-reduction potential and technetium-99.

<u>URGA</u>

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, COD, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sodium, sulfate, and technetium-99.

<u>LRGA</u>

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: COD, oxidation-reduction potential, radium-226, sulfate	MW370: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW390: Oxidation-reduction potential, technetium-99	MW221: Oxidation-reduction potential	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium sulfate
MW393: Oxidation-reduction potential	MW222: Oxidation-reduction potential	MW385: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW223: Oxidation-reduction potential, sulfate	MW388: Beta activity, conductivity, oxidation-reduction potential, sulfate, technetium-99
	MW224: Oxidation-reduction potential	MW392: Oxidation-reduction potential, sulfate
	MW369: Sodium	MW395: Oxidation-reduction potential
	MW372: Calcium, conductivity, dissolved solids, magnesium, sulfate, technetium-99	MW397: Oxidation-reduction potential
	MW384: Oxidation-reduction potential, sulfate, technetium-99	
	MW387: Beta activity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, technetium-99	
	MW391: Oxidation-reduction potential, sulfate	
	MW394: Oxidation-reduction potential	

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
pH	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentrations in MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentrations in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentrations in MW220.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentrations in MW372.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Manganese	Tolerance Interval	2.15	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220, MW221, MW222, MW223, MW224, MW384, MW387, MW391, and MW394.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.6	Current results exceed statistically derived historical background concentration in MW220.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW369 and MW387.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW220, MW223, MW372, MW384, MW387, and MW391.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW372, MW384, and MW387.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373 and MW388.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Cyanide	Tolerance Interval	0.00	No exceedance of historically derived background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, MW395, and MW397.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.47	Current results exceed statistically derived historical background concentration in MW373.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, and MW392.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 2, 11, and 9 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

URGA	LRGA
MW369: Sodium	MW370: Beta activity, sulfate, technetium-99
MW372: Calcium, conductivity, dissolved solids, magnesium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sodium, sulfate
MW387: Beta activity, dissolved solids, magnesium, sodium, technetium-99	MW388: Beta activity, conductivity, sulfate, technetium-99
	MW392: Sulfate

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

<u>UCRS</u>

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the technetium-99 concentration in one UCRS well (i.e., MW390) exceeded the current TL this quarter.

<u>URGA</u>

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

<u>LRGA</u>

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.38	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	-7.26	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.56	MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.13	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.32	MW220 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.07	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.16	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.09	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.15	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Radium-226	Tolerance Interval	0.96	None of the test wells exceed the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sodium	Tolerance Interval	0.19	MW369 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.34	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.68	MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.39	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.17	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.08	MW373 and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.23	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.18	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.19	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sodium	Tolerance Interval	0.08	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.07	MW370, MW373, MW385, MW388, and MW392 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.65	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

CV: coefficient of variation * If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.320	S = 0.182	CV(1)= 0.567	K factor**= 3.188	TL(1)= 0.900	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.259	S = 0.503	CV(2) =-0.400	K factor**= 3.188	TL(2)= 0.345	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.393	-0.934
9/16/2002	0.2	-1.609
10/16/2002	0.2	-1.609
1/13/2003	0.501	-0.691
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.668	-0.403

Dry/Partially Dry Wells	
Wall No	Cradiant

well no.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A
MW390	Downgradient	t Yes	0.0425	NO	-3.158	N/A
MW393	Downgradient	t Yes	0.0325	NO	-3.427	N/A
MW396	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.650	S = 0.833	CV(1)=1.282	K factor**= 3.188	TL(1)= 3.306	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.034	S= 1.066	CV(2) =-1.031	K factor**= 3.188	TL(2)= 2.364	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MW396	
Result	LN(Result)
2	0.693
2	0.693
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.2	-1.609
	Result 2 2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Dry/Partially Dry Wells			
Well No.	Gradient		

MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00663	N/A	-5.016	NO
MW390	Downgradien	t Yes	0.0235	N/A	-3.751	NO
MW393	Downgradien	t Yes	0.021	N/A	-3.863	NO
MW396	Upgradient	Yes	0.00872	N/A	-4.742	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.388	S= 0.327	CV(1)= 0.236	K factor**= 3.188	TL(1)= 2.430	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.301	S = 0.252	CV(2) =0.838	K factor**= 3.188	TL(2)= 1.105	LL(2)=N/A

Upgradient Wells with Transformed Result
--

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Partially Dry Wells	
	1

well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.2	N/A	-1.609	N/A
MW390	Downgradien	t Yes	0.221	NO	-1.510	N/A
MW393	Downgradien	t Yes	0.188	NO	-1.671	N/A
MW396	Upgradient	Yes	0.831	NO	-0.185	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=41.825
 S=
 8.445
 CV(1)=0.202
 K factor**= 3.188
 TL(1)= 68.748
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.711
 S=
 0.241
 CV(2)=0.065
 K factor**= 3.188
 TL(2)= 4.479
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	19.6	NO	2.976	N/A
MW390	Downgradien	t Yes	31.1	NO	3.437	N/A
MW393	Downgradien	t Yes	15	NO	2.708	N/A
MW396	Upgradient	Yes	31.7	NO	3.456	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=35.375
 S= 0.744
 CV(1)=0.021
 K factor**=3.188
 TL(1)=37.747
 LL(1)=N/A

 Statistics-Transformed Background
 X=3.566
 S= 0.021
 CV(2)=0.006
 K factor**=3.188
 TL(2)=3.632
 LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	cells with Transformed Result
Well Number:	MW396

Data

wen runnoen.	111 11 2000	
Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	19	NO	2.944	N/A
MW390	Downgradien	t Yes	27.7	NO	3.321	N/A
MW393	Downgradien	t Yes	20.8	NO	3.035	N/A
MW396	Upgradient	Yes	31.1	NO	3.437	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=101.725 S= 5.245
 CV(1)=0.052
 K factor**= 3.188
 TL(1)=118.447
 LL(1)=N/A

 Statistics-Transformed Background
 X=4.621
 S= 0.053
 CV(2)=0.011
 K factor**= 3.188
 TL(2)= 4.789
 LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	11.3	NO	2.425	N/A
MW390	Downgradien	t Yes	30.7	NO	3.424	N/A
MW393	Downgradien	t Yes	12.3	NO	2.510	N/A
MW396	Upgradient	Yes	56.6	NO	4.036	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.008	S = 0.011	CV(1)= 1.340	K factor**= 3.188	TL(1)= 0.042	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.645	S = 1.339	CV(2) =-0.237	K factor**= 3.188	TL(2)= -1.377	LL(2)=N/A

Upgradient Wells with Transformed Result
--

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells	
Well No Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00043	N/A	-7.752	NO
MW390	Downgradien	t No	0.001	N/A	-6.908	N/A
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
MW396	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 922.500 S= 107.616 CV(1)=0.117
 K factor**= 3.188
 TL(1)= 1265.579 LL(1)=N/A

Statistics-Transformed Background X=6.822 S= 0.111 CV(2)=0.016 Data

6	K factor**= 3.188	TL(2)= 7.175

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	784	6.664
9/30/2002	871	6.770
10/16/2002	868	6.766
1/13/2003	912	6.816
4/8/2003	942	6.848
7/16/2003	910	6.813
10/14/2003	935	6.841
1/14/2004	1158	7.054

1 111200

XX7 11 XT

Dry/Partially Dry Wells		
Well No.	Gradient	
MW389	Downgradient	

Г

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

LL(2)=N/A

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	550	NO	6.310	N/A
MW390	Downgradien	t Yes	667	NO	6.503	N/A
MW393	Downgradien	t Yes	441	NO	6.089	N/A
MW396	Upgradient	Yes	708	NO	6.562	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.028 S = 0.014 CV(1) = 0.481 K factor**= 3.188 TL(1) = 0.072 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.650 S = 0.414 CV(2) = -0.113 K factor**= 3.188 TL(2) = -2.331 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells		
Well No.	Gradient	

	oraaloni
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.00131	NO	-6.638	N/A		
MW390	Downgradien	t Yes	0.00081	1 NO	-7.117	N/A		
MW393	Downgradien	t Yes	0.00064	NO	-7.354	N/A		
MW396	Upgradient	Yes	0.00096	4 NO	-6.944	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.395	S= 1.677	CV(1)= 1.202	K factor**= 3.188	TL(1)= 6.743	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.043	S = 0.814	CV(2)= -18.867	K factor**= 3.188	TL(2)= 2.553	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW396							
Date Collected	Result	LN(Result)						
8/12/2002	5 45	1 606						

8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Partially Dry Wells						
Well No.	Gradient					

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	5.55	N/A	1.714	NO		
MW390	Downgradien	t Yes	3.52	N/A	1.258	NO		
MW393	Downgradien	t Yes	1.75	N/A	0.560	NO		
MW396	Upgradient	Yes	2.6	N/A	0.956	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 550.375 S= 104.330 CV(1)=0.190
 K factor**= 3.188
 TL(1)= 882.980
 LL(1)=N/A

Г

Statistics-Transformed Background X=6.298 S= 0.162 CV(2)=0.026 Data

K factor**= 3.188	TL(2)= 6.815	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result
18

MW396	
Result	LN(Result)
502	6.219
506	6.227
543	6.297
521	6.256
504	6.223
532	6.277
490	6.194
805	6.691
	Result 502 506 543 521 504 532 490

Dry/Partially Dry Wells								
Well No.	Gradient							
MW389	Downgradient							

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	300	NO	5.704	N/A		
MW390	Downgradien	t Yes	396	NO	5.981	N/A		
MW393	Downgradien	t Yes	266	NO	5.583	N/A		
MW396	Upgradient	Yes	364	NO	5.897	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.796	S= 3.723	CV(1)= 0.478	K factor**= 3.188	TL(1)= 19.666	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.880	S= 0.723	CV(2) =0.384	K factor**= 3.188	TL(2)= 4.184	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW396	
Result	LN(Result)
1.8	0.588
9.53	2.254
7.43	2.006
9.93	2.296
10.2	2.322
9.16	2.215
11.9	2.477
2.42	0.884
	Result 1.8 9.53 7.43 9.93 10.2 9.16 11.9

Dry/Par	Dry/Partially Dry Wells					
Wall No	Cradiant					

well no.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.12	NO	-2.120	N/A
MW390	Downgradien	t Yes	0.0474	NO	-3.049	N/A
MW393	Downgradien	t Yes	1.01	NO	0.010	N/A
MW396	Upgradient	Yes	0.189	NO	-1.666	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 16.876	S = 3.313	CV(1)= 0.196	K factor**= 3.188	TL(1)= 27.438	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.804	S= 0.240	CV(2)= 0.086	K factor**= 3.188	TL(2)= 3.569	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Partially Dry Wells					
Well No.	Gradient				

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	7.27	NO	1.984	N/A
MW390	Downgradien	t Yes	13.2	NO	2.580	N/A
MW393	Downgradien	t Yes	4.45	NO	1.493	N/A
MW396	Upgradient	Yes	13.9	NO	2.632	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.774	S = 0.353	CV(1)= 0.456	K factor**= 3.188	TL(1)= 1.900	LL(1)= N/A
Statistics-Transformed Background	X =-0.566	S = 1.192	CV(2) =-2.105	K factor**= 3.188	TL(2)= 3.235	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW396			

Data

Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Partially Dry Wells			
Well No.	Gradient		

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0458	NO	-3.083	N/A
MW390	Downgradien	t Yes	0.00247	NO	-6.004	N/A
MW393	Downgradien	t Yes	0.015	NO	-4.200	N/A
MW396	Upgradient	Yes	0.029	NO	-3.540	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.007	S = 0.011	CV(1)= 1.507	K factor**= 3.188	TL(1)= 0.042	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.928	S = 1.420	CV(2) =-0.240	K factor**= 3.188	TL(2)= -1.400	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result
10

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00128	-6.661
4/8/2003	0.00271	-5.911
7/16/2003	0.00117	-6.751
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells			
Well No.	Gradient		

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00042	1 N/A	-7.773	NO
MW390	Downgradien	t Yes	0.00036	3 N/A	-7.921	NO
MW393	Downgradien	t Yes	0.00023	8 N/A	-8.343	NO
MW396	Upgradient	Yes	0.00036	2 N/A	-7.924	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.016	S = 0.021	CV(1)= 1.272	K factor**= 3.188	TL(1)= 0.083	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.706	S= 1.057	CV(2) =-0.225	K factor**= 3.188	TL(2)= -1.338	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result
opgraatent it ens itten Transformen result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells			
Well No. Gradient			

	Gradient
MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.002	N/A	-6.215	N/A
MW390	Downgradient	t Yes	0.00117	N/A	-6.751	NO
MW393	Downgradient	t No	0.002	N/A	-6.215	N/A
MW396	Upgradient	No	0.002	N/A	-6.215	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV** UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=13.000 S= 61.952 CV(1)=4.766 **K factor**=** 3.188 **Statistics-Background Data** TL(1)= 210.502 LL(1)=N/A **K factor**=** 3.188 TL(2)= 4.736 LL(2)=N/A

Statistics-Transformed Background X=4.364 S= 0.333 CV(2)=0.076 Data

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW396

well Number:	IVI W 390	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Partially Dry Wells				
Well No.	Gradient			

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	409	N/A	6.014	YES	
MW390	Downgradien	t Yes	424	N/A	6.050	YES	
MW393	Downgradien	t Yes	443	N/A	6.094	YES	
MW396	Upgradient	Yes	401	N/A	5.994	YES	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW386 MW390 MW393 MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.460	S = 0.350	CV(1)= 0.054	K factor**= 3.736	TL(1)= 7.766	LL(1)= 5.1541
Statistics-Transformed Background Data	X= 1.864	S= 0.054	CV(2)= 0.029	K factor**= 3.736	TL(2)= 2.067	LL(2)= 1.6621

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>		
MW386	Sidegradient	Yes	6.93	NO	1.936	N/A		
MW390	Downgradien	t Yes	6.21	NO	1.826	N/A		
MW393	Downgradien	t Yes	6.3	NO	1.841	N/A		
MW396	Upgradient	Yes	6.67	NO	1.898	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.411	S = 0.399	CV(1)=0.282	K factor**= 3.188	TL(1)= 2.682	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.311	S= 0.271	CV(2)= 0.870	K factor**= 3.188	TL(2)= 1.175	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Par	tially Dry Wells
Well No.	Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.306	NO	-1.184	N/A
MW390	Downgradien	t Yes	0.388	NO	-0.947	N/A
MW393	Downgradien	t Yes	0.488	NO	-0.717	N/A
MW396	Upgradient	Yes	0.921	NO	-0.082	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Sodium UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 106.825 S = 32.041 CV(1) = 0.300**K factor**=** 3.188 TL(1)= 208.973 LL(1)=N/A **Statistics-Background Data**

Statistics-Transformed Background X=4.595 S= 0.492 CV(2)=0.107 Data

LN(Result)

4.745

4.754

4.762

4.804

4.663

4.762

4.883

3.388

MW396

Result

115

116

117

122

106

117

132

29.6

Well Number:

Date Collected

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/14/2004

Historical Background Data from Upgradient Wells with Transformed Result	Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 6.163

LL(2)=N/A

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	99	NO	4.595	N/A
MW390	Downgradien	t Yes	93.2	NO	4.535	N/A
MW393	Downgradien	t Yes	82.7	NO	4.415	N/A
MW396	Upgradient	Yes	101	NO	4.615	N/A

K factor=** 3.188

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 22.463
 S=
 8.876
 CV(1)=0.395
 K factor**= 3.188
 TL(1)= 50.759
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.054
 S=
 0.351
 CV(2)=0.115
 K factor**= 3.188
 TL(2)= 4.173
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result		
Well Number:	MW396	

Data

111 11 0 7 0	
Result	LN(Result)
41.9	3.735
26.3	3.270
20.6	3.025
16.6	2.809
23.9	3.174
18.8	2.934
12.9	2.557
18.7	2.929
	41.9 26.3 20.6 16.6 23.9 18.8 12.9

Dry/Partially Dry Wells		
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	48.6	NO	3.884	N/A	
MW390	Downgradien	t Yes	46.7	NO	3.844	N/A	
MW393	Downgradien	t Yes	20.8	NO	3.035	N/A	
MW396	Upgradient	Yes	29.8	NO	3.395	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.624	S = 6.558	CV(1)= 0.860	K factor**= 3.188	TL(1)= 28.531	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.498	S = 1.321	CV(2)= 0.882	K factor**= 3.188	TL(2)= 5.710	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result
-19

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	0.45	N/A	-0.799	N/A		
MW390	Downgradien	t Yes	58.1	YES	4.062	N/A		
MW393	Downgradien	t No	-2.35	N/A	#Error	N/A		
MW396	Upgradient	No	5.69	N/A	1.739	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 9.988	S = 4.696	CV(1)= 0.470	K factor**= 3.188	TL(1)= 24.959	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.210	S = 0.454	CV(2) =0.205	K factor**= 3.188	TL(2)= 3.657	LL(2)=N/A

Upgradient Wells with Transformed Result
--

MW396	
Result	LN(Result)
19	2.944
14.6	2.681
10.4	2.342
4.4	1.482
7	1.946
7.3	1.988
9.1	2.208
8.1	2.092
	Result 19 14.6 10.4 4.4 7 7.3 9.1

Dry/Par	tially Dry Wells	
Wall No	Cradiant	

wen no.	Gladient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	3.51	NO	1.256	N/A
MW390	Downgradien	t Yes	2.76	NO	1.015	N/A
MW393	Downgradien	t Yes	2.6	NO	0.956	N/A
MW396	Upgradient	Yes	4.35	NO	1.470	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 142.650 S= 53.533
 CV(1)=0.375
 K factor**= 3.188
 TL(1)= 313.314
 LL(1)=N/A

Statistics-Transformed Background X=4.896 S= 0.390 CV(2)=0.080 Data

Historical Bac	kground Data from
Upgradient W	cells with Transformed Result
Well Number:	MW396

	111 11 0 7 0	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Pa	tially Dry W	ells
Well No	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 6.138

LL(2)=N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	78.6	NO	4.364	N/A
MW390	Downgradien	t Yes	17.4	NO	2.856	N/A
MW393	Downgradien	t Yes	12.3	NO	2.510	N/A
MW396	Upgradient	Yes	38.9	NO	3.661	N/A

K factor=** 3.188

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.044	S = 0.035	CV(1)= 0.786	K factor**= 3.188	TL(1)= 0.156	LL(1)=N/A
Statistics-Transformed Background	X= -3.342	S = 0.682	CV(2) =-0.204	K factor**= 3.188	TL(2)= -1.168	LL(2)=N/A

Historical Bac Upgradient W	kground Da ells with Tr	ta from ansformed Result
Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303

Data

9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/8/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells	
Well No. Gradient	

e n 1.0.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00488	NO	-5.323	N/A
MW390	Downgradien	t Yes	0.0254	NO	-3.673	N/A
MW393	Downgradien	t Yes	0.00435	NO	-5.438	N/A
MW396	Upgradient	Yes	0.0037	NO	-5.599	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.221	S= 0.061	CV(1)= 0.277	K factor**= 2.523	TL(1)= 0.376	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.534	S= 0.212	CV(2) =-0.138	K factor**= 2.523	TL(2)= -0.999	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW220

Well Number

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.427	-0.851
1/13/2004	0.309	-1.174
4/13/2004	0.2	-1.609
7/21/2004	0.202	-1.599
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 0.2	-1.609
Date Collected 8/13/2002 9/16/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609 -1.609 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	0.0588	NO	-2.834	N/A
Sidegradient	No	0.05	N/A	-2.996	N/A
Sidegradient	No	0.05	N/A	-2.996	N/A
Sidegradient	Yes	0.0473	NO	-3.051	N/A
Sidegradient	No	0.05	N/A	-2.996	N/A
Downgradien	t Yes	0.0243	NO	-3.717	N/A
Downgradien	t Yes	0.0233	NO	-3.759	N/A
Sidegradient	No	0.05	N/A	-2.996	N/A
Downgradien	t Yes	0.0831	NO	-2.488	N/A
Downgradien	t Yes	0.0369	NO	-3.300	N/A
Upgradient	Yes	0.0399	NO	-3.221	N/A
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradient Downgradient Downgradient Downgradient	GradientDetected?UpgradientYesSidegradientNoSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientNoDowngradientYesSidegradientNoDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYes	GradientDetected?ResultUpgradientYes0.0588SidegradientNo0.05SidegradientNo0.05SidegradientYes0.0473SidegradientNo0.05DowngradientYes0.0243DowngradientYes0.0233SidegradientNo0.05DowngradientYes0.0831DowngradientYes0.0369	GradientDetected?ResultResult >TL(1)?UpgradientYes0.0588NOSidegradientNo0.05N/ASidegradientNo0.05N/ASidegradientYes0.0473NOSidegradientNo0.05N/ADowngradientYes0.0243NODowngradientYes0.0233NOSidegradientNo0.05N/ADowngradientYes0.0233NOSidegradientNo0.05N/ADowngradientYes0.0831NODowngradientYes0.0369NO	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 0.0588 NO -2.834 Sidegradient No 0.05 N/A -2.996 Sidegradient No 0.05 N/A -2.996 Sidegradient Yes 0.0473 NO -3.051 Sidegradient Yes 0.0243 NO -3.717 Downgradient Yes 0.0233 NO -3.759 Sidegradient No 0.05 N/A -2.996 Downgradient Yes 0.0243 NO -3.717 Downgradient Yes 0.0233 NO -3.759 Sidegradient No 0.05 N/A -2.996 Downgradient Yes 0.0831 NO -3.759 Sidegradient No 0.05 N/A -2.996 Downgradient Yes 0.0369 NO -3.300

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 14.273	S = 13.883	CV(1)= 0.973	K factor**= 2.523	TL(1)= 49.300	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.213	S = 1.033	CV(2)= 0.467	K factor**= 2.523	TL(2)= 4.819	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					

wen rumber.	101 10 220	
Date Collected	Result	LN(Result)
10/14/2002	15.2	2.721
1/15/2003	42.5	3.750
4/10/2003	45.4	3.816
7/14/2003	8.53	2.144
10/13/2003	11.7	2.460
1/13/2004	13.5	2.603
4/13/2004	33.5	3.512
7/21/2004	13.7	2.617
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.615
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 5.03	1.615
Date Collected 8/13/2002 9/16/2002	Result 5.03 5.57	1.615 1.717
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 5.03 5.57 12.8	1.615 1.717 2.549
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 5.03 5.57 12.8 4.3	1.615 1.717 2.549 1.459
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.03 5.57 12.8 4.3 9.52	1.615 1.717 2.549 1.459 2.253
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5.03 5.57 12.8 4.3 9.52 3.92	1.615 1.717 2.549 1.459 2.253 1.366

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	16.5	N/A	2.803	N/A
MW221	Sidegradient	No	5.08	N/A	1.625	N/A
MW222	Sidegradient	No	10.2	N/A	2.322	N/A
MW223	Sidegradient	No	-1.86	N/A	#Error	N/A
MW224	Sidegradient	No	8.34	N/A	2.121	N/A
MW369	Downgradien	t Yes	27.8	N/A	3.325	N/A
MW372	Downgradien	t Yes	20.9	N/A	3.040	N/A
MW384	Sidegradient	Yes	43.6	N/A	3.775	N/A
MW387	Downgradien	t Yes	240	YES	5.481	N/A
MW391	Downgradien	t No	10.4	N/A	2.342	N/A
MW394	Upgradient	No	5.27	N/A	1.662	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.425	S= 0.615	CV(1)= 1.447	K factor**= 2.523	TL(1)= 1.976	LL(1)= N/A
Statistics-Transformed Background	X= -1.322	S= 0.786	CV(2) =-0.595	K factor**= 2.523	TL(2)= 0.663	LL(2)=N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

MW220

Well Number

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.2	-1.609
1/13/2004	0.2	-1.609
4/13/2004	0.2	-1.609
7/21/2004	0.2	-1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	()
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 2. 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 2 0.2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00649	N/A	-5.037	NO
MW221	Sidegradient	Yes	0.0152	N/A	-4.186	NO
MW222	Sidegradient	Yes	0.0114	N/A	-4.474	NO
MW223	Sidegradient	Yes	0.00747	N/A	-4.897	NO
MW224	Sidegradient	Yes	0.0235	N/A	-3.751	NO
MW369	Downgradien	t Yes	0.0202	N/A	-3.902	NO
MW372	Downgradien	t Yes	1.15	N/A	0.140	NO
MW384	Sidegradient	Yes	0.06	N/A	-2.813	NO
MW387	Downgradien	t Yes	0.0217	N/A	-3.830	NO
MW391	Downgradien	t Yes	0.0812	N/A	-2.511	NO
MW394	Upgradient	Yes	0.022	N/A	-3.817	NO
	10			N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA Bromide**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
Upgradient	Yes	0.242	NO	-1.419	N/A	
Sidegradient	Yes	0.471	NO	-0.753	N/A	
Sidegradient	Yes	0.432	NO	-0.839	N/A	
Sidegradient	Yes	0.394	NO	-0.931	N/A	
Sidegradient	Yes	0.483	NO	-0.728	N/A	
Downgradient	t Yes	0.502	NO	-0.689	N/A	
Downgradien	t Yes	0.512	NO	-0.669	N/A	
Sidegradient	Yes	0.347	NO	-1.058	N/A	
Downgradient	t Yes	0.628	NO	-0.465	N/A	
Downgradient	t Yes	0.596	NO	-0.518	N/A	
Upgradient	Yes	0.512	NO	-0.669	N/A	
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradient Downgradient Downgradient Downgradient Upgradient	GradientDetected?UpgradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesUpgradientYes	GradientDetected?ResultUpgradientYes0.242SidegradientYes0.471SidegradientYes0.432SidegradientYes0.394SidegradientYes0.483DowngradientYes0.502DowngradientYes0.512SidegradientYes0.347DowngradientYes0.628DowngradientYes0.596UpgradientYes0.512	GradientDetected?ResultResult >TL(1)?UpgradientYes0.242NOSidegradientYes0.471NOSidegradientYes0.432NOSidegradientYes0.394NOSidegradientYes0.502NODowngradientYes0.512NODowngradientYes0.628NODowngradientYes0.628NODowngradientYes0.596NOUpgradientYes0.512NO	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 0.242 NO -1.419 Sidegradient Yes 0.471 NO -0.753 Sidegradient Yes 0.432 NO -0.839 Sidegradient Yes 0.394 NO -0.931 Sidegradient Yes 0.483 NO -0.728 Downgradient Yes 0.502 NO -0.669 Sidegradient Yes 0.512 NO -0.669 Sidegradient Yes 0.628 NO -1.058 Downgradient Yes 0.628 NO -0.465 Downgradient Yes 0.596 NO -0.518	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 27.638	S= 4.743	CV(1)= 0.172	K factor**= 2.523	TL(1)= 39.604	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.304	S = 0.183	CV(2) =0.055	K factor**= 2.523	TL(2)= 3.765	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	23.6	3.161			
1/15/2003	25.9	3.254			
4/10/2003	30.4	3.414			
7/14/2003	33.9	3.523			
10/13/2003	21.3	3.059			
1/13/2004	20.3	3.011			
4/13/2004	23.8	3.170			
7/21/2004	19	2.944			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	29.5	3.384			
9/16/2002	29.9	3.398			
10/16/2002	31.2	3.440			
1/13/2003	30.7	3.424			
4/10/2003	34.4	3.538			

29.6

30.3

28.4

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
Upgradient	Yes	28.8	NO	3.360	N/A	
Sidegradient	Yes	21.8	NO	3.082	N/A	
Sidegradient	Yes	21.6	NO	3.073	N/A	
Sidegradient	Yes	23.6	NO	3.161	N/A	
Sidegradient	Yes	24.5	NO	3.199	N/A	
Downgradien	t Yes	20.4	NO	3.016	N/A	
Downgradien	t Yes	62.7	YES	4.138	N/A	
Sidegradient	Yes	26.9	NO	3.292	N/A	
Downgradien	t Yes	38.7	NO	3.656	N/A	
Downgradien	t Yes	29.1	NO	3.371	N/A	
Upgradient	Yes	24.9	NO	3.215	N/A	
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradien Downgradien Downgradien Downgradien	GradientDetected?UpgradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYes	GradientDetected?ResultUpgradientYes28.8SidegradientYes21.8SidegradientYes21.6SidegradientYes23.6SidegradientYes24.5DowngradientYes20.4DowngradientYes62.7SidegradientYes38.7DowngradientYes29.1	GradientDetected?ResultResult >TL(1)?UpgradientYes28.8NOSidegradientYes21.8NOSidegradientYes21.6NOSidegradientYes23.6NOSidegradientYes24.5NODowngradientYes20.4NODowngradientYes62.7YESSidegradientYes26.9NODowngradientYes38.7NODowngradientYes29.1NO	GradientDetected?ResultResult >TL(1)?LN(Result)UpgradientYes28.8NO 3.360 SidegradientYes21.8NO 3.082 SidegradientYes21.6NO 3.073 SidegradientYes23.6NO 3.161 SidegradientYes24.5NO 3.199 DowngradientYes20.4NO 3.016 DowngradientYes26.9NO 3.292 DowngradientYes38.7NO 3.656 DowngradientYes29.1NO 3.371	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.388

3.411

3.346

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 35.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 35.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.555	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 3.555	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	35	3.555				
1/15/2003	35	3.555				
4/10/2003	35	3.555				
7/14/2003	35	3.555				
10/13/2003	35	3.555				
1/13/2004	35	3.555				

7/21/2004	35	3.555
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	3.555
4/10/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/13/2004	35	3.555

35

4/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
Upgradient	Yes	114	YES	4.736	N/A	
Sidegradient	Yes	28.8	NO	3.360	N/A	
Sidegradient	Yes	28.8	NO	3.360	N/A	
Sidegradient	Yes	33.7	NO	3.517	N/A	
Sidegradient	Yes	14.2	NO	2.653	N/A	
Downgradien	t Yes	33.9	NO	3.523	N/A	
Downgradien	t No	20	N/A	2.996	N/A	
Sidegradient	Yes	14.2	NO	2.653	N/A	
Downgradien	t Yes	23.9	NO	3.174	N/A	
Downgradien	t Yes	27.7	NO	3.321	N/A	
Upgradient	Yes	31.1	NO	3.437	N/A	
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradient Downgradient Downgradient Downgradient Upgradient	GradientDetected?UpgradientYesSidegradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientNoSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesUpgradientYes	GradientDetected?ResultUpgradientYes114SidegradientYes28.8SidegradientYes28.8SidegradientYes33.7SidegradientYes14.2DowngradientYes33.9DowngradientNo20SidegradientYes14.2DowngradientYes14.2DowngradientYes23.9DowngradientYes27.7UpgradientYes31.1	GradientDetected?ResultResult >TL(1)?UpgradientYes114YESSidegradientYes28.8NOSidegradientYes28.8NOSidegradientYes33.7NOSidegradientYes14.2NODowngradientYes33.9NODowngradientNo20N/ASidegradientYes14.2NODowngradientYes23.9NODowngradientYes23.9NODowngradientYes27.7NOUpgradientYes31.1NO	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 114 YES 4.736 Sidegradient Yes 28.8 NO 3.360 Sidegradient Yes 28.8 NO 3.360 Sidegradient Yes 28.8 NO 3.360 Sidegradient Yes 33.7 NO 3.517 Sidegradient Yes 14.2 NO 2.653 Downgradient Yes 33.9 NO 3.523 Downgradient Yes 14.2 NO 2.653 Downgradient Yes 14.2 NO 2.653 Downgradient Yes 23.9 NO 3.174 Downgradient Yes 27.7 NO 3.321	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW220

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 49.044	S= 11.278	CV(1)= 0.230	K factor**= 2.523	TL(1)= 77.499	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.866	S = 0.244	CV(2) =0.063	K factor**= 2.523	TL(2)= 4.482	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW220			
Date Collected	Result	LN(Result)		
10/14/2002	44.6	3.798		

3.766

3.450

3.428

3.711

3.709

3.624

3.709

4.101

4.099

4.060

4.106

4.142

4.062

4.064

4.025

LN(Result)

43.2

31.5

30.8

40.9

40.8

37.5

40.8

MW394

Result

60.4

60.3

60.7

62.9

58.1

58.2

56

58

1/15/2003

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	18.2	NO	2.901	N/A
MW221	Sidegradient	Yes	34.8	NO	3.550	N/A
MW222	Sidegradient	Yes	31.4	NO	3.447	N/A
MW223	Sidegradient	Yes	28.2	NO	3.339	N/A
MW224	Sidegradient	Yes	35.8	NO	3.578	N/A
MW369	Downgradien	t Yes	31.2	NO	3.440	N/A
MW372	Downgradien	t Yes	39.5	NO	3.676	N/A
MW384	Sidegradient	Yes	30.6	NO	3.421	N/A
MW387	Downgradien	t Yes	45.4	NO	3.816	N/A
MW391	Downgradien	t Yes	46.3	NO	3.835	N/A
MW394	Upgradient	Yes	42	NO	3.738	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.000	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.609	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					

wen ramoer.	111 11 220	
Date Collected	Result	LN(Result)
10/14/2002	5	1.609
1/15/2003	5	1.609
4/10/2003	5	1.609
7/14/2003	5	1.609
10/13/2003	5	1.609
1/13/2004	5	1.609
4/13/2004	5	1.609
7/21/2004	5	1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	()
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t No	1	N/A	0.000	N/A
MW372	Downgradien	t No	1	N/A	0.000	N/A
MW384	Sidegradient	No	1	N/A	0.000	N/A
MW387	Downgradien	t No	1	N/A	0.000	N/A
MW391	Downgradien	t Yes	0.46	NO	-0.777	N/A
MW394	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.016	S= 0.040	CV(1)= 2.440	K factor**= 2.523	TL(1)= 0.116	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.582	S= 1.573	CV(2) =-0.282	K factor**= 2.523	TL(2)= -1.613	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0041	-5.497
1/15/2003	0.00496	-5.306
4/10/2003	0.00289	-5.846
7/14/2003	0.161	-1.826
10/13/2003	0.0226	-3.790
1/13/2004	0.00464	-5.373
4/13/2004	0.001	-6.908
7/21/2004	0.00264	-5.937
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	No	0.001	N/A	-6.908	N/A		
MW221	Sidegradient	Yes	0.00135	N/A	-6.608	NO		
MW222	Sidegradient	Yes	0.00157	N/A	-6.457	NO		
MW223	Sidegradient	Yes	0.0004	N/A	-7.824	NO		
MW224	Sidegradient	Yes	0.00289	N/A	-5.846	NO		
MW369	Downgradien	t Yes	0.00564	N/A	-5.178	NO		
MW372	Downgradien	t Yes	0.00078	9 N/A	-7.145	NO		
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A		
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW394	Upgradient	No	0.001	N/A	-6.908	N/A		
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 382.132 S = 107.134 CV(1) = 0.280	K factor**= 2.523	TL(1)= 652.432 LL(1)=N/A
Statistics-Transformed Background Data	X =5.716 S = 1.164 CV(2) =0.204	K factor**= 2.523	TL(2)= 8.652 LL(2)=N/A

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	435	NO	6.075	N/A
MW221	Sidegradient	Yes	400	NO	5.991	N/A
MW222	Sidegradient	Yes	388	NO	5.961	N/A
MW223	Sidegradient	Yes	414	NO	6.026	N/A
MW224	Sidegradient	Yes	427	NO	6.057	N/A
MW369	Downgradien	t Yes	407	NO	6.009	N/A
MW372	Downgradien	t Yes	687	YES	6.532	N/A
MW384	Sidegradient	Yes	458	NO	6.127	N/A
MW387	Downgradien	t Yes	566	NO	6.339	N/A
MW391	Downgradien	t Yes	412	NO	6.021	N/A
MW394	Upgradient	Yes	367	NO	5.905	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Historical Background Data from

Well Number:

Date Collected

10/14/2002

1/15/2003

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Upgradient Wells with Transformed Result

LN(Result)

5.908

6.071

6.192

6.064

5.846

5.900

6.031

5.866

6.006

6.035

6.019

6.045 6.040

6.082

1.364

5.979

LN(Result)

MW220

Result

368

489

430

346

365

416

353

MW394

Result

406

418

411

422

420

438

3.91

395

433.2

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.010	CV(1)= 0.429	K factor**= 2.523	TL(1)= 0.050	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.794	S = 0.312	CV(2) =-0.082	K factor**= 2.523	TL(2)= -3.007	LL(2)=N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0211	-3.858
1/15/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/14/2003	0.02	-3.912
10/13/2003	0.02	-3.912
1/13/2004	0.02	-3.912
4/13/2004	0.02	-3.912
7/21/2004	0.02	-3.912
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912

0.02

0.02

0.02

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00088	5 NO	-7.030	N/A
MW221	Sidegradient	Yes	0.00218	NO	-6.128	N/A
MW222	Sidegradient	Yes	0.00181	NO	-6.314	N/A
MW223	Sidegradient	Yes	0.00076	7 NO	-7.173	N/A
MW224	Sidegradient	Yes	0.00050	3 NO	-7.595	N/A
MW369	Downgradien	t Yes	0.00111	NO	-6.803	N/A
MW372	Downgradien	t Yes	0.00052	NO	-7.562	N/A
MW384	Sidegradient	Yes	0.00086	NO	-7.059	N/A
MW387	Downgradien	t Yes	0.00099	3 NO	-6.915	N/A
MW391	Downgradien	t Yes	0.001	NO	-6.908	N/A
MW394	Upgradient	Yes	0.00060	1 NO	-7.417	N/A
	10			I NO oratory analysis or		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.784	S= 1.887	CV(1)= 0.499	K factor**= 2.523	TL(1)= 8.545	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.182	S = 0.612	CV(2)= 0.518	K factor**= 2.523	TL(2)= 2.727	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.79	1.915
1/15/2003	7.25	1.981
4/10/2003	3.6	1.281
7/14/2003	0.94	-0.062
10/13/2003	1.65	0.501
1/13/2004	3.48	1.247
4/13/2004	1.05	0.049
7/21/2004	4.46	1.495
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	6.09	1.807
9/16/2002	3.85	1.348
10/16/2002	5.11	1.631
1/13/2003	3.83	1.343
4/10/2003	4.15	1.423

1.83

3.33

3.14

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	3.44	NO	1.235	N/A
MW221	Sidegradient	Yes	3.83	NO	1.343	N/A
MW222	Sidegradient	Yes	2.97	NO	1.089	N/A
MW223	Sidegradient	Yes	3.61	NO	1.284	N/A
MW224	Sidegradient	Yes	3.19	NO	1.160	N/A
MW369	Downgradien	t Yes	0.65	NO	-0.431	N/A
MW372	Downgradien	t Yes	0.83	NO	-0.186	N/A
MW384	Sidegradient	Yes	3.8	NO	1.335	N/A
MW387	Downgradien	t Yes	1.8	NO	0.588	N/A
MW391	Downgradien	t Yes	3.45	NO	1.238	N/A
MW394	Upgradient	Yes	4.53	NO	1.511	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.604

1.203

1.144

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 232.68	8 S = 27.490	CV(1)= 0.118	K factor**= 2.523	TL(1)= 302.045	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.443	S= 0.118	CV(2)= 0.022	K factor**= 2.523	TL(2)= 5.740	LL(2)=N/A

	kground Data from fells with Transformed Result
Well Number:	MW220

wen number.	IVI VV 220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.509
Date Collected	Result	
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 247 259 201 228 249 240	5.509 5.557 5.303 5.429 5.517 5.481

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	214	NO	5.366	N/A
MW221	Sidegradient	Yes	196	NO	5.278	N/A
MW222	Sidegradient	Yes	273	NO	5.609	N/A
MW223	Sidegradient	Yes	197	NO	5.283	N/A
MW224	Sidegradient	Yes	169	NO	5.130	N/A
MW369	Downgradien	t Yes	214	NO	5.366	N/A
MW372	Downgradien	t Yes	399	YES	5.989	N/A
MW384	Sidegradient	Yes	233	NO	5.451	N/A
MW387	Downgradien	t Yes	304	YES	5.717	N/A
MW391	Downgradien	t Yes	216	NO	5.375	N/A
MW394	Upgradient	Yes	200	NO	5.298	N/A
N/A = Result	Its identified as N	Ion-Detects	luring lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

```
Wells with Exceedances
MW372
MW387
```

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.897	S= 1.050	CV(1)= 1.170	K factor**= 2.523	TL(1)= 3.545	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.565	S= 0.951	CV(2) =-1.683	K factor**= 2.523	TL(2)= 1.834	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.429	-0.846
7/14/2003	4.33	1.466
10/13/2003	1.81	0.593
1/13/2004	0.793	-0.232
4/13/2004	0.13	-2.040
7/21/2004	0.382	-0.962
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.293
Date Collected	Result	()
Date Collected 8/13/2002	Result 1.34	0.293
Date Collected 8/13/2002 9/16/2002	Result 1.34 0.328	0.293 -1.115
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.34 0.328 1.38	0.293 -1.115 0.322
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.34 0.328 1.38 1.3	0.293 -1.115 0.322 0.262
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.34 0.328 1.38 1.3 0.494	0.293 -1.115 0.322 0.262 -0.705
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.34 0.328 1.38 1.3 0.494 0.62	0.293 -1.115 0.322 0.262 -0.705 -0.478

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
Upgradient	Yes	0.107	N/A	-2.235	NO			
Sidegradient	Yes	0.0406	N/A	-3.204	NO			
Sidegradient	Yes	0.067	N/A	-2.703	NO			
Sidegradient	Yes	0.124	N/A	-2.087	NO			
Sidegradient	Yes	0.0576	N/A	-2.854	NO			
Downgradien	t Yes	0.178	N/A	-1.726	NO			
Downgradien	t Yes	0.179	N/A	-1.720	NO			
Sidegradient	Yes	0.471	N/A	-0.753	NO			
Downgradien	t Yes	0.839	N/A	-0.176	NO			
Downgradien	t Yes	0.212	N/A	-1.551	NO			
Upgradient	Yes	0.187	N/A	-1.677	NO			
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradien Downgradien Downgradien Downgradien	GradientDetected?UpgradientYesSidegradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYes	GradientDetected?ResultUpgradientYes0.107SidegradientYes0.0406SidegradientYes0.067SidegradientYes0.124SidegradientYes0.178DowngradientYes0.178DowngradientYes0.471DowngradientYes0.839DowngradientYes0.212	GradientDetected?ResultResult >TL(1)?UpgradientYes0.107N/ASidegradientYes0.0406N/ASidegradientYes0.067N/ASidegradientYes0.124N/ASidegradientYes0.0576N/ADowngradientYes0.178N/ADowngradientYes0.179N/ADowngradientYes0.471N/ADowngradientYes0.839N/ADowngradientYes0.212N/A	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 0.107 N/A -2.235 Sidegradient Yes 0.0406 N/A -3.204 Sidegradient Yes 0.067 N/A -2.703 Sidegradient Yes 0.124 N/A -2.087 Sidegradient Yes 0.178 N/A -2.854 Downgradient Yes 0.178 N/A -1.726 Downgradient Yes 0.179 N/A -1.720 Sidegradient Yes 0.471 N/A -0.753 Downgradient Yes 0.839 N/A -0.176 Downgradient Yes 0.212 N/A -1.551			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.796	S = 1.703	CV(1)= 0.158	K factor**= 2.523	TL(1)= 15.092	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.368	S= 0.158	CV(2)= 0.067	K factor**= 2.523	TL(2)= 2.766	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW220							
Date Collected	Result	LN(Result)						
10/14/2002	9.16	2.215						
1/15/2003	10	2.303						
4/10/2003	10.8	2.380						
7/14/2003	14.7	2.688						
10/13/2003	9.03	2.201						
1/13/2004	8.49	2.139						
4/13/2004	9.7	2.272						

7/21/2004	8.06	2.087
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	11.8	2.468
9/16/2002	12.1	2.493
10/16/2002	11.3	2.425
1/13/2003	10.3	2.332
4/10/2003	11.7	2.460
7/16/2003	12	2.485
10/14/2003	12.2	2.501
1/13/2004	11.4	2.434

~ ~ ~

....

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	11.9	NO	2.477	N/A		
MW221	Sidegradient	Yes	10	NO	2.303	N/A		
MW222	Sidegradient	Yes	9.5	NO	2.251	N/A		
MW223	Sidegradient	Yes	9.91	NO	2.294	N/A		
MW224	Sidegradient	Yes	10.3	NO	2.332	N/A		
MW369	Downgradien	t Yes	8.43	NO	2.132	N/A		
MW372	Downgradien	t Yes	22.4	YES	3.109	N/A		
MW384	Sidegradient	Yes	11.2	NO	2.416	N/A		
MW387	Downgradien	t Yes	15.4	YES	2.734	N/A		
MW391	Downgradien	t Yes	12.6	NO	2.534	N/A		
MW394	Upgradient	Yes	10.7	NO	2.370	N/A		
N/A = Result	lts identified as N	Jon-Detects	luring lab	oratory analysis or	data validatio	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

.

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

```
Wells with Exceedances
MW372
MW387
```

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.287	S= 0.619	CV(1)= 2.156	K factor**= 2.523	TL(1)= 1.848	LL(1)= N/A
Statistics-Transformed Background Data	X =-2.455	S= 1.619	CV(2) =-0.659	K factor**= 2.523	TL(2)= 1.630	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Date Collected	Result	LN(Result)					
10/14/2002	0.0306	-3.487					
1/15/2003	0.0291	-3.537					
4/10/2003	0.0137	-4.290					
7/14/2003	2.54	0.932					
10/13/2003	0.378	-0.973					
1/13/2004	0.159	-1.839					
4/13/2004	0.00707	-4.952					
7/21/2004	0.0841	-2.476					
Well Number:	MW394						
Date Collected	Result	LN(Result)					
8/13/2002	0.542	-0.612					
9/16/2002	0.155	-1.864					
10/16/2002	0.103	-2.273					
1/13/2003	0.128	-2.056					
4/10/2003	0.005	-5.298					
7/16/2003	0.272	-1.302					

0.0795

0.0658

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00233	N/A	-6.062	NO	
MW221	Sidegradient	Yes	0.0115	N/A	-4.465	NO	
MW222	Sidegradient	Yes	0.0209	N/A	-3.868	NO	
MW223	Sidegradient	Yes	0.0215	N/A	-3.840	NO	
MW224	Sidegradient	Yes	0.0239	N/A	-3.734	NO	
MW369	Downgradien	t Yes	0.503	N/A	-0.687	NO	
MW372	Downgradien	t Yes	0.00952	N/A	-4.654	NO	
MW384	Sidegradient	Yes	0.0114	N/A	-4.474	NO	
MW387	Downgradien	t Yes	0.0821	N/A	-2.500	NO	
MW391	Downgradien	t Yes	0.00597	N/A	-5.121	NO	
MW394	Upgradient	Yes	0.00434	N/A	-5.440	NO	
N/A - Resu	lts identified as N	Jon-Detects	turing lab	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.532

-2.721

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.006	S = 0.008	CV(1)= 1.261	K factor**= 2.523	TL(1)= 0.026	LL(1)=N/A
Statistics-Transformed Background Data	X =-5.747	S = 1.205	CV(2) =-0.210	K factor**= 2.523	TL(2)= -2.708	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW220							
Date Collected	Result	LN(Result)						
10/14/2002	0.00558	-5.189						
1/15/2003	0.00983	-4.622						
4/10/2003	0.0109	-4.519						
7/14/2003	0.00245	-6.012						
10/13/2003	0.00566	-5.174						
1/13/2004	0.00572	-5.164						
4/13/2004	0.001	-6.908						
7/21/2004	0.00392	-5.542						
Well Number:	MW394							
Date Collected	Result	LN(Result)						
8/13/2002	0.025	-3.689						
9/16/2002	0.025	-3.689						
10/16/2002	0.001	-6.908						
1/13/2003	0.001	-6.908						
4/10/2003	0.001	-6.908						

0.001

0.001

0.001

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
Upgradient	Yes	0.00121	N/A	-6.717	NO			
Sidegradient	Yes	0.00984	N/A	-4.621	NO			
Sidegradient	Yes	0.00446	N/A	-5.413	NO			
Sidegradient	Yes	0.00511	N/A	-5.277	NO			
Sidegradient	Yes	0.0011	N/A	-6.812	NO			
Downgradien	t Yes	0.00023	5 N/A	-8.356	NO			
Downgradien	t Yes	0.00035	2 N/A	-7.952	NO			
Sidegradient	No	0.001	N/A	-6.908	N/A			
Downgradien	t No	0.001	N/A	-6.908	N/A			
Downgradien	t No	0.001	N/A	-6.908	N/A			
Upgradient	No	0.001	N/A	-6.908	N/A			
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradien Downgradient Downgradien Downgradien	GradientDetected?UpgradientYesSidegradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientNoDowngradientNoDowngradientNoDowngradientNo	GradientDetected?ResultUpgradientYes0.00121SidegradientYes0.00984SidegradientYes0.00446SidegradientYes0.00511SidegradientYes0.0011DowngradientYes0.00023DowngradientYes0.001DowngradientNo0.001DowngradientNo0.001DowngradientNo0.001	GradientDetected?ResultResult >TL(1)?UpgradientYes0.00121N/ASidegradientYes0.00984N/ASidegradientYes0.00446N/ASidegradientYes0.00511N/ASidegradientYes0.0011N/ADowngradientYes0.000235N/ADowngradientYes0.000352N/ASidegradientNo0.001N/ADowngradientNo0.001N/A	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 0.00121 N/A -6.717 Sidegradient Yes 0.00984 N/A -4.621 Sidegradient Yes 0.00466 N/A -5.413 Sidegradient Yes 0.00511 N/A -5.277 Sidegradient Yes 0.0011 N/A -6.812 Downgradient Yes 0.000235 N/A -8.356 Downgradient Yes 0.000352 N/A -7.952 Sidegradient No 0.001 N/A -6.908 Downgradient No 0.001 N/A -6.908			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-6.908

-6.908

-6.908

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.127	S= 0.228	CV(1)= 1.790	K factor**= 2.523	TL(1)= 0.701	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.617	S = 1.837	CV(2) =-0.508	K factor**= 2.523	TL(2)= 1.019	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				

Date Collected	Result	LN(Result)
10/14/2002	0.418	-0.872
1/15/2003	0.738	-0.304
4/10/2003	0.544	-0.609
7/14/2003	0.106	-2.244
10/13/2003	0.0529	-2.939
1/13/2004	0.0209	-3.868
4/13/2004	0.005	-5.298
7/21/2004	0.0192	-3.953
XX7 11 X7 1	100004	
Well Number:	MW394	
Date Collected	MW394 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	· /
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.05 0.05 0.005 0.005	-2.996 -2.996 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -5.298 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.05 0.05 0.005 0.005 0.005 0.005	-2.996 -2.996 -5.298 -5.298 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0123	N/A	-4.398	NO
MW221	Sidegradient	Yes	0.126	N/A	-2.071	NO
MW222	Sidegradient	Yes	0.143	N/A	-1.945	NO
MW223	Sidegradient	Yes	0.108	N/A	-2.226	NO
MW224	Sidegradient	Yes	0.164	N/A	-1.808	NO
MW369	Downgradien	t Yes	0.00798	N/A	-4.831	NO
MW372	Downgradien	t Yes	0.00126	N/A	-6.677	NO
MW384	Sidegradient	No	0.002	N/A	-6.215	N/A
MW387	Downgradien	t Yes	0.00061	9 N/A	-7.387	NO
MW391	Downgradien	t No	0.002	N/A	-6.215	N/A
MW394	Upgradient	Yes	0.00462	N/A	-5.377	NO
N/A - Resu	lts identified as N	Jon-Detects of	luring labo	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 179.87	2 S = 86.318	CV(1)= 0.480	K factor**= 2.523	TL(1)= 397.652	LL(1)=N/A
Statistics-Transformed Background Data	X= 4.861	S = 1.252	CV(2)= 0.258	K factor**= 2.523	TL(2)= 8.021	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	205	5.323			
1/15/2003	1.95	0.668			
4/10/2003	203	5.313			
7/14/2003	30	3.401			
10/13/2003	107	4.673			
1/13/2004	295	5.687			
4/13/2004	190	5.247			
7/21/2004	319	5.765			
Well Number:	MW394				

Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	90	4.500
9/16/2002	240	5.481
10/16/2002	185	5.220
1/13/2003	220	5.394
4/10/2003	196	5.278
7/16/2003	172	5.147
10/14/2003	175	5.165
1/13/2004	249	5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	435	YES	6.075	N/A
MW221	Sidegradient	Yes	429	YES	6.061	N/A
MW222	Sidegradient	Yes	425	YES	6.052	N/A
MW223	Sidegradient	Yes	415	YES	6.028	N/A
MW224	Sidegradient	Yes	423	YES	6.047	N/A
MW369	Downgradien	t Yes	390	NO	5.966	N/A
MW372	Downgradien	t Yes	393	NO	5.974	N/A
MW384	Sidegradient	Yes	402	YES	5.996	N/A
MW387	Downgradien	t Yes	402	YES	5.996	N/A
MW391	Downgradien	t Yes	457	YES	6.125	N/A
MW394	Upgradient	Yes	432	YES	6.068	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW220 MW221 MW222 MW223 MW224 MW384 MW387 MW391 MW394

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.138	S = 0.282	CV(1)= 0.046	K factor**= 2.904	TL(1)= 6.957	LL(1)=5.3179
Statistics-Transformed Background Data	X= 1.813	S = 0.047	CV(2)= 0.026	K factor**= 2.904	TL(2)= 1.950	LL(2)=1.6765

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	6.04	1.798				
1/15/2003	6.31	1.842				
4/10/2003	6.5	1.872				
7/14/2003	6.3	1.841				
10/13/2003	6.34	1.847				
1/13/2004	6.33	1.845				
4/13/2004	6.3	1.841				
7/21/2004	5.9	1.775				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
8/13/2002	5.8	1.758				
9/30/2002	5.93	1.780				
10/16/2002	5.42	1.690				
1/13/2003	6	1.792				
4/10/2003	6.04	1.798				
7/16/2003	6.2	1.825				
10/14/2003	6.4	1.856				
1/13/2004	6.39	1.855				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2) LN(Result) <ll(2)< th=""></ll(2)<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2) LN(Result) <ll(2)< th=""></ll(2)<>
MW220	Upgradient	Yes	6.16	NO	1.818	N/A
MW221	Sidegradient	Yes	5.82	NO	1.761	N/A
MW222	Sidegradient	Yes	6.15	NO	1.816	N/A
MW223	Sidegradient	Yes	6.14	NO	1.815	N/A
MW224	Sidegradient	Yes	6.21	NO	1.826	N/A
MW369	Downgradien	t Yes	6.23	NO	1.829	N/A
MW372	Downgradien	t Yes	6.17	NO	1.820	N/A
MW384	Sidegradient	Yes	6.09	NO	1.807	N/A
MW387	Downgradien	t Yes	6.03	NO	1.797	N/A
MW391	Downgradien	t Yes	6.1	NO	1.808	N/A
MW394	Upgradient	Yes	5.82	NO	1.761	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 6.654	S = 9.310	CV(1)= 1.399	K factor**= 2.523	TL(1)= 30.144	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.130	S= 1.208	CV(2)= 1.069	K factor**= 2.523	TL(2)= 4.178	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	6.7	1.902			
1/15/2003	29.7	3.391			
4/10/2003	24.9	3.215			
7/14/2003	1.13	0.122			
10/13/2003	3.43	1.233			
1/13/2004	6.71	1.904			
4/13/2004	19.3	2.960			
7/21/2004	3.97	1.379			
Well Number:	MW394				

Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	1.03	0.030
1/13/2003	1.1	0.095
4/10/2003	1.24	0.215
7/16/2003	1.14	0.131
10/14/2003	1.05	0.049
1/13/2004	1.07	0.068

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	2.76	N/A	1.015	NO
MW221	Sidegradient	Yes	2.5	N/A	0.916	NO
MW222	Sidegradient	Yes	0.661	N/A	-0.414	NO
MW223	Sidegradient	Yes	2.39	N/A	0.871	NO
MW224	Sidegradient	Yes	0.894	N/A	-0.112	NO
MW369	Downgradien	t Yes	0.625	N/A	-0.470	NO
MW372	Downgradien	t Yes	2.45	N/A	0.896	NO
MW384	Sidegradient	Yes	1.67	N/A	0.513	NO
MW387	Downgradien	t Yes	1.45	N/A	0.372	NO
MW391	Downgradien	t Yes	1.69	N/A	0.525	NO
MW394	Upgradient	Yes	1.44	N/A	0.365	NO
	10			N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.036	S = 0.382	CV(1)=10.588	K factor**= 2.523	TL(1)= 1.001	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.873	S= 1.110	CV(2) =-0.592	K factor**= 2.523	TL(2)= -0.538	LL(2)=N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	-0.804	#Func!
1/15/2003	0	#Func!
10/13/2003	0.389	-0.944
1/13/2004	-0.12	#Func!
4/13/2004	0.159	-1.839
7/21/2004	0.382	-0.962
10/11/2004	0.211	-1.556
1/20/2005	0.229	-1.474
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -0.538
Date Collected	Result	()
Date Collected 10/16/2002	Result 0.584	-0.538
Date Collected 10/16/2002 1/13/2003	Result 0.584 -0.839	-0.538 #Func!
Date Collected 10/16/2002 1/13/2003 10/14/2003	Result 0.584 -0.839 0.0325	-0.538 #Func! -3.427
Date Collected 10/16/2002 1/13/2003 10/14/2003 1/13/2004	Result 0.584 -0.839 0.0325 -0.00402	-0.538 #Func! -3.427 #Func!
Date Collected 10/16/2002 1/13/2003 10/14/2003 1/13/2004 4/12/2004	Result 0.584 -0.839 0.0325 -0.00402 -0.000337	-0.538 #Func! -3.427 #Func! #Func!
Date Collected 10/16/2002 1/13/2003 10/14/2003 1/13/2004 4/12/2004 7/20/2004	Result 0.584 -0.839 0.0325 -0.00402 -0.000337 0.29	-0.538 #Func! -3.427 #Func! #Func! -1.238

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.04	N/A	0.039	YES
MW221	Sidegradient	No	0.628	N/A	-0.465	N/A
MW222	Sidegradient	No	0.258	N/A	-1.355	N/A
MW223	Sidegradient	No	0.387	N/A	-0.949	N/A
MW224	Sidegradient	No	-0.0891	N/A	#Error	N/A
MW369	Downgradien	t No	0.244	N/A	-1.411	N/A
MW372	Downgradien	t No	0.498	N/A	-0.697	N/A
MW384	Sidegradient	No	0.336	N/A	-1.091	N/A
MW387	Downgradien	t No	0.392	N/A	-0.936	N/A
MW391	Downgradien	t No	0.487	N/A	-0.719	N/A
MW394	Upgradient	No	0.298	N/A	-1.211	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW220

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 36.363	S= 8.666	CV(1)= 0.238	K factor**= 2.523	TL(1)= 58.227	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.570	S= 0.222	CV(2)= 0.062	K factor**= 2.523	TL(2)= 4.129	LL(2)=N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	35.4	3.567

1/15/2003 40.6 3.704 4/10/2003 51 3.932 7/14/2003 58.2 4.064 10/13/2003 38.1 3.640 1/13/2004 37 3.611 4/13/2004 43.2 3.766 7/21/2004 33.8 3.520 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 32.9 3.493 9/16/2002 29.9 3.398 10/16/2002 29 3.367 1/13/2003 27.1 3.300 4/10/2003 24.8 3.211 7/16/2003 35.6 3.572 10/14/2003 3.523 33.9 1/13/2004 31.3 3.444

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	44	NO	3.784	N/A
MW221	Sidegradient	Yes	49.1	NO	3.894	N/A
MW222	Sidegradient	Yes	48.6	NO	3.884	N/A
MW223	Sidegradient	Yes	47.6	NO	3.863	N/A
MW224	Sidegradient	Yes	57.6	NO	4.054	N/A
MW369	Downgradien	t Yes	62	YES	4.127	N/A
MW372	Downgradien	t Yes	57.7	NO	4.055	N/A
MW384	Sidegradient	Yes	53	NO	3.970	N/A
MW387	Downgradien	t Yes	58.3	YES	4.066	N/A
MW391	Downgradien	t Yes	34.6	NO	3.544	N/A
MW394	Upgradient	Yes	33.4	NO	3.509	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW369 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.481 S=	2.648	CV(1)= 0.253	K factor**= 2.523	TL(1)= 17.161	LL(1)= N/A
Statistics-Transformed Background Data	X =2.322 S =	0.239	CV(2)= 0.103	K factor**= 2.523	TL(2)= 2.925	LL(2)=N/A

Historical Bac Upgradient W	0			Result
Well Number:	М	W220		
D . G 11 . 1	-		1 N I (B	1.5

Date Collected	Result	LN(Result)
10/14/2002	10.4	2.342
1/15/2003	9.8	2.282
4/10/2003	15.4	2.734
7/14/2003	14.9	2.701
10/13/2003	13.5	2.603
1/13/2004	10.3	2.332
4/13/2004	14.3	2.660
7/21/2004	10.5	2.351
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.416
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 11.2	2.416
Date Collected 8/13/2002 9/16/2002	Result 11.2 8.3	2.416 2.116
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.2 8.3 8	2.416 2.116 2.079
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.2 8.3 8 8.5	2.416 2.116 2.079 2.140
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.2 8.3 8 8.5 7.9	2.416 2.116 2.079 2.140 2.067

С

Th col Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	22.2	YES	3.100	N/A
MW221	Sidegradient	Yes	14.6	NO	2.681	N/A
MW222	Sidegradient	Yes	14.5	NO	2.674	N/A
MW223	Sidegradient	Yes	21.1	YES	3.049	N/A
MW224	Sidegradient	Yes	14.9	NO	2.701	N/A
MW369	Downgradien	t Yes	9.41	NO	2.242	N/A
MW372	Downgradien	t Yes	102	YES	4.625	N/A
MW384	Sidegradient	Yes	24.5	YES	3.199	N/A
MW387	Downgradien	t Yes	23.4	YES	3.153	N/A
MW391	Downgradien	t Yes	21	YES	3.045	N/A
MW394	Upgradient	Yes	12.7	NO	2.542	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW220
he test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW223
oncentration with respect to historical background data.	MW372
	MW384
	MW387
	MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 9.354	S= 9.280	CV(1)= 0.992	K factor**= 2.523	TL(1)= 32.768	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.270	S = 0.849	CV(2)= 0.374	K factor**= 2.523	TL(2)= 3.262	LL(2)=N/A

Historical Bac Upgradient W	0	ta from insformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	19.7	2.981
1/15/2003	26.1	3.262
4/10/2003	3.56	1.270
7/14/2003	0	#Func!
10/13/2003	21	3.045
1/13/2004	6.32	1.844
4/13/2004	3	1.099
7/21/2004	14.6	2.681
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	14	2.639
9/16/2002	5.45	1.696
10/16/2002	2.49	0.912

18.3

-1.45

-1.71

18.3

0

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	18.7	NO	2.929	N/A
MW221	Sidegradient	No	12.8	N/A	2.549	N/A
MW222	Sidegradient	No	0.923	N/A	-0.080	N/A
MW223	Sidegradient	No	5.66	N/A	1.733	N/A
MW224	Sidegradient	No	10.7	N/A	2.370	N/A
MW369	Downgradien	t Yes	29.8	NO	3.395	N/A
MW372	Downgradien	t Yes	46.5	YES	3.839	N/A
MW384	Sidegradient	Yes	83.9	YES	4.430	N/A
MW387	Downgradien	t Yes	335	YES	5.814	N/A
MW391	Downgradien	t No	-1.36	N/A	#Error	N/A
MW394	Upgradient	No	6.29	N/A	1.839	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.907 #Func!

#Func!

2.907

#Func!

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW372
MW384
MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 63.475	S= 163.13	5 CV(1)=2.570	K factor**= 2.523	TL(1)= 475.063	LL(1)=N/A
Statistics-Transformed Background	X= 3.103	S= 1.145	CV(2)= 0.369	K factor**= 2.523	TL(2)= 5.992	LL(2)=N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	50	3.912
1/15/2003	10	2.303
4/10/2003	10	2.303
7/14/2003	10	2.303
10/13/2003	10	2.303

10

10

10

MW394

Result

50

672

50

36.1

10

22

42.7

12.8

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	8.04	N/A	2.084	NO
Sidegradient	Yes	5.78	N/A	1.754	NO
Sidegradient	Yes	10.5	N/A	2.351	NO
Sidegradient	Yes	3.76	N/A	1.324	NO
Sidegradient	Yes	8.14	N/A	2.097	NO
Downgradient	t Yes	36.9	N/A	3.608	NO
Downgradient	t Yes	12.5	N/A	2.526	NO
Sidegradient	Yes	7.62	N/A	2.031	NO
Downgradient	t Yes	8.66	N/A	2.159	NO
Downgradient	t Yes	12.5	N/A	2.526	NO
Upgradient	Yes	11.4	N/A	2.434	NO
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradient Downgradient Downgradient Downgradient	GradientDetected?UpgradientYesSidegradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYes	GradientDetected?ResultUpgradientYes8.04SidegradientYes5.78SidegradientYes10.5SidegradientYes3.76SidegradientYes8.14DowngradientYes36.9DowngradientYes12.5SidegradientYes7.62DowngradientYes8.66DowngradientYes12.5	GradientDetected?ResultResult >TL(1)?UpgradientYes8.04N/ASidegradientYes5.78N/ASidegradientYes10.5N/ASidegradientYes3.76N/ASidegradientYes8.14N/ADowngradientYes36.9N/ADowngradientYes12.5N/ASidegradientYes12.5N/A	GradientDetected?ResultResult >TL(1)?LN(Result)UpgradientYes8.04N/A2.084SidegradientYes5.78N/A1.754SidegradientYes10.5N/A2.351SidegradientYes3.76N/A1.324SidegradientYes8.14N/A2.097DowngradientYes36.9N/A3.608DowngradientYes12.5N/A2.526SidegradientYes7.62N/A2.031DowngradientYes8.66N/A2.159DowngradientYes12.5N/A2.526

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.303

2.303

2.303

3.912

6.510 3.912

3.586

2.303

3.754

3.091

2.549

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 8.813	S= 8.376	CV(1)= 0.951	K factor**= 2.523	TL(1)= 29.946	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.395	S = 1.449	CV(2)= 1.039	K factor**= 2.523	TL(2)= 5.052	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.773
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 16	2.773
Date Collected 8/13/2002 9/30/2002	Result 16 20	2.773 2.996
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 16 20 17	2.773 2.996 2.833
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 16 20 17 15	2.773 2.996 2.833 2.708
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 16 20 17 15 10	2.773 2.996 2.833 2.708 2.303
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 16 20 17 15 10 19	2.773 2.996 2.833 2.708 2.303 2.944

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t Yes	0.67	N/A	-0.400	N/A
MW372	Downgradien	t Yes	3.45	N/A	1.238	N/A
MW384	Sidegradient	Yes	0.56	N/A	-0.580	N/A
MW387	Downgradien	t Yes	0.77	N/A	-0.261	N/A
MW391	Downgradien	t Yes	11.5	NO	2.442	N/A
MW394	Upgradient	Yes	1.91	N/A	0.647	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.036	S= 0.026	CV(1)= 0.722	K factor**= 2.523	TL(1)= 0.101	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.485	S = 0.525	CV(2) =-0.151	K factor**= 2.523	TL(2)= -2.162	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	0.025	-3.689			
1/15/2003	0.035	-3.352			
4/10/2003	0.035	-3.352			
7/14/2003	0.0389	-3.247			
10/13/2003	0.026	-3.650			
1/13/2004	0.02	-3.912			
4/13/2004	0.02	-3.912			
7/21/2004	0.02	-3.912			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	0.1	-2.303			
9/16/2002	0.1	-2.303			

0.025

0.035

0.035

0.02

0.02

0.02

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	0.00352	NO	-5.649	N/A
Sidegradient	Yes	0.00452	NO	-5.399	N/A
Sidegradient	Yes	0.00371	NO	-5.597	N/A
Sidegradient	Yes	0.00406	NO	-5.507	N/A
Sidegradient	No	0.02	N/A	-3.912	N/A
Downgradien	t Yes	0.00687	NO	-4.981	N/A
Downgradien	t Yes	0.00503	NO	-5.292	N/A
Sidegradient	Yes	0.00549	NO	-5.205	N/A
Downgradien	t Yes	0.0037	NO	-5.599	N/A
Downgradien	t Yes	0.00336	NO	-5.696	N/A
Upgradient	Yes	0.00487	NO	-5.325	N/A
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradien Downgradient Downgradien Downgradien	GradientDetected?UpgradientYesSidegradientYesSidegradientYesSidegradientYesSidegradientNoDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYes	GradientDetected?ResultUpgradientYes0.00352SidegradientYes0.00452SidegradientYes0.00371SidegradientYes0.00406SidegradientNo0.02DowngradientYes0.00687DowngradientYes0.00503SidegradientYes0.00503SidegradientYes0.00549DowngradientYes0.0037DowngradientYes0.00336	GradientDetected?ResultResult >TL(1)?UpgradientYes0.00352NOSidegradientYes0.00452NOSidegradientYes0.00371NOSidegradientYes0.00406NOSidegradientYes0.00406NOSidegradientYes0.00687NODowngradientYes0.00503NOSidegradientYes0.00549NODowngradientYes0.0037NODowngradientYes0.00336NO	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 0.00352 NO -5.649 Sidegradient Yes 0.00452 NO -5.399 Sidegradient Yes 0.00371 NO -5.597 Sidegradient Yes 0.00406 NO -5.507 Sidegradient Yes 0.00687 NO -4.981 Downgradient Yes 0.00503 NO -5.292 Sidegradient Yes 0.00549 NO -5.205 Downgradient Yes 0.0037 NO -5.599 Downgradient Yes 0.00336 NO -5.696

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.689

-3.352 -3.352

-3.912

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.258	S= 0.221	CV(1)= 0.856	K factor**= 2.523	TL(1)= 0.815	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.266	S= 2.485	CV(2) =-1.097	K factor**= 2.523	TL(2)= 4.003	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	0.2	-1.609				
9/16/2002	0.2	-1.609				
10/16/2002	0.0002	-8.517				
1/13/2003	0.737	-0.305				
4/10/2003	0.2	-1.609				

0.2

0.2

0.2

MW397

Result

0.824

0.0002

0.363

0.2

0.2

0.2

0.2

0.2

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	0.05	N/A	-2.996	N/A
MW373	Downgradient	No	0.05	N/A	-2.996	N/A
MW385	Sidegradient	Yes	0.0341	NO	-3.378	N/A
MW388	Downgradient	No	0.05	N/A	-2.996	N/A
MW392	Downgradient	No	0.05	N/A	-2.996	N/A
MW395	Upgradient	Yes	0.0249	NO	-3.693	N/A
MW397	Upgradient	Yes	0.231	NO	-1.465	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

-1.609

-1.609

-0.194

-1.609

-8.517

-1.013

-1.609

-1.609

-1.609

-1.609

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.183	S= 2.612	CV(1)= 0.364	K factor**= 2.523	TL(1)= 13.773	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.870	S = 0.552	CV(2)= 0.295	K factor**= 2.523	TL(2)= 3.261	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			

8/13/2002 0.086 1.09 9/16/2002 5.79 1.756 1.920 10/16/2002 6.82 1/13/2003 5.01 1.611 4/10/2003 1.808 6.1 7/16/2003 8.51 2.141 10/14/2003 4.99 1.607 1/13/2004 6.58 1.884 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 9.57 2.259 9/16/2002 11 2.398 10/17/2002 9.3 2.230 1/13/2003 8.63 2.155 2.303 4/8/2003 10 7/16/2003 6.89 1.930 10/14/2003 2.313 10.1 1/13/2004 4.55 1.515

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	53	YES	3.970	N/A
MW373	Downgradient	No	4.74	N/A	1.556	N/A
MW385	Sidegradient	Yes	59.8	YES	4.091	N/A
MW388	Downgradient	Yes	77.4	YES	4.349	N/A
MW392	Downgradient	No	3.13	N/A	1.141	N/A
MW395	Upgradient	No	7.55	N/A	2.022	N/A
MW397	Upgradient	No	8.69	N/A	2.162	N/A
N/A - Resu	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.650	S = 0.805	CV(1)= 1.238	K factor**= 2.523	TL(1)= 2.681	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.034	S= 1.030	CV(2) =-0.996	K factor**= 2.523	TL(2)= 1.564	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					

Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
	1111207	
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2 2. 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 2 2. 0.2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	0.302	N/A	-1.197	NO
MW373	Downgradient	t Yes	1.83	N/A	0.604	NO
MW385	Sidegradient	Yes	0.0794	N/A	-2.533	NO
MW388	Downgradient	t Yes	0.0298	N/A	-3.513	NO
MW392	Downgradient	t Yes	0.0287	N/A	-3.551	NO
MW395	Upgradient	Yes	0.0223	N/A	-3.803	NO
MW397	Upgradient	Yes	0.0112	N/A	-4.492	NO
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Bromide** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2)=#Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1	0.000
9/16/2002	1	0.000
10/16/2002	1	0.000
1/13/2003	1	0.000
4/10/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	0.436	NO	-0.830	N/A	
MW373	Downgradien	t Yes	0.515	NO	-0.664	N/A	
MW385	Sidegradient	Yes	0.33	NO	-1.109	N/A	
MW388	Downgradien	t Yes	0.439	NO	-0.823	N/A	
MW392	Downgradien	t Yes	0.628	NO	-0.465	N/A	
MW395	Upgradient	Yes	0.478	NO	-0.738	N/A	
MW397	Upgradient	Yes	0.403	NO	-0.909	N/A	
			U	oratory analysis or			

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 23.103	S= 11.538	CV(1)= 0.499	K factor**= 2.523	TL(1)= 52.213	LL(1)=N/A
Statistics-Transformed Background	X= 2.357	S= 2.411	CV(2)=1.023	K factor**= 2.523	TL(2)= 8.439	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	Well Number: MW395					
Date Collected	Result	LN(Result)				
8/13/2002	32.2	3.472				
9/16/2002	33	3.497				

0.0295

32.1

40.2

32.4

33.9

31.2

MW397

Result

0.0179

17.8

20.3

19.4

19.9

18.8

19.4

19

-3.523

3.469

3.694

3.478

3.523

3.440

2.965

2.944

-4.023

2.879

3.011

2.965

2.991

2.934

LN(Result)

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	33.5	NO	3.512	N/A	
MW373	Downgradien	t Yes	74.6	YES	4.312	N/A	
MW385	Sidegradient	Yes	29.6	NO	3.388	N/A	
MW388	Downgradien	t Yes	31.8	NO	3.459	N/A	
MW392	Downgradien	t Yes	31.4	NO	3.447	N/A	
MW395	Upgradient	Yes	24	NO	3.178	N/A	
MW397	Upgradient	Yes	18.1	NO	2.896	N/A	
N/A - Resu	lts identified as N	Ion-Detects	luring lab	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 35.313	S= 1.250	CV(1)= 0.035	K factor**= 2.523	TL(1)= 38.466	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.564	S = 0.033	CV(2) =0.009	K factor**= 2.523	TL(2)= 3.648	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number: MW395						
Date Collected	Result	LN(Result)				
8/13/2002	35	3.555				
9/16/2002	35	3.555				
10/16/2002	35	3.555				

35

35

35

35

35

40

35

35

35

35

35

35

35

MW397

Result

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	20	N/A	2.996	N/A
MW373	Downgradient	t Yes	27.2	NO	3.303	N/A
MW385	Sidegradient	Yes	14.2	NO	2.653	N/A
MW388	Downgradient	t Yes	11.7	NO	2.460	N/A
MW392	Downgradient	t Yes	34.6	NO	3.544	N/A
MW395	Upgradient	Yes	24.2	NO	3.186	N/A
MW397	Upgradient	Yes	38	NO	3.638	N/A
N/A - Resu	lts identified as N	lon-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

3.555

3.555

3.555

3.555

3.689

3.555

3.555

3.555

3.555

3.555

3.555

3.555

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 51.844	S= 11.652	CV(1)= 0.225	K factor**= 2.523	TL(1)= 81.242	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.924	S = 0.229	CV(2)= 0.058	K factor**= 2.523	TL(2)= 4.501	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	62.2	4.130				
9/16/2002	64.7	4.170				
10/16/2002	62.2	4.130				
1/13/2003	63.5	4.151				
4/10/2003	64.1	4.160				
7/16/2003	64	4.159				
10/14/2003	63.2	4.146				
1/13/2004	60.6	4.104				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	38.9	3.661				
9/16/2002	39.8	3.684				

39.3

40.5

42.1

42

40.8

41.6

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	36.7	NO	3.603	N/A
MW373	Downgradient	t Yes	19	NO	2.944	N/A
MW385	Sidegradient	Yes	28.6	NO	3.353	N/A
MW388	Downgradient	t Yes	34.4	NO	3.538	N/A
MW392	Downgradient	t Yes	48.5	NO	3.882	N/A
MW395	Upgradient	Yes	39.4	NO	3.674	N/A
MW397	Upgradient	Yes	35.4	NO	3.567	N/A
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.671

3.701

3.740

3.738

3.709

3.728

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.000	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.609	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW395

Date Collected	Result	LN(Result)
8/13/2002	5	1.609
9/30/2002	5	1.609
10/16/2002	5	1.609
1/13/2003	5	1.609
4/10/2003	5	1.609
7/16/2003	5	1.609
10/14/2003	5	1.609
1/13/2004	5	1.609
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.609
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	1	N/A	0.000	N/A
MW373	Downgradient	t No	1	N/A	0.000	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradient	t No	1	N/A	0.000	N/A
MW392	Downgradient	t Yes	1.23	NO	0.207	N/A
MW395	Upgradient	No	1	N/A	0.000	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A
N/A - Resu	Its identified as N	Ion-Detects	luring lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.007	S= 0.011	CV(1)= 1.515	K factor**= 2.523	TL(1)= 0.034	LL(1)= N/A
Statistics-Transformed Background Data	X= -6.053	S= 1.416	CV(2) =-0.234	K factor**= 2.523	TL(2)= -2.480	LL(2)=N/A

	kground Data from fells with Transformed Result
Well Number:	MW395

wen number.	101 00 575	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	0.00046	9 N/A	-7.665	NO
MW373	Downgradient	Yes	0.00057	3 N/A	-7.465	NO
MW385	Sidegradient	No	0.001	N/A	-6.908	N/A
MW388	Downgradient	No	0.001	N/A	-6.908	N/A
MW392	Downgradient	No	0.001	N/A	-6.908	N/A
MW395	Upgradient	No	0.001	N/A	-6.908	N/A
MW397	Upgradient	No	0.001	N/A	-6.908	N/A
N/A - Resul	lts identified as N	on-Detects of	during lab	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 377.875 S = 52.101	CV(1)= 0.138	K factor**= 2.523	TL(1)= 509.326 LL(2	I)= N/A
Statistics-Transformed Background Data	X = 5.926 S = 0.136	CV(2) =0.023	K factor**= 2.523	TL(2)= 6.270 LL(2	2)=N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW395

Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
*** 11 * * 1		
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.775
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 322 315 317 320 390 354	5.775 5.753 5.759 5.768 5.966 5.869

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	t Yes	474	NO	6.161	N/A	
MW373	Downgradient	t Yes	827	YES	6.718	N/A	
MW385	Sidegradient	Yes	453	NO	6.116	N/A	
MW388	Downgradient	t Yes	513	YES	6.240	N/A	
MW392	Downgradient	t Yes	433	NO	6.071	N/A	
MW395	Upgradient	Yes	350	NO	5.858	N/A	
MW397	Upgradient	Yes	319	NO	5.765	N/A	
N/A - Resu	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW373 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.028	S = 0.013	CV(1)= 0.474	K factor**= 2.523	TL(1)= 0.061	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.662	S= 0.406	CV(2)=- 0.111	K factor**= 2.523	TL(2)= -2.638	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	0.05	-2.996				
9/16/2002	0.05	-2.996				
10/16/2002	0.0281	-3.572				
1/13/2003	0.02	-3.912				
4/10/2003	0.02	-3.912				
7/16/2003	0.02	-3.912				

0.02

0.02

MW397

Result

0.05

0.05

0.02

0.02

0.02

0.02

0.02

0.02

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW370	Downgradien	t Yes	0.00090	5 NO	-7.008	N/A				
MW373	Downgradien	t Yes	0.00088	2 NO	-7.033	N/A				
MW385	Sidegradient	Yes	0.00066	5 NO	-7.316	N/A				
MW388	Downgradien	t Yes	0.00048	7 NO	-7.627	N/A				
MW392	Downgradien	t Yes	0.00203	NO	-6.200	N/A				
MW395	Upgradient	Yes	0.00052	NO	-7.562	N/A				
MW397 Upgradient Yes 0.000614 NO -7.396 N/A										
ncluded in	the statistical eva	MW397 Upgradient Yes 0.000614 NO -7.396 N/A N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.								

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

-2.996

-2.996 -3.912

-3.912

-3.912

-3.912

-3.912 -3.912

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Cyanide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.020	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 0.020	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.912	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= -3.912	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	0.02	-3.912				
9/16/2002	0.02	-3.912				
10/16/2002	0.02	-3.912				
1/13/2003	0.02	-3.912				
4/10/2003	0.02	-3.912				
7/16/2003	0.02	-3.912				
10/14/2003	0.02	-3.912				
1/13/2004	0.02	-3.912				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	0.02	-3.912				
9/16/2002	0.02	-3.912				
10/17/2002	0.02	-3.912				
1/13/2003	0.02	-3.912				
4/8/2003	0.02	-3.912				
7/16/2003	0.02	-3.912				

0.02

0.02

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	0.00209	NO	-6.171	N/A	
MW373	Downgradient	No	0.2	N/A	-1.609	N/A	
MW385	Sidegradient	No	0.2	N/A	-1.609	N/A	
MW388	Downgradient	No	0.2	N/A	-1.609	N/A	
MW392	Downgradient	No	0.2	N/A	-1.609	N/A	
MW395	Upgradient	No	0.2	N/A	-1.609	N/A	
MW397	Upgradient	No	0.2	N/A	-1.609	N/A	
N/A - Resul	lts identified as N	on-Detects of	during lab	oratory analysis or	data validation	n and were not	

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912 -3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 4.678	S= 2.431	CV(1)= 0.520	K factor**= 2.523	TL(1)= 10.812	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.414	S = 0.550	CV(2) =0.389	K factor**= 2.523	TL(2)= 2.802	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	7.29	1.987				
9/30/2002	4.03	1.394				
10/16/2002	3.85	1.348				
1/13/2003	2.36	0.859				
4/10/2003	1.14	0.131				
7/16/2003	1.76	0.565				
10/14/2003	4.05	1.399				
1/13/2004	4.26	1.449				
Well Number:	MW397					

11.56

5.86

5.94

4.66

3.77

3.47

5.34

5.51

Date Collected Result

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	2.72	NO	1.001	N/A	
MW373	Downgradien	t Yes	1.18	NO	0.166	N/A	
MW385	Sidegradient	Yes	2.95	NO	1.082	N/A	
MW388	Downgradien	t Yes	3.03	NO	1.109	N/A	
MW392	Downgradien	t Yes	1.53	NO	0.425	N/A	
MW395	Upgradient	Yes	4.48	NO	1.500	N/A	
MW397	Upgradient	Yes	5.2	NO	1.649	N/A	
N/A - Resul	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

LN(Result)

2.448

1.768

1.782

1.539

1.327

1.244

1.675 1.707

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =219.250 S = 34.10	7 CV(1)=0.156	K factor**= 2.523	TL(1)= 305.301	LL(1)=N/A
Statistics-Transformed Background	X =5.379 S = 0.152	CV(2)= 0.028	K factor**= 2.523	TL(2)= 5.762	LL(2)=N/A

Historical Bac	ekground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW395

wen rumber.	11111375	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.231
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 187 197 183 182 217 196	5.231 5.283 5.209 5.204 5.380 5.278

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	246	NO	5.505	N/A
MW373	Downgradien	t Yes	471	YES	6.155	N/A
MW385	Sidegradient	Yes	247	NO	5.509	N/A
MW388	Downgradien	t Yes	206	NO	5.328	N/A
MW392	Downgradien	t Yes	219	NO	5.389	N/A
MW395	Upgradient	Yes	199	NO	5.293	N/A
MW397	Upgradient	Yes	160	NO	5.075	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a						

well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.400	S= 0.514	CV(1)= 1.286	K factor**= 2.523	TL(1)= 1.698	LL(1)=N/A
Statistics-Transformed Background	X= -2.197	S= 2.634	CV(2)=- 1.199	K factor**= 2.523	TL(2)= 4.449	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.294	-1.224
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	1.33	0.285
4/10/2003	1.31	0.270
7/16/2003	0.2	-1.609
10/14/2003	0.1	-2.303
1/13/2004	0.1	-2.303
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	1.58	0.457

0.232

0.0002

0.453

0.2

0.2

0.1

0.1

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	0.0608	N/A	-2.800	NO
MW373	Downgradient	t Yes	0.192	N/A	-1.650	NO
MW385	Sidegradient	Yes	0.0495	N/A	-3.006	NO
MW388	Downgradient	t Yes	0.107	N/A	-2.235	NO
MW392	Downgradient	t Yes	0.269	N/A	-1.313	NO
MW395	Upgradient	Yes	0.0693	N/A	-2.669	NO
MW397	Upgradient	Yes	0.4	N/A	-0.916	NO
N/A - Resu	lts identified as N	Ion-Detects of	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.461

-8.517

-0.792

-1.609

-1.609

-2.303

-2.303

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.102	S = 4.685	CV(1)= 0.515	K factor**= 2.523	TL(1)= 20.922	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.423	S = 2.408	CV(2)= 1.692	K factor**= 2.523	TL(2)= 7.500	LL(2)=N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	12.5	2.526
9/16/2002	13	2.565
10/16/2002	0.0127	-4.366
1/13/2003	11.2	2.416
4/10/2003	17.5	2.862
7/16/2003	12.9	2.557
10/14/2003	13.4	2.595
1/13/2004	12.4	2.518
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	7.83	2.058
9/16/2002	7.64	2.033
10/17/2002	0.00658	-5.024

6.69

7.28

7.82

7.94

7.51

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Q	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	14.1	NO	2.646	N/A
MW373	Downgradient	t Yes	27.8	YES	3.325	N/A
MW385	Sidegradient	Yes	12.2	NO	2.501	N/A
MW388	Downgradient	t Yes	14.2	NO	2.653	N/A
MW392	Downgradient	t Yes	12.2	NO	2.501	N/A
MW395	Upgradient	Yes	10.2	NO	2.322	N/A
MW397	Upgradient	Yes	7.81	NO	2.055	N/A
N/A - Results	s identified as N	on-Detects of	luring lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.901

1.985

2.057

2.072

2.016

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.131	S= 0.195	CV(1)= 1.487	K factor**= 2.523	TL(1)= 0.624	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.104	S= 1.529	CV(2) =-0.493	K factor**= 2.523	TL(2)= 0.755	LL(2)=N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.466	-0.764
9/16/2002	0.077	-2.564

0.028

0.0164

0.0407

0.0167

0.00555

0.005

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.0121	N/A	-4.415	NO
MW373	Downgradien	t Yes	0.0235	N/A	-3.751	NO
MW385	Sidegradient	Yes	0.00149	N/A	-6.509	NO
MW388	Downgradien	t Yes	0.003	N/A	-5.809	NO
MW392	Downgradien	t Yes	0.0231	N/A	-3.768	NO
MW395	Upgradient	Yes	0.00143	N/A	-6.550	NO
MW397	Upgradient	Yes	0.00807	N/A	-4.820	NO
N/A Decu	lts identified as N	Ion-Detects	Juring lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.576

-4.110

-3.202

-4.092

-5.194 -5.298

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.018	S= 0.020	CV(1)= 1.089	K factor**= 2.523	TL(1)= 0.068	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.540	S = 1.020	CV(2) =-0.225	K factor**= 2.523	TL(2)= -1.965	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MM205

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.005 0.00502	-2.996 -2.996 -5.298 -5.294
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.005 0.00502 0.00502	-2.996 -2.996 -5.298 -5.294 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.05 0.05 0.005 0.00502 0.005 0.005	-2.996 -2.996 -5.298 -5.294 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	0.00072	5 N/A	-7.229	NO		
MW373	Downgradient	Yes	0.00111	N/A	-6.803	NO		
MW385	Sidegradient	Yes	0.00072	1 N/A	-7.235	NO		
MW388	Downgradient	Yes	0.00064	1 N/A	-7.352	NO		
MW392	Downgradient	No	0.002	N/A	-6.215	N/A		
MW395	Upgradient	Yes	0.0068	N/A	-4.991	NO		
MW397	Upgradient	Yes	0.00082	7 N/A	-7.098	NO		
	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a							

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 157.25	0 S = 52.376	CV(1)= 0.333	K factor**= 2.523	TL(1)= 289.395	LL(1)=N/A
Statistics-Transformed Background Data	X= 5.003	S = 0.348	CV(2) =0.069	K factor**= 2.523	TL(2)= 5.880	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul								
Well Number:	MW395							
Date Collected	Result	LN(Result)						
8/13/2002	80	4.382						
9/16/2002	145	4.977						

4.828

4.443

5.069

4.585

4.927

5.451

4.745

4.942

5.220

5.438

5.043

5.236

5.231

5.533

LN(Result)

125

85

159

98

138

233

MW397

Result

115

140

185

230

155

188

187

253

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/30/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	448	YES	6.105	N/A		
MW373	Downgradient	Yes	409	YES	6.014	N/A		
MW385	Sidegradient	Yes	414	YES	6.026	N/A		
MW388	Downgradient	Yes	392	YES	5.971	N/A		
MW392	Downgradient	Yes	450	YES	6.109	N/A		
MW395	Upgradient	Yes	419	YES	6.038	N/A		
MW397	Upgradient	Yes	420	YES	6.040	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.	MW370 MW373
	MW385
	MW388
	MW392
	MW395
	MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.048	S= 0.248	CV(1)= 0.041	K factor**= 2.904	TL(1)= 6.767	LL(1)=5.3289
Statistics-Transformed Background Data	X= 1.799	S = 0.042	CV(2)=0.023	K factor**= 2.904	TL(2)= 1.920	LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW395							
Date Collected	Result	LN(Result)						
8/13/2002	5.8	1.758						
9/16/2002	6	1.792						
10/16/2002	5.47	1.699						
1/13/2003	6	1.792						
4/10/2003	6.18	1.821						
7/16/2003	6	1.792						
10/14/2003	6.31	1.842						
1/13/2004	6.24	1.831						
Well Number:	MW397							
Date Collected	Result	LN(Result)						
8/13/2002	5.84	1.765						
9/30/2002	6	1.792						
10/17/2002	5.75	1.749						
1/13/2003	6	1.792						
4/8/2003	6.3	1.841						

6.2

6.36

6.32

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
MW370	Downgradient	Yes	6.08	NO	1.805	N/A	
MW373	Downgradient	Yes	6.15	NO	1.816	N/A	
MW385	Sidegradient	Yes	6.07	NO	1.803	N/A	
MW388	Downgradient	Yes	6.14	NO	1.815	N/A	
MW392	Downgradient	Yes	6.15	NO	1.816	N/A	
MW395	Upgradient	Yes	6	NO	1.792	N/A	
MW397	Upgradient	Yes	6.05	NO	1.800	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.825

1.850

1.844

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.590	S= 0.642	CV(1)= 0.404	K factor**= 2.523	TL(1)= 3.208	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.306	S = 2.457	CV(2) =-8.028	K factor**= 2.523	TL(2)= 5.892	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
8/13/2002	2	0.693					
9/16/2002	2	0.693					
10/16/2002	0.00129	-6.653					
1/13/2003	1.51	0.412					
4/10/2003	1.67	0.513					
7/16/2003	1.73	0.548					
10/14/2003	1.7	0.531					
1/13/2004	1.58	0.457					
Well Number:	MW397						
Date Collected	Result	LN(Result)					
8/13/2002	2.03	0.708					
9/16/2002	2	0.693					
10/17/2002	0.00145	-6.536					
1/13/2003	1.69	0.525					
4/8/2003	1.73	0.548					
7/16/2003	2	0.693					
10/11/2002							

1.92

1.87

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	2.77	NO	1.019	N/A	
MW373	Downgradien	t Yes	2.92	NO	1.072	N/A	
MW385	Sidegradient	Yes	1.97	NO	0.678	N/A	
MW388	Downgradien	t Yes	2.12	NO	0.751	N/A	
MW392	Downgradien	t Yes	1.97	NO	0.678	N/A	
MW395	Upgradient	Yes	1.55	NO	0.438	N/A	
MW397	Upgradient	Yes	1.82	NO	0.599	N/A	
N/A - Resul	lts identified as N	on-Detects of	luring lab	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Defects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.652

0.626

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 29.560	S= 13.894	CV(1)= 0.470	K factor**= 2.523	TL(1)= 64.616	LL(1)=N/A
Statistics-Transformed Background Data	X = 2.615	S = 2.411	CV(2)= 0.922	K factor**= 2.523	TL(2)= 8.699	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					

	112 11 0 7 0	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.561
Date Collected	Result	
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 35.2 34.3 0.0336 31.3 46.1 38.4	3.561 3.535 -3.393 3.444 3.831 3.648

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	49.4	NO	3.900	N/A
MW373	Downgradien	t Yes	64.8	YES	4.171	N/A
MW385	Sidegradient	Yes	51.8	NO	3.947	N/A
MW388	Downgradien	t Yes	48.9	NO	3.890	N/A
MW392	Downgradien	t Yes	37.6	NO	3.627	N/A
MW395	Upgradient	Yes	29.4	NO	3.381	N/A
MW397	Upgradient	Yes	34.2	NO	3.532	N/A
N/A - Resu	lts identified as N	lon-Detects	during lab	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.756	S= 2.147	CV(1)= 0.200	K factor**= 2.523	TL(1)= 16.173	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.356	S= 0.203	CV(2)= 0.086	K factor**= 2.523	TL(2)= 2.869	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
8/13/2002	10.3	2.332					
9/16/2002	9.1	2.208					
10/16/2002	8.8	2.175					
1/13/2003	9	2.197					
4/10/2003	8.3	2.116					
7/16/2003	8.2	2.104					
10/14/2003	8.3	2.116					
1/13/2004	8.2	2.104					

Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	14	2.639
9/16/2002	12.8	2.549
10/17/2002	12.3	2.510
1/13/2003	12.7	2.542
4/8/2003	12.8	2.549
7/16/2003	13.1	2.573
10/14/2003	12.1	2.493
1/13/2004	12.1	2.493

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	21	YES	3.045	N/A
MW373	Downgradien	t Yes	73.5	YES	4.297	N/A
MW385	Sidegradient	Yes	24.3	YES	3.190	N/A
MW388	Downgradien	t Yes	29.2	YES	3.374	N/A
MW392	Downgradien	t Yes	22.6	YES	3.118	N/A
MW395	Upgradient	Yes	12.4	NO	2.518	N/A
MW397	Upgradient	Yes	11	NO	2.398	N/A
			0	oratory analysis or		n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW370	
MW373	
MW385	
MW388	
MW392	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =11.359 S	S= 9.138	CV(1)= 0.805	K factor**= 2.523	TL(1)= 34.414	LL(1)= N/A
Statistics-Transformed Background	X =2.398	S= 0.859	CV(2)= 0.358	K factor**= 2.523	TL(2)= 3.246	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
8/13/2002	20.8	3.035					
9/16/2002	16.2	2.785					
10/16/2002	8.28	2.114					
1/13/2003	13	2.565					
4/10/2003	-9.37	#Func!					
7/16/2003	0.826	-0.191					
10/14/2003	14.1	2.646					
1/13/2004	0	#Func!					
Well Number:	MW397						
Date Collected	Result	LN(Result)					
8/13/2002	6.06	1.802					
9/16/2002	17.3	2.851					
10/17/2002	25.7	3.246					
1/13/2003	20.9	3.040					
4/8/2003	20.1	3.001					
7/16/2003	9.2	2.219					
10/14/2003	10.1	2.313					

8.54

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	60.4	YES	4.101	N/A
MW373	Downgradient	t No	13.8	N/A	2.625	N/A
MW385	Sidegradient	Yes	80.8	YES	4.392	N/A
MW388	Downgradient	t Yes	106	YES	4.663	N/A
MW392	Downgradient	t No	-2.16	N/A	#Error	N/A
MW395	Upgradient	No	8.44	N/A	2.133	N/A
MW397	Upgradient	No	15	N/A	2.708	N/A
N/A - Resu	lts identified as N	Ion-Detects of	luring lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.145

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 31.513	S= 18.609	CV(1)= 0.591	K factor**= 2.523	TL(1)= 78.462	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.240	S = 0.707	CV(2)= 0.218	K factor**= 2.523	TL(2)= 5.024	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	50	3.912				
9/16/2002	50	3.912				
10/16/2002	50	3.912				
1/13/2003	18.3	2.907				
4/10/2003	51.2	3.936				
7/16/2003	42.6	3.752				
10/14/2003	12.3	2.510				
1/13/2004	10	2.303				
Well Number:	MW397					
Date Collected	Result	LN(Result)				

50

50

50

12

19.9

17.9

10

10

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	13.1	NO	2.573	N/A	
MW373	Downgradient	Yes	8.92	NO	2.188	N/A	
MW385	Sidegradient	Yes	7.66	NO	2.036	N/A	
MW388	Downgradient	Yes	5.48	NO	1.701	N/A	
MW392	Downgradient	Yes	20.3	NO	3.011	N/A	
MW395	Upgradient	Yes	3.52	NO	1.258	N/A	
MW397	Upgradient	Yes	5.82	NO	1.761	N/A	
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.912

3.912

3.912

2.485

2.991

2.885

2.303

2.303

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.313	S= 5.701	CV(1)= 0.780	K factor**= 2.523	TL(1)= 21.695	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.467	S= 1.213	CV(2)= 0.827	K factor**= 2.523	TL(2)= 4.528	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					

Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	14	2.639
10/16/2002	12	2.485
1/13/2003	14	2.639
4/10/2003	14	2.639
7/16/2003	13	2.565
10/14/2003	12	2.485
1/13/2004	11	2.398
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.609
Date Collected	Result	()
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1	1.609 1.609 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1	1.609 1.609 0.000 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5 5 1 1 1 1 1	1.609 1.609 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	t Yes	0.66	N/A	-0.416	N/A	
MW373	Downgradient	t Yes	3.81	N/A	1.338	N/A	
MW385	Sidegradient	Yes	0.58	N/A	-0.545	N/A	
MW388	Downgradient	t Yes	0.48	N/A	-0.734	N/A	
MW392	Downgradient	t Yes	15.8	NO	2.760	N/A	
MW395	Upgradient	Yes	1.86	N/A	0.621	N/A	
MW397	Upgradient	No	1	N/A	0.000	N/A	
N/A - Resu	lts identified as N	lon-Detects of	during lab	oratory analysis or	data validation	n and were not	

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.044	S= 0.034	CV(1)= 0.760	K factor**= 2.523	TL(1)= 0.129	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.342	S= 0.659	CV(2) =-0.197	K factor**= 2.523	TL(2)= -1.679	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	0.1	-2.303				
9/16/2002	0.1	-2.303				
10/16/2002	0.025	-3.689				
1/13/2003	0.035	-3.352				

0.035

0.02

0.02

0.02

MW397

Result

0.1

0.1

0.025

0.035

0.035

0.02

0.02

0.02

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	0.00339	NO	-5.687	N/A		
MW373	Downgradient	Yes	0.00349	NO	-5.658	N/A		
MW385	Sidegradient	Yes	0.00469	NO	-5.362	N/A		
MW388	Downgradient	Yes	0.0038	NO	-5.573	N/A		
MW392	Downgradient	Yes	0.00592	NO	-5.129	N/A		
MW395	Upgradient	Yes	0.00332	NO	-5.708	N/A		
MW397	Upgradient	Yes	0.00433	NO	-5.442	N/A		
N/A - Resul	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not							

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.352

-3.912

-3.912

-3.912

-2.303

-2.303

-3.689

-3.352

-3.352

-3.912

-3.912 -3.912

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T Second Quarter 2020 Statistical Analysis Current Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =283.62	5 S = 106.767	7 CV(1)=0.376	K factor**= 3.188	TL(1)= 623.997	LL(1)=N/A
Statistics-Transformed Background Data	X =5.580	S = 0.407	CV(2) =0.073	K factor**= 3.188	TL(2)= 6.877	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

MW396	
Result	LN(Result)
275	5.617
353	5.866
210	5.347
231	5.442
431	6.066
415	6.028
227	5.425
127	4.844
	Result 275 353 210 231 431 415 227

Current Background Data from Upgradient

Wells with Transformed Result

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	409	NO	6.014	N/A	
MW390	Downgradient	Yes	424	NO	6.050	N/A	
MW393	Downgradient	Yes	443	NO	6.094	N/A	
MW396	Upgradient	Yes	401	NO	5.994	N/A	

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Backg	ground Dat	a	X= -0.893	S= 6.481	CV(1)= -7.2	257 K	factor	**=3.188 T	°L(1)= 19.76	7 LL(1)=N/A
Statistics-Trans Data	formed Ba	ckground	X= 1.348	S= 0.573	CV(2) =0.4	25 K	factor	**=3.188 T	`L(2)= 1.828	LL(2)=N/A
Current Backs Wells with Tra Well Number:	9	10	adient				1 c	Because CV(2 , assume nor ontinue with tilizing TL(1	rmal distril statistical	
Date Collected 4/19/2018 7/19/2018 10/22/2018	Result -10.3 1.84 -3.72	LN(Resul #Func! 0.610 #Func!	lt)				р Т	Because the ossbile for a `L was consi naximum ba	ll backgrou dered equa	ind values, the l to the
1/23/2019 4/22/2019	6.22 5.89	1.828 1.773		Current	Quarter Data					
7/17/2019 10/10/2019	-0.714 -9.62	#Func! #Func!		Well No.				()	· · ·	LN(Result) >TL(2)
1/27/2020	3.26	1.182		MW390	Downgradient	Yes	58.1	YES	4.062	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.921	S = 5.527	CV(1)= 0.557	K factor**= 2.523	TL(1)= 23.865	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.138	S = 0.605	CV(2) =0.283	K factor**= 2.523	TL(2)= 3.663	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW387	Downgradient	Yes	240	YES	5.481	N/A

Well Number: MW220

Wells with Transformed Result

Date Collected	Result	LN(Result)
4/17/2018	14.4	2.667
7/19/2018	8.64	2.156
10/15/2018	12.2	2.501
1/22/2019	23	3.135
4/16/2019	8.19	2.103
7/16/2019	12.7	2.542
10/8/2019	18.9	2.939
1/22/2020	8.34	2.121
Well Number:	MW394	
Date Collected		LN(Result)
		LN(Result) 2.092
Date Collected	Result	· · · · ·
Date Collected 4/19/2018	Result 8.1	2.092
Date Collected 4/19/2018 7/19/2018	Result 8.1 2.94	2.092 1.078
Date Collected 4/19/2018 7/19/2018 10/22/2018	Result 8.1 2.94 11.1	2.092 1.078 2.407
Date Collected 4/19/2018 7/19/2018 10/22/2018 1/23/2019	Result 8.1 2.94 11.1 4.28	2.092 1.078 2.407 1.454
Date Collected 4/19/2018 7/19/2018 10/22/2018 1/23/2019 4/22/2019	Result 8.1 2.94 11.1 4.28 2.82	2.092 1.078 2.407 1.454 1.037
Date Collected 4/19/2018 7/19/2018 10/22/2018 1/23/2019 4/22/2019 7/17/2019	Result 8.1 2.94 11.1 4.28 2.82 10.3	2.092 1.078 2.407 1.454 1.037 2.332

Current Background Data from Upgradient

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW387

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Current Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =25.644 S = 3.392	CV(1)= 0.132	K factor**= 2.523	TL(1)= 34.201	LL(1)=N/A
Statistics-Transformed Background Data	X =3.237 S = 0.125	CV(2) =0.039	K factor**= 2.523	TL(2)= 3.552	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW372	Downgradient	Yes	62.7	YES	4.138	N/A

Conclusion o	f Statistical Ana	lysis on Curr	ent Data
Conclusion o	i Statistical Ana	1 y 515 UII Cui I	uni Daia

Current Background Data from Upgradient

LN(Result)

3.118

3.239

3.025

3.258

3.578

3.235

3.040

3.270

3.235

3.329

3.235

3.329

3.207

3.235

3.227

3.231

LN(Result)

MW220

Result

22.6

25.5

20.6 26

35.8

25.4

20.9

26.3

MW394

Result

25.4

27.9

25.4

27.9

24.7

25.4

25.2

25.3

Wells with Transformed Result

Well Number:

Date Collected

4/17/2018

7/19/2018

10/15/2018

1/22/2019

4/16/2019

7/16/2019

10/8/2019

1/22/2020

4/19/2018

7/19/2018

10/22/2018

1/23/2019

4/22/2019

7/17/2019

10/10/2019

1/27/2020

Well Number:

Date Collected

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Current Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =22.144 S = 6.977	CV(1)= 0.315	K factor**= 2.523	TL(1)= 39.747	LL(1)=N/A
Statistics-Transformed Background Data	X =3.056 S = 0.295	CV(2) =0.097	K factor**= 2.523	TL(2)= 3.799	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	114	YES	4.736	N/A

Well Number: MW220

Wells with Transformed Result

Date Collected	Result	LN(Result)
4/17/2018	26.3	3.270
7/19/2018	29.3	3.378
10/15/2018	20	2.996
1/22/2019	20	2.996
4/16/2019	16.4	2.797
7/16/2019	15.9	2.766
10/8/2019	20	2.996
1/22/2020	20	2.996
Well Number:	MW394	
wen number.	101 00 394	
Date Collected	Result	LN(Result)
		LN(Result) 2.912
Date Collected	Result	
Date Collected 4/19/2018	Result 18.4	2.912
Date Collected 4/19/2018 7/19/2018	Result 18.4 27.6	2.912 3.318
Date Collected 4/19/2018 7/19/2018 10/22/2018	Result 18.4 27.6 11.8	2.912 3.318 2.468
Date Collected 4/19/2018 7/19/2018 10/22/2018 1/23/2019	Result 18.4 27.6 11.8 20	2.912 3.318 2.468 2.996
Date Collected 4/19/2018 7/19/2018 10/22/2018 1/23/2019 4/22/2019	Result 18.4 27.6 11.8 20 20.3	2.912 3.318 2.468 2.996 3.011
Date Collected 4/19/2018 7/19/2018 10/22/2018 1/23/2019 4/22/2019 7/17/2019	Result 18.4 27.6 11.8 20 20.3 18.3	2.912 3.318 2.468 2.996 3.011 2.907

Current Background Data from Upgradient

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW220

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis **Current Background Comparison** URGA Conductivity **UNITS: umho/cm**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =388.438 S = 26.795	CV(1)= 0.069	K factor**= 2.523	TL(1)= 456.042	LL(1)=N/A
Statistics-Transformed Background Data	X =5.960 S = 0.069	CV(2)= 0.012	K factor**= 2.523	TL(2)= 6.134	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

//19/2010	412	0.021							
10/15/2018	342	5.835							
2/2019	416	6.031							
0/2019	424	6.050	Current	Quarter Data					
/2019	377	5.932			D () 10	D 1			
2019	346	5.846	Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	
2020	441	6.089	MW372	Downgradien	Yes	687	YES	6.532	
mber:	MW394								
lected	Result	LN(Result)							
8	381	5.943							
018	392	5.971							
2018	410	6.016							
2019	381	5.943							

Conclusion of Statistical Analysis on Current Data

5.948

5.914

5.945

5.914

Current Background Data from Upgradient

LN(Result)

5.961

6.021

MW220

Result

388

112

383

370

382

370

Wells with Transformed Result

Well Number:

Date Collected

4/17/2018

7/19/2018 10/15/2018 1/22/2019 5/30/2019 7/16/2019

4/19/2018 7/19/2018 10/22/2018 1/23/2019 5/29/2019

7/17/2019

10/10/2019

1/27/2020

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis **Current Background Comparison Dissolved Solids** URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =213.625 S = 33.456	CV(1)= 0.157	K factor**= 2.523	TL(1)= 298.035	LL(1)=N/A
Statistics-Transformed Background Data	X =5.353 S = 0.153	CV(2)= 0.029	K factor**= 2.523	TL(2)= 5.740	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	t Yes	399	YES	5.989	N/A
MW387	Downgradient	t Yes	304	YES	5.717	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-9

Wells with Exceedances MW372 MW387

Current Background Data from Upgradient

LN(Result)

5.209

5.333

5.421

5.342

5.609

5.170

5.170

5.545

5.602

5.318

5.328

5.283

5.375

5.118

5.525

5.298

LN(Result)

MW220

Result

183

207

226

209

273

176

176

256

MW394

Result

271

204

206

197

216

167

251

200

Wells with Transformed Result

Well Number:

Date Collected

4/17/2018

7/19/2018

10/15/2018

1/22/2019

4/16/2019

7/16/2019

10/8/2019

1/22/2020

4/19/2018

7/19/2018

10/22/2018

1/23/2019

4/22/2019

7/17/2019

10/10/2019

1/27/2020

Well Number:

Date Collected

C-746-S/T Second Quarter 2020 Statistical Analysis **Current Background Comparison** URGA Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.609 S = 0.934	CV(1)= 0.088	K factor**= 2.523	TL(1)= 12.966	LL(1)=N/A
Statistics-Transformed Background Data	X =2.358 S = 0.092	CV(2)= 0.039	K factor**= 2.523	TL(2)= 2.589	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result MW220 Date Collected Result LN(Result) 9.63 2.265 11.1 2.407 8.8 2.175 10.8 2.380 10.3 2.332 10 2.303 8.71 2.164 10.9 2.389 MW394 Date Collected Result LN(Result) 11.7 2.460 12 2.485

7/19/2018 10/22/2018 11.3 2.425 1/23/2019 11.4 2.434 4/22/2019 11 2.398 7/17/2019 10.8 2.380 10/10/2019 10.7 2.370 1/27/2020 10.6 2.361

Well Number:

4/17/2018

7/19/2018

10/15/2018

1/22/2019

4/16/2019

7/16/2019

10/8/2019

1/22/2020

4/19/2018

Well Number:

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	22.4	YES	3.109	N/A
MW387	Downgradient	Yes	15.4	YES	2.734	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-10

Wells with Exceedances MW372 MW387

C-746-S/T Second Quarter 2020 Statistical Analysis Current Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =397.000 S = 58.358	CV(1)= 0.147	K factor**= 2.523	TL(1)= 544.236	LL(1)=N/A
Statistics-Transformed Background Data	X =5.974 S = 0.149	CV(2)= 0.025	K factor**= 2.523	TL(2)= 6.349	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected Result LN(Result) 4/17/2018 305 5.720 7/19/2018 390 5.966 10/15/2018 413 6.023 1/22/2019 5.889 361 5/30/2019 523 6.260 7/16/2019 407 6.009 10/8/2019 414 6.026 3/18/2020 5.935 378 Well Number: MW394 Date Collected Result LN(Result) 4/19/2018 310 5.737 7/19/2018 375 5.927 10/22/2018 386 5.956 1/23/2019 314 5.749 5/29/2019 463 6.138 7/17/2019 435 6.075 10/10/2019 438 6.082 1/27/2020 440 6.087

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	435	NO	6.075	N/A		
MW221	Sidegradient	Yes	429	NO	6.061	N/A		
MW222	Sidegradient	Yes	425	NO	6.052	N/A		
MW223	Sidegradient	Yes	415	NO	6.028	N/A		
MW224	Sidegradient	Yes	423	NO	6.047	N/A		
MW384	Sidegradient	Yes	402	NO	5.996	N/A		
MW387	Downgradient	t Yes	402	NO	5.996	N/A		
MW391	Downgradient	t Yes	457	NO	6.125	N/A		
MW394	Upgradient	Yes	432	NO	6.068	N/A		

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis **Current Background Comparison** Radium-226 URGA **UNITS: pCi/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.390	S = 0.374	CV(1)= 0.959	K factor**= 2.523	TL(1)= 1.335	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.160	S = 0.792	CV(2) =-0.683	K factor**= 2.523	TL(2)= 0.873	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/17/2018	0	#Func!
7/19/2018	0.15	-1.897
10/15/2018	0.0489	-3.018
1/22/2019	0.169	-1.778
4/16/2019	0.313	-1.162
7/16/2019	0.215	-1.537
10/8/2019	0.739	-0.302
1/22/2020	0.446	-0.807
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -0.970
Date Collected	Result	<pre></pre>
Date Collected 4/19/2018	Result 0.379	-0.970
Date Collected 4/19/2018 7/19/2018	Result 0.379 0.314	-0.970 -1.158
Date Collected 4/19/2018 7/19/2018 10/22/2018	Result 0.379 0.314 0.442	-0.970 -1.158 -0.816
Date Collected 4/19/2018 7/19/2018 10/22/2018 1/23/2019	Result 0.379 0.314 0.442 0.254	-0.970 -1.158 -0.816 -1.370
Date Collected 4/19/2018 7/19/2018 10/22/2018 1/23/2019 4/22/2019	Result 0.379 0.314 0.442 0.254 0.347	-0.970 -1.158 -0.816 -1.370 -1.058

Current Background Data from Upgradient

Wells with Transformed Result

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.04	NO	0.039	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Current Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =38.288 S =	= 7.009	CV(1)= 0.183	K factor**= 2.523	TL(1)= 55.972	LL(1)=N/A
Statistics-Transformed Background Data	X =3.630 S =	= 0.181	CV(2) =0.050	K factor**= 2.523	TL(2)= 4.087	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradient	t Yes	62	YES	4.127	N/A
MW387	Downgradient	t Yes	58.3	YES	4.066	N/A

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

3.798

3.904

3.664

3.809

3.859

3.770

3.674

3.863

3.414

3.408

3.509

3.487

3.428

3.463

3.497

3.529

LN(Result)

Wells with Transformed Result

Well Number: Date Collected

4/17/2018

7/19/2018

10/15/2018

1/22/2019

4/16/2019

7/16/2019

10/8/2019

1/22/2020

4/19/2018

7/19/2018

10/22/2018

1/23/2019

4/22/2019

7/17/2019

10/10/2019

1/27/2020

Well Number:

Date Collected

MW220

Result

44.6

49.6

39

45.1

47.4

43.4

39.4

47.6

MW394

Result

30.4

30.2

33.4

32.7

30.8

31.9

33

34.1

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-13

Wells with Exceedances MW369 MW387

C-746-S/T Second Quarter 2020 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =15.675 S	5 = 5.278	CV(1)= 0.337	K factor**= 2.523	TL(1)= 28.992	LL(1)=N/A
Statistics-Transformed Background Data	X =2.700 S	i= 0.331	CV(2)= 0.122	K factor**= 2.523	TL(2)= 3.534	LL(2)= N/A

Well Number: MW220 Date Collected Result LN(Result) 4/17/2018 21.1 3.049 7/19/2018 24.7 3.207 10/15/2018 16.9 2.827 1/22/2019 21.4 3.063 4/16/2019 24.1 3.182 7/16/2019 18.5 2.918 10/8/2019 15.6 2.747 1/22/2020 20.1 3.001 Well Number: MW394	Current Background Data from Upgradien Wells with Transformed Result							
4/17/2018 21.1 3.049 7/19/2018 24.7 3.207 10/15/2018 16.9 2.827 1/22/2019 21.4 3.063 4/16/2019 24.1 3.182 7/16/2019 18.5 2.918 10/8/2019 15.6 2.747 1/22/2020 20.1 3.001 Well Number: MW394 MW394 Date Collected Result LN(Result) 4/19/2018 10.4 2.342 7/19/2018 10.5 2.351 10/22/2018 10.6 2.361 1/23/2019 11 2.398 4/22/2019 10.7 2.370 7/17/2019 11.1 2.407	Well Number:	MW220						
7/19/2018 24.7 3.207 10/15/2018 16.9 2.827 1/22/2019 21.4 3.063 4/16/2019 24.1 3.182 7/16/2019 18.5 2.918 10/8/2019 15.6 2.747 1/22/2020 20.1 3.001 Well Number: MW394 Date Collected Result LN(Result) 4/19/2018 10.4 2.342 7/19/2018 10.5 2.351 10/22/2018 10.6 2.361 1/23/2019 11 2.398 4/22/2019 10.7 2.370 7/17/2019 11.1 2.407	Date Collected	Result	LN(Result)					
10/15/2018 16.9 2.827 1/22/2019 21.4 3.063 4/16/2019 24.1 3.182 7/16/2019 18.5 2.918 10/8/2019 15.6 2.747 1/22/2020 20.1 3.001 Well Number: MW394 Date Collected Result LN(Result) 4/19/2018 10.4 2.342 7/19/2018 10.5 2.351 10/22/2018 10.6 2.361 1/23/2019 11 2.398 4/22/2019 10.7 2.370 7/17/2019 11.1 2.407	4/17/2018	21.1	3.049					
1/22/2019 21.4 3.063 4/16/2019 24.1 3.182 7/16/2019 18.5 2.918 10/8/2019 15.6 2.747 1/22/2020 20.1 3.001 Well Number: MW394 Date Collected Result LN(Result) 4/19/2018 10.4 2.342 7/19/2018 10.6 2.361 1/23/2019 11 2.398 4/22/2019 10.7 2.370 7/17/2019 11.1 2.407	7/19/2018	24.7	3.207					
4/16/2019 24.1 3.182 7/16/2019 18.5 2.918 10/8/2019 15.6 2.747 1/22/2020 20.1 3.001 Well Number: MW394 Date Collected Result LN(Result) 4/19/2018 10.4 2.342 7/19/2018 10.5 2.351 10/22/2018 10.6 2.361 1/23/2019 11 2.398 4/22/2019 10.7 2.370 7/17/2019 11.1 2.407	10/15/2018	16.9	2.827					
7/16/2019 18.5 2.918 10/8/2019 15.6 2.747 1/22/2020 20.1 3.001 Well Number: MW394 Date Collected Result LN(Result) 4/19/2018 10.4 2.342 7/19/2018 10.5 2.351 10/22/2018 10.6 2.361 1/23/2019 11 2.398 4/22/2019 10.7 2.370 7/17/2019 11.1 2.407	1/22/2019	21.4	3.063					
10/8/2019 15.6 2.747 1/22/2020 20.1 3.001 Well Number: MW394 Date Collected Result LN(Result) 4/19/2018 10.4 2.342 7/19/2018 10.5 2.351 10/22/2018 10.6 2.361 1/23/2019 11 2.398 4/22/2019 10.7 2.370 7/17/2019 11.1 2.407	4/16/2019	24.1	3.182					
1/22/2020 20.1 3.001 Well Number: MW394 Date Collected Result LN(Result) 4/19/2018 10.4 2.342 7/19/2018 10.5 2.351 10/22/2018 10.6 2.361 1/23/2019 11 2.398 4/22/2019 10.7 2.370 7/17/2019 11.1 2.407	7/16/2019	18.5	2.918					
Well Number: MW394 Date Collected Result LN(Result) 4/19/2018 10.4 2.342 7/19/2018 10.5 2.351 10/22/2018 10.6 2.361 1/23/2019 11 2.398 4/22/2019 10.7 2.370 7/17/2019 11.1 2.407	10/8/2019	15.6	2.747					
Date CollectedResultLN(Result)4/19/201810.42.3427/19/201810.52.35110/22/201810.62.3611/23/2019112.3984/22/201910.72.3707/17/201911.12.407	1/22/2020	20.1	3.001					
4/19/2018 10.4 2.342 7/19/2018 10.5 2.351 10/22/2018 10.6 2.361 1/23/2019 11 2.398 4/22/2019 10.7 2.370 7/17/2019 11.1 2.407	Well Number:	MW394						
7/19/201810.52.35110/22/201810.62.3611/23/2019112.3984/22/201910.72.3707/17/201911.12.407	Date Collected	Result	LN(Result)					
10/22/201810.62.3611/23/2019112.3984/22/201910.72.3707/17/201911.12.407	4/19/2018	10.4	2.342					
1/23/2019112.3984/22/201910.72.3707/17/201911.12.407	7/19/2018	10.5	2.351					
4/22/2019 10.7 2.370 7/17/2019 11.1 2.407	10/22/2018	10.6	2.361					
7/17/2019 11.1 2.407	1/23/2019	11	2.398					
	4/22/2019	10.7	2.370					
10/10/2019 12 2.485	7/17/2019	11.1	2.407					
	10/10/2019	12	2.485					
1/27/2020 12.1 2.493	1/27/2020	12.1	2.493					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	22.2	NO	3.100	N/A			
MW223	Sidegradient	Yes	21.1	NO	3.049	N/A			
MW372	Downgradient	t Yes	102	YES	4.625	N/A			
MW384	Sidegradient	Yes	24.5	NO	3.199	N/A			
MW387	Downgradient	t Yes	23.4	NO	3.153	N/A			
MW391	Downgradient	t Yes	21	NO	3.045	N/A			

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis **Current Background Comparison Technetium-99** URGA **UNITS: pCi/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =13.058 S = 8.8	44 CV(1)=0.677	K factor**= 2.523	TL(1)= 35.371	LL(1)=N/A
Statistics-Transformed Background Data	X =2.263 S = 1.2	CV(2) =0.574	K factor**= 2.523	TL(2)= 3.325	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected Result LN(Result) t) 4.74 1.556 7/17/2019 10/10/2019 -2.22 #Func! 1/27/2020 10.2 2.322

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW372	Downgradient	t Yes	46.5	YES	3.839	N/A			
MW384	Sidegradient	Yes	83.9	YES	4.430	N/A			
MW387	Downgradient	t Yes	335	YES	5.814	N/A			

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-15

Wells with Exceedances MW372 MW384 MW387

Date Conected	Result	LIN(Result
4/17/2018	19.9	2.991
7/19/2018	14	2.639
10/15/2018	20.8	3.035
1/22/2019	19.4	2.965
4/16/2019	17.1	2.839
7/16/2019	27.8	3.325
10/8/2019	27	3.296
1/22/2020	12	2.485
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result
		LN(Result -1.845
Date Collected	Result	`
Date Collected 4/19/2018	Result 0.158	-1.845
Date Collected 4/19/2018 7/19/2018	Result 0.158 10.6	-1.845 2.361
Date Collected 4/19/2018 7/19/2018 10/22/2018	Result 0.158 10.6 13.4	-1.845 2.361 2.595

C-746-S/T Second Quarter 2020 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =7.586	S = 2.968	CV(1)= 0.391	K factor**= 2.523	TL(1)= 15.074	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.955	S= 0.391	CV(2)= 0.200	K factor**= 2.523	TL(2)= 2.942	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW395 Date Collected Result LN(Result) 4/19/2018 5.4 1.686 7/19/2018 7.89 2.066 10/22/2018 9.41 2.242 1/23/2019 5.24 1.656 4/22/2019 3.8 1.335 7/17/2019 6.42 1.859 10/10/2019 3.67 1.300 1/27/2020 2.313 10.1 Well Number: MW397 Date Collected Result LN(Result) 4/17/2018 5.57 1.717 7/19/2018 13.8 2.625 10/15/2018 5.14 1.637 1/23/2019 8.19 2.103 4/16/2019 7.45 2.008 7/16/2019 6.74 1.908 10/9/2019 12.7 2.542 1/27/2020 9.86 2.288

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW370	Downgradient	Yes	53	YES	3.970	N/A			
MW385	Sidegradient	Yes	59.8	YES	4.091	N/A			
MW388	Downgradient	Yes	77.4	YES	4.349	N/A			

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Current Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =21.669 S = 3.750	CV(1)= 0.173	K factor**= 2.523	TL(1)= 31.129	LL(1)=N/A
Statistics-Transformed Background Data	X =3.062 S = 0.175	CV(2)= 0.057	K factor**= 2.523	TL(2)= 3.503	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW373	Downgradient	Yes	74.6	YES	4.312	N/A	

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

3.199

3.300

3.195

3.307

3.235

3.186

3.153

3.195

2.821

2.827

2.960

2.944

2.827

2.981 2.934

2.923

LN(Result)

MW395

Result

24.5

27.1

24.4

27.3

25.4

24.2

23.4

24.4

MW397

Result

16.8

16.9

19.3

19

16.9

19.7

18.8

18.6

Wells with Transformed Result

Well Number:

Date Collected

4/19/2018

7/19/2018

10/22/2018

1/23/2019

4/22/2019

7/17/2019

10/10/2019

1/27/2020

4/17/2018

7/19/2018

10/15/2018

1/23/2019

4/16/2019

7/16/2019

10/9/2019

1/27/2020

Well Number:

Date Collected

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis **Current Background Comparison** Conductivity LRGA **UNITS: umho/cm**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =341.375 S = 26.954	CV(1)= 0.079	K factor**= 2.523	TL(1)= 409.380	LL(1)=N/A
Statistics-Transformed Background Data	X =5.830 S = 0.078	CV(2)= 0.013	K factor**= 2.523	TL(2)= 6.026	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW373	Downgradient	t Yes	827	YES	6.718	N/A		
MW388	Downgradient	t Yes	513	YES	6.240	N/A		

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

5.919

5.981

5.927

5.883

5.905

5.841

5.878

5.852

5.727

5.787

5.771

5.756

5.762

5.756

5.765

5.771

LN(Result)

MW395

Result

372

396

375

359

367

344

357

348

MW397

Result

307

326

321

316

318

316

319

321

Wells with Transformed Result

Well Number:

Date Collected

4/19/2018

7/19/2018

10/22/2018

1/23/2019

5/29/2019

7/17/2019

10/10/2019

1/27/2020

4/17/2018

8/21/2018

10/15/2018

1/23/2019

5/29/2019

7/16/2019

10/9/2019

3/18/2020

Well Number:

Date Collected

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-18

Wells with Exceedances MW373 MW388

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	t Yes	827	YES	6.718	N/A
MW388	Downgradient	t Yes	513	YES	6.240	N/A

C-746-S/T Second Quarter 2020 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =191.438 S = 43.798	CV(1)= 0.229	K factor**= 2.523	TL(1)= 301.940 LL(1)=N	/A
Statistics-Transformed Background Data	X =5.231 S = 0.220	CV(2)= 0.042	K factor**= 2.523	TL(2)= 5.787 LL(2)=N	/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

4/19/2018	257	5.549
7/19/2018	203	5.313
10/22/2018	176	5.170
1/23/2019	284	5.649
4/22/2019	173	5.153
7/17/2019	184	5.215
10/10/2019	146	4.984
1/27/2020	257	5.549
Well Number:	MW397	
Date Collected	Result	LN(Result)
Date Collected 4/17/2018	Result 124	LN(Result) 4.820
		. ,
4/17/2018	124	4.820
4/17/2018 7/19/2018	124 160	4.820 5.075
4/17/2018 7/19/2018 10/15/2018	124 160 184	4.820 5.075 5.215
4/17/2018 7/19/2018 10/15/2018 1/23/2019	124 160 184 160	4.820 5.075 5.215 5.075
4/17/2018 7/19/2018 10/15/2018 1/23/2019 4/16/2019	124 160 184 160 229	4.820 5.075 5.215 5.075 5.434
4/17/2018 7/19/2018 10/15/2018 1/23/2019 4/16/2019 7/16/2019	124 160 184 160 229 176	4.820 5.075 5.215 5.075 5.434 5.170

Current Background Data from Upgradient

LN(Result)

Wells with Transformed Result

MW395

Result

Well Number:

Date Collected

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) > TL(2)
MW373	Downgradien	t Yes	471	YES	6.155	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Current Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =9.348	S= 1.660	CV(1)= 0.178	K factor**= 2.523	TL(1)= 13.537	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.220	S = 0.180	CV(2)= 0.081	K factor**= 2.523	TL(2)= 2.675	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	Yes	27.8	YES	3.325	N/A

Conclusion of Statistical Analysis on Current Data
Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

2.434

2.460

2.370

2.416

2.407

2.361

2.291

2.332

1.930 1.999

2.138

2.059

2.035

2.155

2.079

2.055

LN(Result)

MW395

Result

11.4

11.7

10.7

11.2

11.1

10.6

9.88

10.3

MW397

Result

6.89

7.38

8.48

7.84

7.65

8.63

7.81

8

Wells with Transformed Result

Well Number:

Date Collected

4/19/2018

7/19/2018

10/22/2018

1/23/2019

4/22/2019

7/17/2019

10/10/2019

1/27/2020

4/17/2018

7/19/2018

10/15/2018

1/23/2019

4/16/2019

7/16/2019

10/9/2019

1/27/2020

Well Number:

Date Collected

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Current Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =393.188 S = 75.364	CV(1)= 0.192	K factor**= 2.523	TL(1)= 583.331	LL(1)=N/A
Statistics-Transformed Background Data	X =5.954 S = 0.217	CV(2)= 0.036	K factor**= 2.523	TL(2)= 6.501	LL(2)=N/A

Current Backs Wells with Tra		a from Upgradien Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
4/19/2018	367	5.905
7/19/2018	336	5.817
10/22/2018	237	5.468
1/23/2019	433	6.071
5/29/2019	477	6.168
7/17/2019	449	6.107
10/10/2019	443	6.094
1/27/2020	457	6.125
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/17/2018	319	5.765
8/21/2018	404	6.001
10/15/2018	407	6.009
1/23/2019	394	5.976
5/29/2019	488	6.190
7/16/2019	395	5.979
10/9/2019	439	6.084
3/18/2020	246	5.505

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	448	NO	6.105	N/A
MW373	Downgradient	Yes	409	NO	6.014	N/A
MW385	Sidegradient	Yes	414	NO	6.026	N/A
MW388	Downgradient	Yes	392	NO	5.971	N/A
MW392	Downgradient	Yes	450	NO	6.109	N/A
MW395	Upgradient	Yes	419	NO	6.038	N/A
MW397	Upgradient	Yes	420	NO	6.040	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Current Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =31.850 S = 2.413	CV(1)= 0.076	K factor**= 2.523	TL(1)= 37.937	LL(1)=N/A
Statistics-Transformed Background Data	X =3.458 S = 0.076	CV(2) =0.022	K factor**= 2.523	TL(2)= 3.650	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW373	Downgradient	Yes	64.8	YES	4.171	N/A

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

3.428

3.424

3.350

3.411

3.421

3.343

3.357

3.405

3.547

3.478

3.503

3.520

3.589

3.520

3.512

3.526

LN(Result)

MW395

Result

30.8

30.7

28.5

30.3

30.6

28.3

28.7

30.1

MW397

Result

34.7

32.4

33.2

33.8

36.2

33.8

33.5

34

Wells with Transformed Result

Well Number:

Date Collected

4/19/2018

7/19/2018

10/22/2018

1/23/2019

4/22/2019

7/17/2019

10/10/2019

1/27/2020

4/17/2018

7/19/2018

10/15/2018

1/23/2019

4/16/2019

7/16/2019

10/9/2019

1/27/2020

Well Number:

Date Collected

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2020 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.597 S = 0.708	CV(1)= 0.067	K factor**= 2.523	TL(1)= 12.384	LL(1)=N/A
Statistics-Transformed Background Data	X =2.358 S = 0.066	CV(2)= 0.028	K factor**= 2.523	TL(2)= 2.526	LL(2)=N/A

Current Background Data from Upgradien Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
4/19/2018	10.5	2.351					
7/19/2018	10.4	2.342					
10/22/2018	10.2	2.322					
1/23/2019	10.6	2.361					
4/22/2019	10.5	2.351					
7/17/2019	10.9	2.389					
10/10/2019	12.1	2.493					
1/27/2020	11.7	2.460					
Well Number:	MW397						
Date Collected	Result	LN(Result)					
4/17/2018	9.21	2.220					
7/19/2018	9.94	2.297					
10/15/2018	10.4	2.342					
1/23/2019	10.1	2.313					
4/16/2019	10	2.303					
7/16/2019	10.7	2.370					
10/9/2019	11.4	2.434					
1/27/2020	10.9	2.389					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	21	YES	3.045	N/A		
MW373	Downgradient	Yes	73.5	YES	4.297	N/A		
MW385	Sidegradient	Yes	24.3	YES	3.190	N/A		
MW388	Downgradient	Yes	29.2	YES	3.374	N/A		
MW392	Downgradient	Yes	22.6	YES	3.118	N/A		

Conclusion	of Statistical	Analysis on	Current Data
Conclusion	or statistical	1 x11001 y 515 011	Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances
MW370
MW373
MW385
MW388
MW392

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-23

C-746-S/T Second Quarter 2020 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.028	S = 7.759	CV(1)= 0.645	K factor**= 2.523	TL(1)= 31.603	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.290	S= 0.670	CV(2) =0.292	K factor**= 2.523	TL(2)= 3.980	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW395 Date Collected Result LN(Result) 4/19/2018 9.83 2.285 7/19/2018 9.05 2.203 10/22/2018 13.2 2.580 1/23/2019 10.3 2.332 4/22/2019 11.2 2.416 7/17/2019 4.92 1.593 10/10/2019 8.31 2.117 1/27/2020 1.144 3.14 Well Number: MW397 Date Collected LN(Result) Result 4/17/2018 18.9 2.939 7/19/2018 21.9 3.086 10/15/2018 18.3 2.907 1/23/2019 7.12 1.963 4/16/2019 32.1 3.469 7/16/2019 5.83 1.763 10/9/2019 15.3 2.728 1/27/2020 3.04 1.112

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	60.4	YES	4.101	N/A	
MW385	Sidegradient	Yes	80.8	YES	4.392	N/A	
MW388	Downgradient	Yes	106	YES	4.663	N/A	

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-24

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

July 29, 2020

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by a qualified independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the second quarter 2020 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Do

Bryan Smith

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

GROUNDWATER FLOW RATE AND DIRECTION

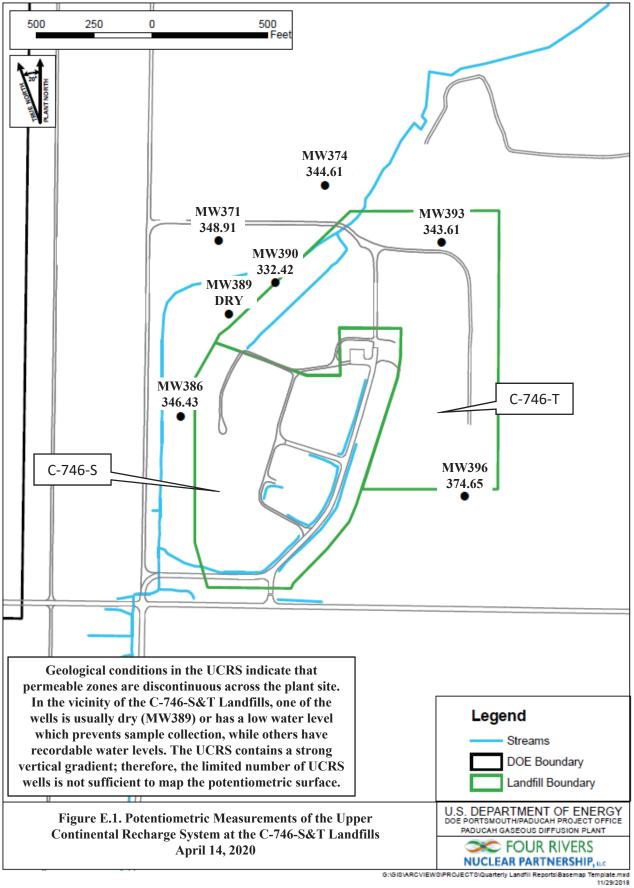
THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT—QUARTERLY, 2nd CY 2020 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u> LAB ID: <u>None</u> For Official Use Only

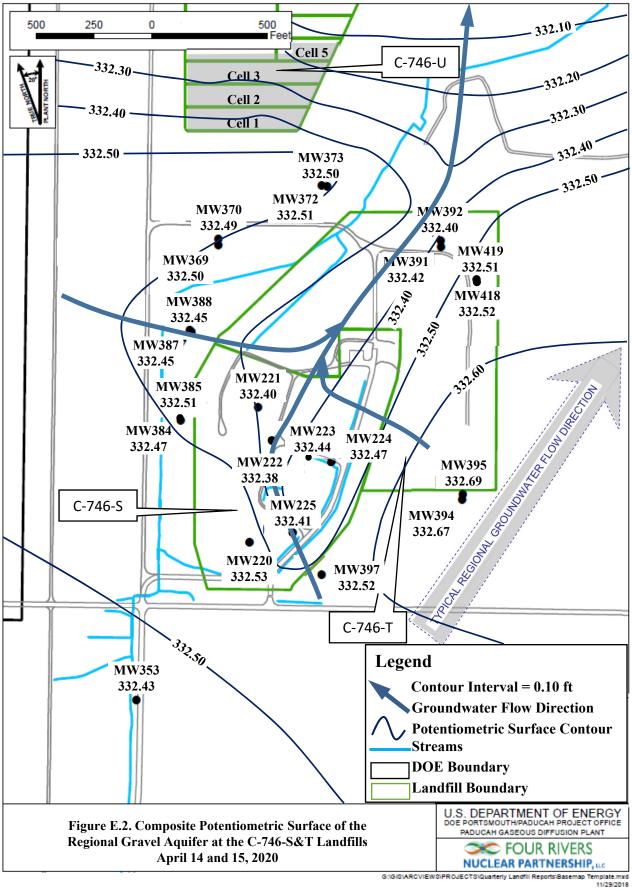
GROUNDWATER FLOW RATE AND DIRECTION

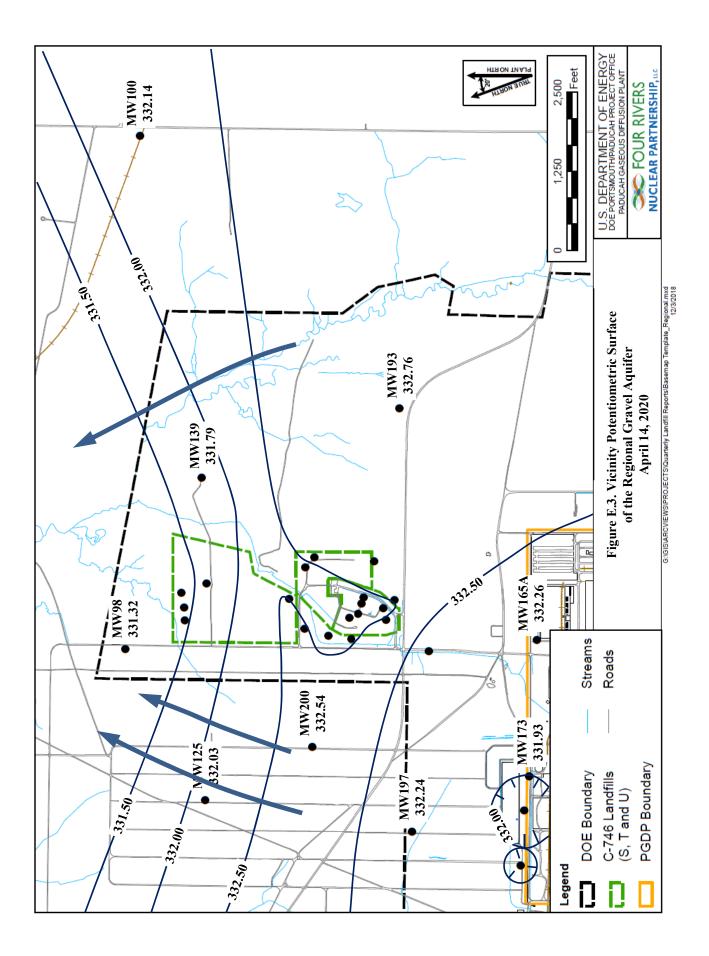
Whenever monitoring wells (MWs) are sampled, 401 *KAR* 48:300 § 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the second quarter 2020 and to determine the groundwater flow rate and direction.


Water levels during this reporting period were measured on April 14 and 15, 2020. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters.¹ Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 3.32×10^{-4} ft/ft. Additional water level measurements in April (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 5.09×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the administrative application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.


Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for April 2020, RGA groundwater flow within the area of the landfill was directed to the northeast.


¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

							Raw Data		*Corrected Data	
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
4/14/2020	10:28	MW220	URGA	382.06	30.30	0.00	49.53	332.53	49.53	332.53
4/14/2020	10:33	MW221	URGA	391.43	30.30	0.00	59.03	332.40	59.03	332.40
4/14/2020	10:36	MW222	URGA	395.32	30.30	0.00	62.94	332.38	62.94	332.38
4/14/2020	10:35	MW223	URGA	394.43	30.30	0.00	61.99	332.44	61.99	332.44
4/14/2020	10:38	MW224	URGA	395.74	30.30	0.00	63.27	332.47	63.27	332.47
4/14/2020	10:30	MW225	URGA	385.78	30.30	0.00	53.37	332.41	53.37	332.41
4/14/2020	10:42	MW353	LRGA	375.09	30.30	0.00	42.66	332.43	42.66	332.43
4/14/2020	10:25	MW384	URGA	365.34	30.30	0.00	32.87	332.47	32.87	332.47
4/15/2020	6:53	MW385	LRGA	365.79	30.15	0.17	33.11	332.68	33.28	332.51
4/14/2020	10:26	MW386	UCRS	365.37	30.30	0.00	18.94	346.43	18.94	346.43
4/14/2020	10:22	MW387	URGA	363.53	30.30	0.00	31.08	332.45	31.08	332.45
4/14/2020	10:23	MW388	LRGA	363.50	30.30	0.00	31.05	332.45	31.05	332.45
4/14/2020	0:00	MW389	UCRS	364.16			NA			
4/14/2020	10:20	MW390	UCRS	360.44	30.30	0.00	28.02	332.42	28.02	332.42
4/14/2020	10:06	MW391	URGA	366.72	30.30	0.00	34.30	332.42	34.30	332.42
4/14/2020	10:08	MW392	LRGA	365.90	30.30	0.00	33.50	332.40	33.50	332.40
4/14/2020	10:07	MW393	UCRS	366.67	30.30	0.00	23.06	343.61	23.06	343.61
4/14/2020	10:13	MW394	URGA	378.64	30.30	0.00	45.97	332.67	45.97	332.67
4/14/2020	10:15	MW395	LRGA	379.34	30.30	0.00	46.65	332.69	46.65	332.69
4/14/2020	10:14	MW396	UCRS	378.84	30.30	0.00	4.19	374.65	4.19	374.65
4/14/2020	10:17	MW397	LRGA	387.05	30.30	0.00	54.53	332.52	54.53	332.52
4/14/2020	10:10	MW418	URGA	367.26	30.30	0.00	34.74	332.52	34.74	332.52
4/14/2020	10:11	MW419	LRGA	367.10	30.30	0.00	34.59	332.51	34.59	332.51
Reference I	Barometi	ric Pressure	:	30.30						
Elev = elev	ation									
amsl = abov	ve mean	sea level								
BP = baron	netric pre	essure								
DTW = dep	oth to wa	ter in feet b	elow datum							
URGA = U	pper Reg	gional Grav	el Aquifer							
LRGA = Lo	ower Reg	gional Grav	el Aquifer							
$UCRS = U_1$	pper Cor	ntinental Re	charge System	1						
*Assumes	a harome	etric efficien	nev of 1.0							

Table E.1. C-746-S&T Landfills Second Quarter 2020 (April) Water Levels

Area	Gradient (ft/ft)		
Beneath Landfill Mound	3.32×10^{-4}		
Vicinity	5.09×10^{-4}		

Table E.2. C-746-S&T Landfills Hydraulic Gradients

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Conductivity (K)		Specific Di	scharge (q)	Average Linear Velocity (v)		
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s	
Beneath Landfill Mound						
725	0.256	0.241	8.51×10^{-5}	0.964	3.40×10^{-4}	
425	0.150	0.141	4.99 × 10 ⁻⁵	0.565	1.99×10^{-4}	
Vicinity						
725	0.256	0.369	1.30×10^{-4}	1.48	5.21×10^{-4}	
425	0.150	0.216	7.64×10^{-5}	0.866	3.05×10^{-4}	

APPENDIX F

NOTIFICATIONS

THIS PAGE INTENTIONALLY LEFT BLANK

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the second quarter 2020 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan* for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant, increased concentrations relative to historical background concentrations.

	Parameter	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Sodium	MW369, MW387
	Technetium-99	MW372, MW384, MW387
Lower Regional Gravel Aquifer	Sodium	MW373
	Technetium-99	MW370, MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

5/26/2020

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4818	MW370	Beta activity	9310	53	pCi/L	50
8004-4810	MW385	Beta activity	9310	59.8	pCi/L	50
8004-4815	MW387	Beta activity	9310	240	pCi/L	50
8004-4816	MW388	Beta activity	9310	77.4	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	11.5	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	15.8	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

THIS PAGE INTENTIONALLY LEFT BLANK

Groundwater Flow System		1	UCRS	1							URG								-	LRG	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
ACETONE																							<u> </u>
Quarter 3, 2003							*					*											
Quarter 4, 2003									-		*								*				
Quarter 1, 2005									*														
Quarter 4, 2019																*							
ALPHA ACTIVITY				_	_								_										
Quarter 4, 2002										_													
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM			T				.					.	T	.									
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003								<u>т</u>															
Quarter 3, 2003			*				*	*			<u>т</u>		*	*									
Quarter 4, 2003	_		*				*	*			*			*									
Quarter 1, 2004	_		*				*	*			*			*									
Quarter 2, 2004							*							*				<u> </u>	<u> </u>				-
Quarter 3, 2004			*				*							*				<u> </u>	<u> </u>				-
Quarter 4, 2004	_	ļ	*	ļ			<u> </u>	ļ		<u> </u>	<u> </u>		<u> </u>					<u> </u>	┣				
Quarter 1, 2005	—						<u>w</u>									<u> </u>			-	<u> </u>	<u> </u>		<u> </u>
Quarter 2, 2005	_		*			l	*			سر								<u> </u>			يە.		┣
Quarter 3, 2005	-		*				*			*	ىبر										*		┣_
Quarter 4, 2005			*				*				*		ىبر	L	L		ļ		<u> </u>	<u> </u>	<u> </u>		⊢
Quarter 1, 2006			-14				*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*										_						
Quarter 1, 2007							*										*						
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												
Quarter 1, 2010			*				*				*												
Quarter 2, 2010			*								*												
Quarter 3, 2010			*								*			*			*			*			
Quarter 1, 2011							*				*												
Quarter 2, 2011			*								*												
Quarter 2, 2012			*																				
Quarter 3, 2012	1						*					I					I						1
Quarter 1, 2013	1						*				*						1			1	1		t
Quarter 3, 2013	1		*														1			1	1		t
Quarter 1, 2014	1	1		1			*	1									İ 👘			1	1		
Quarter 2, 2014	1										*	1					1			1	1		t
Quarter 4, 2014	1		*									1					1			1	1		t
Quarter 1, 2016	1						*					1					1			1	1		t
Quarter 2, 2016														*									1
Quarter 1, 2017	1	1		1			*	1									İ 👘			1	1		
Quarter 4, 2017	1	1		1				1									İ 👘			1	1		*
Quarter 1, 2018	1	1		1			*	1									İ 👘			1	1		
Quarter 1, 2020	1												*				1			1	1		t
BARIUM																							
Quarter 3, 2003																	1						
Quarter 4, 2003	1	1		1													İ 👘			1	1		
BETA ACTIVITY																							
Quarter 4, 2002																	1						t i
Quarter 1, 2003	1	1		1				1												1	1		
	_		·				·			·	·		·	.									<u> </u>

Groundwater Flow System		1	UCRS								URGA									LRGA			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY		-	_	_													_			_			
Quarter 2, 2003													_										
Quarter 3, 2003										_													
Quarter 4, 2003																							
Quarter 1, 2004												_							_	_			
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004										_													
Quarter 1, 2005																				_			
Quarter 2, 2005										_													
Quarter 3, 2005												_					_						
Quarter 4, 2005																				_			
Quarter 1, 2006			_																				
Quarter 2, 2006												_											
Quarter 3, 2006	-		_																				
Quarter 4, 2006																	_						
Quarter 1, 2007		 																					<u> </u>
Quarter 2, 2007	_	<u> </u>				I					L							L					
Quarter 3, 2007			_																				
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																							
Quarter 2, 2014																							
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015																							
Quarter 2, 2015																							
Quarter 3, 2015																							
Quarter 4, 2015																							
Quarter 1, 2016																							
Quarter 2, 2016			ſ	ſ			ſ	ſ			[ſ	ſ			[ſ	
Quarter 3, 2016	1																						
Quarter 4, 2016			ſ	ſ			ſ	ſ						ſ	ſ			[ſ	
Quarter 1, 2017	1																						
Quarter 2, 2017	1	1				1																	1
Quarter 2, 2017				1			-	1			-			1	-	-						1	1
Quarter 3, 2017																							

Chart of MCL and Historical UTI	L Exceedances for the C-746-S&T Landfills	(Continued)
--	---	-------------

Gradient											URGA	4								LRGA	1		
	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2017																							
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																							
Quarter 4, 2018																							
Quarter 1, 2019																							
Quarter 2, 2019																							
Quarter 3, 2019																							
Quarter 4, 2019																							
Quarter 1, 2020																							
Quarter 2, 2020																							
BROMIDE																							
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004	1		*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003			*																				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				1
Quarter 2, 2006												*							*				
Quarter 3, 2006	1											*							*				
Quarter 4, 2006												*					-		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007	-											*							*			-	
												*							*				
Quarter 4, 2007																							
Quarter 1, 2008			ļ				ļ			<u> </u>	ļ	* *	ļ	ļ			<u> </u>		* *				┝──
Quarter 2, 2008	 											* *							* *				╞
Quarter 3, 2008	<u> </u>		L				L				L	*	L						*				<u> </u>
Quarter 4, 2008	<u> </u>											*							*				Ļ
Quarter 1, 2009	I											*							*				
Quarter 2, 2009	1											*							*				
Quarter 3, 2009	<u> </u>											*							*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*		1					*				
Quarter 4, 2010	1											*							*				
Quarter 1, 2011	Ĩ											*							*				1
Quarter 2, 2011	1		1				1				1	*	*						*				
Quarter 3, 2011	1		İ				İ				İ	*	İ						*				1
Quarter 4, 2011	1											*			1				*				1
Quarter 1, 2012	1											*							*				<u> </u>
	1		I	ļ	-							*				-	-		*				
Quarter 2, 2012 Quarter 3, 2012												*							*				

Groundwater Flow System		1	UCRS	3						I	JRGA	4]	LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CALCIUM																							
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*						*	*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
· · ·												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*		*					*				
Quarter 2, 2016														*									
Quarter 3, 2016												*							*	L			<u> </u>
Quarter 4, 2016	I	L	L				L			L		*			L		I		*				
Quarter 1, 2017									L			*							*				<u> </u>
Quarter 2, 2017									L			*		<u> </u>					*		<u> </u>		<u> </u>
Quarter 3, 2017												*							*				
Quarter 4, 2017												*							*				
Quarter 1, 2018												*							*				
Quarter 2, 2018												*							*				
Quarter 4, 2018												*							*				
Quarter 1, 2019												*							*				
Quarter 2, 2019												*							*				
Quarter 3, 2019												*							*				
Quarter 4, 2019												*	*						*				
Quarter 1, 2020												*	*						*				
Quarter 2, 2020												*							*				
CARBON DISULFIDE																							
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		
Quarter 2, 2017												*	*						*				
CHEMICAL OXYGEN DEMAN	D																						
Quarter 1, 2003	1			*																			
Quarter 2, 2003				*																			
Quarter 3, 2003				*			*			*													
Quarter 4, 2003				*																			
Quarter 1, 2004	*			*																			
Quarter 4, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*	-	-	-	-		-	-		-	-	-	-	<u> </u>	-	-			-	-	<u> </u>	-	+
Quarter 3, 2005	*			-				-		*	-	*									*	-	-
Quarter 4, 2005	*								<u> </u>	*		<u> </u>									<u> </u>		
Quarter 1, 2005	*			-				-		-	-											-	-
Quarter 2, 2006	*			-				-			-											-	-
Quarter 2, 2006 Quarter 3, 2006	*													<u> </u>							<u> </u>		-
,	-																*						
Quarter 4, 2006	*	ļ	ļ		ļ		ļ			*		ļ	<u> </u>		ļ	<u> </u>	*		<u> </u>				
Quarter 1, 2007						l				*													
Quarter 2, 2007	*													<u> </u>							<u> </u>		<u> </u>
Quarter 3, 2007	* *								ļ					<u> </u>						<u> </u>	<u> </u>		<u> </u>
Quarter 4, 2007	*								L											L			<u> </u>
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*	1	1				1										1						
Quarter 5, 2005																							

Groundwater Flow System			UCRS	3							URG	4							1	LRG	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHEMICAL OXYGEN DEMAN	D																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 3, 2011	*																						
Quarter 4, 2011	*																						
Quarter 1, 2012	*																						
Quarter 1, 2013	*																						
Quarter 3, 2013	*																						
Quarter 3, 2014	*								*				*					*					
Quarter 4, 2014							*																
Quarter 2, 2015																*							
Quarter 3, 2015															*	-							
Quarter 3, 2016			*								*												
Quarter 4, 2016																	*						
Quarter 2, 2017							*																
	*	<u> </u>			<u> </u>		^	<u> </u>		<u> </u>	<u> </u>		<u> </u>		*	<u> </u>			<u> </u>				-
Quarter 3, 2017	-					*									*								
Quarter 4, 2017						*								<u>т</u>								<u>т</u>	
Quarter 2, 2018						<u> </u>	<u> </u>					*		*								*	<u> </u>
Quarter 3, 2018						-						不											-
Quarter 4, 2018														-14									*
Quarter 2, 2019					*							*		*					*				
Quarter 3, 2019												*	*						*			*	*
Quarter 4, 2019	*			*				*			*	*				*							
Quarter 1, 2020					*				*												*		
Quarter 2, 2020															*								
CHLORIDE																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				
Quarter 3, 2005			*																				
Quarter 4, 2005			*																				
Quarter 1, 2006																		*					
Quarter 2, 2006			*																				
Quarter 3, 2006			*																				
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*																				
Quarter 3, 2007			*																				
Quarter 4, 2007			*				1																
Quarter 1, 2008			*				1													-			-
Quarter 2, 2008			*	-			1								-								
Quarter 3, 2008			*	-	-							-	-		-					-			-
			*	-	<u> </u>	-							<u> </u>		-								-
Onarter 4 2008			*	-	<u> </u>	-							<u> </u>		-								-
Quarter 4, 2008 Quarter 1, 2009					<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>			<u> </u>			<u> </u>				-
Quarter 1, 2009			*				1	1		ļ			<u> </u>			<u> </u>			<u> </u>		L		-
Quarter 1, 2009 Quarter 2, 2009			*																				1
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009			*																				
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009			*																				
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010			* *																				
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010			* * *																				
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010			* * * *																				
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010			* * *																				

Groundwater Flow System			UCRS	1							URGA	r								LRGA			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHLORIDE																							
Quarter 2, 2011			*																				
Quarter 3, 2011			*																				
Quarter 4, 2011			*																				
Quarter 3, 2012			*																				
Quarter 3, 2013			*																				
Quarter 4, 2013			*																				
Quarter 4, 2014			*																				1
Quarter 2, 2019																					*		
CHROMIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							-
Quarter 2, 2003	-																						
Quarter 3, 2009																							
Quarter 1, 2019																							-
COBALT																							
Quarter 3, 2003							*																
CONDUCTIVITY					L			L		L			L	L				L	L	L	L		<u> </u>
Quarter 4, 2002										*							_		*				
Quarter 1, 2003	+		*						-	*			-					-	*		-		+
Quarter 2, 2003	+		*							*									*				<u> </u>
Quarter 3, 2003	+		*					*		*									*				
Quarter 4, 2003			*							*									*				
Quarter 1, 2004	+																		*				
Quarter 2, 2004										*									*				
Quarter 3, 2004	-									*									*				
Quarter 4, 2004			*							*									*				
Quarter 1, 2005	+									*		*							*				
Quarter 2, 2005	+											*							*				
Quarter 3, 2005	-											-							*				
Quarter 4, 2005										*		*							*				
Quarter 1, 2005	+											*							*				
Quarter 2, 2006	-											*							*				
Quarter 3, 2006	-											*							*				
Quarter 4, 2006												-					*		*				
Quarter 1, 2007	-											*					-		*				
Quarter 2, 2007												-					*		*				
Quarter 3, 2007	+																*		*				
Quarter 4, 2007	+											*					*		*				
Quarter 1, 2007	+											*					-		*				├
Quarter 2, 2008	+								-	-		*	-					-	*		-		
Quarter 3, 2008	+											*					*		*				├
Quarter 4, 2008	+											*							*				
Quarter 1, 2008	+								-	-		*	-					-	*		-		
Quarter 2, 2009	+											*							*				├
Quarter 2, 2009 Quarter 3, 2009	-											*							*				
Quarter 3, 2009 Quarter 4, 2009	+											*					*		*				├
Quarter 1, 2009 Quarter 1, 2010	-											*					*		*				
Quarter 1, 2010 Quarter 2, 2010	+											*							*				├
Quarter 2, 2010 Quarter 3, 2010	+											*							*				├
Quarter 3, 2010 Quarter 4, 2010	-											*							*				
Quarter 1, 2010 Quarter 1, 2011	-									*		*							*				
	-				<u> </u>	 		<u> </u>		^		*		<u> </u>					*	<u> </u>			<u> </u>
Quarter 2, 2011	-											*							*				┣──
Quarter 3, 2011	-											*							*				┣──
Quarter 4, 2011	_			ļ	<u> </u>	 		<u> </u>		<u> </u>	*	*	<u> </u>	<u> </u>					* *	<u> </u>		ļ	
Quarter 1, 2012	_	<u> </u>	<u> </u>	L		I	<u> </u>		<u> </u>		*	*							*			L	<u> </u>
Quarter 2, 2012			ļ				ļ	L				*							*	L			<u> </u>
Quarter 3, 2012																							

Chart of MCL a	and Historical UTL	Exceedances for the	e C-746-S&T Landfills	(Continued)
----------------	--------------------	---------------------	-----------------------	-------------

Groundwater Flow System	T		UCRS	3						τ	JRGA	1								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY		1						1					1	1				1		1	1	1	1
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013	-											*							*				
Quarter 4, 2013 Quarter 1, 2014												*							*				
Quarter 2, 2014	-											*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016																			*				
Quarter 3, 2016												*							*				
Quarter 4, 2016		L											L	L					*				<u> </u>
Quarter 1, 2017	_																		*				<u> </u>
Quarter 2, 2017																			*				
Quarter 3, 2017						<u> </u>													*				<u> </u>
Quarter 4, 2017	_																		*				
Quarter 1, 2018 Quarter 2, 2018	-																		*				
Quarter 3, 2018	-																		*				
Quarter 4, 2018																			*				
Quarter 1, 2019																			*				
Quarter 2, 2019																			*				
Quarter 3, 2019																			*				
Quarter 4, 2019												*							*				
Quarter 1, 2020												*							*				
Quarter 2, 2020												*							*	*			
DISSOLVED OXYGEN			-																				
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS				-			-			*		-							*				
Quarter 4, 2002	-		*							*									*				
Quarter 1, 2003 Quarter 2, 2003			*							*									*				
Quarter 3, 2003	-		*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2005			*				-		-	-		*							*				
Quarter 2, 2004										*		*							*				
Quarter 3, 2004										*		*							*				
Quarter 4, 2004										*		*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007																			*				
Quarter 2, 2007										*		*							*				
Quarter 3, 2007	_									*		*							*				
Quarter 4, 2007	_											*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008	_											*							*				
Quarter 4, 2008										*		*							*				
				1								*	1	i i					*	1	1		1
Quarter 1, 2009																							
												*	*						*				

Groundwater Flow System			UCRS	3						1	URG	4								LRG	A		-
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS																							
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010										*		*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*	*						*				
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013								1	1			*			1				*		1		
Quarter 4, 2013	1					1		İ	İ			*			İ				*		1		t
Quarter 1, 2014												*	*						*		1		1
Quarter 2, 2014												*							*		1		1
Quarter 3, 2014	+								*			*	*						*		1		\vdash
Quarter 4, 2014	+								-	-		*	*					-	*		1		-
Quarter 1, 2015												*	-						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				<u> </u>
Quarter 4, 2015									*			*						*	*				<u> </u>
Quarter 1, 2015	-											*							*				<u> </u>
												*	*	*					*				<u> </u>
Quarter 2, 2016	_					-						*	÷	Ť					*				<u> </u>
Quarter 3, 2016	_					-						*							*				<u> </u>
Quarter 4, 2016	-											*							* *				<u> </u>
Quarter 1, 2017																			* *				<u> </u>
Quarter 2, 2017												* *		<u>ب</u>	J.								<u> </u>
Quarter 3, 2017												*		*	*				*				
Quarter 4, 2017												*							*				
Quarter 1, 2018												*							*				
Quarter 2, 2018												*							*				
Quarter 3, 2018												*		*					*				
Quarter 4, 2018												*							*				
Quarter 1, 2019												*							*				
Quarter 2, 2019												*							*				
Quarter 3, 2019												*	*						*				
Quarter 4, 2019												*							*				
Quarter 1, 2020												*	*						*				
Quarter 2, 2020												*	*						*				
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	Ľ
Quarter 3, 2003		ſ					ſ	[[*	ſ	[Γ
Quarter 1, 2004		ſ		*			ſ	[[ſ	[Γ
Quarter 3, 2010																					*		
Quarter 2, 2013										*													
IRON																							
Quarter 1, 2003							*			*	*			*									1
Quarter 2, 2003						1		1	1	*	*	*	*		1						1		
Quarter 3, 2003		1					*	*	*	*	*	*		1	1						1		
Quarter 4, 2003											*										1		1
Quarter 1, 2004	+										*								-		1		┢
Quarter 2, 2004	+									*	*								-		1		┢
Quarter 3, 2004 Quarter 3, 2004	+									*	-								-	<u> </u>	1		⊢
	-	<u> </u>								*													┢──
Quarter 4, 2004																					÷		1

Groundwater Flow System			UCRS				1	r	r	-	URG/	r	1 -	-	-			_		LRGA	1	_	-
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	393
IRON																							
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007											*												
Quarter 2, 2008												*											
Quarter 3, 2008												*											
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*							-				
Quarter 4, 2003			*									*							*				
Quarter 1, 2003	1		*					<u> </u>		<u> </u>		*		*					*				-
Quarter 2, 2004	1		*									*							*				-
Quarter 3, 2004 Quarter 3, 2004			*									*							*				-
Quarter 4, 2004 Quarter 4, 2004	-1		*									*							*				-
Quarter 1, 2004 Quarter 1, 2005		<u> </u>									<u> </u>	*	<u> </u>						*				-
Quarter 1, 2005 Quarter 2, 2005	_				<u> </u>	<u> </u>		<u> </u>		<u> </u>		*				<u> </u>			*	<u> </u>	<u> </u>	<u> </u>	<u> </u>
												*							*				
Quarter 3, 2005	-																						
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*							*				
Quarter 1, 2010	-											*							*				
Quarter 1, 2010 Quarter 2, 2010	-											*	*						*				
	-											*	*						*				
Quarter 3, 2010																							
Quarter 4, 2010	_		L									*		L					*				<u> </u>
Quarter 1, 2011	_		L									*		L					* *				<u> </u>
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				L
Quarter 2, 2012												*							*				
Quarter 3, 2012												*	*						*				
Quarter 4, 2012	1											*	*						*				
Quarter 1, 2013			1									*		1					*				1
Quarter 2, 2013	1		İ									*		İ					*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				-
Quarter 1, 2013		<u> </u>									<u> </u>		<u> </u>					*	*				-
Quarter 1, 2014		1											1					÷	÷				1

Groundwater Flow System			UCRS	S						1	URGA	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
MAGNESIUM																							
Quarter 2, 2014												*	*						*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*	*						*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*		*					*				
Quarter 1, 2017												*		*					*				
Quarter 2, 2017												*											
Quarter 3, 2017												*		*									
Quarter 4, 2017												*							*				
Quarter 1, 2018	I											*	*						*				
Quarter 2, 2018												*											
Quarter 3, 2018												*											
Quarter 4, 2018	I											*	*	*					*				
Quarter 1, 2019	I											*		*					*				
Quarter 2, 2019												*							*				
Quarter 3, 2019	I											*	*						*				
Quarter 4, 2019												*	*						*				
Quarter 1, 2020												*	*						*				
Quarter 2, 2020												*	*						*				
MANGANESE																							
Quarter 4, 2002																					*		
Quarter 3, 2003							*	*															
Quarter 4, 2003							*	*															
Quarter 1, 2004							*																
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															
Quarter 1, 2005							*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
OXIDATION-REDUCTION POT	ENT	IAL																					
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006			*															*					
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*				*																
Quarter 3, 2007			*				*																
Quarter 4, 2007			*																				
Quarter 1, 2008			*			*			*														
Quarter 2, 2008	*		*	*		*							*				*		*	*			
Quarter 3, 2008			*	*		*							*				*		*	*			
			*	*		*	*	*	*				*				*	*		*			
Quarter 4, 2008			*				*	*	*				*	*				*		*			
Quarter 1, 2009				. . .	i –	*	1	1	1		_						*	*	*	*	1	I	
Quarter 1, 2009 Quarter 3, 2009			*	*					_														
Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009			*	*		*			*									*		*			
Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010	*		*																	*			
Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009	* *		*	*					*				*				* *	* * *	*				

Chart of MCL	and Historical UTL	Exceedances for the	C-746-S&T Landfills	(Continued)
---------------------	--------------------	---------------------	---------------------	-------------

Groundwater Flow System	L		UCRS	S						1	URGA	4								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
OXIDATION-REDUCTION POT	ENT	IAL																					
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*	*		*			*		*		*	*	*	*			
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		
Quarter 3, 2014	*		*	*		*											*	*	*	*			
Quarter 4, 2014	*		*	*							*		*				*	*	*	*	*		
Quarter 1, 2015	*	1	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	t –	*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*	1	*	*	*	*	*	*	*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 2, 2016	*		*	*	*	*		*	*	*			*	*	*	*	*	*		*	*	*	*
Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 4, 2016	*		*	*	*	-	*	*	-	*			*	-	*		*	*	*	*	*	*	*
Quarter 1, 2017	*		*	*	*			*	*						*			*		*		*	*
Quarter 2, 2017	*		*	*	*			-	-						-		*	-		*	*		
Quarter 3, 2017	*	-	*	*	*												*	*	*	*	*	*	*
Quarter 4, 2017	*		*	*	*	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*	*
Quarter 1, 2018	*		*	*	*	*												*	*	*	*		*
Quarter 2, 2018	*		*	*	*												*	*	*	*	*	*	*
Quarter 3, 2018	*		*	*	*	*	*	*	*								*	*	*	*	*	*	*
Quarter 4, 2018	*		*	*	*	*				*			*		*		*	*	*	*	*	**	*
Quarter 1, 2019	*		*	*	*	*	*	*		Ŧ	*		Ŧ		Ŧ		*	*	*	*	*	*	*
Quarter 2, 2019	*		*	*	*	*	*	*	*	*	Ŧ	*	*	*	*	*	*	*	*	*	*	*	*
	*		*	*	*	*	*	*	*	*	*	Ŧ	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2019 Quarter 4, 2019	*		*	*	*	т —	*	Ŧ	*	*	Ŧ		*	Ŧ	*	*	*	*	*	*	*	*	*
Quarter 1, 2019	*		*	*	*	*	*	*	*	Ŧ			*		Ŧ	*	*	*	*	*	*	*	Ŧ
Quarter 1, 2020 Quarter 2, 2020	*		*	*	*	*	*	*	*	*			*	*	*	*	*	*	*	*	*	*	*
	~		*	*	-	т —	*	Ŧ	~	т.			T	т.	*	T	~	<u>т</u>	-	Ŧ	*	Ť	*
PCB-1016 Quarter 4, 2003							*	*	*		*							*					
							~	Ť	÷		*							Ŧ					
Quarter 3, 2004 Quarter 3, 2005	I				<u> </u>		*	<u> </u>			*					<u> </u>	<u> </u>			<u> </u>			
	I				<u> </u>		*	<u> </u>			*					<u> </u>	<u> </u>			<u> </u>			
Quarter 1, 2006	I										*						-						
Quarter 2, 2006 Quarter 4, 2006			<u> </u>	<u> </u>	<u> </u>	 	<u> </u>				*					<u> </u>				<u> </u>	<u> </u>		
Quarter 4, 2006 Quarter 1, 2007											*	*											
			<u> </u>	<u> </u>		 	<u> </u>				*	*									<u> </u>		
Quarter 2, 2007											*	*											
Quarter 3, 2007												*					— ·						
Quarter 2, 2008											*	*					— ·						
Quarter 3, 2008									L		*												
Quarter 4, 2008		<u> </u>				I					*												
Quarter 1, 2009	<u> </u>	<u> </u>							L		*												
Quarter 2, 2009	<u> </u>										*												
Quarter 3, 2009											*												
	1	1									*												
Quarter 4, 2009							1	1			*	1				1				1		1	
Quarter 4, 2009 Quarter 1, 2010											Ť												
											*												
Quarter 1, 2010									-														
Quarter 1, 2010 Quarter 2, 2010											*												

Groundwater Flow System			UCRS	3						-	URG/	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	393
PCB-1232																							
Quarter 1, 2011											*												
PCB-1248																							
Quarter 2, 2008												*											
PCB-1260																							
Quarter 2, 2006																		*					
pH																							
Quarter 4, 2002																	*						
Quarter 2, 2003																	*						
Quarter 3, 2003																	*						
Quarter 4, 2003							*										*						
Quarter 1, 2004							*										*						
Quarter 2, 2004																	*						
Quarter 3, 2004																	*						
Quarter 4, 2004																	*						
Quarter 3, 2005										*							*				*		
Quarter 4, 2005										*							*						
Quarter 1, 2006																	*						
Quarter 2, 2006																	*						
Quarter 3, 2006																	*						Ľ
Quarter 3, 2007																	*						
Quarter 4, 2007																	*						
Quarter 4, 2008																	*						
Quarter 1, 2009																	*						
Quarter 1, 2011																	*						
Quarter 2, 2011											*												
Quarter 3, 2011											*												
Quarter 1, 2012														*									
Quarter 1, 2013										*			*				*						
Quarter 4, 2014																					*		
Quarter 2, 2016																		*	*				
POTASSIUM																							
Quarter 4, 2002																		*	*				
Quarter 3, 2004																			*				
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				1
Quarter 4, 2005																			*				Γ
Quarter 2, 2006																			*				Γ
Quarter 3, 2006												I	I						*		1		1
Quarter 4, 2006																			*				Γ
Quarter 4, 2008																			*				Γ
Quarter 3, 2012												I	I						*		1		1
Quarter 1, 2013																			*				Γ
Quarter 2, 2013																			*				[
Quarter 3, 2013												I	I						*		1		1
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004																			*				L
Quarter 2, 2005		ſ	[ſ	*			ſ	ſ		ſ								Γ
Quarter 1, 2009											*												
Quarter 3, 2014	1	l						l	*			*	İ		l								1
Quarter 4, 2014	1		*								*							*			1		1
Quarter 1, 2015	1		*				*			*		*						*			1		1
Quarter 2, 2015	1		*				*			*		*						*			1		T
			*		-			1			-	1	1	-	1					1	1	1	1

Groundwater Flow System	T		UCRS	5						1	URG	4]	LRGA	A		-
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
RADIUM-226																							
Quarter 4, 2015					*	*									*		*				*	*	
Quarter 2, 2016			*						*		*	*	*	*	*	*		*					
Quarter 3, 2016																		*					
Quarter 4, 2016	*		*			*			*				*		*			_		*		*	
Quarter 1, 2017			*							*	*							*					
Quarter 2, 2017					J.				J.	J.	J.						*	*		*	*		i
Quarter 3, 2017 Quarter 4, 2017		-			*				*	*	*							*		*			
Quarter 4, 2017 Quarter 1, 2018	-											*						*		*		L	
Quarter 4, 2018		-										*	*				*	Ŧ		*			
Quarter 1, 2020	-																*						
Quarter 2, 2020															*		-						
RADIUM-228																							
Quarter 2, 2005																							
Quarter 3, 2005	1																						
Quarter 4, 2005	1	1																					
Quarter 1, 2006	1	1																					
SELENIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003	1																						
Quarter 3, 2003																							
Quarter 4, 2003			-																				
SODIUM						_													<u>т</u>		ц.		
Quarter 4, 2002	-			*					*	*	*								*		*	<u> </u>	<u> </u>
Quarter 1, 2003 Quarter 2, 2003				*					*	*	*		*										
Quarter 2, 2003 Quarter 3, 2003	-			~			*	*		*	~		Ť									L	
Quarter 4, 2003	-						*	т Т	*	*													
Quarter 1, 2003	-								*	*				*								-	-
Quarter 2, 2004									-	*				-									
Quarter 3, 2004	-									*													
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				
Quarter 2, 2005										*									*				
Quarter 3, 2005	1								*	*									*				
Quarter 4, 2005	1								*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006	1								*														
Quarter 3, 2006									*	*		*							*				
Quarter 4, 2006									*	*							*						
Quarter 1, 2007									*			*											
Quarter 2, 2007									*	*													
Quarter 3, 2007									*														
Quarter 4, 2007									*														
Quarter 1, 2008									*														
Quarter 3, 2008	1											*											
Quarter 4, 2008	1								*	*													
Quarter 1, 2009	1								*			*							*				
Quarter 3, 2009	1											*											
Quarter 4, 2009	1	<u> </u>	<u> </u>					<u> </u>	*			*											L
Quarter 1, 2010	1	<u> </u>	<u> </u>					<u> </u>				*											
Quarter 2, 2010	1									*		*											
Quarter 3, 2010	1	ļ								*													
Quarter 4, 2010	1	ļ							*	*													
Quarter 1, 2011	1									*													
Quarter 2, 2011	1	<u> </u>	<u> </u>					<u> </u>	*														L
Quarter 4, 2011																			*				

Groundwater Flow System		1	UCRS	3							URGA	4]	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SODIUM																							
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
Quarter 2, 2014									*		*	*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014									*	*		*	*										
Quarter 1, 2015													*										
Quarter 2, 2015												*											
Quarter 3, 2015										*		*											
Quarter 4, 2015									*	*		*											
Quarter 2, 2016											*												
Quarter 3, 2016											*												*
Quarter 1, 2017										*	*		*					*					
Quarter 2, 2017									*	*	*												
Quarter 2, 2018													*										
Quarter 3, 2018														*									
Quarter 1, 2019													*										
Quarter 2, 2019													*										
Quarter 4, 2019												*											
Quarter 1, 2020											*	*							*				
Quarter 2, 2020											*		*						*				
STRONTIUM-90																							
Quarter 2, 2003										-													
Quarter 1, 2004																							
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*					*	*				-
Quarter 3, 2005										*		*	*				*	*	*				-
Quarter 4, 2005	_									*		*	*					*	*	*			
Quarter 1, 2005										*		*	*				*	*	*	*			├──
Quarter 1, 2006 Quarter 2, 2006	-					<u> </u>			*	*	<u> </u>	*	*				*	*	*	*			├
	-					<u> </u>					<u> </u>	*	*				*	4	* *	*			├
Quarter 3, 2006	_						ļ		*	* *	ļ	*	*	ļ			*		*	-			_
Quarter 4, 2006	-					l														سر			┣—
Quarter 1, 2007							L	L	* *	* *	<u> </u>	*	*	L	L		*		* *	*		L	<u> </u>
Quarter 2, 2007	_						L		* *	*		*	*	L			*		* *	*			_
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008	T									*	1	*	*				*		*	1			
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009	1								*	*		*	*				*	*	*	*			
Quarter 3, 2009	1								*	*		*	*				*	*	*	*			
Quarter 4, 2009	*						1			*		*	*	1			*	*	*				
	*	1							*	*		*	*				*		*				
Quarter 1, 2010	*																						

Groundwater Flow System Gradient											URGA									LRGA	1		
	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SULFATE																							
Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 3, 2010										*		*	*				*	*	*	*			
Quarter 4, 2010	*								-	*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*								-	*		*	*	*			*	*	*	*			
Quarter 4, 2011	*								-	*		*	*				*	*	*	*			
Quarter 1, 2012	*								-	*		*	*				*	*	*	*			
Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012									-	*		*	*				*	*	*	*			
Quarter 1, 2013										*		*	*				*	*	*	*			
Quarter 2, 2013										*		*	*	*			*	*	*	*			
Quarter 3, 2013										*		*	*	*			*	*	*	*			
Quarter 4, 2013										*		*	*				*	*	*	*			
Quarter 1, 2014								*		*		*	*				*	*	*	*			
Quarter 2, 2014										*		*	*	*			*	*	*	*			
Quarter 3, 2014										*		*	*	*			*	*	*	*			
Quarter 4, 2014										*		*	*				*	*	*	*			
Quarter 1, 2015										*		*	*				*	*	*	*			
Quarter 2, 2015										*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2015								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2015										*		*	*	*			*		*	*			<u> </u>
Quarter 1, 2016								*		*		*	*	*			*	*	*	*			<u> </u>
Quarter 2, 2016								*		*		*	*	*	*		*	*	*	*			<u> </u>
Quarter 3, 2016								*		* *		* *	*	*	* *		*	*	* *	*		<u> </u>	
Quarter 4, 2016										* 3		* 3	*	*	* *		*	*	* *	*		<u> </u>	
Quarter 1, 2017								J.		* 3		* 3	*	*	*		*	*	* *	*		<u> </u>	
Quarter 2, 2017								*		*		* *	*	*	* *		*	*	*	*		<u> </u>	
Quarter 3, 2017								*		*		* *	*	*	*		*	*	*	*			
Quarter 4, 2017										* *		*	*	*	*		*	*	*	*			
Quarter 1, 2018								*		* *	*	* *	*	*	*		*	*	* *	*			
Quarter 2, 2018								*		*	•	*	~	*	*		*	*	*	*		<u> </u>	
Quarter 3, 2018 Quarter 4, 2018								*		*		*	*	*	Ť		*	*	*	*		<u> </u>	
Quarter 1, 2018 Quarter 1, 2019								*		*		*	*	*	*		*	*	*	*		'	
Quarter 2, 2019								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2019			*					*		*		*	*	*	*		*	*	*	*	*		
Quarter 4, 2019			*					-		*		*	*	*	-		*	*	*	*	*		
Quarter 1, 2020								*		*		*	*	*	*		*	*	*	*	*		
Quarter 2, 2020								*		*		*	*	*	*		*	*	*	*	*		
TECHNETIUM-99																							
Quarter 4, 2002														1					*				
Quarter 1, 2003													*	1			*		*				
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003			*										*				*			*			
Quarter 4, 2003			*							*		*	*				*		*	*			
Quarter 1, 2004			*									*	*				*		*				
Quarter 2, 2004			*									*	*				*		*	*			
Quarter 3, 2004			*									*					*		*				
Quarter 4, 2004			*							*		*	*				*	*	*				
Quarter 1, 2005			*							*		*	*				*			*			
Quarter 2, 2005			*							*			*				*	*	*	*			
Quarter 3, 2005			*							*			*				*	*	*	*			
Quarter 4, 2005			*							*		*	*				*		*	*			
Quarter 1, 2006										*		*	*						*	*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006			*							*			*				*	*	*	*			
Quarter 4, 2006	*									*		*	*						*	*			
Quarter 1, 2007			*							*			*				*		*	*			

Groundwater Flow System	I		UCRS	5		1				1	URGA	A								LRG	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	
TECHNETIUM-99																							
Quarter 2, 2007			*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			-
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			-
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*		<u> </u>	+
Quarter 4, 2008			*							*		*	*				*	*	*	*		<u> </u>	+
Quarter 1, 2009			*							*		*	*				*						-
Quarter 2, 2009			*							*		*	*				*	*		*			+
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*					┝──┘	-
Quarter 1, 2009			*							*		*	*				*					<u> </u>	+
Quarter 2, 2010			*							*			*				*	*		*		┝──┘	-
Quarter 3, 2010			*							*	*	*	*				*	Ŧ		Ŧ		<u> </u>	-
			*							*	*	*	*				*					<u> </u>	+
Quarter 4, 2010			Ŧ							*		Ŧ	*				*					<u> </u>	-
Quarter 1, 2011	I	<u> </u>	<u> </u>	ļ	<u> </u>	 	ļ				ļ						*		<u> </u>	*		<u> </u>	─
Quarter 2, 2011	I	<u> </u>	*	ļ	ļ	 	ļ			*	ļ		*				*		<u> </u>	*		<u> </u>	─
Quarter 3, 2011	<u> </u>	<u> </u>								*	بىر	ىر	*							*		<u> </u>	⊢
Quarter 4, 2011		-	*							*	*	*	*				*			*			
Quarter 1, 2012		-	*							*			*				*		J.	*			
Quarter 2, 2012	1	<u> </u>	*			I				* •			*	<u> </u>			*		*	*		\vdash	⊢
Quarter 3, 2012			*							*		*	*				*					\vdash	⊢
Quarter 4, 2012										*		*	*				*		*	*			
Quarter 1, 2013										*		-	*				*		*	*			
Quarter 2, 2013										*		*	*				*		*	*			
Quarter 3, 2013			*							*		*	*				*		*	*			
Quarter 4, 2013			*							*		*	*				*		*	*			
Quarter 1, 2014			*							*	*		*				*		*	*			
Quarter 2, 2014			*							*	*		*	*			*		*	*			
Quarter 3, 2014			*							*			*				*			*			
Quarter 4, 2014			*							*	*	*	*				*		*	*			
Quarter 1, 2015			*							*	*	*	*				*			*			
Quarter 2, 2015			*							*	*		*				*			*			
Quarter 3, 2015			*							*	*	*	*				*	*	*	*			
Quarter 4, 2015			*							*	*	*	*				*	*		*			
Quarter 1, 2016			*							*	*		*				*		*	*			
Quarter 2, 2016			*			*				*			*				*	*		*			
Quarter 3, 2016			*							*		*	*				*	*		*			
Quarter 4, 2016			*							*	*		*				*			*			
Quarter 1, 2017			*							*			*				*	*		*			
Quarter 2, 2017	1	1	*							*			*	I			*	*		*			1
Quarter 3, 2017	1	1	*							*	*		*				*	*		*			1
Quarter 4, 2017	1	1	*							*		*	*	I			*	*		*			1
Quarter 1, 2018	1	1	*							*	*		*				*	*		*			1
Quarter 2, 2018	1	1	*	1		1	1			*	*	*	*				*	*		*			
Quarter 3, 2018	1	1	*	1		1	1			*	1	*	*				*	*		*			
Quarter 4, 2018	1	1	*							*	*	*	*				*	*		*			1
Quarter 1, 2019	1	1	*							*	*	*	*				*	*	-	*			t
Quarter 2, 2019	1	1	*							*	*	*	*				*	*	-	*			t
Quarter 3, 2019	1	1	*							*	*	*	*				*	*	-	*			+
Quarter 4, 2019	1	1	*							*		*	*				*	*	*	*		<u> </u>	
Quarter 1, 2020	1	1	*							*		*	*				*	*	-	*			+
Quarter 2, 2020	1	-	*					-	-	*		*	*				*	*	-	*	-		+
THORIUM-230													-										
Quarter 1, 2012	*								*					*									
Quarter 4, 2012	*	-	*						-											-		<u> </u>	+
Quarter 3, 2015	*	1						-	*	*		-	*		*			-	-	1	-		+
Quarter 1, 2017	<u> </u>		*							*			-		-		*		-				+
THORIUM-234										-													
	1					*	-	-	*	-	-			*				-	-		-		+
						*			*					T									
Quarter 2, 2003 Quarter 4, 2007						*			*					~								<u> </u>	-

Chart of MCL and Historical UTL	Exceedances for the C-746-S&T Landfills (Continued)
--	---

Groundwater Flow System	I	١	UCRS	5						1	URG	4]	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396		222	223	224	384	369	372		391	220	394	385	370	373	388	392	395	397
TOLUENE								-															
Quarter 2, 2014										*	*		*										
TOTAL ORGANIC CARBON																							
Quarter 4, 2002																					*		
Quarter 1, 2003				*						*	*							*	*		*		
Quarter 2, 2003										*	*		*								*		
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003							*		*	*													
Quarter 1, 2004										*													
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005										*													
Quarter 2, 2005										*											*	-	
Quarter 3, 2005										*		*									*		
Quarter 4, 2005										*		-		-							*	\vdash	\vdash
Quarter 1, 2005			-	-				-	-	*													⊢−−
Quarter 1, 2006 Quarter 2, 2006										*		*											
Quarter 2, 2006 Quarter 4, 2006	<u> </u>				<u> </u>	<u> </u>				-	<u> </u>	-	<u> </u>		<u> </u>		*		<u> </u>			\vdash	\vdash
Quarter 4, 2006 Quarter 1, 2007	*				<u> </u>	<u> </u>				*	<u> </u>		<u> </u>		<u> </u>		*		<u> </u>			\vdash	\vdash
Quarter 1, 2007 Quarter 3, 2007	*					*	*	*	*	*			*	*			*						
Quarter 3, 2007 Quarter 2, 2011	Ť					Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	*		Ŧ	Ŧ			Ŧ						
· · ·	*										Ť												
Quarter 3, 2012	Ť																		*				
Quarter 3, 2016																			*				
TOTAL ORGANIC HALIDES						_												*	*		*		
Quarter 4, 2002				*														*	*		*		
Quarter 1, 2003 Quarter 3, 2003				*														*			*		
Quarter 2, 2003				Ŷ																	*	<u> </u>	
Quarter 2, 2004 Quarter 3, 2004	*																				Ŧ	<u> </u>	
Quarter 3, 2004 Quarter 1, 2005	*																						
Quarter 1, 2005 Quarter 2, 2005	*																						
Quarter 3, 2005	*																						
Quarter 4, 2005	*																						
Quarter 1, 2005	*																						
Quarter 1, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2000	*																						
Quarter 2, 2007	*																						
Quarter 3, 2007	*																					-	
Quarter 4, 2007	*																				*		
Quarter 1, 2008	*																				-	-	
Quarter 4, 2008	*																					-	
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																				*		
Quarter 3, 2009	*											1											
Quarter 4, 2009	*											1											
Quarter 1, 2010	*	1					1													1			
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 1, 2011	*																						
Quarter 3, 2013																					*		

Chart of MCL and Historical	l UTL Exceedances	for the C-746-S&T Land	Ifills (Continued)
-----------------------------	-------------------	------------------------	--------------------

Groundwater Flow System			UCRS	5						1	URG/	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	39
TRICHLOROETHENE																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							t
Quarter 4, 2004																							
Quarter 1, 2005	_																						-
Quarter 2, 2005	-																						-
	_																	-					-
Quarter 3, 2005	_																						-
Quarter 4, 2005	_																						
Quarter 1, 2006	_																						
Quarter 2, 2006															L					L			L
Quarter 2, 2007																							L
Quarter 3, 2007																							
Quarter 4, 2007																							Ľ
Quarter 1, 2008																							
Quarter 2, 2008			[[Γ					Γ			Γ
Quarter 3, 2008	1																						
Quarter 4, 2008																							t
Quarter 1, 2009																							1
Quarter 2, 2009																							┢
Quarter 3, 2009	_																						┢
Quarter 4, 2009	-																						┢
Quarter 1, 2009	-										_												-
	-																						-
Quarter 2, 2010	_																					_	_
Quarter 3, 2010	_																						_
Quarter 4, 2010	_																						
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							t
Quarter 4, 2012																							t
Quarter 1, 2013																							t
Quarter 2, 2013																							┢
Quarter 3, 2013															<u> </u>					<u> </u>			⊢
Quarter 4, 2013															<u> </u>					<u> </u>			⊢
Quarter 4, 2013 Quarter 1, 2014	_																						┢
	_																						⊢
Quarter 2, 2014	_																						⊢
Quarter 3, 2014			L					L	L						ļ	-							L
Quarter 4, 2014	_														L					L			L
Quarter 1, 2015																							L
Quarter 2, 2015																							L
Quarter 3, 2015																							L
Quarter 4, 2015																							
Quarter 1, 2016			[[Γ					Γ			Γ
Quarter 2, 2016																							
Quarter 3, 2016																							┢
Quarter 4, 2016	-																						⊢
Quarter 1, 2017																				<u> </u>			⊢
Quarter 1, 2017 Quarter 2, 2017	-														<u> </u>					<u> </u>			⊢
Quarter 3, 2017 Quarter 3, 2017	_														<u> </u>					<u> </u>			┢
												_								<u> </u>			⊢
Quarter 4, 2017															1					1			1

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

			UCRS	3						1	URGA	4]	LRGA	1		
	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
TRUCK OR OF THEME	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TRICHLOROETHENE																							
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																							
Quarter 4, 2018																							
Quarter 1, 2019																							
Quarter 2, 2019																							
Quarter 3, 2019																							
Quarter 4, 2019																							
Quarter 1, 2020																							
Quarter 2, 2020																							
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														

APPENDIX H

METHANE MONITORING DATA

CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

Date: 06/0	3/20	Time:	0615	Monitor:	Robe	ert Kirby
Weather Condition Sunny, Cool, Slight W			.			
Monitoring Equipm RAE Systems, Multi-F	nent::					
	Monit	toring Lo	cation			Reading (% LEL)
Ogden Landing Road Entrance	Checked at grou	und leve	el			0
North Landfill Gate	Checked at grou	und leve	el			0
West Side of Landfill: North 37° 07.652' West 88° 48.029'	Checked at groun	d level				0
East Side of Landfill: North 37° 07.628' West 88° 47.798'	Checked at groun	d level				0
Cell 1 Gas Vent (17)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 7 0 0		13 14 15 0 0 0 0	16 17) 0	0
Cell 2 Gas Vent (3)	$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$					0
Cell 3 Gas Vent (7)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 7 0 0				0
Landfill Office	Checked at floor	r level				0
Suspect or Problem Areas	No reasons note	ed				NA
	TS CHECKED 1" FROM	2				
Performed by:	alt/ /K	obat ;	Kirby		07	1/23/2020
	Signat	ure				Date

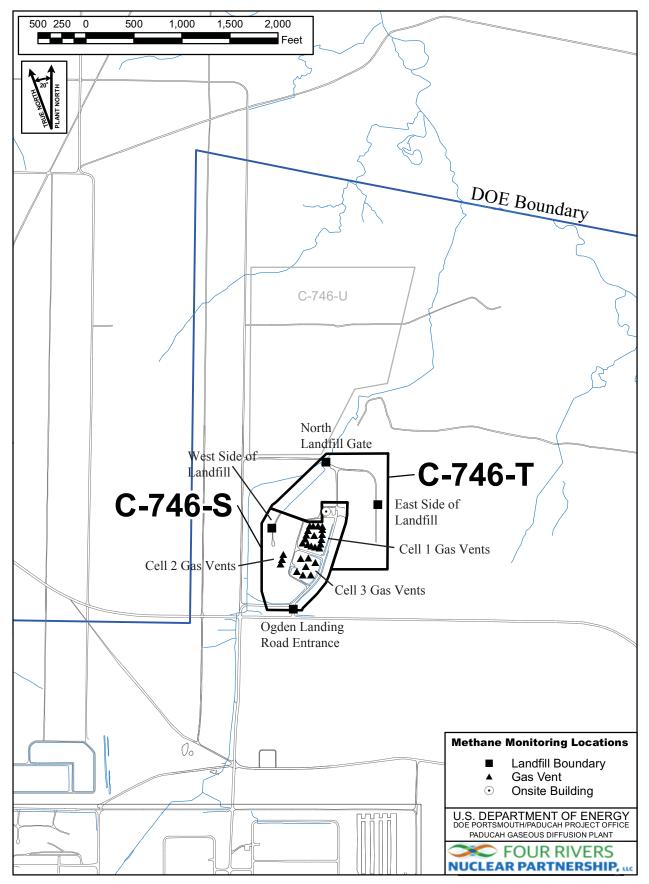


Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I

SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management RESIDENTIAL/CONTAINED-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number: SW07300014, SW07300015, SW07300045 Frankfort, KY 40601 (502)564-6716 FINDS/UNIT: KY8-890-008-982 / 1

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPSI	REAM", or "Do	OWNSTREAM")	L135 UPSTRE	AM	L154 DOWNST	REAM	L136 AT SI	TE		/
Sample Sequer	ice	#				1		1		1		$ \rangle$	
If sample is a	a Bl	lank, specify Type: (F)ield, (T)r:	ip, (M)ethod	, or (E)quipment	NA		NA		NA			
Sample Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		4/29/2020 09:	11	4/29/2020 08	:42	4/29/2020 08	8:58		
Duplicate ("Y	(" c	or "N") ¹				Ν		N		N			/
Split ('Y' or	: "I	۹") ²				Ν		N		N			/
Facility Samp	le	ID Number (if applicable)				L135SS3-20	C	L154US3-2	0	L136SS3-2	20		/
Laboratory Sa	mpl	le ID Number (if applicable)				510452001		510448002	2	51045200	2		
Date of Analy	sis	s (Month/Day/Year)				5/12/2020		5/8/2020		5/8/2020			
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷
A200-00-0	0	Flow	т	MGD	Field		*		*		*		
16887-00-6	2	Chloride(s)	т	MG/L	300.0	1.91		1.4		0.464			
14808-79-8	0	Sulfate	т	MG/L	300.0	3.12		1.32		5.49			X
7439-89-6	0	Iron	т	MG/L	200.8	1.03		0.815		0.442			$\left \right\rangle$
7440-23-5	0	Sodium	т	MG/L	200.8	2.7		1.86		0.925			$\left \right\rangle$
S0268	0	Organic Carbon ⁶	т	MG/L	9060	10.9		12.6		10.7			
S0097	0	BOD ⁶	т	MG/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	34.5	В	37	В	49.5	В		

 1 Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by <u>separate</u> laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page. STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID

LAB ID: <u>None</u> For Official Use Only

Page 2 of 2

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant
Permit Number: SW07300015, SW07300015, SW07300045

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	(KPDES Discharge Number, or	- "T	PSTREAM" or	"DOWNSTREAM")	L135 UPSTRI	EAM	L154 DOWNSTE	REAM	L136 AT S	ITE	
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵ G S ⁷
S0145	1	Specific Conductance	т	µHMS/CM	Field	115		80		109		
s0270	0	Total Suspended Solids	т	MG/L	160.2	74	*	212	*	12.2	*	
S0266	0	Total Dissolved Solids	т	MG/L	160.1	14.3	J	40		45.7		
S0269	0	Total Solids	т	MG/L	SM-2540 B 17	171		244		77		
S0296	0	рН	т	Units	Field	7.24		7.54		7.34		
7440-61-1		Uranium	т	MG/L	200.8	0.00594		0.00436		0.000384		
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	8.3	*	8.53	*	4.22	*	
12587-47-2		Gross Beta (β)	т	pCi/L	9310	15.9	*	8.21	*	-1.11	*	X
												$ / \rangle$
												/
												/ \\
												Y I I

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u>

LAB ID: None

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID: <u>None</u> For Official Use Only

SURFACE WATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
L135	L135SS3-20	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.48. Rad error is 6.33.
		Beta activity		TPU is 7.18. Rad error is 6.65.
L154	L154US3-20	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.15. Rad error is 7.01.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.35. Rad error is 6.19.
L136	L136SS3-20	Flow Rate		Insufficient flow to collect a sample.
		Biochemical Oxygen Demand (BOD		Insufficient flow to collect a sample.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.07. Rad error is 6.03.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.75. Rad error is 8.75.

APPENDIX J

ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2LA has accredited

GEL LABORATORIES, LLC Charleston, SC

for technical competence in the field of

Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DoD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 15th day of July 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2021

For the tests to which this accreditation applies, please refer to the laboratory's Environmental Scope of Accreditation.

APPENDIX K

LABORATORY ANALYTICAL METHODS

LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and
		1,2,3-Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of The Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid

APPENDIX L

MICROPURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-S&T Landfills

				,	,
		/	String of Car	n l	doryen C
		source conduct	(unitio)		od oxygen of
	/	NHC .	String Land	Unit	N OF YE
	and and a second	^{(du}	sti sti	jan and a star	
	101	601	/ ð ⁻	- Office	1711 ·
MW220 Date Collected: 4/21/2020					
0708	59.7	457	6.36	3.81	0.3
0711	59.7	431	6.14	3.46	0.0
0714	59.9	435	6.16	3.44	0.0
MW222					
Date Collected: 4/16/2020					
0820	61.2	389	6.32	3.85	0.0
0823	60.2	384	6.16	3.05	0.0
0826 MW224	60.0	388	6.15	2.97	0.0
Date Collected: 4/16/2020					
0916	61.1	442	6.25	5.60	0.0
0919	60.7	430	6.21	3.23	0.0
0922	60.6	427	6.21	3.19	0.0
MW370					
Date Collected: 4/6/2020					
1149	64.1	475	6.03	3.73	6.0
1152	64.7	475	6.09	2.74	0.0
1155	65.0	474	6.08	2.72	0.0
MW373	-				
Date Collected: 4/6/2020	60.4	015	6.05	2.07	2.0
0839 0842	60.4 61.2	815 822	6.37 6.15	2.07	3.9 3.3
0845	61.4	822	6.15	1.12	3.0
MW385	01.4	027	0.15	1.10	5.0
Date Collected: 4/20/2020					
0825	61.3	455	6.21	3.87	7.2
0828	59.7	457	6.08	3.01	4.0
0831	59.7	453	6.07	2.95	3.5
MW387					
Date Collected: 4/20/2020					
0627	58.5	573	5.51	3.93	28.2
0630 0633	59.4 59.5	565	6.01	1.83	30.5 30.0
MW390	39.5	566	6.03	1.80	50.0
Date Collected: 4/21/2020					
0625	58.7	675	5.81	5.78	3.6
0628	58.7	660	6.18	3.66	0.5
0631	58.6	667	6.21	3.52	0.3
MW392					
Date Collected: 4/21/2020					
0840	59.8	430	6.25	3.99	3.3
0843	60.0	434	6.18	1.56	1.8
0846	60.0	433	6.15	1.53	1.0
MW394 Date Collected: 4/22/2020					
0633	57.9	381	5.46	5.22	4.7
0636	58.2	366	5.84	4.58	3.0
0639	58.2	367	5.82	4.53	2.2
MW396					
Date Collected: 4/22/2020					
0750	60.7	678	6.49	4.07	0.0
0753	59.7	711	6.65	2.64	0.0
0756	59.7	708	6.67	2.60	0.0
			1		