

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

FEB 2 7 2020

Ms. Robin Green
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Ms. Green and Mr. Hendricks:

C-746-S&T LANDFILLS FOURTH QUARTER CALENDAR YEAR 2019 (OCTOBER–DECEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0088/V4, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

Enclosed is the subject report for the fourth quarter calendar year (CY) 2019. This report is required in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). The report includes groundwater analytical data, surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the fourth quarter CY 2019 monitoring well data collected from the C-746-S&T Landfills were performed in accordance with Monitoring Condition GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance (1989). This report also serves as the statistical increase notification for the fourth quarter CY 2019, in accordance with Monitoring Condition GSTR0003, Standard Requirement 5, of the Permit.

PPPO-02-10003254-20B

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely, Junifer Woodard

Jennifer Woodard Paducah Site Lead

Portsmouth/Paducah Project Office

Enclosure:

C-746-S&T Landfills 4th Qtr. CY 2019 (October–December) Compliance Monitoring Report

cc w/enclosure:

abigail.parish@pppo.gov, PPPO april.ladd@pppo.gov, PPPO april.webb@ky.gov, KDEP arcorrespondence@pad.pppo.gov bill.clark@pad.pppo.gov, FRNP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov FRNP christopher.jung@ky.gov, KDEP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO david.ruckstuhl@pad.pppo.gov, FRNP dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jennifer.watson@pad.pppo.gov, FRNP jennifer.woodard@pppo.gov, PPPO jerry.arnzen@pad.pppo.gov, FRNP joel.bradburne@pppo.gov, PPPO kelly.layne@pad.pppo.gov, FRNP ken.davis@pad.pppo.gov, FRNP lauren.linehan@ky.gov, KDEP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov robert.edwards@pppo.gov, PPPO stephaniec.brock@ky.gov, KYRHB tabitha.owens@ky.gov, KDEP todd.hendricks@ky.gov, KDEP tracey.duncan@pppo.gov, PPPO

C-746-S&T Landfills Fourth Quarter Calendar Year 2019 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

FRNP Classification Support

2-20-202

Date

C-746-S&T Landfills
Fourth Quarter Calendar Year 2019
(October—December)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—February 2020

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895

CONTENTS

FIC	GURE	S		v
TA	BLES	S		v
AC	CRON	YMS		vii
1	INITI	ODUC	TION	1
1.	1.1		GROUND	
	1.1		ΓORING PERIOD ACTIVITIES	
	1.2	1.2.1	Groundwater Monitoring	
		1.2.2	Methane Monitoring	
		1.2.3	Surface Water Monitoring	3
	1.3	KEY R	ESULTS	
2.	DAT	'A EVA	LUATION/STATISTICAL SYNOPSIS	11
	2.1	STATI	STICAL ANALYSIS OF GROUNDWATER DATA	12
		2.1.1	Upper Continental Recharge System	12
		2.1.2	Upper Regional Gravel Aquifer	12
		2.1.3	Lower Regional Gravel Aquifer	
	2.2	DATA	VERIFICATION AND VALIDATION	13
3.	PRO	FESSIO	NAL GEOLOGIST AUTHORIZATION	15
4.	REF	ERENC:	ES	17
AP	PENI	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE	
			MONITORING SAMPLE DATA REPORTING FORM	A-1
AP	PENI	OIX B:	FACILITY INFORMATION SHEET	B-1
AP	PENI	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
AP	PENI	DIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
AP	PENI	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
AP	PENI	OIX F:	NOTIFICATIONS	F-1
AP	PENI	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
AP	PENI	OIX H:	METHANE MONITORING DATA	H-1
AP	PENI	OIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
AP	PENI	OIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1
AP	PENI	OIX K:	LABORATORY ANALYTICAL METHODS	K-1
ΑP	PENI	DIX L:	MICRO-PURGING STABILITY PARAMETERS	L-1

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	2
	C-746-S&T Landfills Surface Water Monitoring Locations	
	TABLES	
1.	Summary of MCL Exceedances	6
2.	Exceedances of Statistically Derived Historical Background Concentrations	6
	Exceedances of Current Background UTL in Downgradient Wells	
	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	9
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations
COD chemical oxygen demand

CY calendar year

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit

MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

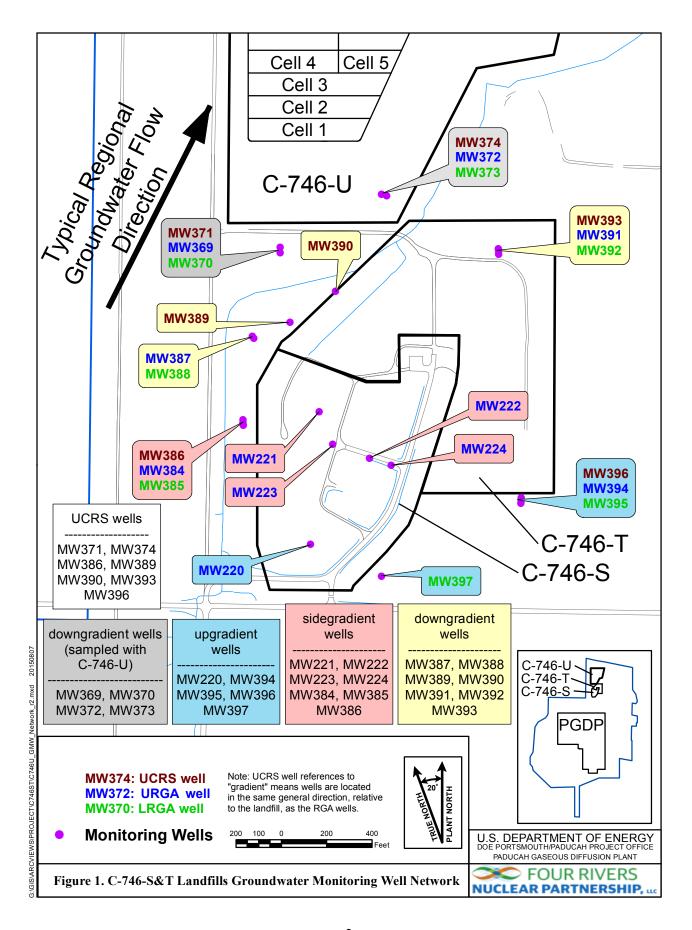
UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills Fourth Quarter Calendar Year 2019 (October-December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micropurging stability parameter results are provided in Appendix L.

1.1 BACKGROUND


The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a final cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a final cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were

sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a water level measurement or sample; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan) (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the fourth quarter 2019 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on October 15, 2019, in MWs of the C-746-S&T Landfills (see Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During October, RGA groundwater flow in the area of the landfill was oriented north-northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in October was 4.92×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 4.39×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.747 to 1.27 ft/day (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 KAR 48:090 § 5 and the Solid Waste Landfill Permit. Landfill operations staff monitored for the occurrence of methane in one on-site building location, four locations along the landfill boundary, and 27 passive-gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on December 3, 2019. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at the three locations (see Figure 2) monitored for the C-746-S&T Landfills: (1) upstream location, L135; (2) downstream location, L154; and (3) L136, a location capturing

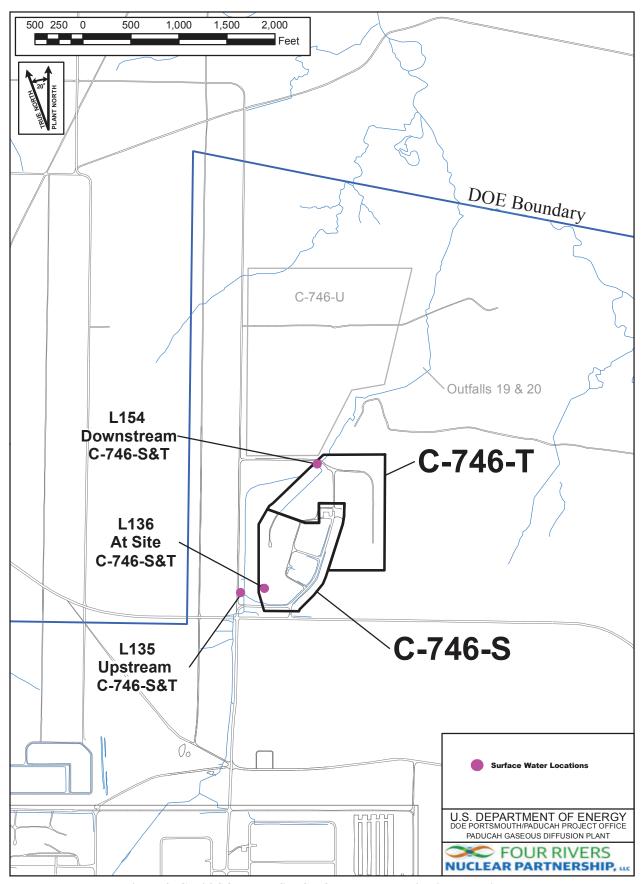


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

runoff from the landfill surface. Surface water was monitored, as specified in 401 *KAR* 48:300 § 2, and the approved *Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (PRS 2008), which is Technical Application Attachment 24 of the Solid Waste Landfill Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the fourth quarter 2019, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), the MCL exceedances for trichloroethene in MW391 and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedances for beta activity in MW370, MW372, MW387, and MW388 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances. To evaluate these preliminary Type 2 exceedances further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All of these wells, except MW372, did not have increasing Mann-Kendall trend for beta activity and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 5, and 401 KAR 48:300 § 7.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as upgradient, to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater

-

¹ The UTL comparison for pH uses a two-sided test, both UTL and LTL

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
MW390: Beta Activity	MW372: Beta activity	MW370: Beta activity
	MW384: Beta activity	MW385: Beta activity
	MW387: Beta activity	MW388: Beta activity
	MW391: Trichloroethene	MW392: Trichloroethene

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA		
MW386: Chemical oxygen demand (COD), oxidation-reduction potential	MW220: Oxidation-reduction potential	MW370: Beta activity, oxidation-reduction potential, sulfate, technetium-99		
MW390: Beta activity, oxidation-reduction potential, sulfate, technetium-99	MW223: COD	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, technetium-99		
MW393: COD, oxidation-reduction potential	MW224: Oxidation-reduction potential	MW385: Beta activity, oxidation-reduction potential, sulfate, technetium-99		
MW396: Oxidation-reduction potential	MW369: COD	MW388: Beta activity, oxidation-reduction potential, sulfate, technetium-99		
	MW372: Beta activity, calcium, COD, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW392: Oxidation-reduction potential, sulfate		
	MW384: Beta activity, oxidation- reduction potential, sulfate, technetium-99	MW395: Oxidation-reduction potential		
	MW387: Beta activity, calcium, magnesium, oxidation-reduction potential, sulfate, technetium-99	MW397: Oxidation-reduction potential		
	MW391: sulfate			
	MW394: Acetone, COD, oxidation-reduction potential			

^{*}Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.
Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393 Upgradient wells: MW220, MW394, MW395, MW396, MW397

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW369: COD	MW370: Beta activity, sulfate, technetium-99
MW372: Beta activity, calcium, COD, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate, technetium-99
MW387: Beta activity, calcium, magnesium, sulfate, technetium-99	MW388: Beta activity, sulfate, technetium-99
	MW392: Sulfate

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p- Value ²	S^3	Decision ⁴
	MW369	COD	8	0.05	0.138	10	No trend
		Beta activity	8	0.05	0.274	-6	No trend
	MW370	Sulfate	8	0.05	0.054	-14	No trend
		Technetium-99	8	0.05	0.089	13	No trend
		Beta activity	8	0.05	0.03	16	Increasing Trend
		Calcium	8	0.05	0.119	9	No trend
		COD	8	0.05	0.016	18	Increasing Trend
		Conductivity	8	0.05	0.054	14	No trend
	MW372	Dissolved Solids	8	0.05	0.138	10	No trend
C-746-		Magnesium	8	0.05	0.119	8	No trend
S&T Landfill		Sodium	8	0.05	0.016	18	Increasing Trend
		Sulfate	8	0.05	0.452	-2	No trend
		Technetium-99	8	0.05	0.016	18	Increasing Trend
	MW373	Calcium	8	0.05	0.016	18	Increasing Trend
		Conductivity	8	0.05	0.007	20	Increasing Trend
		Dissolved Solids	8	0.05	0.007	21	Increasing Trend
		Magnesium	8	0.05	0.054	14	No trend
		Sulfate	8	0.05	0.002	22	Increasing Trend
		Technetium-99	8	0.05	0.119	8	No trend

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters (Continued)

Location	Well ID	Parameter	Sample Size	Alpha ¹	p- Value ²	S^3	Decision ⁴
		Beta activity	8	0.05	0.548	0	No trend
		Calcium	8	0.05	0.119	9	No trend
	MW387	Magnesium	8	0.05	0.119	9	No trend
0.746		Sulfate	8	0.05	0.119	8	No trend
C-746- S&T		Technetium-99	8	0.05	0.054	14	No trend
Landfill	MW388	Beta activity	8	0.05	0.054	-14	No trend
		Sulfate	8	0.05	0.247	-7	No trend
		Technetium-99	8	0.05	0.199	-8	No trend
	MW392	Sulfate	8	0.05	0.007	20	Increasing Trend

Footnotes:

Note: Statistics generated using ProUCL.

Monitoring Plan (LATA Kentucky 2014), constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-S&T Landfills source; therefore, they are a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan (LATA Kentucky 2014). To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. Nineteen of the 28 preliminary Type 2 exceedances in downgradient wells did not have an increasing trend and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The Mann-Kendall statistical test indicates that there are increasing trends of groundwater constituents in MW372, MW373, and MW392 over the past eight quarters. Constituents in MW372 that showed increasing trends were beta activity, COD, sodium, and technetium-99. Constituents that showed increasing trends in MW373 were calcium, conductivity, dissolved solids, and sulfate. Sulfate concentrations showed an increasing trend in MW392.

Increases in the major groundwater ions calcium (MW373), sodium (MW372), and sulfate (MW373); and conductivity and dissolved solids (MW373) document increasing mineralization of the area water. Calcium, sodium, and sulfate are naturally occurring ions in groundwater. Because levels of calcium, sulfate, and conductivity are lower in MW372 (URGA) and levels of sodium and dissolved solids are essentially equal in both wells (MW372 and MW373), these trends do not appear to be associated with the C-746-S&T Landfills. (Influence of the landfill should impact the URGA well greater. Moreover, the increasing COD is indicative of improving groundwater quality.) The increasing sulfate trend in MW392 (LRGA), located in the vicinity of MW372 and MW373, likely is related to the same increasing mineralization evidenced in MW372 and MW373 and should be considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills. The source of the sulfate trend in MW392 is believed to be unrelated to the

¹ An alpha of 0.05 represents a 95% confidence interval.

²The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 $^{^4}$ The Mann-Kendall decision operates on two hypotheses, the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

C-746-S&T Landfills because the shallower collocated URGA well, MW391, does not indicate an increasing trend for sulfate.

The beta activity identified in groundwater at the Paducah Site is primarily a measure of technetium-99 in the groundwater. The increasing beta activity and technetium-99 in MW372 may be related to upgradient sources. Further analysis in upcoming reports will be required to determine if these increasing trends are indicative of a release from the C-746-S&T Landfills. In accordance with the Groundwater Monitoring Plan, these increasing trends are considered to be Type 2 exceedances—source unknown.

In accordance with Permit Condition GSTR0003, Special Condition 2, of the Solid Waste Landfill Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified UCRS well MW390 with beta activity, sulfate, and technetium-99 values that exceed both the historical and current backgrounds (Table 5). Because UCRS wells are not hydrogeologically downgradient of the C-746-S&T Landfills, these exceedances are not attributable to C-746-S&T Landfills sources and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS					
MW390: Beta activity, sulfate, technetium-99					
47 4 1 1 1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

*In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances, except for those identified in MW372 reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills. The source of increasing trends for beta activity and technetium-99 in MW372 is currently unknown and requires further evaluation.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the fourth quarter 2019 groundwater data collected from the C-746-S&T Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 KAR 47:030 § 6, exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

To calculate the UTL, the data are divided into censored (non-detects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both the UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs historically included in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389**	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396***	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	, 10
	MW387	
	MW391	
	MW394 (upgradient)	

^{*}A map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the UCRS. During the fourth quarter, beta activity, COD, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, sulfate, and technetium-99 exceeded the current background UTL in the downgradient wells and are included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 30 parameters, including those with MCLs, required statistical analysis in the URGA. During the fourth quarter, acetone, beta activity, calcium, COD, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, COD, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

^{**}Well had insufficient water to permit a water sample for laboratory analysis.

^{***}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the LRGA. During the fourth quarter, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills

Fourth Quarter Calendar Year 2019 (October—December)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FRNP-RPT-0088/V4)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

> POTOTOSSIONAL POTOTOSSIONAL PROPERTY OF THE PROPERTY OF THE POTOTOSSIONAL PROPERTY OF THE POTOTO PG113927

February 24, 2020 Date

PG113927

4. REFERENCES

- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. D	U.S. DOE–Paducah Gaseous Diffusion Plant				Activity:	C-746-S&T Landfills	
	(As	officially	shown or	n DWM	Permit Face)			
Permit No:	SW073	SW07300014, SW07300015, SW07300045		Finds/Unit No:		Quarter & Yea	4th Qtr. CY 2019	
Please check the	following	as appli	cable:					
Characte	rization	X	Quarte	erly	Semiannual	Annua	d Assessment	
Please check app	plicable sul	bmittal(s	s):	X	Groundwater	X	Surface Water	
					Leachate	X	Methane Monitoring	
jurisdiction of the lab report is Mages. I certify under per accordance with a Based on my inquite the best of my known in th	Division of Value determined to the determined t	Waste Manation us red notification that this gned to a son or peoplief, tru	anageme sing stat fication. s docum assure the arsons di ae, accur	ent. You tistical Instruc- nent and at quali- rectly re- rate, and	a must report any indicanalyses, direct compar- tions for completing the	prepared under my gather and evaluate the information, the hat there are signific	e water monitoring under the stion within forty-eight (48 ilar techniques. Submitting Do not submit the instruction direction or supervision in the information submitted information submitted is, to cant penalties for submitting	
Myrna E. Redfio Four Rivers Nuc			_			Date		
Jennifer Wooda U.S. Departmen	-		Lead			Date		

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date: Facility Name:	Groundwater: October 20 Surface water: October 20 Methane: December 2019 U.S. DOE—Paducah Gase (As office	19		McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045
Site Address:	5600 Hobbs Road	Ke	vil, Kentucky			42053
-	Street		City/State			Zip
Phone No:	(270) 441-6800	Latitude:	N 37° 07' 37.	.70"	Longitude:	W 88° 47' 55.41"
		OWNER INFO	ORMATION			
Facility Owner:	U.S. DOE, Robert E. Edwa	ards III, Manager			Phone No:	(859) 227-5020
Contact Person:	Bruce Ford	, 5			-	(270) 441-5357
Contact Person Ti	tle: Director, Environme	— ental Services, Four R	ivers Nuclear 1	Partnership, L	LC	
Mailing Address:	5511 Hobbs Road	K	evil, Kentucky			42053
	Street		City/State			Zip
	(IF O	SAMPLING P THER THAN LAND!		ORATORY)		
Company:	GEO Consultants, LLC					
Contact Person:	Jason Boulton				Phone No:	(270) 816-3415
Mailing Address:	199 Kentucky Avenue	Ke	evil, Kentucky			42053
	Street		City/State			Zip
		LABORATORY	RECORD #	1		
Laboratory:	GEL Laboratories, LLC		La	ab ID No: <u>K</u>	Y90129	
Contact Person:	Valerie Davis				Phone No:	(843) 769-7391
Mailing Address:	2040 Savage Road	Charles	ton, South Car	rolina		29407
	Street		City/State			Zip
		LABORATORY	RECORD #2	2		
Laboratory:	N/A			Lab ID No:	N/A	
Contact Person:	N/A				Phone No:	N/A
Mailing Address:	N/A				-	
	Street		City/State			Zip
		LABORATORY	RECORD #	3		
Laboratory:	N/A			Lab ID No:	N/A	
Contact Person:	N/A				Phone No:	N/A
Mailing Address:	N/A				i none ivo.	1 1/2 1
	Street		City/State			Zip

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-52	202	8000-52	242	8000-524	13
Facility's Loc	cal Well or Spring Number (e.g., N	1 ₩−1	L, MW-2, etc	:.)	220		221		222		223	
Sample Sequence	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/8/2019 09	9:34	10/8/2019	13:01	10/8/2019	14:06	10/8/2019 1	0:42
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	cility Sample ID Number (if applicable)					-20	MW221S0	31-20	MW222S0	G1-20	MW223SG	1-20
Laboratory Sam	aboratory Sample ID Number (if applicable)					3	492361	001	492361	005	4923610	07
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	e 01	ganics Anal	ysis	10/11/201	9	10/11/2	019	10/11/20	019	10/12/201	19
Gradient with	respect to Monitored Unit (UP, DC	NWC	, SIDE, UNKN	IOWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.225		0.44		0.417		0.399	
16887-00-6	Chloride(s)	т	mg/L	9056	21.3	*	34.4	*	30.7	*	29	*
16984-48-8	Fluoride	т	mg/L	9056	0.217		0.198		0.268		0.319	
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.18		0.977		0.92		1.07	
14808-79-8	Sulfate	Т	mg/L	9056	15.6	*	15	*	13.3	*	14.3	*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.2		30.17		30.12		30.2	
S0145	Specific Conductance	Т	μ MHO/cm	Field	346		390		367		378	

¹AKGWA # is 0000-0000 for any type of blank.

- STANDARD FLAGS:
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

^{* =} See Comments

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	2	8000-5243	
Facility's Lo	ocal Well or Spring Number (e.g., MW	I-1 , 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.42		326.22		326.53		326.44	
N238	Dissolved Oxygen	т	mg/L	Field	5.26		5.05		4.3		3.35	
s0266	Total Dissolved Solids	Т	mg/L	160.1	176	*	221	*	236	*	186	*
s0296	рн	Т	Units	Field	6.06		6.41		6.54		6.7	
NS215	Eh	Т	mV	Field	414		390		391		366	
s0907	Temperature	Т	°C	Field	16.83		17.83		18.22		17.78	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.2		0.212		0.282		0.237	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.00656	J	0.0143	J	0.00793	J	0.00538	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	20.9		20.5		18.2		21.5	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		0.011	
7440-48-4	Cobalt	Т	mg/L	6020	0.00033	J	<0.001		0.000532	J	0.00119	
7440-50-8	Copper	Т	mg/L	6020	0.00116	J	0.000906	J	0.000604	J	0.000861	J
7439-89-6	Iron	Т	mg/L	6020	0.0415	J	<0.1		0.0369	J	0.0442	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	8.71		9.1		8.28		8.85	
7439-96-5	Manganese	т	mg/L	6020	0.00343	J	<0.005		0.00461	J	0.0329	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8000-520	01	8000-52	02	8000-52	42	8000-52	43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	0.000472	BJ	0.00163	В	0.000341	BJ	0.0039	В
7440-02-0	Nickel	Т	mg/L	6020	0.0103		0.0121		0.0373		0.085	
7440-09-7	Potassium	Т	mg/L	6020	2.02		1.18		0.584		1.36	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	39.4		45.6		48		48	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		0.00612	BJ	0.00693	BJ
7440-66-6	Zinc	т	mg/L	6020	0.00469	J	0.00456	J	0.00365	J	0.0035	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003	*	<0.003	*	<0.003	*	<0.003	*
100-42-5	Styrene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520)2	8000-52	242	8000-52	243
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00157		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	12	8000-524	43
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	1, MW-2, et	cc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000193	*	<0.0000193	*	<0.0000194	*	<0.0000193	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
1336-36-3	PCB,Total	т	ug/L	8082	<0.106		<0.098		<0.0958		<0.105	
12674-11-2	PCB-1016	т	ug/L	8082	<0.106		<0.098		<0.0958		<0.105	
11104-28-2	PCB-1221	т	ug/L	8082	<0.106		<0.098		<0.0958		<0.105	
11141-16-5	PCB-1232	т	ug/L	8082	<0.106		<0.098		<0.0958		<0.105	
53469-21-9	PCB-1242	т	ug/L	8082	<0.106		<0.098		<0.0958	-	<0.105	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.106		<0.098		<0.0958		<0.105	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	13
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.106		<0.098		<0.0958		<0.105	
11096-82-5	PCB-1260	т	ug/L	8082	<0.106		<0.098		<0.0958		<0.105	
11100-14-4	PCB-1268	т	ug/L	8082	<0.106		<0.098		<0.0958		<0.105	
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.67	*	-2.49	*	-1.06	*	0.932	*
12587-47-2	Gross Beta	Т	pCi/L	9310	18.9	*	8.23	*	7.21	*	6.5	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.739	*	0.164	*	1.44	*	0.632	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.887	*	-1.55	*	-1.9	*	0.262	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	27	*	8.47	*	2.62	*	7.62	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	1.22	*	-0.155	*	0.186	*	0.936	*
10028-17-8	Tritium	T	pCi/L	906.0	16.6	*	-15.8	*	125	*	-14.4	*
s0130	Chemical Oxygen Demand	T	mg/L	410.4	<20		<20		<20		35.7	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
S0268	Total Organic Carbon	т	mg/L	9060	0.991	J	1.01	J	1.03	J	1.02	J
s0586	Total Organic Halides	т	mg/L	9020	0.00794	J	0.00378	J	0.00926	J	0.0035	J

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	1	8004-48	320	8004-48	318	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g., M	1W−1	L, MW-2, etc	:.)	224		369		370		372	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/9/2019 12	2:50	10/16/2019	07:46	10/16/2019	08:30	10/16/2019	12:16
Duplicate ("Y"	' or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	cility Sample ID Number (if applicable)					-20	MW369U	G1-20	MW370U0	G1-20	MW372UG	1-20
Laboratory Sam	aboratory Sample ID Number (if applicable)					1	493262	003	493262	001	4932620	07
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>) O1	rganics Anal	ysis.	10/15/2019	9	10/21/2	019	10/23/20	019	10/21/201	19
Gradient with	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	IOWN)	SIDE		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.413		0.346	*	0.436	*	0.572	*
16887-00-6	Chloride(s)	т	mg/L	9056	33.3		31.6	*	35.8	*	47.6	*
16984-48-8	Fluoride	т	mg/L	9056	0.353		0.236	*	0.202	*	0.182	*
s0595	Nitrate & Nitrite	т	mg/L	9056	0.794		0.676		1.05		1.38	
14808-79-8	Sulfate	т	mg/L	9056	12.6		5.09		19.1		89.6	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.11		30		30.02		30.05	
s0145	Specific Conductance	т	μ MH 0/cm	Field	428		367		434		697	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, I	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.72		326.29		326.34		326.29	
N238	Dissolved Oxygen	т	mg/L	Field	1.65		1.88		3.7		1.93	
s0266	Total Dissolved Solids	т	mg/L	160.1	217		227		236		466	
s0296	рн	т	Units	Field	6.3		6.19		6.06		6.37	
NS215	Eh	т	mV	Field	433		347		405		303	
s0907	Temperature	т	°C	Field	17.17		15.78		15.83		16.67	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0197	J	<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.212		0.374		0.251		0.0663	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0119	J	0.0105	J	0.0401		0.956	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	21.7		15.5		28.9		59.4	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00433		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000444	J	0.00121	J	0.000786	J	0.000537	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.124		<0.1		0.14	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	9.47		7.28		12.9		22	
7439-96-5	Manganese	т	mg/L	6020	0.00207	J	0.0143		0.00151	J	0.00125	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	08
Facility's L	ocal Well or Spring Number (e.g.	, MW-	-1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.000316	J	<0.001		0.000233	BJ	<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.0111		0.00244		<0.002		<0.002	
7440-09-7	Potassium	т	mg/L	6020	0.815		0.519		2.86		2.44	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		0.00268	J
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	56.5		57		46.1		66.4	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	0.00449	J	0.0045	BJ	0.0043	BJ	0.00415	BJ
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		0.0018	J	0.00516	В
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	20	8004-48	318	8004-48	308
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		0.00054	J	0.00064	J	0.00269	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	4	8004-4820)	8004-48	18	8004-48	08
Facility's Loc	cal Well or Spring Number (e.g., N	1 ₩−1	1, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00221	J	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000193	*	<0.0000193		<0.0000193		<0.0000196	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0987		<0.0999		<0.1		<0.1	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0987		<0.0999		<0.1		<0.1	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0987		<0.0999		<0.1		<0.1	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0987		<0.0999		<0.1		<0.1	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0987		<0.0999		<0.1		<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0987		<0.0999		<0.1		<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244		8004-4820)	8004-481	8	8004-480	8
Facility's Loc	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0987		<0.0999		<0.1		<0.1	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0987		<0.0999		<0.1		<0.1	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0987		<0.0999		<0.1		<0.1	
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.0944	*	8.05	*	-1.62	*	0.414	*
12587-47-2	Gross Beta	Т	pCi/L	9310	5.84	*	14.8	*	70.1	*	105	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.147	*	1.21	*	0.607	*	1.18	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.52	*	3.8	*	-2.03	*	1.21	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	10.4	*	30.1	*	125	*	194	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.352	*	0.766	*	1.02	*	-0.138	*
10028-17-8	Tritium	Т	pCi/L	906.0	21.2	*	-40.3	*	-62.2	*	-34.3	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		45.3	*	<20	*	85.3	*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5	*	<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.962	J	1.38	J	1.13	J	1.35	J
s0586	Total Organic Halides	т	mg/L	9020	0.0114		0.0336		<0.01		0.0052	J
		\vdash										

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-4	309	8004-48	310	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g., N	/W−1	, MW-2, etc	:.)	373		384		385		386	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/16/2019 1	0:11	10/9/2019	10:12	10/9/2019	10:56	10/8/2019 0	8:10
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG1	1-20	MW384S	G1-20	MW385S0	31-20	MW386SG	1-20
Laboratory San	poratory Sample ID Number (if applicable)					9	492535	003	492535	005	4923610	11
Date of Analy	te of Analysis (Month/Day/Year) For Volatile Organics Analys				10/22/201	9	10/15/2	019	10/15/20	019	10/12/201	19
Gradient with	adient with respect to Monitored Unit (UP, 1			IOWN)	DOWN		SIDE	Ξ	SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.558	*	0.327		0.31		0.16	J
16887-00-6	Chloride(s)	т	mg/L	9056	40.8	*	29.9		29.1		14.5	*
16984-48-8	Fluoride	т	mg/L	9056	0.191	*	0.205		0.219		0.656	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.06		0.771		0.549		<0.1	
14808-79-8	Sulfate	т	mg/L	9056	149		25		23.2		44.5	*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.06		30.11		30.11		30.18	
S0145	Specific Conductance	т	μ MH 0/cm	Field	806		444		488		579	_

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-1	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	326.32		326.19		326.2		343.72	
N238	Dissolved Oxygen	Т	mg/L	Field	1.98		4.38		2.59		0.42	
s0266	Total Dissolved Solids	Т	mg/L	160.1	513		227		230		351	*
s0296	рН	Т	Units	Field	6.16		6.37		6.55		6.51	
NS215	Eh	Т	mV	Field	347		449		401		370	
s0907	Temperature	Т	°C	Field	17		17.11		16.89		16	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		0.00121	J
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		0.00202	J	0.00214	J	0.00228	J
7440-39-3	Barium	Т	mg/L	6020	0.0371		0.23		0.275		0.178	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	1.44		0.0672		0.0608		<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	69.8		25.3		32.1		21.5	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	T	mg/L	6020	<0.001		<0.001		<0.001		0.00176	
7440-50-8	Copper	Т	mg/L	6020	0.000438	J	0.000678	J	0.000775	J	0.000786	J
7439-89-6	Iron	Т	mg/L	6020	0.054	J	0.0986	J	<0.1		<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	27.9		10.7		12.8		9.1	
7439-96-5	Manganese	Т	mg/L	6020	0.0157		0.00228	J	0.00323	J	0.773	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.	, MW-	-1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		<0.001		0.000332	J	0.000571	BJ
7440-02-0	Nickel	Т	mg/L	6020	0.000872	J	<0.002		0.00109	J	0.00213	
7440-09-7	Potassium	Т	mg/L	6020	2.92		1.59		1.89		0.266	J
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	62		49.7		46.4		95.3	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005	*	<0.005	*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000145	J	<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		0.00621	BJ
7440-66-6	Zinc	Т	mg/L	6020	0.00386	BJ	0.00334	J	0.00438	J	0.00446	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	0.00291	BJ	<0.005		0.00265	J	0.00479	J
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	*
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

TAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-480)9	8004-48	310	8004-48	304
Facility's Loc	al Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00335		0.00068	J	<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809)	8004-481	10	8004-48	04
Facility's Loc	al Well or Spring Number (e.g., M	IW −1	L, MW-2, et	cc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		0.00203	J	0.0021	J	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000194	*	<0.0000196	*	<0.0000196	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
1336-36-3	PCB,Total	Т	ug/L	8082	<0.097		<0.102		<0.0964		<0.105	
12674-11-2	PCB-1016	т	ug/L	8082	<0.097		<0.102		<0.0964		<0.105	
11104-28-2	PCB-1221	т	ug/L	8082	<0.097		<0.102		<0.0964		<0.105	
11141-16-5	PCB-1232	т	ug/L	8082	<0.097		<0.102		<0.0964		<0.105	
53469-21-9	PCB-1242	т	ug/L	8082	<0.097		<0.102		<0.0964		<0.105	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.097		<0.102		<0.0964		<0.105	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-4809		8004-481	0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.097		<0.102		<0.0964		<0.105	
11096-82-5	PCB-1260	т	ug/L	8082	<0.097		<0.102		<0.0964		<0.105	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.097		<0.102		<0.0964		<0.105	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.48	*	4.89	*	0.444	*	-1.91	*
12587-47-2	Gross Beta	Т	pCi/L	9310	17.3	*	79.9	*	63.5	*	-0.782	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	1.19	*	1.22	*	1.23	*	0.943	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.34	*	-3.2	*	1.01	*	-0.247	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	36.5	*	88.4	*	89.9	*	1.46	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.845	*	1.2	*	0.421	*	0.836	*
10028-17-8	Tritium	Т	pCi/L	906.0	-49.7	*	-28	*	66.8	*	44.8	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	10.3	*J	<20		<20		166	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5	*	<0.5	*	<0.5	*
s0268	Total Organic Carbon	Т	mg/L	9060	1.35	J	1.28	J	1.34	J	4.34	
s0586	Total Organic Halides	Т	mg/L	9020	0.00874	J	0.00916	J	0.0134		0.116	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	316	8004-48	12	8004-481	1
Facility's Loc	cal Well or Spring Number (e.g., 1	4W-1	L, MW-2, etc	:.)	387		388		389		390	
Sample Sequence	ce #				1		1		1		1	
If sample is a E	Blank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/9/2019 08	3:51	10/9/2019	09:31	NA		10/9/2019 07	7:47
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW387SG1	-20	MW388S0	G1-20	NA		MW390SG1	-20
Laboratory Sam	poratory Sample ID Number (if applicable)						492535	009	NA		49253501	1
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					9	10/15/20	019	NA		10/16/201	9
Gradient with	respect to Monitored Unit (UP, Do	, SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWN		DOWN		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.517		0.42			*	0.468	
16887-00-6	Chloride(s)	т	mg/L	9056	40.4		33.6			*	47.5	
16984-48-8	Fluoride	т	mg/L	9056	0.788		0.244			*	0.382	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.08		1			*	2.55	
14808-79-8	Sulfate	т	mg/L	9056	46.2		20			*	56.3	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.11		30.11			*	30.09	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	619		425			*	717	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved 6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.23		326.19			*	326.41	
N238	Dissolved Oxygen	т	mg/L	Field	2.89		4.02			*	4.15	
s0266	Total Dissolved Solids	т	mg/L	160.1	294		210			*	400	
s0296	рн	т	Units	Field	6.22		6.23			*	6.37	
NS215	Eh	Т	mV	Field	443		426			*	435	
s0907	Temperature	т	°C	Field	16.78		17.56			*	15.56	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05			*	0.049	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00493	J	<0.005			*	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.15		0.213			*	0.211	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0322		0.0255			*	0.0108	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	T	mg/L	6020	42.1		27.5			*	32.5	
7440-47-3	Chromium	т	mg/L	6020	0.00579	J	<0.01			*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000623	J	0.0007	J		*	0.001	J
7439-89-6	Iron	т	mg/L	6020	0.04	J	0.0605	J		*	0.0433	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	17.4		11.9			*	13.4	
7439-96-5	Manganese	т	mg/L	6020	0.00448	J	0.0021	J		*	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		_	*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-48	15	8004-48	16	8004-48	12	8004-48	11
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		<0.001			*	0.000595	J
7440-02-0	Nickel	Т	mg/L	6020	0.000627	J	<0.002			*	0.00172	J
7440-09-7	Potassium	Т	mg/L	6020	2.02		1.95			*	0.355	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	Т	mg/L	6020	58.1		46			*	102	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*		*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	0.00018	J
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02			*	<0.02	
7440-66-6	Zinc	Т	mg/L	6020	0.00368	J	0.00456	J		*	0.00516	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	Т	mg/L	8260	0.00458	J	0.00717			*	0.00513	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	T	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-48	16	8004-48	312	8004-48	11
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	387		388		389		390	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	T	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00127		0.00043	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-4816	3	8004-48	12	8004-4811	
Facility's Loc	al Well or Spring Number (e.g., M	IW −1	l, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00203	J	0.00206	J		*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.00002	*	<0.0000202	*		*	<0.0000198	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.103		<0.0989			*	<0.1	
12674-11-2	PCB-1016	т	ug/L	8082	<0.103		<0.0989			*	<0.1	
11104-28-2	PCB-1221	т	ug/L	8082	<0.103		<0.0989			*	<0.1	
11141-16-5	PCB-1232	т	ug/L	8082	<0.103		<0.0989			*	<0.1	
53469-21-9	PCB-1242	т	ug/L	8082	<0.103		<0.0989			*	<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.103		<0.0989			*	<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815		8004-4816	;	8004-481	2	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	cc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.103		<0.0989			*	<0.1	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.103		<0.0989			*	<0.1	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.103		<0.0989			*	<0.1	
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.932	*	-1.2	*		*	3.33	*
12587-47-2	Gross Beta	Т	pCi/L	9310	412	*	62.2	*		*	50.1	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	-0.138	*	0.678	*		*	0.267	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	3.56	*	-0.272	*		*	-2.97	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	630	*	48.9	*		*	65.7	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	1.13	*	0.523	*		*	0.413	*
10028-17-8	Tritium	Т	pCi/L	906.0	-5.97	*	-59.9	*		*	-3.25	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		9.85	J		*	12.4	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*		*	<0.5	*
S0268	Total Organic Carbon	Т	mg/L	9060	1.59	J	0.856	J		*	2.35	
s0586	Total Organic Halides	т	mg/L	9020	0.0134		0.00802	J		*	0.0238	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-48	306	8004-48	307	8004-4802	
Facility's Loc	cal Well or Spring Number (e.g., M	/W−1	., MW-2, etc	.)	391		392		393		394	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA	NA			NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/10/2019 0	9:53	10/10/2019	12:23	10/10/2019	13:05	10/10/2019	07:35
Duplicate ("Y'	' or "N") ²				N		N		N		N	
Split ("Y" or	Split ("Y" or "N") ³						N		N		N	
Facility Sampl	Facility Sample ID Number (if applicable)					-20	MW392S	G1-20	MW393S0	G1-20	MW394SG	1-20
Laboratory Sam	Laboratory Sample ID Number (if applicable)					1	492692	003	492692	005	4926920	07
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	10/16/2019		10/16/2019		10/16/2019		10/16/201	19
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	OWN)	DOWN	DOWN		DOWN		N	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.594		0.591		0.159	J	0.575	
16887-00-6	Chloride(s)	т	mg/L	9056	45.3	*	47.3	*	13.3	*	43.8	*
16984-48-8	Fluoride	т	mg/L	9056	0.204		0.233		0.229		0.197	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.13		0.665		<0.1		1.2	
14808-79-8	Sulfate	т	mg/L	9056	21.4	*	21.1	*	15.9	*	12	*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.03		30.02		30		30.01	
S0145	Specific Conductance	т	μ M H0/cm	Field	424		419		406		382	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807	,	8004-4802	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, I	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.38		326.46		341.31		326.89	
N238	Dissolved Oxygen	т	mg/L	Field	3.34		2.03		1.2		4.17	
s0266	Total Dissolved Solids	т	mg/L	160.1	249		247		259		251	
s0296	рн	т	Units	Field	6.23		6.45		6.44		6.1	
NS215	Eh	Т	mV	Field	359		328		272		438	
s0907	Temperature	т	°C	Field	17.17		18.22		18.06		15.89	
7429-90-5	Aluminum	т	mg/L	6020	0.0279	J	0.0197	J	0.0244	J	0.0243	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00407	J	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.188		0.218		0.131		0.233	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0721		0.0274		0.0191		0.0216	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	27.4		29.7		13.2		25.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00055	J	0.000496	J	0.000964	J	0.000626	J
7439-89-6	Iron	т	mg/L	6020	0.161		0.0916	J	1.65		0.11	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	12.1		11.7		3.68		10.7	
7439-96-5	Manganese	т	mg/L	6020	0.00331	J	0.0122	_	0.0505		0.00436	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBEI	R ¹ , Facility Well/Spring Number				8004-480	05	8004-48	06	8004-48	07	8004-4802	
Facility's 1	Local Well or Spring Number (e.g.	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000281	BJ	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	<0.002		0.00101	J	<0.002		0.0052	
7440-09-7	Potassium	Т	mg/L	6020	1.53		1.95		0.391		1.25	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	33.9		33.8		75.4		33	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		0.00537	BJ	<0.02	
7440-66-6	Zinc	Т	mg/L	6020	0.00463	BJ	0.00356	J	0.00495	J	0.00461	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		0.0106		0.00315	J	0.026	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	06	8004-4807		8004-48	302
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	cc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	0.00047	J	0.00088	J	<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00984		0.0129		<0.001		0.00322	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	3	8004-480)7	8004-480	02
Facility's Loc	al Well or Spring Number (e.g., M	1W −1	1, MW-2, et	:c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000199		<0.0000207		<0.0000207		<0.0000194	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0945		<0.095		<0.0978		<0.0964	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0945		<0.095		<0.0978		<0.0964	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0945		<0.095		<0.0978		<0.0964	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0945		<0.095		<0.0978		<0.0964	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0945		<0.095		<0.0978		<0.0964	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0945		<0.095		<0.0978		<0.0964	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4805		8004-4806	1	8004-480	7	8004-4802	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0945		<0.095		<0.0978		<0.0964	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0945		<0.095		<0.0978		<0.0964	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0945		<0.095		<0.0978		<0.0964	
12587-46-1	Gross Alpha	т	pCi/L	9310	2.02	*	-3.09	*	4.13	*	2.84	*
12587-47-2	Gross Beta	т	pCi/L	9310	5.26	*	-0.289	*	4.64	*	8.14	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	1.4	*	0.46	*	1.1	*	1.6	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-2.59	*	-1.82	*	-0.694	*	2.12	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-4.45	*	-4.15	*	-9.81	*	-2.22	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.53	*	0.511	*	0.45	*	0.848	*
10028-17-8	Tritium	Т	pCi/L	906.0	24.9	*	18.6	*	-100	*	30.5	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		10.1	J	58.8		40.8	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5	*	<0.5	*	<0.5	*
s0268	Total Organic Carbon	Т	mg/L	9060	0.802	J	0.907	J	2.52		0.74	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00864	J	0.0121		0.0136		0.00358	J
		+										

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u>

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,				8004-480	1	8004-48	303	8004-4817		0000-0000		
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	1, MW-2, etc	:.)	395		396		397		E. BLANI	K
Sample Sequence	e #				1		1		1		1	
If sample is a B	slank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	NA	NA		NA			Е	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		10/10/2019 0	8:23	10/10/2019	09:07	10/9/2019	13:41	10/8/2019 0	5:45
Duplicate ("Y"	Ouplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or	Split ("Y" or "N") ³						N		N		N	
Facility Sampl		MW395SG1	-20	MW396S0	G1-20	MW397S0	31-20	RI1SG1-2	20			
Laboratory Sam	Laboratory Sample ID Number (if applicable)						492692009 492692011			013	49236101	4
Date of Analys	is (Month/Day/Year) For Volatile) O1	rganics Anal	ysis	10/16/2019		10/16/2019		10/15/2019		10/12/201	9
Gradient with	respect to Monitored Unit (UP, DO	NWC	, SIDE, UNKN	DE, UNKNOWN)		UP		UP			NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.476		0.942		0.438			*
16887-00-6	Chloride(s)	т	mg/L	9056	39.5	*	73.4	*	36.6			*
16984-48-8	Fluoride	т	mg/L	9056	0.182		0.635		0.202			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.43		<0.1		1.33			*
14808-79-8	Sulfate	Т	mg/L	9056	12.1	*	33	*	11.4			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.03		30.04		30.08			*
s0145	Specific Conductance	Т	μ M H0/cm	Field	357		764		319			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-4803		8004-4817		0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., MW	I-1 , 1	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.22		366.98		326.85			*
N238	Dissolved Oxygen	Т	mg/L	Field	4.92		1.12		5.21			*
s0266	Total Dissolved Solids	Т	mg/L	160.1	146		399		173			*
s0296	рн	Т	Units	Field	6.03		6.52		6.27			*
NS215	Eh	Т	mV	Field	443		227		439			*
s0907	Temperature	т	°C	Field	16.22		17.17		17.39			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		0.0456	J	<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		0.00128	J
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		0.00362	J	<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.226		0.424		0.13		<0.004	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0216		0.0096	J	0.00766	J	<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	23.4		35.7		18.8		<0.2	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00253		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000687	J	0.00062	J	0.00092	J	<0.002	
7439-89-6	Iron	т	mg/L	6020	<0.1		3.1		0.0799	J	<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	9.88		15.9		8		<0.03	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.569		0.00244	J	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	395		396		397		E. BLAN	١K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		0.000476	BJ	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.000799	J	0.00113	J	<0.002		<0.002	
7440-09-7	Potassium	т	mg/L	6020	1.46		0.798		1.84		<0.3	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	28.7		105		33.5		<0.25	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005	*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		0.00401	BJ	<0.02		0.0131	BJ
7440-66-6	Zinc	Т	mg/L	6020	0.00485	J	0.00533	J	0.00503	J	<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		0.00651		<0.005		0.00516	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	*
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480)3	8004-48	317	0000-00	000
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-:	1, MW-2, et	cc.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00195		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-481	17	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., M	IW −1	1, MW-2, et	cc.)	395		396		397		E. BLAN	IK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		0.00191	J	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198		<0.0000198		<0.0000197	*	<0.0000198	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0984		<0.0979		<0.0983		<0.0958	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0984		<0.0979		<0.0983		<0.0958	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0984		<0.0979		<0.0983		<0.0958	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0984		<0.0979		<0.0983		<0.0958	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0984		<0.0979		<0.0983	-	<0.0958	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0984		<0.0979		<0.0983		<0.0958	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4801		8004-4803	}	8004-481	7	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	tc.)	395		396		397		E. BLAN	K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0984		<0.0979		<0.0983		<0.0958	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0984		<0.0979		<0.0983		<0.0958	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0984		<0.0979		<0.0983		<0.0958	
12587-46-1	Gross Alpha	Т	pCi/L	9310	5.08	*	-3.09	*	3.57	*	-1.94	*
12587-47-2	Gross Beta	Т	pCi/L	9310	3.67	*	1.04	*	12.7	*	4.81	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	1.34	*	0.0739	*	1.07	*	0.38	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.5	*	1.93	*	-1.12	*	-0.751	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	8.31	*	-9.62	*	15.3	*	-3.34	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.202	*	-0.435	*	0.14	*	0.0863	*
10028-17-8	Tritium	Т	pCi/L	906.0	71.8	*	-16.4	*	-83.7	*	203	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	10.1	J	17.8	J	<20			*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5	*	0.66	*	<0.5	*	<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	0.763	J	4.77		0.77	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.0138		0.0314		0.00352	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000)0
Facility's Loc	cal Well or Spring Number (e.g., b	/W-1	L, MW-2, etc	:.)	F. BLAN	K	T. BLAN	K 1	T. BLANK	(2	T. BLANK	(3
Sample Sequenc	ce #				1		1		1		1	
If sample is a E	Blank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	F		Т		Т		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/8/2019 0	9:41	10/8/2019 (05:35	10/9/2019 0	5:40	10/10/2019 ()6:25
Duplicate ("Y"	' or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	Le ID Number (if applicable)				FB1SG1-	20	TB1SG1	-20	TB2SG1-	20	TB3SG1-	20
Laboratory Sam	mple ID Number (if applicable)				4923610	13	4923610	15	4925350	15	49269201	13
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						10/12/20	19	10/16/20	19	10/16/201	19
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	0595- Nitrate & Nitrite T mg,			9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	Т	μ MH 0/cm	Field	_	*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-F	', etc.)	F. BLAN	<	T. BLANK	1	T. BLANK	2	T. BLANK 3	;
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
S0296	рН	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°c	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	Т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	Т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	Т	mg/L	6020	<0.004			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	Т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	Т	mg/L	6020	<0.002			*		*		*
7439-89-6	Iron	Т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	Т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	Т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	Т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002			*		*		*

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	0000-00	000	0000-00	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.	, MW-	·1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	K 1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	Т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	Т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	Т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	Т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	Т	mg/L	6020	0.0123	BJ		*		*		*
7440-66-6	Zinc	Т	mg/L	6020	<0.02			*		*		*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	0.00429	J	0.00897		0.00382	J	<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003	*	<0.003	*	<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000	0	0000-000	00	0000-00	000	0000-00	000
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	F. BLAN	<	T. BLAN	(1	T. BLAN	IK 2	T. BLAN	NK 3
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		0.00169		0.00117	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	IW −1	L, MW-2, et	cc.)	F. BLAN	(T. BLANK	1	T. BLAN	(2	T. BLANI	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000194	*	<0.0000195	*	<0.0000195	*	<0.0000196	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0944			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0944			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0944			*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0944			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0944			*		*		*
12672-29-6	PCB-1248	т	ug/L	8082	<0.0944			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-0000		0000-0000)	0000-0000)
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	F. BLANK		T. BLANK 1		T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0944			*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0944			*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0944			*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.52	*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	-4.65	*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.832	*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.932	*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	6.34	*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.426	*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0	198	*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5			*		*		*
S0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*
							_				_	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	4						/
Facility's Loc	al Well or Spring Number (e.g., M	1W – 1	L, MW-2, etc	:.)	386							
Sample Sequence	ee #				2						,	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA							
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		10/8/2019 08	3:10	`					
Duplicate ("Y"	or "N") ²				Υ							
Split ("Y" or	"N") ³				N							
Facility Sampl	e ID Number (if applicable)				MW386DSG	1-20						
Laboratory Sam	poratory Sample ID Number (if applicable)											
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analysis					9				$\overline{/}$		
Gradient with	respect to Monitored Unit (UP, DC	, NW	, SIDE, UNKN	IOWN)	SIDE				\searrow			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.121	J			/			
16887-00-6	Chloride(s)	т	mg/L	9056	13.3	*						
16984-48-8	Fluoride	Т	mg/L	9056	0.677			/				
s0595	Nitrate & Nitrite	Т	mg/L	9056	<0.1							
14808-79-8	Sulfate	Т	mg/L	9056	44.3	*						
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*						
S0145	Specific Conductance	т	μ MH0/cm	Field		*						

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

[&]quot;T" = Total; "D" = Dissolved

6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

					(00::0							
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	4	\setminus					
Facility's Loc	al Well or Spring Number (e.g., MW	r-1, 1	MW-2, BLANK-	F, etc.)	386							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*						
N238	Dissolved Oxygen	Т	mg/L	Field		*						
s0266	Total Dissolved Solids	т	mg/L	160.1	356	*						
s0296	рН	т	Units	Field		*						
NS215	Eh	Т	mV	Field		*						
s0907	Temperature	Т	°C	Field		*						
7429-90-5	Aluminum	Т	mg/L	6020	<0.05							
7440-36-0	Antimony	т	mg/L	6020	0.00119	J						
7440-38-2	Arsenic	т	mg/L	6020	0.00215	J			X			
7440-39-3	Barium	т	mg/L	6020	0.175							
7440-41-7	Beryllium	т	mg/L	6020	<0.0005							
7440-42-8	Boron	Т	mg/L	6020	<0.015							
7440-43-9	Cadmium	т	mg/L	6020	<0.001						\	
7440-70-2	Calcium	T	mg/L	6020	20.7							
7440-47-3	Chromium	Т	mg/L	6020	<0.01							
7440-48-4	Cobalt	т	mg/L	6020	0.00153							
7440-50-8	Copper	т	mg/L	6020	0.000724	J						
7439-89-6	Iron	т	mg/L	6020	0.0453	J						
7439-92-1	Lead	т	mg/L	6020	<0.002							
7439-95-4	Magnesium	т	mg/L	6020	8.92							
7439-96-5	Manganese	т	mg/L	6020	0.666							
7439-97-6	Mercury	т	mg/L	7470	<0.0002							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	04						
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	386							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.000554	BJ						
7440-02-0	Nickel	т	mg/L	6020	0.00195	J						
7440-09-7	Potassium	т	mg/L	6020	0.259	J						
7440-16-6	Rhodium	т	mg/L	6020	<0.005			,				
7782-49-2	Selenium	Т	mg/L	6020	<0.005					/		
7440-22-4	Silver	Т	mg/L	6020	<0.001							
7440-23-5	Sodium	т	mg/L	6020	93.6							
7440-25-7	Tantalum	т	mg/L	6020	<0.005							
7440-28-0	Thallium	T	mg/L	6020	<0.002				l X			
7440-61-1	Uranium	т	mg/L	6020	<0.0002							
7440-62-2	Vanadium	т	mg/L	6020	0.00492	BJ						
7440-66-6	Zinc	т	mg/L	6020	0.00359	J						
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005							
67-64-1	Acetone	т	mg/L	8260	0.00391	J		,	Y			
107-02-8	Acrolein	т	mg/L	8260	<0.005							
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005							
71-43-2	Benzene	т	mg/L	8260	<0.001							
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001							
1330-20-7	Xylenes	т	mg/L	8260	<0.003	*						
100-42-5	Styrene	Т	mg/L	8260	<0.001	*						\setminus
108-88-3	Toluene	Т	mg/L	8260	<0.001							
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4804	4						$\overline{}$
Facility's Loc	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	386							$\overline{\mathcal{L}}$
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001							
75-25-2	Tribromomethane	т	mg/L	8260	<0.001							
74-83-9	Methyl bromide	т	mg/L	8260	<0.001							
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005						/	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005					/	/	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005							
75-00-3	Chloroethane	Т	mg/L	8260	<0.001							
67-66-3	Chloroform	Т	mg/L	8260	<0.001							
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001				X			
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001				/\			
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001							
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001							
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001						\	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001							
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001							
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001							
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001							
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001							
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001							
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001							
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001							
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: <u>None</u>
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4804	4						
Facility's Loc	al Well or Spring Number (e.g., M	IW−1	., MW-2, et	.c.)	386							
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001	*						
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		\					
74-88-4	Iodomethane	т	mg/L	8260	<0.005							
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001							
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001							
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005							
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005							
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000194	*						
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001				X			
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001				/_\			
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001							
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001							
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001							
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001	*						
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001	*						
1336-36-3	PCB,Total	т	ug/L	8082	<0.107							
12674-11-2	PCB-1016	Т	ug/L	8082	<0.107							
11104-28-2	PCB-1221	Т	ug/L	8082	<0.107							
11141-16-5	PCB-1232	Т	ug/L	8082	<0.107							$\overline{\Lambda}$
53469-21-9	PCB-1242	Т	ug/L	8082	<0.107							
12672-29-6	PCB-1248	т	ug/L	8082	<0.107							

C-49

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

					(00110.							
AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4804							
Facility's Lo	cal Well or Spring Number (e.g.,	, MW-1	L, MW-2, et	cc.)	386							
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.107							
11096-82-5	PCB-1260	т	ug/L	8082	<0.107							
11100-14-4	PCB-1268	т	ug/L	8082	<0.107							
12587-46-1	Gross Alpha	Т	pCi/L	9310	5.52	*						
12587-47-2	Gross Beta	т	pCi/L	9310	-3.49	*						
10043-66-0	Iodine-131	Т	pCi/L			*						
13982-63-3	Radium-226	т	pCi/L	AN-1418	1.15	*				7		
10098-97-2	Strontium-90	т	pCi/L	905.0	2.32	*						
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-5.21	*						
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.111	*			/ \			
10028-17-8	Tritium	Т	pCi/L	906.0	-2.94	*						
s0130	Chemical Oxygen Demand	т	mg/L	410.4	79.3				/			
57-12-5	Cyanide	т	mg/L	9012	<0.2			/				
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*						
s0268	Total Organic Carbon	т	mg/L	9060	4.42		/					
s0586	Total Organic Halides	т	mg/L	9020	0.113							
									_			

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5201 MW22	20 MW220SG1-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
	1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria	
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 5.72. Rad error is 5.71.
		Gross beta		TPU is 9.81. Rad error is 9.31.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.777. Rad error is 0.776.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.77. Rad error is 2.76.
		Technetium-99		TPU is 13.1. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.23. Rad error is 1.21.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 136. Rad error is 136.
		Iodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5202 MW221	MW221SG1-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.45. Rad error is 2.44.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 6.98. Rad error is 6.85.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.632. Rad error is 0.631.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 3.73. Rad error is 3.73.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 13.3. Rad error is 13.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.601. Rad error is 0.6.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 136. Rad error is 136.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5242 MW22	22 MW222SG1-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.81. Rad error is 2.81.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.75. Rad error is 6.65.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.35. Rad error is 1.35.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.4. Rad error is 2.4.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.4. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.726. Rad error is 0.723.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 145. Rad error is 143.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

<u> </u>	acility Sample ID	Constituent	Flag	Description
000-5243 MW223 MW	/223SG1-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.07. Rad error is 6.07.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.65. Rad error is 6.57.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.89. Rad error is 0.888.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.27. Rad error is 4.27.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.1. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.26. Rad error is 1.24.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 134. Rad error is 134.
		lodide	W	Post-digestion spike recovery out of control limits.
000-5244 MW224 MW	/224SG1-20	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.92. Rad error is 5.92.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.99. Rad error is 6.92.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.832. Rad error is 0.832.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.14. Rad error is 3.13.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 13.9. Rad error is 13.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.561. Rad error is 0.56.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 121. Rad error is 121.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
	MW369UG1-20	Bromide	W	Post-digestion spike recovery out of control limits.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Fluoride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 8.11. Rad error is 7.97.
		Gross beta		TPU is 8.48. Rad error is 8.11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.39. Rad error is 1.38.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.19. Rad error is 4.14.
		Technetium-99		TPU is 14.4. Rad error is 14.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.903. Rad error is 0.893.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 109. Rad error is 109.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
004-4818 MW370 N	MW370UG1-20	Bromide	W	Post-digestion spike recovery out of control limits.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Fluoride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.83. Rad error is 4.83.
		Gross beta		TPU is 16.5. Rad error is 12.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.9. Rad error is 0.9.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.21. Rad error is 2.21.
		Technetium-99		TPU is 21. Rad error is 15.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.968. Rad error is 0.954.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 106. Rad error is 106.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
	1W372UG1-20	Bromide	W	Post-digestion spike recovery out of control limits.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Fluoride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.74. Rad error is 4.74.
		Gross beta		TPU is 22.1. Rad error is 13.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.39. Rad error is 1.38.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.46. Rad error is 2.46.
		Technetium-99		TPU is 27.7. Rad error is 17.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.793. Rad error is 0.793.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 110. Rad error is 110.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
004-4792 MW373 M	1W373UG1-20	Bromide	W	Post-digestion spike recovery out of control limits.
		Chloride	W	Post-digestion spike recovery out of control limits.
		Fluoride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.89. Rad error is 3.88.
		Gross beta		TPU is 8.55. Rad error is 8.07.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.48. Rad error is 1.47.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.57. Rad error is 3.55.
		Technetium-99		TPU is 13.6. Rad error is 13.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.14. Rad error is 1.13.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 103. Rad error is 103.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4809 MW384	1 MW384SG1-20	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.63. Rad error is 6.57.
		Gross beta		TPU is 18.1. Rad error is 12.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.17. Rad error is 1.14.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.18. Rad error is 2.17.
		Technetium-99		TPU is 18.7. Rad error is 15.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.24. Rad error is 1.23.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 123. Rad error is 123.
		lodide	W	Post-digestion spike recovery out of control limits.
3004-4810 MW385	5 MW385SG1-20	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.92. Rad error is 4.92.
		Gross beta		TPU is 15.6. Rad error is 11.5.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.23. Rad error is 1.19.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.72. Rad error is 2.71.
		Technetium-99		TPU is 19.1. Rad error is 16.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.11. Rad error is 1.11.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 128. Rad error is 127.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4804 MW386	MW386SG1-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 6.49. Rad error is 6.49.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 5.28. Rad error is 5.28.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.03. Rad error is 1.02.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.24. Rad error is 3.24.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12.4. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.08. Rad error is 1.07.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 140. Rad error is 140.
		lodide	W	Post-digestion spike recovery out of control limits.
004-4815 MW387	MW387SG1-20	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 4.98. Rad error is 4.97.
		Gross beta		TPU is 72.4. Rad error is 25.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.25. Rad error is 1.25.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.08. Rad error is 4.04.
		Technetium-99		TPU is 73.3. Rad error is 22.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.36. Rad error is 1.35.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 124. Rad error is 124.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4816 MW38	38 MW388SG1-20	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.28. Rad error is 4.28.
		Gross beta		TPU is 15.2. Rad error is 11.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.916. Rad error is 0.894.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.42. Rad error is 2.42.
		Technetium-99		TPU is 13.9. Rad error is 12.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.18. Rad error is 1.18.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 122. Rad error is 122.
		Iodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well was dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well was dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample wa collected.
		рН		During sampling, the well was dry; therefore, no sample wa collected.
		Eh		During sampling, the well was dry; therefore, no sample wa collected.
		Temperature		During sampling, the well was dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well was dry; therefore, no sample wa collected.
		Antimony		During sampling, the well was dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well was dry; therefore, no sample wa collected.
		Barium		During sampling, the well was dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well was dry; therefore, no sample wa collected.
		Boron		During sampling, the well was dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well was dry; therefore, no sample wa collected.
		Calcium		During sampling, the well was dry; therefore, no sample wa collected.
		Chromium		During sampling, the well was dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well was dry; therefore, no sample wa collected.
		Copper		During sampling, the well was dry; therefore, no sample wa collected.
		Iron		During sampling, the well was dry; therefore, no sample wa collected.
		Lead		During sampling, the well was dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well was dry; therefore, no sample wa collected.
		Manganese		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Mercury		During sampling, the well was dry; therefore, no sample wa collected.
		Molybdenum		During sampling, the well was dry; therefore, no sample wa collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample wa collected.
		Selenium		During sampling, the well was dry; therefore, no sample wa collected.
		Silver		During sampling, the well was dry; therefore, no sample wa collected.
		Sodium		During sampling, the well was dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well was dry; therefore, no sample wa collected.
		Thallium		During sampling, the well was dry; therefore, no sample wa collected.
		Uranium		During sampling, the well was dry; therefore, no sample was collected.
		Vanadium		During sampling, the well was dry; therefore, no sample w collected.
		Zinc		During sampling, the well was dry; therefore, no sample w collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample w collected.
		Acetone		During sampling, the well was dry; therefore, no sample w collected.
		Acrolein		During sampling, the well was dry; therefore, no sample w collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample w collected.
		Benzene		During sampling, the well was dry; therefore, no sample w collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		Xylenes		During sampling, the well was dry; therefore, no sample was collected.
		Styrene		During sampling, the well was dry; therefore, no sample was collected.
		Toluene		During sampling, the well was dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample we collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample w collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Carbon disulfide		During sampling, the well was dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample was collected.
		Chloroform		During sampling, the well was dry; therefore, no sample w collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample w collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample w collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample w collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample w collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample w collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample w collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample w collected.
		Iodomethane		During sampling, the well was dry; therefore, no sample w collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample w collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample w collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample w collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample w collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample w collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample w collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample w collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample v collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample v collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample v collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample v collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample v collected.
		Gross beta		During sampling, the well was dry; therefore, no sample v collected.
		lodine-131		During sampling, the well was dry; therefore, no sample v collected.
		Radium-226		During sampling, the well was dry; therefore, no sample v collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample v collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample v collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample v collected.
		Tritium		During sampling, the well was dry; therefore, no sample v collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample v collected.
		Cyanide		During sampling, the well was dry; therefore, no sample v collected.
		lodide		During sampling, the well was dry; therefore, no sample v collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample v collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample v collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

•	Facility Sample ID	Constituent	Flag	Description
3004-4811 MW390 MW	/390SG1-20	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.42. Rad error is 5.39.
		Gross beta		TPU is 12.5. Rad error is 9.51.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.05. Rad error is 1.05.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.41. Rad error is 3.41.
		Technetium-99		TPU is 16.8. Rad error is 15.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.837. Rad error is 0.832.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 124. Rad error is 124.
		lodide	W	Post-digestion spike recovery out of control limits.
3004-4805 MW391 MW	/391SG1-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.03. Rad error is 6.02.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.13. Rad error is 5.04.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.63. Rad error is 1.63.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.01. Rad error is 2.01.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 13.2. Rad error is 13.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.942. Rad error is 0.935.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 149. Rad error is 149.
3004-4806 MW392 MW	/392SG1-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.2. Rad error is 4.19.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.42. Rad error is 4.42.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.21. Rad error is 1.21.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.83. Rad error is 1.83.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 13.5. Rad error is 13.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.896. Rad error is 0.89.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 146. Rad error is 146.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4807 MW393 MW393SG1-20		Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.78. Rad error is 5.73.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.92. Rad error is 5.87.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.37. Rad error is 1.36.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.96. Rad error is 1.96.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.9. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.14. Rad error is 1.13.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 150. Rad error is 150.
		Iodide	W	Post-digestion spike recovery out of control limits.
04-4802 MW394	MW394SG1-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.44. Rad error is 4.41.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.01. Rad error is 5.86.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.57. Rad error is 1.56.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.52. Rad error is 2.5.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.6. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.1. Rad error is 1.09.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 149. Rad error is 149.
		Iodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

•	acility ample ID	Constituent	Flag	Description
8004-4801 MW395 MW395SG1-20		Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.74. Rad error is 5.68.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.07. Rad error is 6.04.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.37. Rad error is 1.36.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.41. Rad error is 2.41.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.7. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.795. Rad error is 0.794.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 152. Rad error is 152.
		Iodide	W	Post-digestion spike recovery out of control limits.
04-4803 MW396 MW	396SG1-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.14. Rad error is 4.14.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 4. Rad error is 4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.843. Rad error is 0.842.
	Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.97. Rad error is 2.96.	
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 13.5. Rad error is 13.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.83. Rad error is 0.829.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 144. Rad error is 144.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4817 MW39	7 MW397SG1-20	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.97. Rad error is 5.94.
		Gross beta		TPU is 7.01. Rad error is 6.69.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.74. Rad error is 1.7.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.94. Rad error is 2.94.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 13.7. Rad error is 13.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.05. Rad error is 1.05.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 118. Rad error is 118.
		Iodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1SG1-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.42. Rad error is 4.42.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.66. Rad error is 6.61.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.74. Rad error is 0.737.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.35. Rad error is 2.35.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 12.4. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.33. Rad error is 1.33.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 145. Rad error is 140.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1SG1-20	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.28. Rad error is 4.28.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.81. Rad error is 5.81.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.18. Rad error is 1.17.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.91. Rad error is 3.91.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 12.9. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.12. Rad error is 1.11.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 147. Rad error is 142.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG1-20	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG1-20	Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
	Gross alpha Gross beta	Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG1-20	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG1-20	Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG1-20	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG1-20	Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4804 MW38	6 MW386DSG1-20	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		pH		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dibromo-3-chloropropane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.83. Rad error is 6.77.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.35. Rad error is 6.35.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.12. Rad error is 1.11.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.17. Rad error is 2.14.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.8. Rad error is 12.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.699. Rad error is 0.698.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 136. Rad error is 136.
		lodide	W	Post-digestion spike recovery out of control limits.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Lab ID: None Permit Number: SW07300014, SW07300015, SW07300045 For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Finds/Unit: <u>KY8-980-008-982/1</u>

Introduction

The statistical analyses conducted on the fourth quarter 2019 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The fourth quarter 2019 data used to conduct the statistical analyses were collected in October 2019. The statistical analyses for this report first used data from the initial eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one downgradient well that exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
$MW390^1$	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

¹NOTE: The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells **TW:** downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, fourth quarter 2019. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

upper $TL = X + (K \times S)$

lower TL = $X - (K \times S)$

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations:

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters Acetone Aluminum Antimony Beta Activity Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride cis-1,2-Dichloroethene Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iodide Iron Magnesium Manganese Methylene Chloride Molybdenum Nickel Oxidation-Reduction Potential

pH*

Potassium

Sodium

Sulfate

Technetium-99

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

Trichloroethene

Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	1	3	Yes
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	2	2	Yes
Antimony	4	3	1	Yes
Beryllium	4	4	0	No
Beta activity	4	3	1	Yes
Boron	4	1	3	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	0	4	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	2	2	Yes
Conductivity	4	0	4	Yes
Copper	4	0	4	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	4	3	1	Yes
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	1	3	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	3	1	Yes
Nickel	4	1	3	Yes
Oxidation-Reduction Potential	4	0	4	Yes
PCB, Total	4	4	0	No
PCB-1016	4	4	0	No
PCB-1221	4	4	0	No
PCB-1232	4	4	0	No
PCB-1242	4	4	0	No
PCB-1248	4	4	0	No
PCB-1254	4	4	0	No
PCB-1260	4	4	0	No
PCB-1268	4	4	0	No
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Vanadium	4	4	0	No
Vinyl Acetate	4	4	0	No
Zinc	4	0	4	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	8	3	Yes
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	8	3	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Beta activity	11	6	5	Yes
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	7	4	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	10	1	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	7	4	Yes
Conductivity	11	0	11	Yes
Copper	11	0	11	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
•	11	0	11	
Dissolved Oxygen Dissolved Solids		0		Yes
	11		11	Yes
Ethylbenzene	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	2	9	Yes
Magnesium	11	0	11	Yes
Manganese	11	1	10	Yes
Methylene chloride	11	8	3	Yes
Molybdenum	11	8	3	Yes
Nickel	11	3	8	Yes
Oxidation-Reduction Potential	11	0	11	Yes
PCB, Total	11	11	0	No
PCB-1016	11	11	0	No
PCB-1221	11	11	0	No
PCB-1232	11	11	0	No
PCB-1242	11	11	0	No
PCB-1248	11	11	0	No
PCB-1254	11	11	0	No
PCB-1260	11	11	0	No
PCB-1268	11	11	0	No
pH	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	6	5	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	0	11	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	4	7	Yes
Trichlorofluoromethane	11	11	0	No
Vanadium	11	11	0	No
Vinyl Acetate	11	11	0	No
Zinc	11	3	8	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	5	2	Yes
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	5	2	Yes
	7	7	0	No
Antimony	7	7	0	
Beryllium				No
Beta activity	7	2	5	Yes
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	3	4	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	7	0	No
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	3	4	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Magnesium	7	0	7	Yes
Manganese	7	1	6	Yes
Methylene chloride	7	4	3	Yes
Molybdenum	7	6	1	Yes
Nickel	7	3	4	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	7	0	No
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	7	0	No
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	3	4	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	1	6	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	2	5	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	7	0	No
Vinyl Acetate	7	7	0	No
Zinc Rold denotes parameters with at least one uncensored observed.	7	2	5	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 29, 30, and 29 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background upper tolerance limit (UTL) for beta activity, COD, oxidation-reduction potential, sulfate, and technetium-99.

URGA

This quarter's results identified exceedances of historical background UTL for acetone, beta activity, calcium, COD, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW386: COD, oxidation-reduction potential	MW220: Oxidation-reduction potential	MW370: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW390: Beta activity, oxidation-reduction potential, sulfate, technetium-99	MW223: COD	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, technetium-99
MW393: COD, oxidation-reduction potential	MW224: Oxidation-reduction potential	MW385: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW369: COD	MW388: Beta activity, oxidation-reduction potential, sulfate, technetium-99
	MW372: Beta activity, calcium, COD, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW392: Oxidation-reduction potential, sulfate
	MW384: Beta activity, oxidation-reduction potential, sulfate, technetium-99	MW395: Oxidation-reduction potential
	MW387: Beta activity, calcium, magnesium, oxidation-reduction potential, sulfate, technetium-99	MW397: Oxidation-reduction potential
	MW391: Sulfate	
	MW394: Acetone, COD, oxidation-reduction potential	

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	1.73	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	1.68	No exceedance of statistically derived historical background concentration.
Beta Activity	Tolerance Interval	1.17	Current results exceed statistically derived historical background concentration in MW390.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	Current results exceed statistically derived historical background concentration in MW386 and MW393.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	Current results exceed statistically derived historical background concentration in MW390.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	0.10	Current results exceed statistically derived historical background concentrations in MW394.
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentrations in MW372, MW384, and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentrations in MW372 and MW387.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentrations in MW223, MW369, MW372, and MW394.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentrations in MW372.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW387.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.
Methylene Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220, MW224, MW384, MW387, and MW394.
pН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW372.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW372, MW384, MW387, and MW391.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW372, MW384, and MW387.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation

^{*} If CV > 1.0, used log-transformed data.

¹ Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Magnesium	Tolerance Interval	0.52	Current results exceed statistically derived historical background concentration in MW373.
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Methylene Chloride	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, MW395, and MW397.
pH	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, and MW392.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation *If CV > 1.0, used log-transformed data. 1 Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 5, 11, and 8 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW369: COD	MW370: Beta activity, sulfate, technetium-99
MW372: Beta activity, calcium, COD, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate, technetium-99
MW387: Beta activity, calcium, magnesium, sulfate, technetium-99	MW388: Beta activity, sulfate, technetium-99
	MW392: Sulfate

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that beta activity, sulfate, and technetium-99 concentrations in one UCRS well (i.e., MW390) exceeded the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, COD, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	2.18	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.37	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW386 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.32	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.08	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	-9.13	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	0.17	MW394 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Beta Activity	Tolerance Interval	0.74	MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.15	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.28	MW223, MW369, MW372, and MW394 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.07	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.18	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.11	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.18	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sodium	Tolerance Interval	0.17	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.35	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.64	MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.39	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.17	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.08	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.21	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.18	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.21	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.05	MW370, MW373, MW385, MW388, and MW392 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.56	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation * If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison **UNITS: UG/L** Acetone

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 28.375 S = 49.188 CV(1) = 1.733

K factor=** 3.188

TL(1)=185.185 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.712 S = 0.943 CV(2) = 0.348

K factor**= 3.188

TL(2) = 5.718

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	150	5.011
9/30/2002	16	2.773
10/16/2002	10	2.303
1/13/2003	10	2.303
4/8/2003	10	2.303
7/16/2003	10	2.303
10/14/2003	11	2.398
4/12/2004	10	2.303

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	3.91	N/A	1.364	NO
MW390	Downgradien	t Yes	5.13	N/A	1.635	NO
MW393	Downgradien	t No	3.15	N/A	1.147	N/A
MW396	Upgradient	Yes	6.51	N/A	1.873	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-3

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Aluminum **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.320

CV(1)=0.567S = 0.182

K factor=** 3.188

TL(1) = 0.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.259 S = 0.503

CV(2) = -0.400

K factor=** 3.188

TL(2) = 0.345

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW396	
Result	LN(Result)
0.393	-0.934
0.2	-1.609
0.2	-1.609
0.501	-0.691
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.668	-0.403
	Result 0.393 0.2 0.2 0.501 0.2 0.2 0.2

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A
MW390	Downgradien	t Yes	0.049	NO	-3.016	N/A
MW393	Downgradien	t Yes	0.0244	NO	-3.713	N/A
MW396	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-4

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Antimony

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.054

CV(1) = 1.679

K factor=** 3.188

TL(1) = 0.342

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.376 S = 1.708

S = 0.090

CV(2) = -0.390

K factor=** 3.188

TL(2) = 1.068

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 -1.609 0.2 9/16/2002 0.2 -1.609-5.298 10/16/2002 0.005 1/13/2003 0.005 -5.2984/8/2003 -5.298 0.005 7/16/2003 0.005 -5.29810/14/2003 0.005 -5.298 1/14/2004 0.005 -5.298

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00121	N/A	-6.717	NO
MW390	Downgradien	t No	0.003	N/A	-5.809	N/A
MW393	Downgradien	t No	0.003	N/A	-5.809	N/A
MW396	Upgradient	No	0.003	N/A	-5.809	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-5

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 4.298

S= 5.012 **CV(1)**=1.166

K factor**= 3.188

TL(1) = 20.277

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.294

S= 0.988

CV(2) = 0.764

K factor**= 3.188

TL(2)= 2.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW396	
Result	LN(Result)
2.2	0.788
0.727	-0.319
7.28	1.985
6.97	1.942
13.9	2.632
2.08	0.732
-2.42	#Func!
3.65	1.295
	Result 2.2 0.727 7.28 6.97 13.9 2.08 -2.42

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	-0.782	N/A	#Error	N/A
MW390	Downgradien	t Yes	50.1	N/A	3.914	YES
MW393	Downgradien	t No	4.64	N/A	1.535	N/A
MW396	Upgradient	No	1.04	N/A	0.039	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

CV(1)=1.282

K factor**= 3.188

TL(1) = 3.306

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.034 **S**= 1.066

S = 0.833

CV(2) = -1.031

K factor=** 3.188

TL(2) = 2.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number	r: MW396	
Date Collecte	ed Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.015	N/A	-4.200	N/A	
MW390	Downgradien	t Yes	0.0108	N/A	-4.528	NO	
MW393	Downgradien	t Yes	0.0191	N/A	-3.958	NO	
MW396	Upgradient	Yes	0.0096	N/A	-4.646	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.388

CV(1) = 0.236

K factor=** 3.188

TL(1)=2.430

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.301

S = 0.327S = 0.252

CV(2)=0.838

K factor**= 3.188

TL(2)=1.105

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.16	NO	-1.833	N/A		
MW390	Downgradien	t Yes	0.468	NO	-0.759	N/A		
MW393	Downgradien	t Yes	0.159	NO	-1.839	N/A		
MW396	Upgradient	Yes	0.942	NO	-0.060	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.825 S = 8.445 CV(1) = 0.202

K factor=** 3.188

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.711 **S**= 0.241

CV(2)=0.065

K factor=** 3.188

TL(2) = 4.479

TL(1) = 68.748

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	21.5	NO	3.068	N/A	
MW390	Downgradien	t Yes	32.5	NO	3.481	N/A	
MW393	Downgradien	t Yes	13.2	NO	2.580	N/A	
MW396	Upgradient	Yes	35.7	NO	3.575	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=35.375 S= 0.744 CV(1)=0.021

K factor=** 3.188

TL(1)= 37.747 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 3.566 **S**= 0.021

CV(2) = 0.006

K factor**= 3.188

TL(2) = 3.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	166	YES	5.112	N/A	
MW390	Downgradien	t Yes	12.4	NO	2.518	N/A	
MW393	Downgradien	t Yes	58.8	YES	4.074	N/A	
MW396	Upgradient	Yes	17.8	NO	2.879	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW393

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 101.725 S = 5.245

CV(1)=0.052 K factor**= 3.188

TL(1)= 118.447

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.621 S = 0.053

CV(2)=0.011

K factor**= 3.188

TL(2) = 4.789

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	14.5	NO	2.674	N/A	
MW390	Downgradien	t Yes	47.5	NO	3.861	N/A	
MW393	Downgradien	t Yes	13.3	NO	2.588	N/A	
MW396	Upgradient	Yes	73.4	NO	4.296	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Cobalt **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.008

S = 0.011

CV(1)=1.340

K factor=** 3.188

TL(1) = 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.645 S = 1.339

CV(2) = -0.237

K factor=** 3.188

TL(2) = -1.377

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.00176	N/A	-6.342	NO	
MW390	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW396	Upgradient	Yes	0.00253	N/A	-5.980	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-12

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison UNITS: umho/cm **UCRS Conductivity**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 922.500 S = 107.616 CV(1) = 0.117

K factor**= 3.188

TL(1)= 1265.579 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.822 S = 0.111 CV(2) = 0.016

K factor=** 3.188

TL(2) = 7.175

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	784	6.664
9/30/2002	871	6.770
10/16/2002	868	6.766
1/13/2003	912	6.816
4/8/2003	942	6.848
7/16/2003	910	6.813
10/14/2003	935	6.841
1/14/2004	1158	7.054

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	579	NO	6.361	N/A
MW390	Downgradien	t Yes	717	NO	6.575	N/A
MW393	Downgradien	t Yes	406	NO	6.006	N/A
MW396	Upgradient	Yes	764	NO	6.639	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-13

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **UCRS** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

CV(1) = 0.481S = 0.014

K factor**= 3.188

TL(1) = 0.072

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.650 S = 0.414 CV(2) = -0.113

K factor=** 3.188

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00078	6 NO	-7.149	N/A
MW390	Downgradien	t Yes	0.001	NO	-6.908	N/A
MW393	Downgradien	t Yes	0.00096	4 NO	-6.944	N/A
MW396	Upgradient	Yes	0.00062	NO	-7.386	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-14

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.395

CV(1)=1.202S = 1.677

K factor=** 3.188

TL(1) = 6.743

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.043 S = 0.814

CV(2) = -18.867

K factor=** 3.188

TL(2)=2.553

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.42	N/A	-0.868	NO
MW390	Downgradien	t Yes	4.15	N/A	1.423	NO
MW393	Downgradien	t Yes	1.2	N/A	0.182	NO
MW396	Upgradient	Yes	1.12	N/A	0.113	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-15

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

K factor**= 3.188

TL(1)= 882.980 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.298

S = 0.162 CV(2) = 0.026

K factor**= 3.188

TL(2) = 6.815

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	356	NO	5.875	N/A
MW390	Downgradien	t Yes	400	NO	5.991	N/A
MW393	Downgradien	t Yes	259	NO	5.557	N/A
MW396	Upgradient	Yes	399	NO	5.989	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-16

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.150

CV(1)=0.132

K factor**= 3.188

TL(1)= 3.052

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.759

S= 0.283 **S**= 0.123

CV(2)=0.162

K factor=** 3.188

TL(2)= 1.150

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.693 9/16/2002 2 0.693 2 0.693 10/16/2002 1/13/2003 2 0.693 4/8/2003 2 0.693 7/16/2003 2.7 0.993 10/14/2003 2.5 0.916 2 1/14/2004 0.693

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A
MW396	Upgradient	Yes	0.66	NO	-0.416	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.796

CV(1) = 0.478

K factor**= 3.188

TL(1)= 19.666

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.880

S = 0.723

S = 3.723

CV(2) = 0.384

K factor=** 3.188

TL(2) = 4.184

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.8	0.588
9/16/2002	9.53	2.254
10/16/2002	7.43	2.006
1/13/2003	9.93	2.296
4/8/2003	10.2	2.322
7/16/2003	9.16	2.215
10/14/2003	11.9	2.477
1/14/2004	2.42	0.884

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0453	NO	-3.094	N/A
MW390	Downgradien	t Yes	0.0433	NO	-3.140	N/A
MW393	Downgradien	t Yes	1.65	NO	0.501	N/A
MW396	Upgradient	Yes	3.1	NO	1.131	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 16.876 S = 3.313

CV(1)=0.196

K factor**= 3.188

TL(1) = 27.438

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.804

S= 0.240

CV(2)=0.086

K factor=** 3.188

TL(2) = 3.569

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	9.1	NO	2.208	N/A	
MW390	Downgradien	t Yes	13.4	NO	2.595	N/A	
MW393	Downgradien	t Yes	3.68	NO	1.303	N/A	
MW396	Upgradient	Yes	15.9	NO	2.766	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.774

CV(1)=0.456S = 0.353

K factor=** 3.188

TL(1)= 1.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.566 S = 1.192 CV(2) = -2.105

K factor=** 3.188

TL(2) = 3.235

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:		MW396			
	Date Collected	Result	LN(Result)		
	8/13/2002	0.57	-0.562		
	9/16/2002	0.647	-0.435		
	10/16/2002	0.88	-0.128		
	1/13/2003	1.132	0.124		
	4/8/2003	0.965	-0.036		
	7/16/2003	0.983	-0.017		
	10/14/2003	0.984	-0.016		
	1/14/2004	0.0314	-3.461		

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.773	NO	-0.257	N/A
MW390	Downgradien	t No	0.005	N/A	-5.298	N/A
MW393	Downgradien	t Yes	0.0505	NO	-2.986	N/A
MW396	Upgradient	Yes	0.569	NO	-0.564	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-20

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

CV(1) = 1.507

K factor=** 3.188

TL(1) = 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.928

S= 1.420

S = 0.011

CV(2) = -0.240

K factor=** 3.188

TL(2) = -1.400

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00128	-6.661
4/8/2003	0.00271	-5.911
7/16/2003	0.00117	-6.751
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.00057	1 N/A	-7.468	N/A	
MW390	Downgradient	t Yes	0.00059	5 N/A	-7.427	NO	
MW393	Downgradient	t No	0.001	N/A	-6.908	N/A	
MW396	Upgradient	No	0.00047	6 N/A	-7.650	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

CV(1)=1.272

K factor**= 3.188

TL(1) = 0.083

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.706 S = 1.057

CV(2) = -0.225

K factor=** 3.188

TL(2) = -1.338

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells

Well No. Gradient

S = 0.021

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00213	N/A	-6.152	NO
MW390	Downgradien	t Yes	0.00172	N/A	-6.365	NO
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A
MW396	Upgradient	Yes	0.00113	N/A	-6.786	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.000 S = 61.952 CV(1) = 4.766

K factor**= 3.188

TL(1)= 210.502 **LL(1)=**N/A

Statistics-Transformed Background

X = 4.364

S = 0.333

CV(2) = 0.076

K factor=** 3.188

TL(2) = 4.736

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	370	N/A	5.914	YES
MW390	Downgradien	t Yes	435	N/A	6.075	YES
MW393	Downgradien	t Yes	272	N/A	5.606	YES
MW396	Upgradient	Yes	227	N/A	5.425	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390 MW393

MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-23

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.460

 $S= 0.350 \quad CV(1)=0.054$

K factor=** 3.736

TL(1) = 7.766

LL(1)=5.1541

Statistics-Transformed Background Data

X = 1.864 S = 0.054

4 CV(2) = 0.029

K factor**= 3.736

TL(2) = 2.067

LL(2)=1.6621

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Qua	rter	Data
-------------	------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	6.51	NO	1.873	N/A
MW390	Downgradien	t Yes	6.37	NO	1.852	N/A
MW393	Downgradien	t Yes	6.44	NO	1.863	N/A
MW396	Upgradient	Yes	6.52	NO	1.875	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.411

S = 0.399 CV(1) = 0.282

K factor**= 3.188

TL(1) = 2.682

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.311

S= 0.271

CV(2) = 0.870

K factor**= 3.188

TL(2)=1.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.266	NO	-1.324	N/A
MW390	Downgradien	t Yes	0.355	NO	-1.036	N/A
MW393	Downgradien	t Yes	0.391	NO	-0.939	N/A
MW396	Upgradient	Yes	0.798	NO	-0.226	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

K factor=** 3.188

TL(1)= 208.973 **LL(1)=**N/A

Statistics-Transformed Background Data

X=4.595 **S**=

S = 0.492 CV(2) = 0.107

K factor=** 3.188

TL(2) = 6.163

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Numbe	r: MW396	
Date Collect	ed Result	LN(Result)
8/13/2002	115	4.745
9/16/2002	116	4.754
10/16/2002	117	4.762
1/13/2003	122	4.804
4/8/2003	106	4.663
7/16/2003	117	4.762
10/14/2003	132	4.883
1/14/2004	29.6	3.388

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	95.3	NO	4.557	N/A
MW390	Downgradien	t Yes	102	NO	4.625	N/A
MW393	Downgradien	t Yes	75.4	NO	4.323	N/A
MW396	Upgradient	Yes	105	NO	4.654	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.463 S = 8.876 CV(1) = 0.395

K factor=** 3.188

TL(1) = 50.759

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.054

S = 0.351 CV(2) = 0.115

K factor=** 3.188

TL(2) = 4.173

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	44.5	NO	3.795	N/A
MW390	Downgradien	t Yes	56.3	YES	4.031	N/A
MW393	Downgradien	t Yes	15.9	NO	2.766	N/A
MW396	Upgradient	Yes	33	NO	3.497	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.624

S= 6.558 **CV(1)**=0.860

K factor**= 3.188

TL(1)= 28.531

LL(1)=N/A

Statistics-Transformed Background

X = 1.498

S= 1.321

CV(2) = 0.882

K factor**= 3.188

TL(2) = 5.710

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	1.46	N/A	0.378	N/A
MW390	Downgradien	t Yes	65.7	YES	4.185	N/A
MW393	Downgradien	t No	-9.81	N/A	#Error	N/A
MW396	Upgradient	No	-9.62	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.988

S= 4.696 **CV(1)**=0.470

K factor=** 3.188

TL(1)= 24.959 I

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.210

S = 0.454

CV(2) = 0.205

K factor=** 3.188

TL(2) = 3.657

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 19 2.944 9/16/2002 14.6 2.681 10/16/2002 10.4 2.342 1/13/2003 4.4 1.482 4/8/2003 7 1.946 7/16/2003 7.3 1.988 10/14/2003 9.1 2.208 1/14/2004 8.1 2.092

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	4.42	NO	1.486	N/A
MW390	Downgradien	t Yes	2.35	NO	0.854	N/A
MW393	Downgradien	t Yes	2.52	NO	0.924	N/A
MW396	Upgradient	Yes	4.77	NO	1.562	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 142.650 S = 53.533 CV(1) = 0.375

K factor**= 3.188 TI

TL(1)= 313.314 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.896 S = 0.390

CV(2) = 0.080

K factor**= 3.188

TL(2) = 6.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	116	NO	4.754	N/A
MW390	Downgradien	t Yes	23.8	NO	3.170	N/A
MW393	Downgradien	t Yes	13.6	NO	2.610	N/A
MW396	Upgradient	Yes	31.4	NO	3.447	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.044

S= 0.035 **CV(1)**=0.786

K factor**= 3.188

TL(1)= 0.156

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.342 S = 0.682

CV(2) = -0.204

K factor=** 3.188

TL(2) = -1.168

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/8/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.00446	NO	-5.413	N/A	
MW390	Downgradien	t Yes	0.00516	NO	-5.267	N/A	
MW393	Downgradien	t Yes	0.00495	NO	-5.308	N/A	
MW396	Upgradient	Yes	0.00533	NO	-5.234	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Acetone UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.250 S = 1.000

CV(1)=0.098

K factor=** 2.523

TL(1)= 12.773

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.324

S = 0.084 CV

CV(2) = 0.036

K factor=** 2.523

TL(2) = 2.536

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 10 2.303 1/15/2003 10 2.303 10 4/10/2003 2.303 7/14/2003 10 2.303 10/13/2003 10 2.303 4/13/2004 10 2.303 7/21/2004 10 2.303 10/11/2004 10 2.303 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 10 2.303 9/30/2002 10 2.303 10/16/2002 10 2.303 1/13/2003 10 2.303 4/10/2003 10 2.303 7/16/2003 10 2.303 10/14/2003 14 2.639 4/12/2004 10 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	No	5	N/A	1.609	N/A	
MW221	Sidegradient	No	5	N/A	1.609	N/A	
MW222	Sidegradient	No	5	N/A	1.609	N/A	
MW223	Sidegradient	No	5	N/A	1.609	N/A	
MW224	Sidegradient	No	5	N/A	1.609	N/A	
MW369	Downgradien	t No	5	N/A	1.609	N/A	
MW372	Downgradien	t Yes	5.16	NO	1.641	N/A	
MW384	Sidegradient	No	5	N/A	1.609	N/A	
MW387	Downgradien	t Yes	4.58	NO	1.522	N/A	
MW391	Downgradien	t No	5	N/A	1.609	N/A	
MW394	Upgradient	Yes	26	YES	3.258	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW394

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Aluminum **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.221

S = 0.061

CV(1)=0.277

K factor**= 2.523

TL(1) = 0.376

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.534 S= 0.212 CV(2)=-0.138

K factor=** 2.523

TL(2) = -0.999

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 0.2 1/15/2003 0.2 -1.6090.2 4/10/2003 -1.6097/14/2003 0.2 -1.6090.427 -0.85110/13/2003 1/13/2004 0.309 -1.1744/13/2004 0.2 -1.609 7/21/2004 0.202 -1.599Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.2 -1.609 9/16/2002 0.2 -1.60910/16/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.6091/13/2004 0.2 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	No	0.05	N/A	-2.996	N/A
MW221	Sidegradient	No	0.05	N/A	-2.996	N/A
MW222	Sidegradient	No	0.05	N/A	-2.996	N/A
MW223	Sidegradient	No	0.05	N/A	-2.996	N/A
MW224	Sidegradient	No	0.05	N/A	-2.996	N/A
MW369	Downgradien	t Yes	0.0197	NO	-3.927	N/A
MW372	Downgradien	t No	0.05	N/A	-2.996	N/A
MW384	Sidegradient	No	0.05	N/A	-2.996	N/A
MW387	Downgradien	t No	0.05	N/A	-2.996	N/A
MW391	Downgradien	t Yes	0.0279	NO	-3.579	N/A
MW394	Upgradient	Yes	0.0243	NO	-3.717	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-33

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: pCi/L Beta activity **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 14.273 S = 13.883 CV(1) = 0.973

K factor**= 2.523

TL(1) = 49.300

LL(1)=N/A

Statistics-Transformed Background

X = 2.213 S = 1.033 CV(2) = 0.467

K factor=** 2.523

TL(2) = 4.819

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 15.2 2.721 1/15/2003 42.5 3.750 4/10/2003 45.4 3.816 7/14/2003 8.53 2.144 10/13/2003 11.7 2.460 1/13/2004 13.5 2.603 4/13/2004 33.5 3.512 7/21/2004 13.7 2.617 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 5.03 1.615 9/16/2002 5.57 1.717 10/16/2002 12.8 2.549 1/13/2003 4.3 1.459 4/10/2003 9.52 2.253 7/16/2003 3.92 1.366 10/14/2003 0.058 1.06 1/13/2004 2.14 0.761

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	18.9	N/A	2.939	N/A
MW221	Sidegradient	No	8.23	N/A	2.108	N/A
MW222	Sidegradient	No	7.21	N/A	1.975	N/A
MW223	Sidegradient	No	6.5	N/A	1.872	N/A
MW224	Sidegradient	No	5.84	N/A	1.765	N/A
MW369	Downgradien	t Yes	14.8	N/A	2.695	N/A
MW372	Downgradien	t Yes	105	YES	4.654	N/A
MW384	Sidegradient	Yes	79.9	YES	4.381	N/A
MW387	Downgradien	t Yes	412	YES	6.021	N/A
MW391	Downgradien	t No	5.26	N/A	1.660	N/A
MW394	Upgradient	No	8.14	N/A	2.097	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-34

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Boron URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.425

S = 0.615

CV(1) = 1.447

K factor**= 2.523

TL(1)= 1.976

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.322 S= 0.786 CV(2)=-0.595

K factor=** 2.523

TL(2) = 0.663

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 0.2 1/15/2003 0.2 -1.6094/10/2003 0.2 -1.6097/14/2003 0.2 -1.6090.2 -1.60910/13/2003 1/13/2004 0.2 -1.6094/13/2004 0.2 -1.609 7/21/2004 0.2 -1.609Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609

0.2

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00656	N/A	-5.027	NO	
MW221	Sidegradient	Yes	0.0143	N/A	-4.247	NO	
MW222	Sidegradient	Yes	0.00793	N/A	-4.837	NO	
MW223	Sidegradient	Yes	0.00538	N/A	-5.225	NO	
MW224	Sidegradient	Yes	0.0119	N/A	-4.431	NO	
MW369	Downgradien	t Yes	0.0105	N/A	-4.556	NO	
MW372	Downgradien	t Yes	0.956	N/A	-0.045	NO	
MW384	Sidegradient	Yes	0.0672	N/A	-2.700	NO	
MW387	Downgradien	t Yes	0.0322	N/A	-3.436	NO	
MW391	Downgradien	t Yes	0.0721	N/A	-2.630	NO	
MW394	Upgradient	Yes	0.0216	N/A	-3.835	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-35

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S= 0.000 CV(1)=0.000 K factor**= 2.523 TL(1)=1.000 LL(1)=N/A Statistics-Transformed Background X = 0.000 S= 0.000 CV(2)=#Num! K factor**= 2.523 TL(2)=0.000 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0001/15/2003 1 0.000 0.0004/10/2003 7/14/2003 1 0.000 0.000 10/13/2003 1 1/13/2004 1 0.000 4/13/2004 1 0.000 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1 0.0009/16/2002 1 0.000 10/16/2002 1 0.000 1/13/2003 0.0004/10/2003 0.0007/16/2003 1 0.000 10/14/2003 0.000 1

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.225	NO	-1.492	N/A
MW221	Sidegradient	Yes	0.44	NO	-0.821	N/A
MW222	Sidegradient	Yes	0.417	NO	-0.875	N/A
MW223	Sidegradient	Yes	0.399	NO	-0.919	N/A
MW224	Sidegradient	Yes	0.413	NO	-0.884	N/A
MW369	Downgradien	t Yes	0.346	NO	-1.061	N/A
MW372	Downgradien	t Yes	0.572	NO	-0.559	N/A
MW384	Sidegradient	Yes	0.327	NO	-1.118	N/A
MW387	Downgradien	t Yes	0.517	NO	-0.660	N/A
MW391	Downgradien	t Yes	0.594	NO	-0.521	N/A
MW394	Upgradient	Yes	0.575	NO	-0.553	N/A
N/A - Resu	lts identified as N	Ion-Detects	luring lah	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 27.638 S = 4.743

CV(1)=0.172**K** factor**= 2.523 TL(1) = 39.604

LL(1)=N/A

Statistics-Transformed Background

X = 3.304

S = 0.183 CV(2) = 0.055

K factor=** 2.523

TL(2) = 3.765

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	23.6	3.161
1/15/2003	25.9	3.254
4/10/2003	30.4	3.414
7/14/2003	33.9	3.523
10/13/2003	21.3	3.059
1/13/2004	20.3	3.011
4/13/2004	23.8	3.170
7/21/2004	19	2.944
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.384
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 29.5	3.384
Date Collected 8/13/2002 9/16/2002	Result 29.5 29.9	3.384 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 29.5 29.9 31.2	3.384 3.398 3.440
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 29.5 29.9 31.2 30.7	3.384 3.398 3.440 3.424
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 29.5 29.9 31.2 30.7 34.4	3.384 3.398 3.440 3.424 3.538

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	20.9	NO	3.040	N/A
MW221	Sidegradient	Yes	20.5	NO	3.020	N/A
MW222	Sidegradient	Yes	18.2	NO	2.901	N/A
MW223	Sidegradient	Yes	21.5	NO	3.068	N/A
MW224	Sidegradient	Yes	21.7	NO	3.077	N/A
MW369	Downgradien	t Yes	15.5	NO	2.741	N/A
MW372	Downgradien	t Yes	59.4	YES	4.084	N/A
MW384	Sidegradient	Yes	25.3	NO	3.231	N/A
MW387	Downgradien	t Yes	42.1	YES	3.740	N/A
MW391	Downgradien	t Yes	27.4	NO	3.311	N/A
MW394	Upgradient	Yes	25.2	NO	3.227	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-37

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.000**K factor**=** 2.523 Statistics-Background Data X = 35.000 S = 0.000TL(1) = 35.000LL(1)=N/A **Statistics-Transformed Background** X = 3.555CV(2)=0.000S = 0.000**K factor**=** 2.523 TL(2) = 3.555LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35 3.555 1/15/2003 35 3.555 4/10/2003 35 3.555 7/14/2003 35 3.555 10/13/2003 35 3.555 1/13/2004 35 3.555 4/13/2004 35 3.555 7/21/2004 35 3.555 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 4/10/2003 35 3.555 7/16/2003 35 3.555

35

35

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	20	N/A	2.996	N/A	
MW221	Sidegradient	No	20	N/A	2.996	N/A	
MW222	Sidegradient	No	20	N/A	2.996	N/A	
MW223	Sidegradient	Yes	35.7	YES	3.575	N/A	
MW224	Sidegradient	No	20	N/A	2.996	N/A	
MW369	Downgradien	t Yes	45.3	YES	3.813	N/A	
MW372	Downgradien	t Yes	85.3	YES	4.446	N/A	
MW384	Sidegradient	No	20	N/A	2.996	N/A	
MW387	Downgradien	t No	20	N/A	2.996	N/A	
MW391	Downgradien	t No	20	N/A	2.996	N/A	
MW394	Upgradient	Yes	40.8	YES	3.709	N/A	
N/A - Resu	Its identified as N	Ion-Detects	during lab	oratory analysis or	data validation	and were not	

during laboratory analysis or o included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

3.555

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW223 MW369 MW372 MW394

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-38

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.044 S = 11.278 CV(1) = 0.230

K factor**= 2.523

TL(1)= 77.499

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.866 **S**= 0.244

CV(2) = 0.063

K factor=** 2.523

TL(2)= 4.482

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.798 44.6 1/15/2003 43.2 3.766 4/10/2003 31.5 3.450 7/14/2003 30.8 3.428 40.9 10/13/2003 3.711 1/13/2004 40.8 3.709 4/13/2004 37.5 3.624 7/21/2004 40.8 3.709 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 60.4 4.101 9/16/2002 60.3 4.099 10/16/2002 58 4.060 1/13/2003 60.7 4.106 4/10/2003 62.9 4.142 7/16/2003 58.1 4.062 10/14/2003 58.2 4.064 1/13/2004 56 4.025

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	21.3	NO	3.059	N/A
MW221	Sidegradient	Yes	34.4	NO	3.538	N/A
MW222	Sidegradient	Yes	30.7	NO	3.424	N/A
MW223	Sidegradient	Yes	29	NO	3.367	N/A
MW224	Sidegradient	Yes	33.3	NO	3.506	N/A
MW369	Downgradien	t Yes	31.6	NO	3.453	N/A
MW372	Downgradien	t Yes	47.6	NO	3.863	N/A
MW384	Sidegradient	Yes	29.9	NO	3.398	N/A
MW387	Downgradien	t Yes	40.4	NO	3.699	N/A
MW391	Downgradien	t Yes	45.3	NO	3.813	N/A
MW394	Upgradient	Yes	43.8	NO	3.780	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor**= 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.609 5 1/15/2003 5 1.609 4/10/2003 5 1.609 7/14/2003 5 1.609 5 10/13/2003 1.609 1/13/2004 5 1.609 4/13/2004 5 1.609 5 7/21/2004 1.609 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t No	1	N/A	0.000	N/A
MW372	Downgradien	t No	1	N/A	0.000	N/A
MW384	Sidegradient	No	1	N/A	0.000	N/A
MW387	Downgradien	t No	1	N/A	0.000	N/A
MW391	Downgradien	t Yes	0.47	NO	-0.755	N/A
MW394	Upgradient	No	1	N/A	0.000	N/A
N/A Pagu	lte identified of N	Ion Detects	turing lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Cobalt **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

S = 0.040

CV(1)=2.440**K** factor**= 2.523 TL(1) = 0.116

LL(1)=N/A

Statistics-Transformed Background

X=-5.582 S= 1.573 CV(2)=-0.282

K factor=** 2.523

TL(2) = -1.613

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0041 -5.497 1/15/2003 0.00496 -5.3060.00289 4/10/2003 -5.8467/14/2003 0.161 -1.8260.0226 -3.79010/13/2003 1/13/2004 0.00464 -5.3734/13/2004 0.001 -6.908 7/21/2004 0.00264 -5.937Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 -6.908 10/16/2002 0.001 1/13/2003 0.001 -6.908 4/10/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.9081/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	0.00033	N/A	-8.016	NO	
MW221	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW222	Sidegradient	Yes	0.000532	2 N/A	-7.539	NO	
MW223	Sidegradient	Yes	0.00119	N/A	-6.734	NO	
MW224	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW369	Downgradien	t Yes	0.00433	N/A	-5.442	NO	
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW394	Upgradient	No	0.001	N/A	-6.908	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-41

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: umho/cm **Conductivity URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 382.132 S = 107.134 CV(1) = 0.280

K factor**= 2.523

TL(1)=652.432 LL(1)=N/A

Statistics-Transformed Background

X = 5.716 S = 1.164 CV(2) = 0.204

K factor=** 2.523

TL(2) = 8.652

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220			
Date Collected	Result	LN(Result)		
10/14/2002	368	5.908		
1/15/2003	433.2	6.071		
4/10/2003	489	6.192		
7/14/2003	430	6.064		
10/13/2003	346	5.846		
1/13/2004	365	5.900		
4/13/2004	416	6.031		
7/21/2004	353 5.866			
Well Number:	MW394			
Well Number: Date Collected	MW394 Result	LN(Result)		
		LN(Result) 6.006		
Date Collected	Result	` ′		
Date Collected 8/13/2002	Result 406	6.006		
Date Collected 8/13/2002 9/16/2002	Result 406 418	6.006 6.035		
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 406 418 411	6.006 6.035 6.019		
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 406 418 411 422	6.006 6.035 6.019 6.045		
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 406 418 411 422 420	6.006 6.035 6.019 6.045 6.040		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	346	NO	5.846	N/A	
MW221	Sidegradient	Yes	390	NO	5.966	N/A	
MW222	Sidegradient	Yes	367	NO	5.905	N/A	
MW223	Sidegradient	Yes	378	NO	5.935	N/A	
MW224	Sidegradient	Yes	428	NO	6.059	N/A	
MW369	Downgradien	t Yes	367	NO	5.905	N/A	
MW372	Downgradien	t Yes	697	YES	6.547	N/A	
MW384	Sidegradient	Yes	444	NO	6.096	N/A	
MW387	Downgradien	t Yes	619	NO	6.428	N/A	
MW391	Downgradien	t Yes	424	NO	6.050	N/A	
MW394	Upgradient	Yes	382	NO	5.945	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-42

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.010 CV(1) = 0.429 K factor**= 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.794 S = 0.312 CV(2) = -0.082 K factor**= 2.523
 TL(2) = -3.007 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0211 -3.8581/15/2003 0.02 -3.9120.02 -3.9124/10/2003 7/14/2003 0.02 -3.9120.02 -3.91210/13/2003 1/13/2004 0.02 -3.9124/13/2004 0.02 -3.9127/21/2004 0.02 -3.912Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.996-3.91210/16/2002 0.02 1/13/2003 0.02 -3.912 -3.9124/10/2003 0.02 -3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912-3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00116	NO	-6.759	N/A
MW221	Sidegradient	Yes	0.00090	6 NO	-7.006	N/A
MW222	Sidegradient	Yes	0.00060	4 NO	-7.412	N/A
MW223	Sidegradient	Yes	0.00086	1 NO	-7.057	N/A
MW224	Sidegradient	Yes	0.00044	4 NO	-7.720	N/A
MW369	Downgradien	t Yes	0.00121	NO	-6.717	N/A
MW372	Downgradien	t Yes	0.00053	7 NO	-7.530	N/A
MW384	Sidegradient	Yes	0.00067	8 NO	-7.296	N/A
MW387	Downgradien	t Yes	0.00062	3 NO	-7.381	N/A
MW391	Downgradien	t Yes	0.00055	NO	-7.506	N/A
MW394	Upgradient	Yes	0.00062	6 NO	-7.376	N/A
N/A - Resu	lts identified as N	Ion-Detects	luring laho	ratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.499**K** factor**= 2.523 Statistics-Background Data X = 3.784S = 1.887TL(1) = 8.545LL(1)=N/A **Statistics-Transformed Background**

Data

X = 1.182CV(2) = 0.518S = 0.612

K factor=** 2.523

TL(2) = 2.727

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.915 6.79 1/15/2003 7.25 1.981 4/10/2003 3.6 1.281 7/14/2003 0.94 -0.06210/13/2003 0.501 1.65 1/13/2004 3.48 1.247 4/13/2004 1.05 0.049 7/21/2004 4.46 1.495 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 6.09 1.807 9/16/2002 3.85 1.348 10/16/2002 5.11 1.631 1/13/2003 1.343 3.83 4/10/2003 4.15 1.423 7/16/2003 0.604 1.83 10/14/2003 3.33 1.203 1/13/2004 3.14 1.144

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	5.26	NO	1.660	N/A
MW221	Sidegradient	Yes	5.05	NO	1.619	N/A
MW222	Sidegradient	Yes	4.3	NO	1.459	N/A
MW223	Sidegradient	Yes	3.35	NO	1.209	N/A
MW224	Sidegradient	Yes	1.65	NO	0.501	N/A
MW369	Downgradien	t Yes	1.88	NO	0.631	N/A
MW372	Downgradien	t Yes	1.93	NO	0.658	N/A
MW384	Sidegradient	Yes	4.38	NO	1.477	N/A
MW387	Downgradien	t Yes	2.89	NO	1.061	N/A
MW391	Downgradien	t Yes	3.34	NO	1.206	N/A
MW394	Upgradient	Yes	4.17	NO	1.428	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-44

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 232.688 S = 27.490 CV(1) = 0.118

K factor**= 2.523

TL(1)=302.045 LL(1)=N/A

Statistics-Transformed Background

X = 5.443 S = 0.118 CV(2) = 0.022

K factor=** 2.523

TL(2) = 5.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	` /
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	176	NO	5.170	N/A
MW221	Sidegradient	Yes	221	NO	5.398	N/A
MW222	Sidegradient	Yes	236	NO	5.464	N/A
MW223	Sidegradient	Yes	186	NO	5.226	N/A
MW224	Sidegradient	Yes	217	NO	5.380	N/A
MW369	Downgradien	t Yes	227	NO	5.425	N/A
MW372	Downgradien	t Yes	466	YES	6.144	N/A
MW384	Sidegradient	Yes	227	NO	5.425	N/A
MW387	Downgradien	t Yes	294	NO	5.684	N/A
MW391	Downgradien	t Yes	249	NO	5.517	N/A
MW394	Upgradient	Yes	251	NO	5.525	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-45

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.897

S= 1.050

CV(1)=1.170 **K factor**=** 2.523

TL(1) = 3.545

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.565 S = 0.951

951 **CV(2)=**-1.683

K factor**= 2.523

TL(2) = 1.834

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 0.2 1/15/2003 0.2 -1.6094/10/2003 0.429 -0.8467/14/2003 4.33 1.466 0.593 10/13/2003 1.81 1/13/2004 0.793 -0.2324/13/2004 0.13 -2.0407/21/2004 0.382 -0.962Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 1.34 0.293 9/16/2002 0.328 -1.115 0.322 10/16/2002 1.38 1/13/2003 0.262 1.3 4/10/2003 0.494 -0.7057/16/2003 0.62 -0.47810/14/2003 0.37 -0.9941/13/2004 0.251 -1.382

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	0.0415	N/A	-3.182	NO
MW221	Sidegradient	No	0.1	N/A	-2.303	N/A
MW222	Sidegradient	Yes	0.0369	N/A	-3.300	NO
MW223	Sidegradient	Yes	0.0442	N/A	-3.119	NO
MW224	Sidegradient	No	0.1	N/A	-2.303	N/A
MW369	Downgradien	t Yes	0.124	N/A	-2.087	NO
MW372	Downgradien	t Yes	0.14	N/A	-1.966	NO
MW384	Sidegradient	Yes	0.0986	N/A	-2.317	NO
MW387	Downgradien	t Yes	0.04	N/A	-3.219	NO
MW391	Downgradien	t Yes	0.161	N/A	-1.826	NO
MW394	Upgradient	Yes	0.11	N/A	-2.207	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Magnesium **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.158**K factor**=** 2.523 Statistics-Background Data X = 10.796 S = 1.703TL(1)= 15.092 LL(1)=N/A **Statistics-Transformed Background** X = 2.368S = 0.158CV(2) = 0.067**K factor**=** 2.523 TL(2) = 2.766LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 9.16 2.215 1/15/2003 10 2.303 4/10/2003 10.8 2.380 7/14/2003 14.7 2.688 10/13/2003 9.03 2.201 1/13/2004 8.49 2.139 4/13/2004 9.7 2.272 7/21/2004 8.06 2.087 Well Number: MW394 Result Date Collected LN(Result) 8/13/2002 11.8 2.468 9/16/2002 12.1 2.493 10/16/2002 11.3 2.425 1/13/2003 10.3 2.332 4/10/2003 11.7 2.460 7/16/2003 12 2.485 10/14/2003 12.2 2.501 1/13/2004 11.4 2.434

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	8.71	NO	2.164	N/A
MW221	Sidegradient	Yes	9.1	NO	2.208	N/A
MW222	Sidegradient	Yes	8.28	NO	2.114	N/A
MW223	Sidegradient	Yes	8.85	NO	2.180	N/A
MW224	Sidegradient	Yes	9.47	NO	2.248	N/A
MW369	Downgradien	t Yes	7.28	NO	1.985	N/A
MW372	Downgradien	t Yes	22	YES	3.091	N/A
MW384	Sidegradient	Yes	10.7	NO	2.370	N/A
MW387	Downgradien	t Yes	17.4	YES	2.856	N/A
MW391	Downgradien	t Yes	12.1	NO	2.493	N/A
MW394	Upgradient	Yes	10.7	NO	2.370	N/A
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validation	and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-47

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.287

S = 0.619

K factor**= 2.523 CV(1)=2.156

TL(1)= 1.848

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.455 S = 1.619 CV(2) = -0.659

K factor**= 2.523

TL(2) = 1.630

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0306 -3.4871/15/2003 0.0291 -3.537-4.2904/10/2003 0.0137 7/14/2003 2.54 0.932 -0.97310/13/2003 0.378 1/13/2004 0.159 -1.8394/13/2004 0.00707 -4.952 7/21/2004 0.0841 -2.476Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.542 -0.6129/16/2002 0.155 -1.864-2.27310/16/2002 0.103 1/13/2003 0.128 -2.0564/10/2003 0.005 -5.2987/16/2003 0.272 -1.30210/14/2003 0.0795 -2.5321/13/2004 0.0658 -2.721

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	0.00343	N/A	-5.675	NO
MW221	Sidegradient	No	0.005	N/A	-5.298	N/A
MW222	Sidegradient	Yes	0.00461	N/A	-5.380	NO
MW223	Sidegradient	Yes	0.0329	N/A	-3.414	NO
MW224	Sidegradient	Yes	0.00207	N/A	-6.180	NO
MW369	Downgradien	t Yes	0.0143	N/A	-4.247	NO
MW372	Downgradien	t Yes	0.00125	N/A	-6.685	NO
MW384	Sidegradient	Yes	0.00228	N/A	-6.084	NO
MW387	Downgradien	t Yes	0.00448	N/A	-5.408	NO
MW391	Downgradien	t Yes	0.00331	N/A	-5.711	NO
MW394	Upgradient	Yes	0.00436	N/A	-5.435	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-48

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: ug/L Methylene chloride **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.156**K** factor**= 2.523 Statistics-Background Data X = 4.813S = 0.750TL(1) = 6.705LL(1)=N/A **Statistics-Transformed Background** X = 1.552LL(2)=N/A

Data

S = 0.229

CV(2) = 0.148

K factor=** 2.523

TL(2) = 2.130

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.609 5 1/15/2003 5 1.609 4/10/2003 5 1.609 7/14/2003 5 1.609 5 10/13/2003 1.609 1/13/2004 5 1.609 4/13/2004 5 1.609 5 7/21/2004 1.609 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 2 0.693 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	No	5	N/A	1.609	N/A
MW221	Sidegradient	No	5	N/A	1.609	N/A
MW222	Sidegradient	No	5	N/A	1.609	N/A
MW223	Sidegradient	No	5	N/A	1.609	N/A
MW224	Sidegradient	Yes	2.21	NO	0.793	N/A
MW369	Downgradien	t No	5	N/A	1.609	N/A
MW372	Downgradien	t No	5	N/A	1.609	N/A
MW384	Sidegradient	Yes	2.03	NO	0.708	N/A
MW387	Downgradien	t Yes	2.03	NO	0.708	N/A
MW391	Downgradien	t No	5	N/A	1.609	N/A
MW394	Upgradient	No	5	N/A	1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-49

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Molybdenum **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor**= 2.523 Statistics-Background Data X = 0.006S = 0.008CV(1)=1.261TL(1) = 0.026LL(1)=N/A **Statistics-Transformed Background** X = -5.747 S = 1.205 CV(2) = -0.210**K factor**=** 2.523 TL(2) = -2.708LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.00558 -5.1891/15/2003 0.00983 -4.6220.0109 -4.519 4/10/2003 7/14/2003 0.00245 -6.0120.00566 -5.17410/13/2003 1/13/2004 0.00572 -5.1644/13/2004 0.001 -6.908 7/21/2004 0.00392 -5.542Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.689 9/16/2002 0.025 -3.689 -6.908 10/16/2002 0.001 1/13/2003 0.001 -6.908 4/10/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.9081/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	No	0.000472	2 N/A	-7.659	N/A
MW221	Sidegradient	Yes	0.00163	N/A	-6.419	NO
MW222	Sidegradient	No	0.00034	1 N/A	-7.984	N/A
MW223	Sidegradient	Yes	0.0039	N/A	-5.547	NO
MW224	Sidegradient	Yes	0.000316	6 N/A	-8.060	NO
MW369	Downgradien	t No	0.001	N/A	-6.908	N/A
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A
MW394	Upgradient	No	0.001	N/A	-6.908	N/A
N/A Pagu	Its identified as N	Ion Detects	turing labo	rotory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-50

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 1.790**K** factor**= 2.523 Statistics-Background Data X = 0.127S = 0.228TL(1) = 0.701LL(1)=N/A **Statistics-Transformed Background** X = -3.617 S = 1.837 CV(2) = -0.508**K factor**=** 2.523 TL(2) = 1.019LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.418	-0.872
1/15/2003	0.738	-0.304
4/10/2003	0.544	-0.609
7/14/2003	0.106	-2.244
10/13/2003	0.0529	-2.939
1/13/2004	0.0209	-3.868
4/13/2004	0.005	-5.298
7/21/2004	0.0192	-3.953
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.05 0.05 0.005 0.005	-2.996 -2.996 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	0.0103	N/A	-4.576	NO
MW221	Sidegradient	Yes	0.0121	N/A	-4.415	NO
MW222	Sidegradient	Yes	0.0373	N/A	-3.289	NO
MW223	Sidegradient	Yes	0.085	N/A	-2.465	NO
MW224	Sidegradient	Yes	0.0111	N/A	-4.501	NO
MW369	Downgradien	t Yes	0.00244	N/A	-6.016	NO
MW372	Downgradien	t No	0.002	N/A	-6.215	N/A
MW384	Sidegradient	No	0.002	N/A	-6.215	N/A
MW387	Downgradien	t Yes	0.00062	7 N/A	-7.375	NO
MW391	Downgradien	t No	0.002	N/A	-6.215	N/A
MW394	Upgradient	Yes	0.0052	N/A	-5.259	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-51

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison UNITS: mV URGA Oxidation-Reduction Potential**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 179.872 S = 86.318 CV(1) = 0.480

K factor=** 2.523

TL(1)= 397.652 **LL(1)=**N/A

Statistics-Transformed Background

X = 4.861 S = 1.252 CV(2) = 0.258

K factor=** 2.523

TL(2) = 8.021

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	205	5.323
1/15/2003	1.95	0.668
4/10/2003	203	5.313
7/14/2003	30	3.401
10/13/2003	107	4.673
1/13/2004	295	5.687
4/13/2004	190	5.247
7/21/2004	319	5.765
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	
Date Collected 8/13/2002	Result 90	4.500
Date Collected 8/13/2002 9/16/2002	Result 90 240	4.500 5.481
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 90 240 185	4.500 5.481 5.220
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 90 240 185 220	4.500 5.481 5.220 5.394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 90 240 185 220 196	4.500 5.481 5.220 5.394 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	414	YES	6.026	N/A	
MW221	Sidegradient	Yes	390	NO	5.966	N/A	
MW222	Sidegradient	Yes	391	NO	5.969	N/A	
MW223	Sidegradient	Yes	366	NO	5.903	N/A	
MW224	Sidegradient	Yes	433	YES	6.071	N/A	
MW369	Downgradien	t Yes	347	NO	5.849	N/A	
MW372	Downgradien	t Yes	303	NO	5.714	N/A	
MW384	Sidegradient	Yes	449	YES	6.107	N/A	
MW387	Downgradien	t Yes	443	YES	6.094	N/A	
MW391	Downgradien	t Yes	359	NO	5.883	N/A	
MW394	Upgradient	Yes	438	YES	6.082	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW220 MW224

MW384

MW387

MW394

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-52

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.138

S= 0.282 **CV(1)**=0.046

K factor**= 2.904

TL(1) = 6.957

LL(1)=5.3179

Statistics-Transformed Background Data

X = 1.813

S = 0.047

CV(2)=0.026

K factor**= 2.904

TL(2)= 1.950

LL(2)=1.6765

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.04	1.798
1/15/2003	6.31	1.842
4/10/2003	6.5	1.872
7/14/2003	6.3	1.841
10/13/2003	6.34	1.847
1/13/2004	6.33	1.845
4/13/2004	6.3	1.841
7/21/2004	5.9	1.775
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 8/13/2002	Result 5.8	1.758
Date Collected 8/13/2002 9/30/2002	Result 5.8 5.93	1.758 1.780
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5.8 5.93 5.42	1.758 1.780 1.690
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5.8 5.93 5.42 6	1.758 1.780 1.690 1.792
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.8 5.93 5.42 6 6.04	1.758 1.780 1.690 1.792 1.798

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Current	Qual tti	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>, ,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	, ,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	6.06	NO	1.802	N/A
MW221	Sidegradient	Yes	6.41	NO	1.858	N/A
MW222	Sidegradient	Yes	6.54	NO	1.878	N/A
MW223	Sidegradient	Yes	6.7	NO	1.902	N/A
MW224	Sidegradient	Yes	6.3	NO	1.841	N/A
MW369	Downgradien	t Yes	6.19	NO	1.823	N/A
MW372	Downgradien	t Yes	6.37	NO	1.852	N/A
MW384	Sidegradient	Yes	6.37	NO	1.852	N/A
MW387	Downgradien	t Yes	6.22	NO	1.828	N/A
MW391	Downgradien	t Yes	6.23	NO	1.829	N/A
MW394	Upgradient	Yes	6.1	NO	1.808	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Potassium URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=1.399**K** factor**= 2.523 Statistics-Background Data X = 6.654S = 9.310TL(1) = 30.144LL(1)=N/A **Statistics-Transformed Background** X = 1.130S = 1.208TL(2) = 4.178

Data

CV(2) = 1.069

K factor=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.902 6.7 1/15/2003 29.7 3.391 3.215 4/10/2003 24.9 7/14/2003 1.13 0.122 10/13/2003 3.43 1.233 1/13/2004 6.71 1.904 4/13/2004 19.3 2.960 7/21/2004 3.97 1.379 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 1.03 0.030 1/13/2003 0.095 1.1 4/10/2003 1.24 0.215 7/16/2003 1.14 0.131 10/14/2003 1.05 0.049 1/13/2004 1.07 0.068

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	2.02	N/A	0.703	NO	
MW221	Sidegradient	Yes	1.18	N/A	0.166	NO	
MW222	Sidegradient	Yes	0.584	N/A	-0.538	NO	
MW223	Sidegradient	Yes	1.36	N/A	0.307	NO	
MW224	Sidegradient	Yes	0.815	N/A	-0.205	NO	
MW369	Downgradien	t Yes	0.519	N/A	-0.656	NO	
MW372	Downgradien	t Yes	2.44	N/A	0.892	NO	
MW384	Sidegradient	Yes	1.59	N/A	0.464	NO	
MW387	Downgradien	t Yes	2.02	N/A	0.703	NO	
MW391	Downgradien	t Yes	1.53	N/A	0.425	NO	
MW394	Upgradient	Yes	1.25	N/A	0.223	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-54

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 36.363 S = 8.666

CV(1)=0.238

K factor=** 2.523

TL(1) = 58.227

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.570 S = 0.222 CV(2) = 0.062

K factor=** 2.523

TL(2) = 4.129

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	35.4	3.567
1/15/2003	40.6	3.704
4/10/2003	51	3.932
7/14/2003	58.2	4.064
10/13/2003	38.1	3.640
1/13/2004	37	3.611
4/13/2004	43.2	3.766
7/21/2004	33.8	3.520
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.493
Date Collected	Result	
Date Collected 8/13/2002	Result 32.9	3.493
Date Collected 8/13/2002 9/16/2002	Result 32.9 29.9	3.493 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 32.9 29.9	3.493 3.398 3.367
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 32.9 29.9 29 27.1	3.493 3.398 3.367 3.300
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 32.9 29.9 29 27.1 24.8	3.493 3.398 3.367 3.300 3.211

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	39.4	NO	3.674	N/A
MW221	Sidegradient	Yes	45.6	NO	3.820	N/A
MW222	Sidegradient	Yes	48	NO	3.871	N/A
MW223	Sidegradient	Yes	48	NO	3.871	N/A
MW224	Sidegradient	Yes	56.5	NO	4.034	N/A
MW369	Downgradien	t Yes	57	NO	4.043	N/A
MW372	Downgradien	t Yes	66.4	YES	4.196	N/A
MW384	Sidegradient	Yes	49.7	NO	3.906	N/A
MW387	Downgradien	t Yes	58.1	NO	4.062	N/A
MW391	Downgradien	t Yes	33.9	NO	3.523	N/A
MW394	Upgradient	Yes	33	NO	3.497	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-55

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.481 **S**= 2.648

CV(1) = 0.253

K factor=** 2.523

TL(1)= 17.161

LL(1)=N/A

Statistics-Transformed Background

X = 2.322

S= 0.239

CV(2) = 0.103

K factor**= 2.523

TL(2) = 2.925

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	10.4	2.342
1/15/2003	9.8	2.282
4/10/2003	15.4	2.734
7/14/2003	14.9	2.701
10/13/2003	13.5	2.603
1/13/2004	10.3	2.332
4/13/2004	14.3	2.660
7/21/2004	10.5	2.351
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.416
Date Collected	Result	
Date Collected 8/13/2002	Result 11.2	2.416
Date Collected 8/13/2002 9/16/2002	Result 11.2 8.3	2.416 2.116
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.2 8.3 8	2.416 2.116 2.079
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.2 8.3 8 8.5	2.416 2.116 2.079 2.140
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.2 8.3 8 8.5 7.9	2.416 2.116 2.079 2.140 2.067

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
Upgradient	Yes	15.6	NO	2.747	N/A	
Sidegradient	Yes	15	NO	2.708	N/A	
Sidegradient	Yes	13.3	NO	2.588	N/A	
Sidegradient	Yes	14.3	NO	2.660	N/A	
Sidegradient	Yes	12.6	NO	2.534	N/A	
Downgradien	t Yes	5.09	NO	1.627	N/A	
Downgradien	t Yes	89.6	YES	4.495	N/A	
Sidegradient	Yes	25	YES	3.219	N/A	
Downgradien	t Yes	46.2	YES	3.833	N/A	
Downgradien	t Yes	21.4	YES	3.063	N/A	
Upgradient	Yes	12	NO	2.485	N/A	
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Sidegradient Downgradien Downgradien Downgradient Downgradient Downgradient Downgradient	Gradient Detected? Upgradient Yes Sidegradient Yes Sidegradient Yes Sidegradient Yes Sidegradient Yes Downgradient Yes Downgradient Yes Sidegradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes	Gradient Detected? Result Upgradient Yes 15.6 Sidegradient Yes 15 Sidegradient Yes 13.3 Sidegradient Yes 14.3 Sidegradient Yes 12.6 Downgradient Yes 5.09 Downgradient Yes 89.6 Sidegradient Yes 25 Downgradient Yes 46.2 Downgradient Yes 21.4	Gradient Detected? Result Result >TL(1)? Upgradient Yes 15.6 NO Sidegradient Yes 15 NO Sidegradient Yes 13.3 NO Sidegradient Yes 14.3 NO Sidegradient Yes 12.6 NO Downgradient Yes 5.09 NO Downgradient Yes 89.6 YES Sidegradient Yes 25 YES Downgradient Yes 46.2 YES Downgradient Yes 21.4 YES	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 15.6 NO 2.747 Sidegradient Yes 15 NO 2.708 Sidegradient Yes 13.3 NO 2.588 Sidegradient Yes 14.3 NO 2.660 Sidegradient Yes 12.6 NO 2.534 Downgradient Yes 5.09 NO 1.627 Downgradient Yes 89.6 YES 4.495 Sidegradient Yes 25 YES 3.219 Downgradient Yes 46.2 YES 3.833 Downgradient Yes 21.4 YES 3.063	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW384

MW387

MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.992**K factor**=** 2.523 Statistics-Background Data X = 9.354S = 9.280TL(1) = 32.768LL(1)=N/A **Statistics-Transformed Background** X = 2.270S = 0.849CV(2) = 0.374**K factor**=** 2.523 TL(2) = 3.262LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	19.7	2.981
1/15/2003	26.1	3.262
4/10/2003	3.56	1.270
7/14/2003	0	#Func!
10/13/2003	21	3.045
1/13/2004	6.32	1.844
4/13/2004	3	1.099
7/21/2004	14.6	2.681
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.639
Date Collected	Result	
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 5.45	2.639 1.696
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 14 5.45 2.49	2.639 1.696 0.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 14 5.45 2.49 18.3	2.639 1.696 0.912 2.907
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 14 5.45 2.49 18.3 -1.45	2.639 1.696 0.912 2.907 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	27	NO	3.296	N/A
MW221	Sidegradient	No	8.47	N/A	2.137	N/A
MW222	Sidegradient	No	2.62	N/A	0.963	N/A
MW223	Sidegradient	No	7.62	N/A	2.031	N/A
MW224	Sidegradient	No	10.4	N/A	2.342	N/A
MW369	Downgradien	t Yes	30.1	NO	3.405	N/A
MW372	Downgradien	t Yes	194	YES	5.268	N/A
MW384	Sidegradient	Yes	88.4	YES	4.482	N/A
MW387	Downgradien	t Yes	630	YES	6.446	N/A
MW391	Downgradien	t No	-4.45	N/A	#Error	N/A
MW394	Upgradient	No	-2.22	N/A	#Error	N/A
NI/A D	14. : 14:£: - 1 N	T D-44-	1		4-4114-41-	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-57

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Total Organic Carbon (TOC)** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 1.494CV(1)=0.493**K** factor**= 2.523 Statistics-Background Data S = 0.737TL(1) = 3.353LL(1)=N/A **Statistics-Transformed Background** X = 0.315CV(2) = 1.279S = 0.402**K factor**=** 2.523 TL(2) = 1.330LL(2)=N/A

Data

Upgradient Wells with Transformed Result

Historical Background Data from

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0001/15/2003 1.1 0.095 0.0004/10/2003 1 7/14/2003 3.3 1.194 10/13/2003 1.8 0.588 1/13/2004 1 0.000 4/13/2004 2 0.693 7/21/2004 3.1 1.131 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.3 0.262 9/16/2002 1 0.000 10/16/2002 1 0.000 1/13/2003 0.470 1.6 4/10/2003 1 0.0007/16/2003 1.4 0.336 10/14/2003 1.3 0.262

1

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.991	NO	-0.009	N/A	
MW221	Sidegradient	Yes	1.01	NO	0.010	N/A	
MW222	Sidegradient	Yes	1.03	NO	0.030	N/A	
MW223	Sidegradient	Yes	1.02	NO	0.020	N/A	
MW224	Sidegradient	Yes	0.962	NO	-0.039	N/A	
MW369	Downgradien	t Yes	1.38	NO	0.322	N/A	
MW372	Downgradien	t Yes	1.35	NO	0.300	N/A	
MW384	Sidegradient	Yes	1.28	NO	0.247	N/A	
MW387	Downgradien	t Yes	1.59	NO	0.464	N/A	
MW391	Downgradien	t Yes	0.802	NO	-0.221	N/A	
MW394	Upgradient	Yes	0.74	NO	-0.301	N/A	
N/A - Resu	lts identified as N	Ion-Detects	luring lah	oratory analysis or	data validation	and were not	

 Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 63.475 S = 163.135 CV(1) = 2.570

K factor**= 2.523

TL(1) = 475.063LL(1)=N/A

Statistics-Transformed Background Data

X=3.103 S=1.145 CV(2)=0.369

K factor=** 2.523

TL(2) = 5.992

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.912 50 1/15/2003 10 2.303 10 2.303 4/10/2003 10 7/14/2003 2.303 10/13/2003 10 2.303 1/13/2004 10 2.303 4/13/2004 10 2.303 7/21/2004 10 2.303 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 50 3.912 9/16/2002 672 6.510 3.912 10/16/2002 50 1/13/2003 36.1 3.586 4/10/2003 10 2.303 7/16/2003 42.7 3.754

22

12.8

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	7.94	N/A	2.072	NO
MW221	Sidegradient	Yes	3.78	N/A	1.330	NO
MW222	Sidegradient	Yes	9.26	N/A	2.226	NO
MW223	Sidegradient	Yes	3.5	N/A	1.253	NO
MW224	Sidegradient	Yes	11.4	N/A	2.434	NO
MW369	Downgradien	t Yes	33.6	N/A	3.515	NO
MW372	Downgradien	t Yes	5.2	N/A	1.649	NO
MW384	Sidegradient	Yes	9.16	N/A	2.215	NO
MW387	Downgradien	t Yes	13.4	N/A	2.595	NO
MW391	Downgradien	t Yes	8.64	N/A	2.156	NO
MW394	Upgradient	Yes	3.58	N/A	1.275	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.091

2.549

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-59

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 8.813
 S= 8.376
 CV(1)=0.951 K factor**= 2.523
 TL(1)=29.946 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.395
 S= 1.449
 CV(2)=1.039 K factor**= 2.523
 TL(2)=5.052 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0001/15/2003 1 0.000 0.0004/10/2003 7/14/2003 1 0.000 1 0.000 10/13/2003 1/13/2004 1 0.000 4/13/2004 1 0.000 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 16 2.773 9/30/2002 20 2.996 10/16/2002 17 2.833 1/13/2003 15 2.708 4/10/2003 10 2.303 7/16/2003 19 2.944 10/14/2003 20 2.996 1/13/2004 16 2.773

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.57	N/A	0.451	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t Yes	0.54	N/A	-0.616	N/A
MW372	Downgradien	t Yes	2.69	N/A	0.990	N/A
MW384	Sidegradient	Yes	0.68	N/A	-0.386	N/A
MW387	Downgradien	t Yes	1.27	N/A	0.239	N/A
MW391	Downgradien	t Yes	9.84	NO	2.286	N/A
MW394	Upgradient	Yes	3.22	N/A	1.169	N/A
N/A - Recu	lts identified as N	Ion-Detects	luring lah	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 0.036
 S= 0.026
 CV(1)=0.722 K factor**= 2.523
 TL(1)=0.101 LL(1)=N/A

 Statistics-Transformed Background
 X= -3.485
 S= 0.525
 CV(2)=-0.151 K factor**= 2.523
 TL(2)=-2.162 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.025 -3.6891/15/2003 0.035 -3.3524/10/2003 0.035 -3.3527/14/2003 0.0389 -3.2470.026 10/13/2003 -3.6501/13/2004 0.02 -3.9124/13/2004 0.02 -3.9127/21/2004 0.02 -3.912Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.1 -2.303 9/16/2002 0.1 -2.30310/16/2002 0.025 -3.6891/13/2003 0.035 -3.352 4/10/2003 0.035 -3.3527/16/2003 0.02 -3.91210/14/2003 0.02 -3.912-3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	0.00469	NO	-5.362	N/A
MW221	Sidegradient	Yes	0.00456	NO	-5.390	N/A
MW222	Sidegradient	Yes	0.00365	NO	-5.613	N/A
MW223	Sidegradient	Yes	0.0035	NO	-5.655	N/A
MW224	Sidegradient	Yes	0.00449	NO	-5.406	N/A
MW369	Downgradien	t No	0.0045	N/A	-5.404	N/A
MW372	Downgradien	t No	0.00415	N/A	-5.485	N/A
MW384	Sidegradient	Yes	0.00334	NO	-5.702	N/A
MW387	Downgradien	t Yes	0.00368	NO	-5.605	N/A
MW391	Downgradien	t No	0.00463	N/A	-5.375	N/A
MW394	Upgradient	Yes	0.00461	NO	-5.380	N/A
NI/A Danie	14. : 14:6: . 1 N	T D-44-	1 1.1.		4-4114-41	1

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Acetone UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.063 S = 0.250

CV(1) = 0.025

K factor=** 2.523

TL(1)= 10.693

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.309

S = 0.024

CV(2) = 0.010

K factor=** 2.523

TL(2) = 2.369

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	10	2.303
10/16/2002	10	2.303
1/13/2003	10	2.303
4/10/2003	10	2.303
7/16/2003	10	2.303
10/14/2003	10	2.303
4/12/2004	10	2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.303
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 10	2.303
Date Collected 8/13/2002 9/30/2002	Result 10 10	2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 10 10 10	2.303 2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 10 10 10 10	2.303 2.303 2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 10 10 10 10 10	2.303 2.303 2.303 2.303 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	No	1.8	N/A	0.588	N/A
MW373	Downgradient	No	2.91	N/A	1.068	N/A
MW385	Sidegradient	No	2.65	N/A	0.975	N/A
MW388	Downgradient	Yes	7.17	NO	1.970	N/A
MW392	Downgradient	Yes	10.6	NO	2.361	N/A
MW395	Upgradient	No	5	N/A	1.609	N/A
MW397	Upgradient	No	5	N/A	1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.258

S = 0.221

CV(1) = 0.856

K factor**= 2.523

TL(1) = 0.815

LL(1)=N/A

Statistics-Transformed Background

X = -2.266 S = 2.485 CV(2) = -1.097

K factor=** 2.523

TL(2) = 4.003

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.194
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 0.824	-0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	-0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	-0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	-0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	-0.194 -1.609 -8.517 -1.013 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	No	0.05	N/A	-2.996	N/A
MW373	Downgradient	No	0.05	N/A	-2.996	N/A
MW385	Sidegradient	No	0.05	N/A	-2.996	N/A
MW388	Downgradient	No	0.05	N/A	-2.996	N/A
MW392	Downgradient	Yes	0.0197	NO	-3.927	N/A
MW395	Upgradient	No	0.05	N/A	-2.996	N/A
MW397	Upgradient	Yes	0.0456	NO	-3.088	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-63

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** Beta activity UNITS: pCi/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.364**K** factor**= 2.523 Statistics-Background Data X = 7.183S = 2.612TL(1)=13.773LL(1)=N/A **Statistics-Transformed Background** X = 1.870S = 0.552 CV(2) = 0.295**K factor**=** 2.523 TL(2) = 3.261LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.086 1.09 9/16/2002 5.79 1.756 10/16/2002 1.920 6.82 1/13/2003 5.01 1.611 4/10/2003 6.1 1.808 7/16/2003 8.51 2.141 10/14/2003 4.99 1.607 1/13/2004 6.58 1.884 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 9.57 2.259 9/16/2002 11 2.398 10/17/2002 9.3 2.230 1/13/2003 8.63 2.155 4/8/2003 10 2.303 7/16/2003 6.89 1.930 10/14/2003 10.1 2.313 1/13/2004 4.55 1.515

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	70.1	YES	4.250	N/A
MW373	Downgradient	Yes	17.3	N/A	2.851	N/A
MW385	Sidegradient	Yes	63.5	YES	4.151	N/A
MW388	Downgradient	Yes	62.2	YES	4.130	N/A
MW392	Downgradient	No	-0.289	N/A	#Error	N/A
MW395	Upgradient	No	3.67	N/A	1.300	N/A
MW397	Upgradient	Yes	12.7	N/A	2.542	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-64

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S= 0.805 **CV(1)**=1.238

K factor=** 2.523

TL(1)=2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030

CV(2) = -0.996

K factor=** 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 2. 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.6090.2 -1.6094/10/2003 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/17/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/8/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.6091/13/2004 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	0.0401	N/A	-3.216	NO
MW373	Downgradient	Yes	1.44	N/A	0.365	NO
MW385	Sidegradient	Yes	0.0608	N/A	-2.800	NO
MW388	Downgradient	Yes	0.0255	N/A	-3.669	NO
MW392	Downgradient	Yes	0.0274	N/A	-3.597	NO
MW395	Upgradient	Yes	0.0216	N/A	-3.835	NO
MW397	Upgradient	Yes	0.00766	N/A	-4.872	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.000

S= 0.000 **CV(1)**=0.000

K factor**= 2.523

TL(1)= 1.000

LL(1)=N/A

Statistics-Transformed Background

X = 0.000

S = 0.000

CV(2)=#Num!

K factor=** 2.523

TL(2) = 0.000

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1	0.000
9/16/2002	1	0.000
10/16/2002	1	0.000
1/13/2003	1	0.000
4/10/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
,	MW370	Downgradient	t Yes	0.436	NO	-0.830	N/A
	MW373	Downgradient	Yes	0.558	NO	-0.583	N/A
	MW385	Sidegradient	Yes	0.31	NO	-1.171	N/A
	MW388	Downgradient	Yes	0.42	NO	-0.868	N/A
	MW392	Downgradient	Yes	0.591	NO	-0.526	N/A
	MW395	Upgradient	Yes	0.476	NO	-0.742	N/A
	MW397	Upgradient	Yes	0.438	NO	-0.826	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 23.103 S = 11.538 CV(1) = 0.499

K factor**= 2.523

TL(1) = 52.213

LL(1)=N/A

Statistics-Transformed Background

X = 2.357 S = 2.411 CV(2) = 1.023

K factor=** 2.523

TL(2) = 8.439

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.965
Date Collected	Result	
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	28.9	NO	3.364	N/A
MW373	Downgradient	Yes	69.8	YES	4.246	N/A
MW385	Sidegradient	Yes	32.1	NO	3.469	N/A
MW388	Downgradient	Yes	27.5	NO	3.314	N/A
MW392	Downgradient	Yes	29.7	NO	3.391	N/A
MW395	Upgradient	Yes	23.4	NO	3.153	N/A
MW397	Upgradient	Yes	18.8	NO	2.934	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=35.313 **S**= 1.250

CV(1) = 0.035

K factor=** 2.523

TL(1) = 38.466

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.564

S = 0.033

CV(2) = 0.009

K factor**= 2.523

TL(2) = 3.648

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	3.555
4/10/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/13/2004	35	3.555
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 40	3.689
Date Collected 8/13/2002 9/16/2002	Result 40 35	3.689 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 40 35 35	3.689 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 40 35 35 35	3.689 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 40 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	No	20	N/A	2.996	N/A
MW373	Downgradient	Yes	10.3	NO	2.332	N/A
MW385	Sidegradient	No	20	N/A	2.996	N/A
MW388	Downgradient	Yes	9.85	NO	2.287	N/A
MW392	Downgradient	Yes	10.1	NO	2.313	N/A
MW395	Upgradient	Yes	10.1	NO	2.313	N/A
MW397	Upgradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.844 S = 11.652 CV(1) = 0.225

K factor**= 2.523

TL(1)= 81.242

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.924 S = 0.229

CV(2) = 0.058

K factor=** 2.523

TL(2) = 4.501

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 62.2 4.130 9/16/2002 64.7 4.170 10/16/2002 62.2 4.130 1/13/2003 63.5 4.151 4/10/2003 64.1 4.160 7/16/2003 64 4.159 10/14/2003 63.2 4.146 1/13/2004 60.6 4.104 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 38.9 3.661 9/16/2002 39.8 3.684 10/17/2002 39.3 3.671 1/13/2003 40.5 3.701 4/8/2003 42.1 3.740 7/16/2003 42 3.738 10/14/2003 40.8 3.709 1/13/2004 41.6 3.728

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	35.8	NO	3.578	N/A
MW373	Downgradient	Yes	40.8	NO	3.709	N/A
MW385	Sidegradient	Yes	29.1	NO	3.371	N/A
MW388	Downgradient	Yes	33.6	NO	3.515	N/A
MW392	Downgradient	Yes	47.3	NO	3.857	N/A
MW395	Upgradient	Yes	39.5	NO	3.676	N/A
MW397	Upgradient	Yes	36.6	NO	3.600	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=5.000
 S= 0.000
 CV(1)=0.000
 K factor**= 2.523
 TL(1)=5.000
 LL(1)=N/A

 Statistics-Transformed Background
 X=1.609
 S= 0.000
 CV(2)=0.000
 K factor**= 2.523
 TL(2)= 1.609
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.609 5 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 5 1/13/2004 1.609 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 5 1.609 1/13/2003 5 1.609 5 4/8/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	No	1	N/A	0.000	N/A
MW373	Downgradient	No	1	N/A	0.000	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradient	No	1	N/A	0.000	N/A
MW392	Downgradient	Yes	0.88	NO	-0.128	N/A
MW395	Upgradient	No	1	N/A	0.000	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Conductivity** UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

K factor=** 2.523

TL(1)= 509.326 **LL(1)=**N/A

Statistics-Transformed Background

X = 5.926 S = 0.136 CV(2) = 0.023

K factor=** 2.523

TL(2) = 6.270

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.775
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	434	NO	6.073	N/A
MW373	Downgradient	Yes	806	YES	6.692	N/A
MW385	Sidegradient	Yes	488	NO	6.190	N/A
MW388	Downgradient	Yes	425	NO	6.052	N/A
MW392	Downgradient	Yes	419	NO	6.038	N/A
MW395	Upgradient	Yes	357	NO	5.878	N/A
MW397	Upgradient	Yes	319	NO	5.765	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-71

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L LRGA Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

S = 0.013

CV(1) = 0.474

K factor**= 2.523

TL(1) = 0.061

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.662 S = 0.406

CV(2) = -0.111

K factor=** 2.523

TL(2) = -2.638

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.0281	-3.572
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.02	-2.996 -2.996 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.02 0.02	-2.996 -2.996 -3.912 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.02 0.02 0.02	-2.996 -2.996 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
,	MW370	Downgradient	t Yes	0.00078	6 NO	-7.149	N/A
	MW373	Downgradient	Yes	0.00043	8 NO	-7.733	N/A
	MW385	Sidegradient	Yes	0.00077	5 NO	-7.163	N/A
	MW388	Downgradient	Yes	0.0007	NO	-7.264	N/A
	MW392	Downgradient	Yes	0.00049	6 NO	-7.609	N/A
	MW395	Upgradient	Yes	0.00068	7 NO	-7.283	N/A
	MW397	Upgradient	Yes	0.00092	NO	-6.991	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-72

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 4.678

S= 2.431 **CV(1)**=0.520

K factor=** 2.523

TL(1)= 10.812

LL(1)=N/A

Statistics-Transformed Background

X = 1.414

S = 0.550

CV(2) = 0.389

K factor**= 2.523

TL(2)=2.802

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	7.29	1.987
9/30/2002	4.03	1.394
10/16/2002	3.85	1.348
1/13/2003	2.36	0.859
4/10/2003	1.14	0.131
7/16/2003	1.76	0.565
10/14/2003	4.05	1.399
1/13/2004	4.26	1.449
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	11.56	2.448
9/16/2002	5.86	1.768
10/17/2002	5.94	1.782
1/13/2003	4.66	1.539
4/8/2003	3.77	1.327
7/16/2003	3.47	1.244
10/14/2003		
10/14/2003	5.34	1.675

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	3.7	NO	1.308	N/A
MW373	Downgradient	Yes	1.98	NO	0.683	N/A
MW385	Sidegradient	Yes	2.59	NO	0.952	N/A
MW388	Downgradient	Yes	4.02	NO	1.391	N/A
MW392	Downgradient	Yes	2.03	NO	0.708	N/A
MW395	Upgradient	Yes	4.92	NO	1.593	N/A
MW397	Upgradient	Yes	5.21	NO	1.651	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

K factor=** 2.523

TL(1) = 305.301

LL(1)=N/A

Statistics-Transformed Background

X = 5.379 S = 0.152 CV(2) = 0.028

K factor=** 2.523

TL(2) = 5.762

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.231
Date Collected	Result	` /
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	236	NO	5.464	N/A		
MW373	Downgradient	Yes	513	YES	6.240	N/A		
MW385	Sidegradient	Yes	230	NO	5.438	N/A		
MW388	Downgradient	Yes	210	NO	5.347	N/A		
MW392	Downgradient	Yes	247	NO	5.509	N/A		
MW395	Upgradient	Yes	146	NO	4.984	N/A		
MW397	Upgradient	Yes	173	NO	5.153	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.400

CV(1) = 1.286S = 0.514

K factor**= 2.523

TL(1)= 1.698

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.197 S = 2.634 CV(2) = -1.199

K factor=** 2.523

TL(2) = 4.449

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.294	-1.224
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	1.33	0.285
4/10/2003	1.31	0.270
7/16/2003	0.2	-1.609
10/14/2003	0.1	-2.303
1/13/2004	0.1	-2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.457
Date Collected	Result	
Date Collected 8/13/2002	Result 1.58	0.457
Date Collected 8/13/2002 9/16/2002	Result 1.58 0.232	0.457 -1.461
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1.58 0.232 0.0002	0.457 -1.461 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1.58 0.232 0.0002 0.453	0.457 -1.461 -8.517 -0.792
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1.58 0.232 0.0002 0.453 0.2	0.457 -1.461 -8.517 -0.792 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	No	0.1	N/A	-2.303	N/A		
MW373	Downgradient	Yes	0.054	N/A	-2.919	NO		
MW385	Sidegradient	No	0.1	N/A	-2.303	N/A		
MW388	Downgradient	Yes	0.0605	N/A	-2.805	NO		
MW392	Downgradient	Yes	0.0916	N/A	-2.390	NO		
MW395	Upgradient	No	0.1	N/A	-2.303	N/A		
MW397	Upgradient	Yes	0.0799	N/A	-2.527	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-75

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Magnesium **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.515**K factor**=** 2.523 Statistics-Background Data X = 9.102S = 4.685TL(1)=20.922LL(1)=N/A **Statistics-Transformed Background** X = 1.423S = 2.408CV(2)=1.692**K factor**=** 2.523 TL(2) = 7.500LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 2.526 12.5 9/16/2002 13 2.565 10/16/2002 0.0127 -4.3661/13/2003 11.2 2.416 4/10/2003 17.5 2.862 7/16/2003 12.9 2.557 10/14/2003 13.4 2.595 1/13/2004 12.4 2.518 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 7.83 2.058 9/16/2002 7.64 2.033 10/17/2002 0.00658 -5.0241/13/2003 6.69 1.901 4/8/2003 7.28 1.985 7/16/2003 7.82 2.057 10/14/2003 7.94 2.072 1/13/2004 7.51 2.016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	12.9	NO	2.557	N/A	
MW373	Downgradient	Yes	27.9	YES	3.329	N/A	
MW385	Sidegradient	Yes	12.8	NO	2.549	N/A	
MW388	Downgradient	Yes	11.9	NO	2.477	N/A	
MW392	Downgradient	Yes	11.7	NO	2.460	N/A	
MW395	Upgradient	Yes	9.88	NO	2.291	N/A	
MW397	Upgradient	Yes	8	NO	2.079	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-76

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.131

S = 0.195 CV

CV(1)=1.487 K factor**= 2.523

TL(1) = 0.624

LL(1)=N/A

Statistics-Transformed Background Data

X=-3.104 **S**= 1.529

CV(2) = -0.493

K factor=** 2.523

TL(2) = 0.755

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 -1.019 0.361 9/16/2002 0.028 -3.57610/16/2002 0.026 -3.6501/13/2003 0.0713-2.6414/10/2003 0.629 -0.4647/16/2003 0.297 -1.21410/14/2003 0.0198 -3.9221/13/2004 0.0126 -4.374Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.466 -0.7649/16/2002 0.077 -2.56410/17/2002 0.028 -3.5761/13/2003 0.0164 -4.110 4/8/2003 0.0407 -3.202-4.092 7/16/2003 0.0167 10/14/2003 0.00555 -5.194-5.298 1/13/2004 0.005

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	0.00151	N/A	-6.496	NO		
MW373	Downgradient	Yes	0.0157	N/A	-4.154	NO		
MW385	Sidegradient	Yes	0.00323	N/A	-5.735	NO		
MW388	Downgradient	Yes	0.0021	N/A	-6.166	NO		
MW392	Downgradient	Yes	0.0122	N/A	-4.406	NO		
MW395	Upgradient	No	0.005	N/A	-5.298	N/A		
MW397	Upgradient	Yes	0.00244	N/A	-6.016	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Methylene chloride UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 5.625

S= 3.074 **CV(1)**=0.547

K factor**= 2.523

TL(1)= 13.381

LL(1)=N/A

Statistics-Transformed Background

X = 1.614

S= 0.483

CV(2) = 0.300

K factor=** 2.523

TL(2) = 2.834

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	14	2.639
9/30/2002	2	0.693
10/16/2002	5	1.609
1/13/2003	5	1.609
4/10/2003	5	1.609
7/16/2003	5	1.609
10/14/2003	5	1.609
1/13/2004	5	1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.485
Date Collected	Result	
Date Collected 8/13/2002	Result 12	2.485
Date Collected 8/13/2002 9/30/2002	Result 12 2	2.485 0.693
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 12 2 5	2.485 0.693 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 12 2 5 5 5	2.485 0.693 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 12 2 5 5 5 5	2.485 0.693 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	No	5	N/A	1.609	N/A	
MW373	Downgradient	No	5	N/A	1.609	N/A	
MW385	Sidegradient	Yes	2.1	NO	0.742	N/A	
MW388	Downgradient	Yes	2.06	NO	0.723	N/A	
MW392	Downgradient	No	5	N/A	1.609	N/A	
MW395	Upgradient	No	5	N/A	1.609	N/A	
MW397	Upgradient	Yes	1.91	NO	0.647	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.011

CV(1)=1.451

K factor**= 2.523

TL(1) = 0.034

LL(1)=N/A

Statistics-Transformed Background

X = -5.990 S = 1.443 CV(2) = -0.241

K factor=** 2.523

TL(2) = -2.349

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00609	-5.101
4/10/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/17/2002	0.001	-6.908
1/13/2003	0.001	-6.908
4/8/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003		
10/1.2002	0.001	-6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

C	Current Quarter Data									
We	ell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
M	W370	Downgradient	No	0.000233	3 N/A	-8.364	N/A			
M	W373	Downgradient	No	0.001	N/A	-6.908	N/A			
M	W385	Sidegradient	Yes	0.00033	2 N/A	-8.010	NO			
M	W388	Downgradient	No	0.001	N/A	-6.908	N/A			
M	W392	Downgradient	No	0.00028	1 N/A	-8.177	N/A			
M	W395	Upgradient	No	0.001	N/A	-6.908	N/A			
M	W397	Upgradient	No	0.001	N/A	-6.908	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-79

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.018

S = 0.020

CV(1)=1.089

K factor**= 2.523

TL(1) = 0.068

LL(1)=N/A

Statistics-Transformed Background

X = -4.540 S = 1.020 CV(2) = -0.225

K factor=** 2.523

TL(2) = -1.965

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/17/2002		
10/1//2002	0.005	-5.298
1/13/2003	0.005 0.00502	-5.298 -5.294
1/13/2003	0.00502	-5.294
1/13/2003 4/8/2003	0.00502 0.005	-5.294 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	0.002	N/A	-6.215	N/A	
MW373	Downgradient	Yes	0.00087	2 N/A	-7.045	NO	
MW385	Sidegradient	Yes	0.00109	N/A	-6.822	NO	
MW388	Downgradient	No	0.002	N/A	-6.215	N/A	
MW392	Downgradient	Yes	0.00101	N/A	-6.898	NO	
MW395	Upgradient	Yes	0.00079	9 N/A	-7.132	NO	
MW397	Upgradient	No	0.002	N/A	-6.215	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-80

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 157.250 S = 52.376 CV(1) = 0.333

K factor=** 2.523

TL(1) = 289.395

LL(1)=N/A

Statistics-Transformed Background

X = 5.003 S = 0.348 CV(2) = 0.069

K factor=** 2.523

TL(2) = 5.880

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 4.745
Date Collected	Result	
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	405	YES	6.004	N/A		
MW373	Downgradient	Yes	347	YES	5.849	N/A		
MW385	Sidegradient	Yes	401	YES	5.994	N/A		
MW388	Downgradient	Yes	426	YES	6.054	N/A		
MW392	Downgradient	Yes	328	YES	5.793	N/A		
MW395	Upgradient	Yes	443	YES	6.094	N/A		
MW397	Upgradient	Yes	439	YES	6.084	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW370

MW373 MW385

MW388

MW392

MW395

MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.048

S = 0.248

CV(1)=0.041 K factor

K factor=** 2.904

TL(1) = 6.767

LL(1)=5.3289

Statistics-Transformed Background

X = 1.799

S = 0.042

CV(2) = 0.023

K factor**= 2.904

TL(2)= 1.920

LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected		LN(Result)
8/13/2002	5.8	1.758
9/16/2002	6	1.792
10/16/2002	5.47	1.699
1/13/2003	6	1.792
4/10/2003	6.18	1.821
7/16/2003	6	1.792
10/14/2003	6.31	1.842
1/13/2004	6.24	1.831
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result)
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 5.84	1.765
Date Collected 8/13/2002 9/30/2002	Result 5.84 6	1.765 1.792
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5.84 6 5.75	1.765 1.792 1.749
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5.84 6 5.75 6	1.765 1.792 1.749 1.792
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5.84 6 5.75 6 6.3	1.765 1.792 1.749 1.792 1.841

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	V umi tei	

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW370	Downgradient	Yes	6.06	NO	1.802	N/A
MW373	Downgradient	Yes	6.16	NO	1.818	N/A
MW385	Sidegradient	Yes	6.55	NO	1.879	N/A
MW388	Downgradient	Yes	6.23	NO	1.829	N/A
MW392	Downgradient	Yes	6.45	NO	1.864	N/A
MW395	Upgradient	Yes	6.03	NO	1.797	N/A
MW397	Upgradient	Yes	6.27	NO	1.836	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Potassium** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.590

S = 0.642

CV(1)=0.404

K factor**= 2.523

TL(1) = 3.208

LL(1)=N/A

Statistics-Transformed Background

X = -0.306 S = 2.457 CV(2) = -8.028

K factor=** 2.523

TL(2) = 5.892

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.00129	-6.653
1/13/2003	1.51	0.412
4/10/2003	1.67	0.513
7/16/2003	1.73	0.548
10/14/2003	1.7	0.531
1/13/2004	1.58	0.457
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.708
Date Collected	Result	
Date Collected 8/13/2002	Result 2.03	0.708
Date Collected 8/13/2002 9/16/2002	Result 2.03	0.708 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2.03 2 0.00145	0.708 0.693 -6.536
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2.03 2 0.00145 1.69	0.708 0.693 -6.536 0.525
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2.03 2 0.00145 1.69 1.73	0.708 0.693 -6.536 0.525 0.548

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	2.86	NO	1.051	N/A	
MW373	Downgradient	Yes	2.92	NO	1.072	N/A	
MW385	Sidegradient	Yes	1.89	NO	0.637	N/A	
MW388	Downgradient	Yes	1.95	NO	0.668	N/A	
MW392	Downgradient	Yes	1.95	NO	0.668	N/A	
MW395	Upgradient	Yes	1.46	NO	0.378	N/A	
MW397	Upgradient	Yes	1.84	NO	0.610	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-83

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 29.560 S = 13.894 CV(1) = 0.470

K factor**= 2.523

TL(1)= 64.616

LL(1)=N/A

Statistics-Transformed Background

X = 2.615 S = 2.411 CV(2) = 0.922

K factor=** 2.523

TL(2) = 8.699

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.561
Date Collected	Result	
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	46.1	NO	3.831	N/A	
MW373	Downgradient	Yes	62	NO	4.127	N/A	
MW385	Sidegradient	Yes	46.4	NO	3.837	N/A	
MW388	Downgradient	Yes	46	NO	3.829	N/A	
MW392	Downgradient	Yes	33.8	NO	3.520	N/A	
MW395	Upgradient	Yes	28.7	NO	3.357	N/A	
MW397	Upgradient	Yes	33.5	NO	3.512	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-84

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.756 S = 2.147

CV(1)=0.200

K factor=** 2.523

TL(1)= 16.173

LL(1)=N/A

Statistics-Transformed Background

X = 2.356

S = 0.203

CV(2) = 0.086

K factor=** 2.523

TL(2) = 2.869

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	10.3	2.332
9/16/2002	9.1	2.208
10/16/2002	8.8	2.175
1/13/2003	9	2.197
4/10/2003	8.3	2.116
7/16/2003	8.2	2.104
10/14/2003	8.3	2.116
1/13/2004	8.2	2.104
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.639
Date Collected	Result	
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 12.8	2.639 2.549
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 14 12.8 12.3	2.639 2.549 2.510
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 14 12.8 12.3 12.7	2.639 2.549 2.510 2.542
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 14 12.8 12.3 12.7 12.8	2.639 2.549 2.510 2.542 2.549

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	19.1	YES	2.950	N/A	
MW373	Downgradient	Yes	149	YES	5.004	N/A	
MW385	Sidegradient	Yes	23.2	YES	3.144	N/A	
MW388	Downgradient	Yes	20	YES	2.996	N/A	
MW392	Downgradient	Yes	21.1	YES	3.049	N/A	
MW395	Upgradient	Yes	12.1	NO	2.493	N/A	
MW397	Upgradient	Yes	11.4	NO	2.434	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

MW392

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.805**K factor**=** 2.523 **TL(1)=** 34.414 Statistics-Background Data X = 11.359 S = 9.138LL(1)=N/A **Statistics-Transformed Background** X = 2.398S = 0.859CV(2) = 0.358**K factor**=** 2.523 TL(2) = 3.246LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	20.8	3.035
9/16/2002	16.2	2.785
10/16/2002	8.28	2.114
1/13/2003	13	2.565
4/10/2003	-9.37	#Func!
7/16/2003	0.826	-0.191
10/14/2003	14.1	2.646
1/13/2004	0	#Func!
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 8/13/2002	Result 6.06	1.802
Date Collected 8/13/2002 9/16/2002	Result 6.06 17.3	1.802 2.851
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 6.06 17.3 25.7	1.802 2.851 3.246
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 6.06 17.3 25.7 20.9	1.802 2.851 3.246 3.040
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 6.06 17.3 25.7 20.9 20.1	1.802 2.851 3.246 3.040 3.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW370	Downgradient	Yes	125	YES	4.828	N/A	
MW373	Downgradient	Yes	36.5	YES	3.597	N/A	
MW385	Sidegradient	Yes	89.9	YES	4.499	N/A	
MW388	Downgradient	Yes	48.9	YES	3.890	N/A	
MW392	Downgradient	No	-4.15	N/A	#Error	N/A	
MW395	Upgradient	No	8.31	N/A	2.117	N/A	
MW397	Upgradient	No	15.3	N/A	2.728	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-86

C-746-S/T Fourth Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.544
 S= 0.856
 CV(1)=0.554
 K factor**= 2.523
 TL(1)= 3.702
 LL(1)=N/A

 Statistics-Transformed Background
 X= 0.325
 S= 0.452
 CV(2)=1.393
 K factor**= 2.523
 TL(2)= 1.465
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.470 1.6 9/16/2002 1.1 0.095 10/16/2002 0.0001 1/13/2003 2 0.693 4/10/2003 3.4 1.224 7/16/2003 2 0.693 10/14/2003 1 0.000 1/13/2004 0.000Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.0009/16/2002 1 0.000 10/17/2002 1 0.000 1/13/2003 1.281 3.6 4/8/2003 1.9 0.642 7/16/2003 1.1 0.095 10/14/2003 0.000 1 0.000 1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	t Yes	1.13	NO	0.122	N/A	
MW373	Downgradient	t Yes	1.35	NO	0.300	N/A	
MW385	Sidegradient	Yes	1.34	NO	0.293	N/A	
MW388	Downgradient	t Yes	0.856	NO	-0.155	N/A	
MW392	Downgradient	t Yes	0.907	NO	-0.098	N/A	
MW395	Upgradient	Yes	0.763	NO	-0.270	N/A	
MW397	Upgradient	Yes	0.77	NO	-0.261	N/A	
MW397	10	Yes	0.77	NO	*		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX)** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=31.513 S= 18.609 CV(1)=0.591

K factor**= 2.523

TL(1) = 78.462

LL(1)=N/A

Statistics-Transformed Background

X = 3.240

S = 0.707 CV(2) = 0.218

K factor=** 2.523

TL(2) = 5.024

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	50	3.912
9/16/2002	50	3.912
10/16/2002	50	3.912
1/13/2003	18.3	2.907
4/10/2003	51.2	3.936
7/16/2003	42.6	3.752
10/14/2003	12.3	2.510
1/13/2004	10	2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 50	3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 50 50 50	3.912 3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 50 50 12	3.912 3.912 3.912 2.485
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 50 50 50 12 19.9	3.912 3.912 3.912 2.485 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	10	N/A	2.303	N/A	
MW373	Downgradient	Yes	8.74	NO	2.168	N/A	
MW385	Sidegradient	Yes	13.4	NO	2.595	N/A	
MW388	Downgradient	Yes	8.02	NO	2.082	N/A	
MW392	Downgradient	Yes	12.1	NO	2.493	N/A	
MW395	Upgradient	Yes	13.8	NO	2.625	N/A	
MW397	Upgradient	Yes	3.52	NO	1.258	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-88

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison Trichloroethene** UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.313

CV(1)=0.780S = 5.701

K factor=** 2.523

TL(1) = 21.695

LL(1)=N/A

Statistics-Transformed Background

X = 1.467

 $S= 1.213 \quad CV(2)=0.827$

K factor=** 2.523

TL(2) = 4.528

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	14	2.639
10/16/2002	12	2.485
1/13/2003	14	2.639
4/10/2003	14	2.639
7/16/2003	13	2.565
10/14/2003	12	2.485
1/13/2004	11	2.398
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1	1.609 1.609 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1 1	1.609 1.609 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	0.64	N/A	-0.446	N/A
MW373	Downgradient	Yes	3.35	N/A	1.209	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradient	Yes	0.43	N/A	-0.844	N/A
MW392	Downgradient	Yes	12.9	NO	2.557	N/A
MW395	Upgradient	Yes	1.95	N/A	0.668	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-89

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Zinc **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.760**K** factor**= 2.523 Statistics-Background Data X = 0.044S = 0.034TL(1)=0.129LL(1)=N/A **Statistics-Transformed Background** X = -3.342 S = 0.659CV(2) = -0.197**K factor**=** 2.523 TL(2) = -1.679LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 -2.303 0.1 9/16/2002 0.1 -2.30310/16/2002 -3.689 0.025 1/13/2003 0.035 -3.352-3.3524/10/2003 0.035 7/16/2003 0.02 -3.91210/14/2003 0.02 -3.9121/13/2004 0.02 -3.912Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 0.1 -2.303 9/16/2002 0.1 -2.30310/17/2002 0.025 -3.6891/13/2003 0.035 -3.352 4/8/2003 0.035 -3.3527/16/2003 0.02 -3.91210/14/2003 0.02 -3.912-3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	0.0043	N/A	-5.449	N/A	
MW373	Downgradient	No	0.00386	N/A	-5.557	N/A	
MW385	Sidegradient	Yes	0.00438	NO	-5.431	N/A	
MW388	Downgradient	Yes	0.00456	NO	-5.390	N/A	
MW392	Downgradient	Yes	0.00356	NO	-5.638	N/A	
MW395	Upgradient	Yes	0.00485	NO	-5.329	N/A	
MW397	Upgradient	Yes	0.00503	NO	-5.292	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-90

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Current Background Comparison UCRS** Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 3.591K factor**= 3.188 Statistics-Background Data X = 1.643CV(1)=2.186TL(1)= 13.091 LL(1)=N/A **Statistics-Transformed Background** X = 1.153S = 0.868CV(2) = 0.753K factor**= 3.188 TL(2) = 1.675LL(2)=N/A

Data

Wells with Transformed Result

Current Background Data from Upgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well Number: MW396 LN(Result) Result 10/9/2017 -0.033#Func!

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Date Collected 1/23/2018 5.34 1.675 1.209 4/19/2018 3.35 -0.3627/19/2018 0.696 10/22/2018 5.24 1.656 1/23/2019 -3.09 #Func! 4/22/2019 -3.26#Func! 4.9 1.589 7/17/2019

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW390	Downgradien	t Yes	50.1	N/A	3.914	YES

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-3

C-746-S/T Fourth Quarter 2019 Statistical Analysis Current Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 27.688 S = 10.130 CV(1) = 0.366

K factor**= 3.188

TL(1)= 59.981 L

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.254 S = 0.408 CV(2) = 0.125

K factor**= 3.188

TL(2) = 4.556

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396		
Date Collected	Result	LN(Result)	
10/9/2017	27.1	3.300	
1/23/2018	37.6	3.627	
4/19/2018	23.1	3.140	
7/19/2018	32.5	3.481	
10/22/2018	11.8	2.468	
1/23/2019	20	2.996	
4/22/2019	43.8	3.780	
7/17/2019	25.6	3.243	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	166	YES	5.112	N/A
MW393	Downgradient	t Yes	58.8	NO	4.074	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW386

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 291.875 S = 94.454 CV(1) = 0.324

S = 0.312

K factor**= 3.188

TL(1)= 592.994 **LL(1)=**N/A

Statistics-Transformed Background

X = 5.633

CV(2) = 0.055

K factor**= 3.188

TL(2)= 6.628

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 10/9/2017 217 5.380 1/23/2018 203 5.313 4/19/2018 275 5.617 7/19/2018 5.866 353 10/22/2018 210 5.347 1/23/2019 231 5.442 4/22/2019 431 6.066 6.028 7/17/2019 415

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	370	NO	5.914	N/A
MW390	Downgradient	t Yes	435	NO	6.075	N/A
MW393	Downgradient	t Yes	272	NO	5.606	N/A
MW396	Upgradient	Yes	227	NO	5.425	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Consultate UNITS: mg/L

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 24.888 **S**= 2.127

CV(1) = 0.085

K factor**= 3.188

TL(1) = 31.668

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.211

S= 0.086

CV(2) = 0.027

K factor**= 3.188

TL(2) = 3.485

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396			
Date Collected	Result	LN(Result)		
10/9/2017	23.5	3.157		
1/23/2018	21.5	3.068		
4/19/2018	23.4	3.153		
7/19/2018	27.6	3.318		
10/22/2018	24.5	3.199		
1/23/2019	25.4	3.235		
4/22/2019	25.5	3.239		
7/17/2019	27.7	3.321		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW390	Downgradient	Yes	56.3	YES	4 031	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Current Background Comparison Technetium-99 UCRS** UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = -0.779S = 7.114CV(1) = -9.129K factor**= 3.188 TL(1)= 21.900 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background** X = 1.494S = 0.590CV(2) = 0.395K factor**= 3.188 TL(2)= 1.828 LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
10/9/2017	-11.3	#Func!
1/23/2018	5.85	1.766
4/19/2018	-10.3	#Func!
7/19/2018	1.84	0.610
10/22/2018	-3.72	#Func!
1/23/2019	6.22	1.828
4/22/2019	5.89	1.773
7/17/2019	-0.714	#Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW390	Downgradien	t Yes	65.7	YES	4.185	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-7

C-746-S/T Fourth Quarter 2019 Statistical Analysis Acetone UNITS: ug/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

7/16/2019

7/17/2019

X = 4.800

S= 0.800 **CV(1)**=0.167

K factor**= 2.523

TL(1) = 6.818

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.546

S = 0.255 CV(2) = 0.165

K factor**= 2.523

TL(2)= 2.190

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/9/2017 1.609 5 1/23/2018 1.609 5 1.609 4/17/2018 7/19/2018 5 1.609 10/15/2018 5 1.609 1/22/2019 5 1.609 4/16/2019 5 1.609

5

Well Number:	MW394	
Date Collected	Result	LN(Result)
10/9/2017	5	1.609
1/23/2018	5	1.609
4/19/2018	5	1.609
7/19/2018	5	1.609
10/22/2018	5	1.609
1/23/2019	5	1.609
4/22/2019	5	1.609

1.8

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW394	Ungradient	Yes	26	YES	3.258	N/A

Conclusion of Statistical Analysis on Current Data

0.588

1.609

Wells with Exceedances

MW394

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2019 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 8.794
 S= 6.467
 CV(1)=0.735
 K factor**= 2.523
 TL(1)= 25.110
 LL(1)= N/A

 Statistics-Transformed Background
 X= 2.188
 S= 0.608
 CV(2)=0.278
 K factor**= 2.523
 TL(2)= 3.135
 LL(2)= N/A

Data

Current Background Data from Upgradient Wells with Transformed Result

337 11 37 1	N 4334000	
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/9/2017	13.1	2.573
1/23/2018	12.8	2.549
4/17/2018	14.4	2.667
7/19/2018	8.64	2.156
10/15/2018	12.2	2.501
1/22/2019	23	3.135
4/16/2019	8.19	2.103
7/16/2019	12.7	2.542
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) #Func!
Date Collected	Result	` ′
Date Collected 10/9/2017	Result -0.603	#Func!
Date Collected 10/9/2017 1/23/2018	Result -0.603 -3.27	#Func! #Func!
Date Collected 10/9/2017 1/23/2018 4/19/2018	Result -0.603 -3.27 8.1	#Func! #Func! 2.092
Date Collected 10/9/2017 1/23/2018 4/19/2018 7/19/2018	Result -0.603 -3.27 8.1 2.94	#Func! #Func! 2.092 1.078
Date Collected 10/9/2017 1/23/2018 4/19/2018 7/19/2018 10/22/2018	Result -0.603 -3.27 8.1 2.94 11.1	#Func! #Func! 2.092 1.078 2.407

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	t Yes	105	YES	4.654	N/A
MW384	Sidegradient	Yes	79.9	YES	4.381	N/A
MW387	Downgradient	t Yes	412	YES	6.021	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW384 MW387

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=25.188 **S**= 3.881

CV(1)=0.154

K factor**= 2.523

TL(1) = 34.979

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.216 S = 0.150

CV(2) = 0.047

K factor**= 2.523

TL(2) = 3.595

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/9/2017	19.9	2.991
1/23/2018	18.8	2.934
4/17/2018	22.6	3.118
7/19/2018	25.5	3.239
10/15/2018	20.6	3.025
1/22/2019	26	3.258
4/16/2019	35.8	3.578
7/16/2019	25.4	3.235

Well Number:	MW394	
Date Collected	Result	LN(Result)
10/9/2017	25.7	3.246
1/23/2018	26	3.258
4/19/2018	25.4	3.235
7/19/2018	27.9	3.329
10/22/2018	25.4	3.235
1/23/2019	27.9	3.329
4/22/2019	24.7	3.207
7/17/2019	25.4	3.235

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	59.4	YES	4.084	N/A
MW387	Downgradient	Yes	42.1	YES	3.740	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Current Background Comparison Chemical Oxygen Demand (COD)** URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 18.906 S = 5.249

CV(1)=0.278

K factor**= 2.523

TL(1)=32.148

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.904

S = 0.275CV(2) = 0.095 K factor**= 2.523

TL(2) = 3.597

LL(2)=N/A

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/9/2017 14.2 2.653 18.9 2.939 1/23/2018 4/17/2018 26.3 3.270 29.3 7/19/2018 3.378 10/15/2018 20 2.996 1/22/2019 20 2.996 4/16/2019 16.4 2.797 7/16/2019 15.9 2.766 Well Number: MW394 Date Collected LN(Result) Result 10/9/2017 12.5 2.526 1/23/2018 12.6 2.534 4/19/2018 18.4 2.912 7/19/2018 27.6 3.318 10/22/2018 11.8 2.468 1/23/2019 20 2.996

20.3

18.3

4/22/2019

7/17/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW223	Sidegradient	Yes	35.7	YES	3.575	N/A
MW369	Downgradient	t Yes	45.3	YES	3.813	N/A
MW372	Downgradient	t Yes	85.3	YES	4.446	N/A
MW394	Upgradient	Yes	40.8	YES	3.709	N/A

Conclusion of Statistical Analysis on Current Data

3.011

2.907

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW223 MW369 MW372

MW394

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2019 Statistical Analysis Current Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 384.563 S = 27.464 CV(1) = 0.071

K factor=** 2.523

TL(1)= 453.854

LL(1)=N/A

Statistics-Transformed Background

X = 5.950 S = 0.073 CV(2) = 0.012

K factor**= 2.523

TL(2)= 6.134

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/9/2017 343 5.838 1/23/2018 331 5.802 5.961 4/17/2018 388 7/19/2018 412 6.021 10/15/2018 342 5.835 1/22/2019 416 6.031 5/30/2019 424 6.050 7/16/2019 5.932 377

Curr Well MW3

Well Number: MW394 Date Collected Result LN(Result) 10/9/2017 405 6.004 1/23/2018 398 5.986 4/19/2018 381 5.943 7/19/2018 392 5.971 10/22/2018 410 6.016 1/23/2019 381 5.943 5/29/2019 383 5.948

370

7/17/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	697	YES	6.547	N/A

Conclusion of Statistical Analysis on Current Data

5.914

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Current Background Comparison Dissolved Solids** URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 200.125 S = 35.302 CV(1) = 0.176

K factor**= 2.523

TL(1)= 289.193 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.285S = 0.171 CV(2)=0.032

K factor**= 2.523

TL(2) = 5.715

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/9/2017	147	4.990
1/23/2018	163	5.094
4/17/2018	183	5.209
7/19/2018	207	5.333
10/15/2018	226	5.421
1/22/2019	209	5.342
4/16/2019	273	5.609
7/16/2019	176	5.170

176	5.170
MW394	
Result	LN(Result)
170	5.136
187	5.231
271	5.602
204	5.318
206	5.328
197	5.283
216	5.375
167	5.118
	MW394 Result 170 187 271 204 206 197 216

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Vec	166	VES	6.144	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-13

C-746-S/T Fourth Quarter 2019 Statistical Analysis Current Bac Magnesium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.528 S = 1.185

CV(1)=0.113

K factor**= 2.523

TL(1) = 13.517

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.348 S = 0.119

CV(2) = 0.051

K factor**= 2.523

TL(2) = 2.648

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected LN(Result) Result 10/9/2017 8.67 2.160 2.084 1/23/2018 8.04 4/17/2018 9.63 2.265 2.407 7/19/2018 11.1 10/15/2018 8.8 2.175 1/22/2019 10.8 2.380 4/16/2019 10.3 2.332 7/16/2019 10 2.303

//10/2019	10	2.505
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/9/2017	11.4	2.434
1/23/2018	11.5	2.442
4/19/2018	11.7	2.460
7/19/2018	12	2.485
10/22/2018	11.3	2.425
1/23/2019	11.4	2.434
4/22/2019	11	2.398
7/17/2019	10.8	2.380

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	22	YES	3.091	N/A
MW387	Downgradient	Yes	17.4	YES	2.856	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2019 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 380.063 S = 66.508 CV(1) = 0.175

0.175 K factor**= 2.523

TL(1)= 547.861

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.926 S = 0.176 CV(2) = 0.030

K factor**= 2.523

TL(2) = 6.371

LL(2)=N/A

>TL(2)

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected LN(Result) Result 10/9/2017 436 6.078 1/23/2018 362 5.892 4/17/2018 305 5.720 7/19/2018 390 5.966 10/15/2018 413 6.023 1/22/2019 361 5.889 5/30/2019 523 6.260 7/16/2019 407 6.009 Well Number: MW394 Date Collected Result LN(Result) 10/9/2017 337 5.820 1/23/2018 264 5.576 4/19/2018 310 5.737 7/19/2018 375 5.927 10/22/2018 386 5.956 1/23/2019 314 5.749 5/29/2019 463 6.138

435

7/17/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result)		
MW220	Upgradient	Yes	414	NO	6.026	N/A		

MW220	Upgradient	Yes	414	NO	6.026	N/A
MW224	Sidegradient	Yes	433	NO	6.071	N/A
MW384	Sidegradient	Yes	449	NO	6.107	N/A
MW387	Downgradient	Yes	443	NO	6.094	N/A
MW394	Upgradient	Yes	438	NO	6.082	N/A

Conclusion of Statistical Analysis on Current Data

6.075

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2019 Statistical Analysis Sodium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 37.831 **S**= 6.594

CV(1)=0.174

K factor**= 2.523

TL(1) = 54.467

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.619

 $S = 0.171 \quad CV(2) = 0.047$

K factor**= 2.523

TL(2) = 4.052

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected LN(Result) Result 10/9/2017 40.9 3.711 1/23/2018 38.8 3.658 3.798 4/17/2018 44.6 3.904 7/19/2018 49.6 10/15/2018 39 3.664 1/22/2019 45.1 3.809 4/16/2019 47.4 3.859 7/16/2019 43.4 3.770

//10/2017	73.7	3.770	
Well Number:	MW394		
Date Collected	Result	LN(Result)	
10/9/2017	33.6	3.515	
1/23/2018	33.5	3.512	
4/19/2018	30.4	3.414	
7/19/2018	30.2	3.408	
10/22/2018	33.4	3.509	
1/23/2019	32.7	3.487	
4/22/2019	30.8	3.428	
7/17/2019	31.9	3.463	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Ves	66.4	VES	4 196	N/Δ

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2019 Statistical Analysis Sulfate UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=15.369 **S**= 5.350

CV(1)=0.348

K factor**= 2.523

TL(1) = 28.867

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.677

S= 0.340 **CV(2)**=0.127

K factor**= 2.523

TL(2) = 3.536

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected LN(Result) Result 10/9/2017 17.6 2.868 1/23/2018 16.4 2.797 4/17/2018 21.1 3.049 7/19/2018 24.7 3.207 10/15/2018 16.9 2.827 1/22/2019

 1/22/2019
 21.4
 3.063

 4/16/2019
 24.1
 3.182

 7/16/2019
 18.5
 2.918

 Well Number:
 MW394

 Date Collected
 Result
 LN(Result)

 10/9/2017
 10.5
 2.351

 1/23/2018
 10.4
 2.342

 4/19/2018
 10.4
 2.342

 7/19/2018
 10.5
 2.351

 4/19/2018
 10.4
 2.342

 7/19/2018
 10.5
 2.351

 10/22/2018
 10.6
 2.361

 1/23/2019
 11
 2.398

 4/22/2019
 10.7
 2.370

 7/17/2019
 11.1
 2.407

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	89.6	YES	4.495	N/A
MW384	Sidegradient	Yes	25	NO	3.219	N/A
MW387	Downgradient	t Yes	46.2	YES	3.833	N/A
MW391	Downgradient	t Yes	21.4	NO	3.063	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2019 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 13.487 **S**= 8.705

CV(1) = 0.645

K factor**= 2.523

TL(1)= 35.449

LL(1)=N/A

Statistics-Transformed Background

X = 2.160

 $S= 1.330 \quad CV(2)=0.616$

K factor**= 2.523

TL(2) = 5.516

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/9/2017 18.3 2.907 1/23/2018 27.4 3.311 19.9 2.991 4/17/2018 7/19/2018 14 2.639

 7/19/2018
 14
 2.639

 10/15/2018
 20.8
 3.035

 1/22/2019
 19.4
 2.965

 4/16/2019
 17.1
 2.839

 7/16/2019
 27.8
 3.325

Well Number: MW394 Date Collected Result LN(Result) 10/9/2017 1.99 0.688 1/23/2018 6.15 1.816 4/19/2018 0.158 -1.8457/19/2018 10.6 2.361 10/22/2018 13.4 2.595 1/23/2019 11.5 2.442 0.936 4/22/2019 2.55

4.74

7/17/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	194	YES	5.268	N/A
MW384	Sidegradient	Yes	88.4	YES	4.482	N/A
MW387	Downgradient	Yes	630	YES	6.446	N/A

Conclusion of Statistical Analysis on Current Data

1.556

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2019 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.211

S= 2.830 **CV(1)**=0.392

K factor**= 2.523

TL(1)= 14.350

LL(1)=N/A

Statistics-Transformed Background

X = 1.902

S = 0.407

CV(2) = 0.214

K factor**= 2.523

TL(2)= 2.929

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/9/2017 8.17 2.100 2.027 1/23/2018 7.59 4/19/2018 5.4 1.686 7/19/2018 7.89 2.066

 7/19/2018
 7.89
 2.066

 10/22/2018
 9.41
 2.242

 1/23/2019
 5.24
 1.656

 4/22/2019
 3.8
 1.335

 7/17/2019
 6.42
 1.859

Well Number: MW397

Date Collected LN(Result) Result 10/9/2017 11.9 2.477 1/23/2018 2.66 0.978 4/17/2018 5.57 1.717 7/19/2018 13.8 2.625 10/15/2018 5.14 1.637 1/23/2019 8.19 2.103 4/16/2019 7.45 2.008 7/16/2019 6.74 1.908

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	70.1	YES	4.250	N/A
MW385	Sidegradient	Yes	63.5	YES	4.151	N/A
MW388	Downgradient	Yes	62.2	YES	4.130	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2019 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=21.838 **S**= 3.808

CV(1)=0.174

K factor**= 2.523

TL(1) = 31.445

LL(1)=N/A

Statistics-Transformed Background

X = 3.069

 $S = 0.177 \quad CV(2) = 0.058$

K factor**= 2.523

TL(2) = 3.516

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/9/2017 25.3 3.231 1/23/2018 24.5 3.199 4/19/2018 3.199 24.5 7/19/2018 27.1 3.300 10/22/2018 24.4 3.195 1/23/2019 27.3 3.307 4/22/2019 25.4 3.235

7/17/2019 24.2 Well Number: MW397

Date Collected LN(Result) Result 10/9/2017 18.7 2.929 1/23/2018 19.4 2.965 4/17/2018 16.8 2.821 7/19/2018 16.9 2.827 10/15/2018 19.3 2.960 1/23/2019 19 2.944 4/16/2019 16.9 2.827 7/16/2019 19.7 2.981

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	69.8	YES	4.246	N/A

Conclusion of Statistical Analysis on Current Data

3.186

Wells with Exceedances
MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Current Background Comparison Conductivity** LRGA UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 346.125 S = 29.209 CV(1) = 0.084

K factor**= 2.523

TL(1)= 419.820

LL(1)=N/A

Statistics-Transformed Background

X = 5.843

S = 0.084

CV(2) = 0.014

K factor**= 2.523

TL(2) = 6.055

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/9/2017 378 5.935 1/23/2018 5.951 384 4/19/2018 5.919 372 396 5.981 7/19/2018 10/22/2018 375 5.927

1/23/2019	359	5.883
5/29/2019	367	5.905
7/17/2019	344	5.841
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/9/2017	333	5.808
1/23/2018	326	5.787
4/17/2018	307	5.727
8/21/2018	326	5.787
10/15/2018	321	5.771
1/23/2019	316	5.756

318

5/29/2019

7/16/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	806	YES	6.692	N/A

Conclusion of Statistical Analysis on Current Data

5.762

5.756

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Current Background Comparison Dissolved Solids LRGA** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 186.500 S = 39.942 CV(1) = 0.214

K factor**= 2.523

TL(1) = 287.273 LL(1) = N/A

Statistics-Transformed Background Data

X = 5.209

S = 0.201CV(2) = 0.039 K factor**= 2.523

TL(2) = 5.715

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/9/2017	163	5.094
1/23/2018	176	5.170
4/19/2018	257	5.549
7/19/2018	203	5.313
10/22/2018	176	5.170
1/23/2019	284	5.649
4/22/2019	173	5.153
7/17/2019	184	5.215

4/22/2019	173	5.153
7/17/2019	184	5.215
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/9/2017	156	5.050
1/23/2018	179	5.187
4/17/2018	124	4.820
7/19/2018	160	5.075
10/15/2018	184	5.215
1/23/2019	160	5.075
4/16/2019	229	5.434
7/16/2019	176	5.170

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	513	YES	6.240	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2019 Statistical Analysis Current I Magnesium UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.549

S= 1.695 **CV(1)**=0.177

K factor**= 2.523

TL(1) = 13.825

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.241

 $S= 0.182 \quad CV(2)=0.081$

K factor**= 2.523

TL(2) = 2.702

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/9/2017 11.4 2.434 1/23/2018 10.8 2.380 4/19/2018 11.4 2.434 7/19/2018 11.7 2.460 10/22/2018 10.7 2.370 1/23/2019 11.2 2.416 4/22/2019 11.1 2.407

Well Number: MW397 Date Collected LN(Result) Result 10/9/2017 8.41 2.129 1/23/2018 8.61 2.153 4/17/2018 6.89 1.930 7/19/2018 7.38 1.999 10/15/2018 8.48 2.138

7.84

7.65

8.63

10.6

7/17/2019

1/23/2019

4/16/2019

7/16/2019

1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Because CV(1) is less than or equal to

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	27.9	YES	3.329	N/A

Conclusion of Statistical Analysis on Current Data

2.361

2.059

2.035

2.155

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2019 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 375.563 S = 78.002 CV(1) = 0.208

K factor**= 2.523

TL(1)= 572.361

LL(1)=N/A

Statistics-Transformed Background

X = 5.904S = 0.241 CV(2) = 0.041

K factor**= 2.523

TL(2) = 6.511

LL(2)=N/A

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/9/2017 385 5.953 195 1/23/2018 5.273 4/19/2018 5.905 367 7/19/2018 336 5.817 10/22/2018 237 5.468 1/23/2019 433 6.071 5/29/2019 477 6.168 7/17/2019 449 6.107 Well Number: MW397 Date Collected Result LN(Result) 10/9/2017 362 5.892 1/23/2018 361 5.889 4/17/2018 319 5.765 8/21/2018 404 6.001 10/15/2018 407 6.009 1/23/2019 394 5.976

488

395

5/29/2019

7/16/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) > TL(2)
MW370	Downgradient	Yes	405	NO	6.004	N/A
MW373	Downgradient	Yes	347	NO	5.849	N/A
MW385	Sidegradient	Yes	401	NO	5.994	N/A
MW388	Downgradient	Yes	426	NO	6.054	N/A
MW392	Downgradient	Yes	328	NO	5.793	N/A
MW395	Upgradient	Yes	443	NO	6.094	N/A
MW397	Upgradient	Yes	439	NO	6.084	N/A

Conclusion of Statistical Analysis on Current Data

6.190

5.979

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-24

C-746-S/T Fourth Quarter 2019 Statistical Analysis **Sulfate** UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.403 S = 0.510

CV(1)=0.049

K factor**= 2.523

TL(1)= 11.689

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.341

S = 0.049CV(2) = 0.021 K factor**= 2.523

TL(2) = 2.466

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/9/2017 10.1 2.313 1/23/2018 10.4 2.342

4/19/2018 10.5 2.351 7/19/2018 10.4 2.342 10/22/2018 10.2 2.322 1/23/2019 10.6 2.361

4/22/2019 10.5 2.351 7/17/2019 2.389 10.9

Well Number: MW397

7/16/2019

Date Collected LN(Result) Result 10/9/2017 2.407 11.1 1/23/2018 11.4 2.434 4/17/2018 9.21 2.220 7/19/2018 9.94 2.297 10/15/2018 10.42.342 1/23/2019 10.1 2.313 4/16/2019 10 2.303

10.7

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	19.1	YES	2.950	N/A
MW373	Downgradient	Yes	149	YES	5.004	N/A
MW385	Sidegradient	Yes	23.2	YES	3.144	N/A
MW388	Downgradient	Yes	20	YES	2.996	N/A
MW392	Downgradient	Yes	21.1	YES	3.049	N/A

Conclusion of Statistical Analysis on Current Data

2.370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

MW392

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-25

C-746-S/T Fourth Quarter 2019 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.014 S = 7.252

S = 0.571

CV(1)=0.557 K factor**= 2.523

TL(1) = 31.310

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.421

CV(2) = 0.236

K factor**= 2.523

TL(2) = 3.861

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/9/2017	3.67	1.300
1/23/2018	15.7	2.754
4/19/2018	9.83	2.285
7/19/2018	9.05	2.203
10/22/2018	13.2	2.580
1/23/2019	10.3	2.332
4/22/2019	11.2	2.416
7/17/2019	4.92	1.593
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/9/2017	13	2.565
1/23/2018	13.2	2.580
4/17/2018	18.9	2.939
7/19/2018	21.9	3.086

18.3

7.12

32.1

5.83

10/15/2018

1/23/2019

4/16/2019

7/16/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	125	YES	4.828	N/A
MW373	Downgradien	Yes	36.5	YES	3.597	N/A
MW385	Sidegradient	Yes	89.9	YES	4.499	N/A
MW388	Downgradien	Yes	48.9	YES	3.890	N/A

Conclusion of Statistical Analysis on Current Data

2.907

1.963

3.469

1.763

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC

5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

January 23, 2020

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Mr. Greene:

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was reviewed by an independent technical reviewer with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the fourth quarter 2019 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Bryan Smith

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/INERT—QUARTERLY, 4th CY 2019 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Numbers: SW07300014, SW07300015, SW07300045 F

Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the fourth quarter 2019 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on October 15, 2019. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 4.39×10^{-4} ft/ft. Additional water level measurements in October (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 4.92×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the administrative application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for October 2019, the groundwater flow direction in the immediate area of the landfill was oriented to the north-northeast.

_

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW139, MW165A, MW173, MW193, MW197, MW380 and MW453), were used to contour the RGA potentiometric surface.

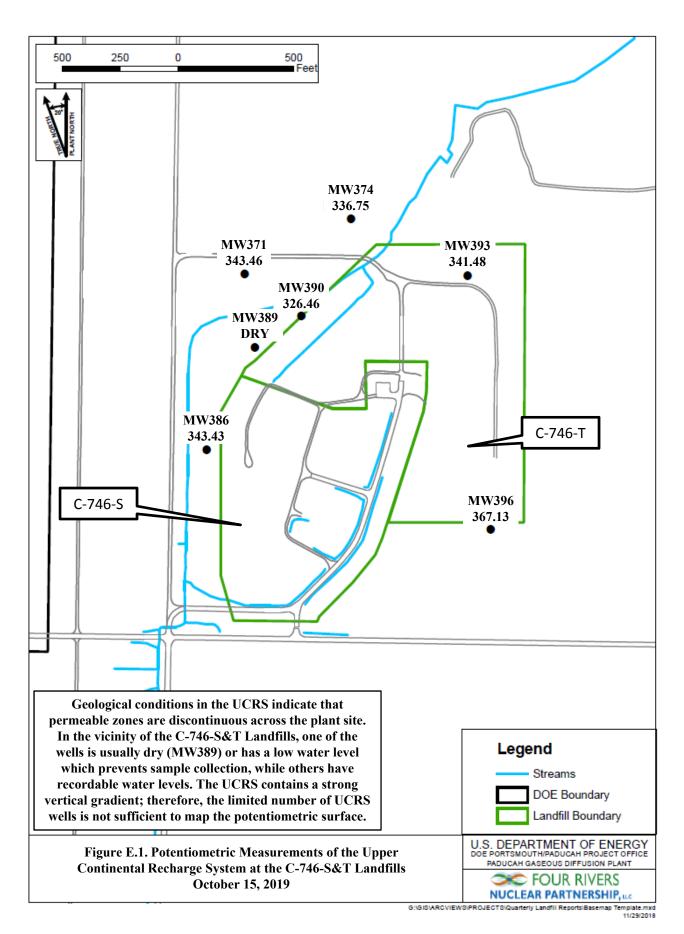


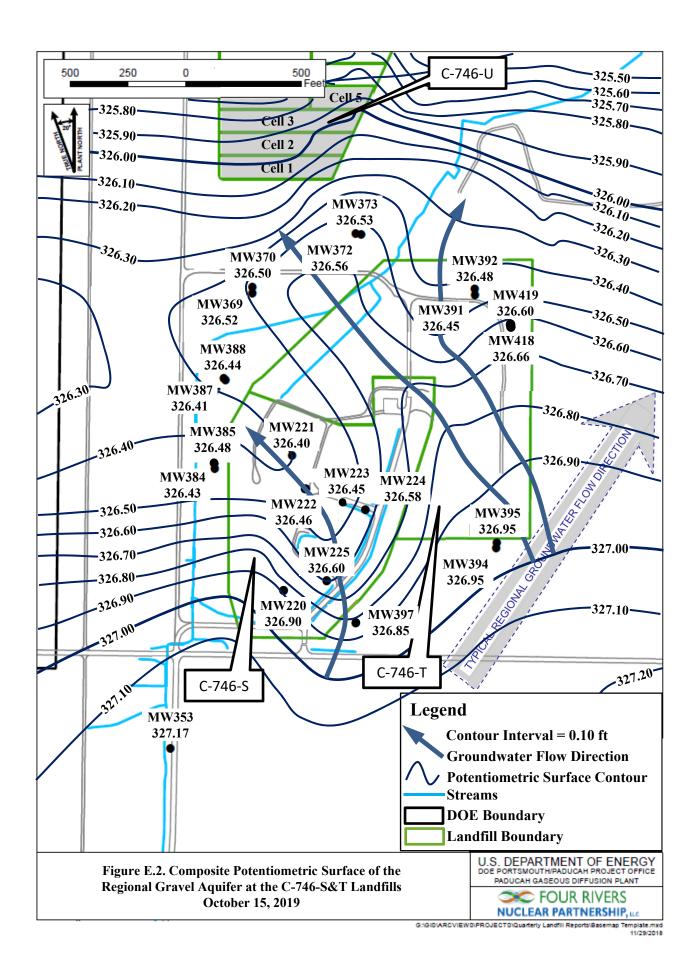
Table E.1. C-746-S&T Landfills Fourth Quarter 2019 (October) Water Levels

			C-746-S&	&T Landfills (O	ctober 2019	9) Water Lev	els			
							Rav	w Data	*Corre	ected Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
10/15/2019	9:42	MW220	URGA	382.27	30.00	0.00	55.37	326.90	55.37	326.90
10/15/2019	9:51	MW221	URGA	391.51	30.00	0.00	65.11	326.40	65.11	326.40
10/15/2019	9:46	MW222	URGA	395.39	30.00	0.00	68.93	326.46	68.93	326.46
10/15/2019	9:48	MW223	URGA	394.49	30.00	0.00	68.04	326.45	68.04	326.45
10/15/2019	9:44	MW224	URGA	395.82	30.00	0.00	69.24	326.58	69.24	326.58
10/15/2019	9:40	MW225	URGA	385.88	30.00	0.00	59.28	326.60	59.28	326.60
10/15/2019	8:04	MW353	LRGA	375.12	30.01	-0.01	47.96	327.16	47.95	327.17
10/15/2019	9:27	MW384	URGA	365.42	30.00	0.00	38.99	326.43	38.99	326.43
10/15/2019	9:28	MW385	LRGA	365.86	30.00	0.00	39.38	326.48	39.38	326.48
10/15/2019	9:29	MW386	UCRS	365.47	30.00	0.00	22.04	343.43	22.04	343.43
10/15/2019	9:30	MW387	URGA	363.65	30.00	0.00	37.24	326.41	37.24	326.41
10/15/2019	9:31	MW388	LRGA	363.64	30.00	0.00	37.20	326.44	37.20	326.44
10/15/2019	9:33	MW389	UCRS	364.26			DRY		DRY	
10/15/2019	9:35	MW390	UCRS	360.60	30.00	0.00	34.14	326.46	34.14	326.46
10/15/2019	9:11	MW391	URGA	366.83	30.00	0.00	40.38	326.45	40.38	326.45
10/15/2019	9:12	MW392	LRGA	366.07	30.00	0.00	39.59	326.48	39.59	326.48
10/15/2019	9:13	MW393	UCRS	366.81	30.00	0.00	25.33	341.48	25.33	341.48
10/15/2019	9:18	MW394	URGA	378.64	30.00	0.00	51.69	326.95	51.69	326.95
10/15/2019	9:19	MW395	LRGA	379.34	30.00	0.00	52.39	326.95	52.39	326.95
10/15/2019	9:20	MW396	UCRS	378.84	30.00	0.00	11.71	367.13	11.71	367.13
10/15/2019	9:23	MW397	LRGA	387.12	30.00	0.00	60.27	326.85	60.27	326.85
10/15/2019	9:15	MW418	URGA	367.37	30.00	0.00	40.71	326.66	40.71	326.66
10/15/2019	9:16	MW419	LRGA	367.22	30.00	0.00	40.62	326.60	40.62	326.60
Reference Bar	ometric I	Pressure	30.00							

Elev = elevation

amsl = above mean sea level

BP = barometric pressure


DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

E-6

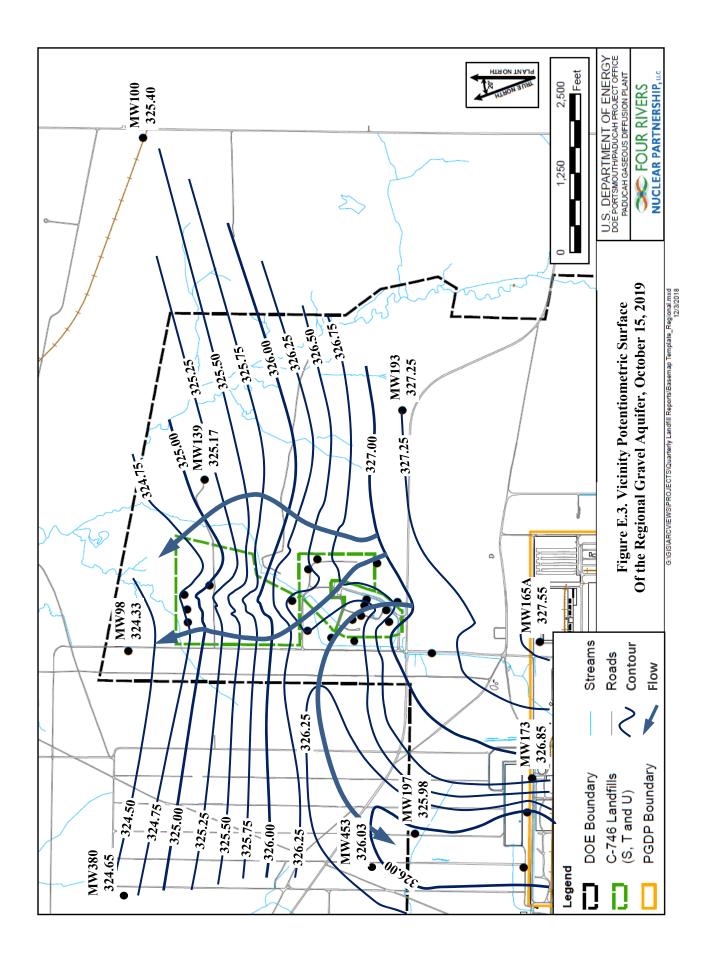


Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	4.39×10^{-4}
Vicinity	4.92 × 10 ⁻⁴

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific l	Discharge (q)	Average Linear Velocity (v)					
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s				
Beneath Landfill	Beneath Landfill Mound								
725	725 0.256		1.12 × 10 ⁻⁴	1.12×10^{-4} 1.27 4.5					
425	0.150	0.187	6.59 × 10 ⁻⁵	0.747	2.64 × 10 ⁻⁴				
<u>Vicinity</u>									
725	725 0.256		1.26 × 10 ⁻⁴	1.43	5.04 × 10 ⁻⁴				
425	0.150	0.209	7.38 × 10 ⁻⁵	0.836	2.95 × 10 ⁻⁴				

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the fourth quarter 2019 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Acetone Technetium-99	MW394 MW372, MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW370, MW373, MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

11/18/2019

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4818	MW370	Beta activity	9310	70.1	pCi/L	50
8004-4808	MW372	Beta activity	9310	105	pCi/L	50
8004-4809	MW384	Beta activity	9310	79.9	pCi/L	50
8004-4810	MW385	Beta activity	9310	63.5	pCi/L	50
8004-4815	MW387	Beta activity	9310	412	pCi/L	50
8004-4816	MW388	Beta activity	9310	62.2	pCi/L	50
8004-4811	MW390	Beta activity	9310	50.1	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	9.84	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	12.9	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills

Gradient S D D D U S S S S D D D D U U S D D D U U U S D D D U U U S D D D U U U S D D D U U U S D D D U U U S D D D U U U S D D D U U U S D D D U U U U	Groundwater Flow System	I		UCRS	3						Ţ	JRG	4								LRGA	١		
Noninterly Well 386 389 390 391 392 393 396 221 222 223 24 384 396 372 387 391 220 394 385 370 373 388 392 395		S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	_		_	U	U
Outrot 2003		386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Ounter 1, 2003 Ounter 1, 2003 Ounter 1, 2003 Ounter 1, 2005 Ounter 1, 2005 Ounter 2, 2010 Ounter 2, 2010 Ounter 3, 2000 Ounter 1, 2005 Ounter 3, 2000 Ounter 3, 2000 Ounter 1, 2005 Ounter 1, 2006 Ounter 2, 2006 Ounter 1, 2006 Ounter 2, 2007 Ounter 3, 2006 Ounter 2, 2007 Ounter 3, 2006 Ounter 4, 2006 Ounter 2, 2005 Ounter 4, 2006 Ounter 4, 2007 Ounter 5, 2007 Ounter 6, 2007 Ounter	_																							
Quarter 4, 2005 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2000 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2001 Quarter 4,		1						*					*											
Quarter 1, 2005 Quarter 4, 2009 Quarter 4, 2008 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2001 Quarter 4, 2000 Quarter 4, 200		1										*								*				\vdash
Ounter 4, 2019 AL ANNIUM Quarter 4, 2003 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2017 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002		1								*														\vdash
APPHA ACTIVITY		1															*							\vdash
Ounter 4, 2002 Ounter 4, 2010 Ounter 2, 2010 Ounter 2, 2003 Ounter 2, 2003 Ounter 2, 2003 Ounter 2, 2003 Ounter 2, 2004 Ounter 2, 2005 Ounter 2, 2006 Ounter 2, 2007 Ounter 3, 2007 Ounter 3, 2007 Ounter 4, 2007 Ounter 3, 2007 Ounter 4, 2007 Ounter 3, 2007 Ounter 4, 2007 Ounter 4, 2007 Ounter 5, 2007 Ounter 6, 2007 Ounter 7, 2007 Ounter																								
Ounter 4, 2008 Ounter 2, 2008 Ounter 2, 2003 ALUMINUM Ounter 1, 2003 AUMINUM Ounter 2, 2003 AUMINUM Ounter 3, 2004 Ounter 2, 2004 Ounter 3, 2004 Ounter 2, 2005 AUMINUM Ounter 2, 2005 AUMINUM Ounter 3, 2004 Ounter 3, 2005 Ounter 4, 2005 Ounter 4, 2005 Ounter 2, 2006 Ounter 2, 2006 Ounter 2, 2006 Ounter 3, 2007 Ounter 4, 2008 Ounter 3, 2009 Ounter 4, 2009 Ounter 3, 2009 Ounter 4, 2009 Ounter 3, 2009 Ounter 3, 2009 Ounter 4, 2009 Ounter 3, 2009 Ounter 4, 2009 Ounter 4, 2009 Ounter 4, 2009 Ounter 2, 2009 Ounter 3, 2009 Ounter 3, 2009 Ounter 4, 2009 Ounter 4, 2009 Ounter 4, 2009 Ounter 5, 2009 Ounter 6, 2009 Ounter 7, 2009		1			_	_																		-
Quarter 4, 2010 ALUMINIM Quarter 1, 2003 ALUMINIM Quarter 2, 2003 ALUMINIM Quarter 2, 2003 ALUMINIM Quarter 2, 2003 ALUMINIM A		1																						\vdash
ACUMINIM		1																						\vdash
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 1, 2006 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018 BARIUM Quarter 1, 2018 BARIUM Quarter 4, 2007 Quarter 1, 2018 BARIUM Quarter 2, 2010 Quarter 3, 2003 Quarter 4, 2002																								
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2017 Quarter 3, 2010 Quarter 4, 2017 Quarter 4, 2018 BARIUM Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2013 Quarter 6, 2013 Quarter 7, 2018 BARIUM Quarter 1, 2018 BARIUM Quarter 2, 2010 Quarter 6, 2003 Quarter 7, 2010 Quarter 7, 2010 Quarter 7, 2018 BARIUM Quarter 1, 2018 BARIUM Quarter 1, 2018 BARIUM Quarter 1, 2018 BARIUM Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2018 BARIUM Quarter 2, 2002		1		*				*					*	*	*									\vdash
Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2017 Quarter 4, 2016 Quarter 3, 2018 BARIUM Quarter 4, 2007 Quarter 5, 2018 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 5, 2018 Quarter 6, 2018 Quarter 6, 2018 Quarter 7, 2010 Quarter 7, 2018 Quarter 7, 2010 Quarter		1																						$\vdash\vdash$
Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 4, 2006 Quarter 1, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 1, 2014 Quarter 1, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 4, 2016 Quarter 1, 2018 BRIAKUIM Quarter 4, 2002		1							*															₩
Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2000 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2013 Quarter 1, 2014 Quarter 1, 2016 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2016 Quarter 2, 2016 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2001 Quarter 4, 2001 Quarter 1, 2018 BARIUM Quarter 4, 2002		1		т.								*		т.										₩
Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2001 Quarter 2, 2001 Quarter 1, 2001 Quarter 2, 2001 Quarter 1, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2000		1		*											•									₩
Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2001 Quarter 3, 2006 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2012 Quarter 3, 2013 Quarter 1, 2014 Quarter 1, 2016 Quarter 1, 2018 BARIUM Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2000		1	-	Ψ.					•			•			- NE									Щ
Quarter 1, 2004 Quarter 1, 2005 * Quarter 2, 2005 * * * * * * * * * * * * * * * * * *		₽							<u> </u>									<u> </u>			 			ш
Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 X X X X Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 X X X X X X X X X X X X X X X X X X		₽		طو				*	<u> </u>						*			<u> </u>			 			ш
Quarter 2, 2005		1											<u> </u>	<u> </u>		<u> </u>			<u> </u>					ш
Quarter 3, 2005		1						<u> </u>					ļ	ļ		ļ			ļ					ш
Quarter 1, 2005									L												L			Ш
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 2, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 2, 2017 Quarter 3, 2018 Quarter 4, 2016 Quarter 2, 2017 Quarter 4, 2016 Quarter 2, 2017 Quarter 4, 2016 Quarter 2, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2008 BETA ACTIVITY Quarter 4, 2000 BETA ACTIVITY Quarter 4, 2000											*											*		
Quarter 2, 2006	Quarter 4, 2005			*				*				*												
Quarter 3, 2006	Quarter 1, 2006							*						*										
Quarter 4, 2006	Quarter 2, 2006			*				*																
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 3, 2012 Quarter 1, 2014 Quarter 3, 2014 Quarter 4, 2004 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2003 Quarter 4, 2002	Quarter 3, 2006	1						*																
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2003 Quarter 4, 2000	Ouarter 4, 2006	1		*				*																
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 4, 2004 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 BARIUM Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2000 PETA ACTIVITY Quarter 4, 2002		1						*										*						\vdash
Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2016 Quarter 1, 2016 Quarter 3, 2018 Quarter 3, 2003 Quarter 4, 2000		1																						\vdash
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2003 BARIUM Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2003		1																						$\vdash\vdash$
Quarter 1, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 1, 2019 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2014 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 1, 2016 Quarter 1, 2017 Quarter 1, 2018 BARIUM Quarter 4, 2003 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■		1																						₩
Quarter 2, 2008 Quarter 4, 2008 Quarter 1, 2009		1													- NE									₩
Quarter 4, 2008		1						不				•			不									₩
Quarter 1, 2009		<u> </u>										*												ш
Quarter 1, 2010																								
Quarter 2, 2010	Quarter 1, 2009																							
Quarter 3, 2010	Quarter 1, 2010							*																
Quarter 1, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2017 Quarter 1, 2017 Quarter 1, 2018 BARIUM Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002	Quarter 2, 2010			*								*												
Quarter 2, 2011	Quarter 3, 2010			*								*			*			*			*			
Quarter 2, 2012	Quarter 1, 2011							*				*												
Quarter 3, 2012	Quarter 2, 2011	1		*								*												
Quarter 3, 2012	Quarter 2, 2012	1		*																				
Quarter 1, 2013		1						*																\vdash
Quarter 3, 2013		t						*				*									t			H
Quarter 1, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 1, 2016 Quarter 2, 2016 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2018 BARIUM Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002		1		*																				Н
Quarter 2, 2014		1	_	1				*					1	1	-	1			1			-	-	$\vdash \vdash$
Quarter 4, 2014		1		1				_	1			*	1	1		1			1		1			$\vdash\vdash$
Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2018 BARIUM Quarter 3, 2003 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002		1	-	*		_	-		-	_	_		<u> </u>	<u> </u>		<u> </u>		-	<u> </u>		-			₩
Quarter 2, 2016		1		*				*	-				-	-		-		-	-		-			$\vdash\vdash$
Quarter 1, 2017 Quarter 4, 2017 Quarter 1, 2018 BARIUM Quarter 3, 2003 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002		1		-				~	-				-	-	*	-		-	-		-			$\vdash\vdash$
Quarter 4, 2017 Quarter 1, 2018 BARIUM Quarter 3, 2003 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002		1		-				*	-				-	-	*	-		-	-		-			$\vdash\vdash$
Quarter 1, 2018		1	-	-				*	-				-	-		-		-	-		-			*
BARIUM Quarter 3, 2003 ■		₽						طو	<u> </u>									<u> </u>			 			*
Quarter 3, 2003 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002		1						*																
Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002																								
BETA ACTIVITY Quarter 4, 2002		1																			<u> </u>			ш
Quarter 4, 2002		_						▝																ш
Quarter 1, 2003									L									L			L			
	Quarter 1, 2003	<u> </u>		<u> </u>				<u> </u>					<u> </u>		<u> </u>	<u> </u>		╚	<u> </u>			<u> </u>	<u> </u>	

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		1	UCRS	3		URGA													LRGA				\neg
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 3, 2006																							
Quarter 4, 2006																							
Quarter 1, 2007																							
Quarter 2, 2007																							
Quarter 3, 2007		1	1											1									
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012										Ŧ							H			H			
Quarter 3, 2012										-							H			┢═			
Quarter 4, 2012																							
Quarter 1, 2013										-													
Quarter 2, 2013																							
Quarter 3, 2013																				Ħ			
Quarter 4, 2013																							
Quarter 1, 2014																							
Quarter 2, 2014			_									_											
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015										1									 				
Quarter 2, 2015										-									 				
Quarter 3, 2015																							
Quarter 4, 2015										=							Ŧ			Ħ			
Quarter 1, 2016										-									 				
Quarter 2, 2016										-									 				
Quarter 3, 2016		1	1							-				1			Ī		\vdash				
Quarter 4, 2016		1	1											1				H	\vdash				
Quarter 1, 2017		1	1											1				-	\vdash	H			
Quarter 2, 2017										=			=				H			H			\vdash
Quarter 3, 2017																							
	_	_	_	_		_	_	_		Ť	_	_	Ë	_	_		Ë	Ë		Ë	_	_	

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		1	UCRS	S						1	URGA	4								LRGA	1		_
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370		388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2017																							
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																	•						
Quarter 4, 2018																							
Quarter 1, 2019																	•						
Quarter 2, 2019																							
Quarter 3, 2019																							
Quarter 4, 2019																							
BROMIDE																							
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004		<u> </u>	*							<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>				<u> </u>				<u> </u>
Quarter 1, 2005			*																				<u> </u>
Quarter 3, 2006			*																				
CALCIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003			*																				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008	1											*							*				
Quarter 3, 2008	1											*							*				
Quarter 4, 2008	1											*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009	1											*							*				
Quarter 1, 2010	1											*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011	1											*							*				
Quarter 2, 2011	1											*	*						*				\vdash
Quarter 3, 2011	1											*	Ë						*				\vdash
Quarter 4, 2011	1											*							*				
Quarter 1, 2012	 					<u> </u>						*							*	-			\vdash
	 					<u> </u>						*							*	-			\vdash
Quarter 2, 2012 Quarter 3, 2012	 	-	-			-				-	-	*	-		-				*	-			<u> </u>
Quarter 3, 2012	Щ					<u> </u>						*		_			_	_	*				<u> </u>

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						Ţ	JRGA	A								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	_	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	_	388	392		
CALCIUM	-	-	-		-												-		-	-	-		-
Quarter 4, 2012												*							*				
Quarter 1, 2013												*						\vdash	*		-		
Quarter 2, 2013												*						H	*		-		-
` /												*						H	*		-		
Quarter 3, 2013												*						₩	*		\vdash		-
Quarter 4, 2013												不						4					
Quarter 1, 2014												- JL						*	*				<u> </u>
Quarter 2, 2014												*						Щ	*				<u> </u>
Quarter 3, 2014												*						*	*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*				Г	*				
Quarter 3, 2016												*							*		H		\vdash
Quarter 4, 2016												*						\vdash	*		\vdash		\vdash
Quarter 1, 2017	-					-			-			*							*		H	H	\vdash
Quarter 2, 2017		-	-									*					-	\vdash	*	-	₩		\vdash
		-	-									*					-	\vdash	*	-	-	\vdash	
Quarter 3, 2017	_					_											_	┰	*		₩	┢	\vdash
Quarter 4, 2017			<u> </u>									*						\vdash			igwdown	\vdash	₩
Quarter 1, 2018												*						$ldsymbol{\sqcup}$	*				<u> </u>
Quarter 2, 2018												*							*				<u> </u>
Quarter 4, 2018												*							*				
Quarter 1, 2019												*							*				
Quarter 2, 2019												*							*				
Quarter 3, 2019												*							*				
Quarter 4, 2019												*	*						*				
CARBON DISULFIDE																							
Quarter 4, 2010											*							\Box					
Quarter 1, 2011												*									*		<u> </u>
Quarter 2, 2017													*										
CHEMICAL OXYGEN DEMANI	D																						
Quarter 1, 2003				*																	_		_
Quarter 2, 2003				*														\vdash			-		
Quarter 3, 2003				*			*			*								-					
Quarter 4, 2003				*														H			-		-
Quarter 1, 2004	*			*														\vdash			\vdash	H	\vdash
	*	-	-														-	\vdash	<u> </u>	-	₩	H	\vdash
Quarter 1, 2004	*		<u> </u>			<u> </u>											<u> </u>	╁┸┙	 		\vdash	┢┷	₩
Quarter 1, 2005	*					_											_	┢┷	<u> </u>		\vdash		₩
Quarter 2, 2005										- JL		4					_	\vdash	<u> </u>			\vdash	₩
Quarter 3, 2005	*									*		*						ш	<u> </u>		*		ldash
Quarter 4, 2005	*									*								igsqcut	<u> </u>				Ц_
Quarter 1, 2006	*																		<u> </u>				
Quarter 2, 2006	*	\Box																L		\Box			\Box
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 2, 2007	*																						
Quarter 3, 2007	*		1																				\vdash
Quarter 4, 2007	*																				\vdash		\vdash
Quarter 1, 2008	*	-	 																	-	\vdash		\vdash
Quarter 2, 2008	*		 															\vdash			₩	\vdash	\vdash
,	*	-	-														-	\vdash	-	-	 	\vdash	₩
Quarter 3, 2008			-						ļ									┢	<u> </u>		\vdash		\vdash
Quarter 4, 2008	*		<u> </u>															\vdash	<u> </u>		igwdot	\vdash	<u> </u>
Quarter 1, 2009	*		<u> </u>															ш	<u> </u>	<u> </u>	igsqcut	Ш	<u> </u>
Quarter 2, 2009	*																	ш	<u> </u>	*			<u> </u>
				i	i l		i		i	i	i		i	i			ı	. '	i	ı	1 !	1	I
Quarter 3, 2009	*																						_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		-	UCRS	3						Ţ	JRGA	A]	LRGA	A.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well		_	390	393	396	221	222	223	224	384	369	372		391	220	394	385	370		388	392	395	397
CHEMICAL OXYGEN DEMANI		-										- / -	-							-			
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 3, 2011	*																						
	*																						
Quarter 4, 2011 Quarter 1, 2012	*																						
` /																							
Quarter 1, 2013	*																						
Quarter 3, 2013	*																						
Quarter 3, 2014	*								*				*					*					
Quarter 4, 2014							*																
Quarter 2, 2015																*							
Quarter 3, 2015															*								
Quarter 3, 2016		\Box	*			L					*									\Box			
Quarter 4, 2016																	*						
Quarter 2, 2017							*																
Quarter 3, 2017	*														*								
Quarter 4, 2017						*																	
Quarter 2, 2018														*								*	
Quarter 3, 2018												*											
Quarter 4, 2018												Ė											*
Quarter 2, 2019					*							*		*					*				-
					•							*	*	Ť					*			*	*
Quarter 3, 2019	4			ų.				.			ų.		Ψ.			ı.			•			*	•
Quarter 4, 2019	*			*				*			*	*				*							
CHLORIDE			46																				
Quarter 1, 2003			*																				
Quarter 2, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				
Quarter 3, 2005			*																				
Quarter 4, 2005			*																				
Quarter 1, 2006																		*					
Quarter 2, 2006			*																				
Quarter 3, 2006			*																				
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*																				
Quarter 3, 2007			*																				
Quarter 4, 2007			*									1											
Quarter 1, 2008			*									 											
Quarter 2, 2008			*																				
Quarter 3, 2008	-	-	*			-	-			-			-		-					-			-
			*			_						 					-						_
Quarter 4, 2008	_					<u> </u>																_	<u> </u>
Quarter 1, 2009			*									ļ											
Quarter 2, 2009			*																				
Quarter 3, 2009			*									L											
Quarter 4, 2009			*																				
Quarter 1, 2010		\Box	*			L														\Box			\bigsqcup
Quarter 2, 2010			*																				
Quarter 3, 2010			*																				
Quarter 4, 2010			*																				
		_																		_			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR	S						Ī	URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHLORIDE																							
Quarter 2, 2011			*																				
Quarter 3, 2011			*																				
Quarter 4, 2011			*																				
Quarter 3, 2012			*																				Ī
Quarter 3, 2013			*																				
Quarter 4, 2013			*																				
Quarter 4, 2014			*																				
Quarter 2, 2019																					*		
CHROMIUM																							
Quarter 4, 2002																							$\overline{}$
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2009																							
Quarter 1, 2019																							
COBALT																							
Quarter 3, 2003							*																П
CONDUCTIVITY																							
Quarter 4, 2002										*									*				
Quarter 1, 2003	1	i –	*							*									*				
Quarter 2, 2003	1	i –	*							*									*				
Quarter 3, 2003	1	i –	*					*		*									*				
Quarter 4, 2003			*							*									*				
Quarter 1, 2004																			*				
Quarter 2, 2004										*									*				
Quarter 3, 2004										*									*				
Quarter 4, 2004			*							*									*				
Quarter 1, 2005										*		*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005																			*				
Quarter 4, 2005										*		*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007	1	i –										*					*		*				
Quarter 1, 2008	1	i –										*							*				
Quarter 2, 2008	1	i –										*							*				
Quarter 3, 2008	1	i –										*					*		*				
Quarter 4, 2008	1	i –										*							*				
Quarter 1, 2009	1	i –										*							*				
Quarter 2, 2009	1	i –										*							*				
Quarter 3, 2009	1	i –										*							*				
Quarter 4, 2009	1	i –										*					*		*				
Quarter 1, 2010	1	i –										*							*				
Quarter 2, 2010	1	i –										*							*				
Quarter 3, 2010	1	i –										*							*				
Quarter 4, 2010	1	i –										*							*				
Quarter 1, 2011	1	i –								*		*							*				
Quarter 2, 2011	1											*							*				
Quarter 3, 2011	1	t										*							*				T
Quarter 4, 2011	1	t										*							*				T
Quarter 1, 2012	1	1								1	*	*							*				T
Quarter 2, 2012	1	 										*							*				\vdash
Quarter 3, 2012	1	1								1	1	*							*				T
			_	_				_	_						_			_					_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System Gradient Monitoring Well CONDUCTIVITY Quarter 4, 2012	S 386	D	D 390	D 393	U 396	S 221	S 222	S	S	S	JRGA D	D	D	D	U	U	S	D	D	LRGA D	D	U	U
Monitoring Well CONDUCTIVITY Quarter 4, 2012																							U
CONDUCTIVITY Quarter 4, 2012							222	223	224	384	369	372	387	391	220	394	385	370			392		
Quarter 4, 2012																							
												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*							*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016																			*				
Quarter 3, 2016												*							*				
Quarter 4, 2016																			*				
Quarter 1, 2017																			*	<u> </u>			
Quarter 2, 2017						<u> </u>									Щ				*				<u> </u>
Quarter 3, 2017																			*				
Quarter 4, 2017																			*				_
Quarter 1, 2018																			*				
Quarter 2, 2018																			*				
Quarter 3, 2018 Quarter 4, 2018																			*				
Quarter 1, 2019																			*				
Quarter 2, 2019																			*				
Quarter 3, 2019																			*				
Quarter 4, 2019												*							*				
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004			*									*							*				
Quarter 2, 2004										*		*							*				
Quarter 3, 2004										*		*							*				
Quarter 4, 2004										*		*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007																			*				
Quarter 2, 2007										*		*							*				
Quarter 3, 2007										*		*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
												*							*				
Quarter 3, 2008											-	*						\vdash	*	 	-		†
										*		不							不				
Quarter 3, 2008										*		*							*				
Quarter 3, 2008 Quarter 4, 2008										*			*										

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S							URGA	A								LRG	A		_
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS																							
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				<u> </u>
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010										*		*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*	*						*				
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							*				<u> </u>
Quarter 3, 2013												*							*				<u> </u>
Quarter 4, 2013												*	,1.						*				<u> </u>
Quarter 1, 2014	!											*	*						*	<u> </u>			<u> </u>
Quarter 2, 2014												*							*				<u> </u>
Quarter 3, 2014									*			*	*						*				<u> </u>
Quarter 4, 2014												*	*						*				—
Quarter 1, 2015												*							*				₩
Quarter 2, 2015												*							*				₩
Quarter 3, 2015									4			*						4	*				—
Quarter 4, 2015									*			*						*	*				₩
Quarter 1, 2016												*							*				₩
Quarter 2, 2016												*	*	*					*				—
Quarter 3, 2016												*							* +				!
Quarter 4, 2016												*							*				!
Quarter 1, 2017												*							*				
Quarter 2, 2017												*		<u>.</u>	*				*				-
Quarter 3, 2017												*		*	不				*				!
Quarter 4, 2017												*							*				-
Quarter 1, 2018												*							*				├
Quarter 2, 2018														<u>.</u>									-
Quarter 3, 2018												*		*					*				-
Quarter 4, 2018												*							*				├
Quarter 1, 2019																			*				-
Quarter 2, 2019	 	-				-	-					*	*	-	-				*	 	-		₩
Quarter 4, 2019												*	不						*				_
Quarter 4, 2019 IODIDE												*							_				
Quarter 4, 2002																					*		
Quarter 2, 2003	1	-				*	-						-	-	-					-	_		-
Quarter 3, 2003	1	-				Ť	-						*	-	-					-	-		-
Quarter 3, 2003 Quarter 1, 2004	 			*		_							~							_			<u> </u>
Quarter 3, 2010	 			٠,٠																	*		_
Quarter 2, 2013	 									*											-		<u> </u>
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003	 						-			*	*	*	*	-									_
Quarter 3, 2003	 						*	*	*	*	*	*	-	1	1						1		
Quarter 4, 2003	1	-				-	~	-	-	-T	*		-	-	-					-	-		-
Quarter 1, 2004	1	-				-	-				*		-	-	-					-	-		-
Quarter 1, 2004 Quarter 2, 2004	1	-				-	-			*	*		-	-	-					-	-		-
Quarter 3, 2004 Quarter 3, 2004	1	-				-	-			*			-	-	-					-	-		-
Quarter 4, 2004 Quarter 4, 2004	 									*													<u> </u>
Vanition 1, 2001	_	<u> </u>	_	_	_	<u> </u>	_	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Maintoning Mai	roundwater Flow System			UCRS	S							URGA	4]	LRGA	1		
Moniforing Well 386 380 390 393 396 221 222 223 224 384 369 372 387 391 220 394 385 370 373 388 392 39 390 201		S			_	U	S	S	S	S	_	_		D	D	U	U	S	D				U	U
BONN		386																					395	397
Ounter 1, 2005 Ounter 2, 2006 Ounter 2, 2006 Ounter 3, 2006 Ounter 3, 2006 Ounter 3, 2006 Ounter 3, 2006 Ounter 4, 2007 Ounter 2, 2007 Ounter 2, 2008 Ounter 3, 2008 Ounter 3, 2008 Ounter 4, 2008 Ounter 4, 2003 Ounter 4, 2003 Ounter 4, 2003 Ounter 5, 2006 Ounter 5, 2006 Ounter 6, 2007 Ounter 6, 2008 Ounter 7, 2008 Ounter 7, 2008 Ounter 1, 2004 Ounter 9, 2008 Ounter 1, 2004 Ounter 2, 2008 Ounter 2, 2009 Ounter 3, 2009 Ounter 4, 2009 Ounter 4, 2009 Ounter 4, 2006 Ounter 4, 2009 Ounter 5, 2001 Ounter 6, 2001 Ounter 7, 2001 Ounter																								
Ouarter 1, 2005 Ouarter 2, 2006 Ouarter 2, 2006 Ouarter 3, 2006 Ouarter 3, 2006 Ouarter 2, 2007 Ouarter 2, 2008 Ouarter 3, 2008 Ouarter 4, 2003 Ouarter 2, 2007 Ouarter 2, 2008 Ouarter 3, 2009 Ouarter 3, 2009 Ouarter 3, 2009 Ouarter 4, 2009 Ouarter 4, 2009 Ouarter 4, 2005 Ouarter 4, 2005 Ouarter 4, 2005 Ouarter 4, 2006 Ouarter 4, 2007 Ouarter 4, 2007 Ouarter 4, 2007 Ouarter 4, 2009 Ouarter 5, 200													*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4,												*	*											
Quarter 2, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 200								*																
Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2001 Quarter 4, 200													*											
Quarter 1, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 1, 2003 ** Quarter 1, 2003 ** Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 2, 2006 Quarter 2, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2001 Quarte												*												
Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2008												*	*											
Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2003 ** Quarter 1, 2003 ** Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2004 ** Quarter 4, 2004 Quarter 2, 2004 ** Quarter 4, 2004 Quarter 2, 2004 ** Quarter 4, 2004 Quarter 2, 2004 ** Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 5, 2001 Quarter 6, 2001 Quarte												*												
Quarter 3, 2008 MACNESTIM Quarter 2, 2003 ** Quarter 2, 2003 ** Quarter 2, 2003 ** Quarter 4, 2003 Quarter 2, 2003 ** Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013													*											
MAGNESIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 4, 2004 Quarter 4, 2006 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2006 Quarter 1, 2006 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2007 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2008 Quarter 6, 2008 Quarter 6, 2008 Quar																								-
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 P Quarter 4, 2003 P Quarter 4, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2013 Quarter 4, 2013																								
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 * Quarter 1, 2004 * Quarter 3, 2004 * Quarter 1, 2004 * Quarter 2, 2004 * Quarter 3, 2004 Quarter 2, 2004 * Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 4,				*																				
Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 *													*							*				
Quarter 1, 2004								*																
Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2013 Quarter 3, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013				*									*							*				
Quarter 2, 2004			 												*									\vdash
Quarter 4, 2004			t																					
Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 8, 2009 Quarter 9, 200			t	*									*							*				
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 8, 2009 Quarter 9, 2009 Quarter 9, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013				*									*							*				
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 2, 2012 Quarter 3, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 ** ** ** ** ** ** ** ** **	· · · · · · · · · · · · · · · · · · ·		t										*							*				
Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 5, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2013 Quarter 4, 2010 Quarter 5, 2011 Quarter 6, 2013 Quarter 7, 2013 Quarter 9, 201	· · · · · · · · · · · · · · · · · · ·												*							*				
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 5, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 7, 2010 Quarter 8, 2010 Quarter 9, 2011 Quarter 9, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013													*							*				<u> </u>
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2013 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2013 Quarter 3, 2010 Quarter 2, 2011 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2012 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 5, 2013 Quarter 6, 2013 Quarter 9, 2013 Quarter 9, 2014 Quarter 9, 2014 Quarter 9, 2015 Quarter 9, 2015 Quarter 9, 2016 Quarter 9, 2017 Quarter 9, 2018 Quarter 9, 2013	· · · · · · · · · · · · · · · · · · ·												*							*				
Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 5, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2007 Quarter 4, 2009 Quarter 5, 2010 Quarter 6, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 9, 2011 Quarter 9, 2011 Quarter 9, 2011 Quarter 9, 2012 Quarter 9, 2012 Quarter 9, 2013													*							*				
Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 2, 2013 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2013 ** Quarter 4, 2012 Quarter 5, 2012 Quarter 6, 2013 Quarter 7, 2013 Quarter 7, 2013 Quarter 9, 2013 Quarter 9	·																							
Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 ** Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 ** Quarter 4, 2018 ** Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 ** Quarter 4, 2012 ** Quarter 4, 2012 Quarter 4, 2013 ** Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 ** Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 4	,												*											
Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 ** Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 ** Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 ** Quarter 4, 2013 ** Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2017 Quarter 4, 2018 ** Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 8, 2010 Quarte																								-
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 5, 2011 Quarter 6, 2011 Quarter 7, 2011 Quarter 7, 2011 Quarter 8, 2011 Quarter 9, 2012 Quarter 9, 2012 Quarter 9, 2012 Quarter 9, 2013																								-
Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 ** ** ** ** ** ** ** ** **																								-
Quarter 4, 2007 # # # Quarter 1, 2008 # # # Quarter 2, 2008 # # # Quarter 3, 2008 # # # Quarter 4, 2008 # # # Quarter 1, 2009 # # # Quarter 2, 2009 # # # Quarter 3, 2009 # # # Quarter 4, 2009 # # # Quarter 1, 2010 # # # Quarter 2, 2010 # # # Quarter 3, 2010 # # # Quarter 4, 2010 # # # Quarter 2, 2011 # # # Quarter 3, 2011 # # # Quarter 4, 2011 # # # Quarter 3, 2012 # # # Quarter 4, 2012 # # # Quarter 4, 2012 # #		—	-																					\vdash
Quarter 1, 2008																								-
Quarter 2, 2008 * * * <	· · · · · · · · · · · · · · · · · · ·																							
Quarter 3, 2008 *	· · · · · · · · · · · · · · · · · · ·		-																					
Quarter 4, 2008 * * * Quarter 1, 2009 * * * Quarter 2, 2009 * * * Quarter 3, 2009 * * * Quarter 4, 2009 * * * Quarter 1, 2010 * * * Quarter 2, 2010 * * * Quarter 3, 2010 * * * Quarter 4, 2010 * * * Quarter 4, 2010 * * * Quarter 4, 2011 * * * Quarter 2, 2011 * * * Quarter 4, 2011 * * * Quarter 1, 2012 * * * Quarter 2, 2012 * * * Quarter 4, 2012 * * * Quarter 1, 2013 * * * Quarter 4, 2013 * * *		—	-																					\vdash
Quarter 1, 2009 *			-																					
Quarter 2, 2009 * * * *		<u> </u>																						-
Quarter 3, 2009 * * * * Quarter 4, 2009 * * * Quarter 1, 2010 * * Quarter 2, 2010 * * Quarter 3, 2010 * * Quarter 4, 2010 * * Quarter 1, 2011 * * Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 3, 2013 * Quarter 4, 2013 *		<u> </u>																						-
Quarter 4, 2009 * * * * *	· · · · · · · · · · · · · · · · · · ·	 	 	 			_			-				*										
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 ** ** ** ** ** ** ** ** **	· · · · · · · · · · · · · · · · · · ·	 	-											-										
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 ** ** ** ** ** ** ** ** **		 																						
Quarter 3, 2010 * * * Quarter 4, 2010 * * * Quarter 1, 2011 * * * Quarter 2, 2011 * * * Quarter 3, 2011 * * * Quarter 4, 2011 * * * Quarter 1, 2012 * * * Quarter 2, 2012 * * * Quarter 3, 2012 * * * Quarter 4, 2012 * * * Quarter 4, 2013 * * * Quarter 3, 2013 * * * Quarter 4, 2013 * * *		 												*										<u> </u>
Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 5, 2012 Quarter 7, 2012 Quarter 7, 2012 Quarter 8, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 ** ** ** ** ** ** ** Quarter 4, 2013 ** ** ** Quarter 4, 2013 ** ** ** ** Quarter 4, 2013 ** ** ** Quarter 4, 2013 ** ** ** Quarter 4, 2013		 												_										
Quarter 1, 2011																								
Quarter 2, 2011 * * * * * Quarter 3, 2011 * * * * * Quarter 4, 2011 * * * * * Quarter 1, 2012 * * * * * Quarter 2, 2012 * * * * * Quarter 3, 2012 * * * * * Quarter 4, 2012 * * * * * Quarter 1, 2013 * * * * * Quarter 2, 2013 * * * * * Quarter 3, 2013 * * * * * Quarter 4, 2013 * * * * *																								
Quarter 3, 2011 *		-	 	 										*										
Quarter 4, 2011 # # # # #		<u> </u>	1	-						 	-	-	4	~			\vdash			ŧ				₩
Quarter 1, 2012 *		<u> </u>	<u> </u>				<u> </u>			 														-
Quarter 2, 2012 *		<u> </u>	<u> </u>				<u> </u>			 														-
Quarter 3, 2012 * * * * * Quarter 4, 2012 * * * * * Quarter 1, 2013 * * * * * Quarter 2, 2013 * * * * * Quarter 3, 2013 * * * * * Quarter 4, 2013 * * * * *		<u> </u>	<u> </u>				<u> </u>			 														├
Quarter 4, 2012 * * * * Quarter 1, 2013 * * * * Quarter 2, 2013 * * * * Quarter 3, 2013 * * * * Quarter 4, 2013 * * * *		<u> </u>	<u> </u>	-										<u> </u>										<u> </u>
Quarter 1, 2013 * * * Quarter 2, 2013 * * * Quarter 3, 2013 * * * Quarter 4, 2013 * * *		<u> </u>	<u> </u>	-																				₩
Quarter 2, 2013 * * * Quarter 3, 2013 * * * Quarter 4, 2013 * * *		<u> </u>	<u> </u>	ļ						<u> </u>				*										├
Quarter 3, 2013 * Quarter 4, 2013 *		<u> </u>	<u> </u>	ļ						<u> </u>														<u> </u>
Quarter 4, 2013 * * *		<u> </u>	<u> </u>	ļ																				
		<u> </u>	<u> </u>							<u> </u>														
		<u> </u>	<u> </u>							<u> </u>			*									Ш		<u> </u>
Quarter 1, 2014 * *	uarter 1, 2014	Щ								<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					*	*				<u> </u>

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		1	UCRS	S							URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
MAGNESIUM																							
Quarter 2, 2014												*	*						*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*	*						*				<u> </u>
Quarter 1, 2015												*	*						*				<u> </u>
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				<u> </u>
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				1
Quarter 4, 2016												*		*					*				
Quarter 1, 2017												*		*					*				
Quarter 2, 2017												*											
Quarter 3, 2017												*		*									
Quarter 4, 2017												*							*				
Quarter 1, 2018												*	*						*				
Quarter 2, 2018												*											
Quarter 3, 2018												*											
Quarter 4, 2018												*	*	*					*				
Quarter 1, 2019												*	-	*					*				
Quarter 2, 2019												*							*				-
Quarter 3, 2019												*	*						*				-
Quarter 4, 2019												*	*						*				-
MANGANESE												т .	т .						т.				
Quarter 4, 2002																					*		
							*	*													т.		-
Quarter 3, 2003							*	*															
Quarter 4, 2003 Quarter 1, 2004							*	•															_
							*																
Quarter 2, 2004							*	*															
Quarter 4, 2004							*	•															├
Quarter 1, 2005							不														<u>.</u>		<u> </u>
Quarter 3, 2005																					*		<u> </u>
Quarter 3, 2009	*																						
OXIDATION-REDUCTION POT	ENT.	IAL	at.																				<u> </u>
Quarter 4, 2003			*																				Ь—
Quarter 2, 2004			*																				<u> </u>
Quarter 3, 2004			*															*					Ь—
Quarter 4, 2004			*			*												٠.					Щ
Quarter 1, 2005			*															*					Щ
Quarter 2, 2005	*		*																				Щ
Quarter 3, 2005	*		*																				<u> </u>
Quarter 4, 2005		ļ	*				ļ				ļ	ļ	ļ		ļ						ļ		<u> </u>
Quarter 2, 2006			*																				<u> </u>
Quarter 3, 2006			*															*					<u> </u>
Quarter 4, 2006		ļ	*				ļ				ļ	ļ	ļ		ļ						ļ		<u> </u>
Quarter 1, 2007			*				L.																Щ
Quarter 2, 2007			*				*																Щ
Quarter 3, 2007			*				*																<u> </u>
Quarter 4, 2007			*			Ļ.																	<u> </u>
Quarter 1, 2008			*			*			*														<u> </u>
Quarter 2, 2008	*		*	*		*							*				*		*	*			<u> </u>
Quarter 3, 2008			*	*		*							*				*		*	*			
Quarter 4, 2008			*	*		*	*	*	*				*				*	*		*			
Quarter 1, 2009			*				*	*	*				*	*				*		*			L
Quarter 3, 2009			*	*		*											*	*	*	*			
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*											*	*	*	*			
		_			_		_				_	_	_		_	_					_		

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		-	UCRS	S						1	URG	A]	LRGA	A.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
OXIDATION-REDUCTION POT	ENT	IAL																					
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*	*		*			*		*		*	*	*	*			
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*	<u> </u>	*		*		<u> </u>		*	*	*	*	*		
Quarter 3, 2014	*		*	*		*				<u> </u>	4.						*	*	*	*	45		<u> </u>
Quarter 4, 2014	*		*	*	11.	,	,1.	,1.	41.		*	,1.	*	41.	,1.	gl.	*	*	*	*	*	41.	.1.
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*		*	*	*	*	*	12	10	120	*		110	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*		*	*	*	*	*	*	*	*	ىد		*		*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*	•	*	<u>.</u>	*	*		*	*	*	*
Quarter 2, 2016	*		*	*	*	*	<u>.</u>	*	*	*			*	*	*	*	*	*	¥	*	*	*	*
Quarter 3, 2016	*			*	*	不	*	*	不	*			*	*			*	*	*	*		*	*
Quarter 4, 2016	*		*	*	*		不	*	*	不			*		*		*	*	*	*	*	*	*
Quarter 1, 2017	*		*	*	*			*	*						不		*	不		*	*	不	*
Quarter 2, 2017	*		*	*	*												*	*	*	*	*	*	*
Quarter 3, 2017	*		*	*	*	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*	*
Quarter 4, 2017	*		*	*	*	*	т.	~	-	т.	~		т.	т —	т.		-	*	*	*	*	т —	*
Quarter 1, 2018 Quarter 2, 2018	*		*	*	*	т-											*	*	*	*	*	*	*
Quarter 3, 2018	*		*	*	*	*	*	*	*								*	*	*	*	*	*	*
Quarter 4, 2018	*		*	*	*	*				*			*		*		*	*	*	*	*		*
Quarter 1, 2019	*		*	*	*	*	*	*		-4-	*						*	*	*	*	*	*	*
Quarter 2, 2019	*		*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2019	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2019	*		*	*	*				*	*			*		*	*	*	*	*	*	*	*	*
PCB-1016	-																						<u> </u>
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												
Quarter 3, 2005							*				*												\vdash
Quarter 1, 2006							Ė				*												
Quarter 2, 2006											*												
Quarter 4, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007												*											
Quarter 3, 2007											*												
Quarter 2, 2008											*	*											
Quarter 3, 2008											*												
Quarter 4, 2008											*												
Quarter 1, 2009											*												
Quarter 2, 2009											*												
Quarter 3, 2009											*												\vdash
Quarter 4, 2009											*												
Quarter 1, 2010			-			-	-			-	*		-		-		-	-					\vdash
Quarter 2, 2010	_	-				_					*	-											\vdash
Quarter 2, 2010 Quarter 3, 2010	_	-				_					*	-											\vdash
Quarter 3, 2010 Quarter 4, 2010		-	-			-	-			-	*	-	-		-		-	-					<u> </u>
Quarter 4, 2010	Щ					_				_	*						_				Щ		_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	I		UCRS	S						,	URGA	A								LRGA	1		—
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370		388	392	395	397
PCB-1232																							
Quarter 1, 2011											*												
PCB-1248																							
Quarter 2, 2008												*											
PCB-1260																							
Quarter 2, 2006																		*					
pH																							
Quarter 4, 2002																	*						
Quarter 2, 2003	1																*						
Quarter 3, 2003	1																*						
Quarter 4, 2003	1						*										*						
Quarter 1, 2004	1						*										*						
Quarter 2, 2004	1																*						
Quarter 3, 2004	1																*						
Quarter 4, 2004	l																*						
Quarter 3, 2005	l									*							*				*		
Quarter 4, 2005	1									*							*						
Quarter 1, 2006	1																*						
Quarter 2, 2006	1																*						
Quarter 3, 2006	1																*						
Quarter 3, 2007																	*						
Quarter 4, 2007																	*						
Quarter 4, 2008																	*						
Quarter 1, 2009																	*						
Quarter 1, 2011																	*						
Quarter 2, 2011											*												
Quarter 3, 2011											*												
Quarter 1, 2012														*									
Quarter 1, 2013										*			*				*						
Quarter 4, 2014																					*		
Quarter 2, 2016																		*	*				
POTASSIUM																							
Quarter 4, 2002																		*	*				
Quarter 3, 2004																			*				
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				
Quarter 4, 2005	L																		*				
Quarter 2, 2006	L																		*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				
Quarter 3, 2013																			*				
RADIUM-226																							
Quarter 4, 2002	匚		*										*	*							*		
Quarter 2, 2004																			*				
Quarter 2, 2005									*														
Quarter 1, 2009	匚										*												
Quarter 3, 2014									*			*											
Quarter 4, 2014			*								*							*					
Quarter 1, 2015	匚		*				*			*		*						*					
Quarter 2, 2015			*				*			*		*						*					
Quarter 3, 2015	<u>L</u>		*	L		L	<u></u>	L	L	<u></u>			<u></u>		<u></u>			<u></u>	<u></u>	<u></u>		L	<u></u>

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		-	UCRS	S						1	URG	4								LRGA	Α.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
RADIUM-226																							
Quarter 4, 2015					*	*									*		*				*	*	
Quarter 2, 2016			*						*		*	*	*	*	*	*		*					
Quarter 3, 2016																		*					1
Quarter 4, 2016	*		*			*			*				*		*					*		*	
Quarter 1, 2017			*							*	*							*					
Quarter 2, 2017																	*	*		*	*		
Quarter 3, 2017					*				*	*	*									*			
Quarter 4, 2017																		*		*			
Quarter 1, 2018												*						*		*			_
Quarter 4, 2018													*				*						
RADIUM-228																							
Quarter 2, 2005																							-
Quarter 3, 2005							=				_												
Quarter 4, 2005			=																				
Quarter 1, 2006							_		_														-
SELENIUM					_																		
Quarter 4, 2002																							
Quarter 4, 2002 Quarter 1, 2003	1	-	_			_																	├
					_																	-	_
Quarter 2, 2003 Quarter 3, 2003		-				-																	-
					_																		_
Quarter 4, 2003			_																				
SODIUM																			*		*		-
Quarter 4, 2002				ų.					ı.	.	.								*		不		├
Quarter 1, 2003				*					*	*	*		<u>.</u>										<u> </u>
Quarter 2, 2003				*			<u>.</u>	4		*	*		*										<u> </u>
Quarter 3, 2003							*	*	4	*													<u> </u>
Quarter 4, 2003							*		*	*				-14									<u> </u>
Quarter 1, 2004									*	*				*									Ь—
Quarter 2, 2004										*													<u> </u>
Quarter 3, 2004										*													<u> </u>
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				<u> </u>
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				<u> </u>
Quarter 4, 2005									*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006									*														
Quarter 3, 2006									*	*		*							*				
Quarter 4, 2006									*	*							*						
Quarter 1, 2007									*			*											
Quarter 2, 2007	1								*	*													t
Quarter 3, 2007									*														
Quarter 4, 2007	1								*														
Quarter 1, 2008			 		-		 		*	-	-	 	 	-	 						 		1
Quarter 3, 2008	1		-		-		-		-	-	-	*	-	-	-						-		
	 	-	<u> </u>	_		-	<u> </u>	_	*	*		- T	<u> </u>		<u> </u>			_		_	<u> </u>	_	
Quarter 1, 2008	1	-	 			-	 		*	·r		*	 		-				*		-		₩
Quarter 1, 2009	<u> </u>	 				<u> </u>			*										*				₩
Quarter 3, 2009	<u> </u>	 				<u> </u>			ىد			*											₩
Quarter 4, 2009			<u> </u>				<u> </u>		*				<u> </u>		<u> </u>						<u> </u>		<u> </u>
Quarter 1, 2010			ļ				ļ			<u> </u>		*	ļ		ļ						ļ		<u> </u>
Quarter 2, 2010		L								*		*											<u> </u>
Quarter 3, 2010										*													<u></u>
Quarter 4, 2010									*	*													
Quarter 1, 2011										*													
Quarter 2, 2011									*														
Quarter 4, 2011																			*				
		1																					

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S							URG	4								LRGA	A.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SODIUM																							
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
Quarter 2, 2014									*		*	*							*				-
Quarter 3, 2014									-		-	*							*				
Quarter 4, 2014									*	*		*	*						-				-
Quarter 1, 2015									-	т		т .	*										-
Quarter 2, 2015												*	-10										-
Quarter 3, 2015										*		*											-
Quarter 4, 2015									*	*		*											-
Quarter 2, 2016			-				-		_	_	*	_					-	-		-			\vdash
Quarter 3, 2016 Quarter 3, 2016			-				-				*	-					-	-		-			*
Quarter 1, 2017	1	-				_				*	*		*					*					_
Quarter 2, 2017 Quarter 2, 2017			-				-		*	*	*	-	*				-	_		-			\vdash
Quarter 2, 2017 Quarter 2, 2018	1	-				_			_	*	~		*										
Quarter 2, 2018 Quarter 3, 2018	1	-				_							T	*									
Quarter 1, 2019													*	~									-
Quarter 2, 2019													*										-
Quarter 4, 2019												*	Ψ.										
STRONTIUM-90												~											
Quarter 2, 2003																							
Quarter 1, 2004										Ŧ													-
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				1
Quarter 3, 2003										*		*	*						*				-
Quarter 4, 2003										*		*	*						*				-
Quarter 1, 2004										*		*	*					*	*				-
Quarter 2, 2004										*		*	*				*	*	*	*			1
Quarter 3, 2004									*	*		*	*					*	*				1
Quarter 4, 2004										*		*	*					*	*				1
Quarter 1, 2005										*		*	*				*	*	*				-
Quarter 2, 2005										*		*	*					*	*				-
Quarter 3, 2005										*		*	*				*	*	*				-
Quarter 4, 2005										*		*	*					*	*	*			-
Quarter 1, 2006										*		*	*				*	*	*	*			
` '	-	-	-				-		*	*	-	*	*				*	*	*	*			₩
Quarter 2, 2006	 	-	<u> </u>			<u> </u>	<u> </u>		*	*		*	*				*	_~	*	*			├
Quarter 4, 2006	-	-				<u> </u>														*			-
Quarter 4, 2006	-	-				<u> </u>			*	*		*	*				*		*	34c			├
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007			<u> </u>				<u> </u>		*	*		*	*				*	,,,	*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008			ļ				ļ	L_		*	<u> </u>	*	*	L_			*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
Quarter 4, 2009	*									*		*	*				*	*	*				
Quarter 1, 2010	*								*	*		*	*				*		*				
				_	_	_		_	_								_	_					_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Graedene	Groundwater Flow System		UCRS	3							URGA	Α								LRGA	Ι.		
Monifornia Well Section Sect	Gradient	S	 		U	S	S	S	S	_	_		D	D	U	U	S	D		_		U	U
NUMBER		_						_															397
Danter 1, 2010 Danter 4, 2010 Danter 4, 2011 Danter 4, 2012 Danter 4, 2012 Danter 4, 2012 Danter 4, 2012 Danter 4, 2013 Danter 5, 2013 Danter 6, 2013 Danter 6, 2013 Danter 7, 2014 Danter 7, 2015 Danter 7, 2016 Danter 7, 2016	SULFATE																						
Quarter 4, 2010	Quarter 2, 2010								*	*		*	*				*	*	*	*			
Danter 1, 2011	Quarter 3, 2010									*		*	*				*	*	*	*			
Danter 2, 2011	Quarter 4, 2010	*								*		*	*				*	*	*				
Dauter 1, 2011	Quarter 1, 2011	*								*		*	*				*	*	*				
Quanter 4, 2011	Quarter 2, 2011	*								*		*	*	*			*	*	*	*			
Quarter 1, 2012	Quarter 3, 2011	*								*		*	*	*			*	*	*	*			
Daurier 2, 2012	Quarter 4, 2011	*								*		*	*				*	*	*	*			
Deuter 1, 2012 Deuter 1, 2013 Deuter 1, 2013 Deuter 2, 2014 Deuter 2, 2015 Deuter 3, 2015 Deuter 3, 2015 Deuter 3, 2015 Deuter 3, 2015 Deuter 2, 2016 Deuter 2, 2017 Deuter 3, 2017 Deuter 3, 2017 Deuter 4, 2017 Deuter 2, 2017 Deuter 4, 2017 Deuter 5, 2017 Deuter 6, 2017 Deuter	Quarter 1, 2012	*								*		*	*				*	*	*	*			
Quarter 4, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2019 Quarter 2, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 7, 2006 Quarter 8, 2006 Quarter 9, 200	Quarter 2, 2012	*								*		*	*				*	*	*	*			
Quarter 1, 2013	Quarter 3, 2012	*								*		*	*				*	*	*	*			
Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 4, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 7, 2006 Quarter 6, 2009 Quarter 7, 2006 Quarter 6, 2009 Quarter 7, 2006 Quarter 7, 2006 Quarter 6, 2009 Quarter 7, 2006 Quarter 6, 2009 Quarter 7, 2006 Quarter 7, 200	Quarter 4, 2012									*		*	*				*	*	*	*			
Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2000 Quarter 2, 2003 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 6, 200	Quarter 1, 2013									*		*	*				*	*	*	*			
Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 ****** ******* ***** ***** ***** ****	Quarter 2, 2013									*		*	*	*			*	*	*	*			
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 ** ** ** ** ** ** ** ** **	Quarter 3, 2013									*		*	*	*			*	*	*	*			
Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 5, 2017 Quarter 5, 2017 Quarter 5, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 7, 2017 Quarter 9, 2018 Quarter 9, 2018 Quarter 9, 2019 Quarter 9, 201	Quarter 4, 2013									*		*	*				*	*	*	*			
Quarter 3, 2014	Quarter 1, 2014							*		*		*	*				*	*	*	*			
Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2000 Quarter 5, 200	Quarter 2, 2014									*		*	*	*			*	*	*	*			
Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 4, 2019 Quarter 3, 2019 *** *** *** *** *** *** *** *** ***	Quarter 3, 2014									*		*	*	*			*	*	*	*			
Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 1, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 3, 2019 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 6, 200	Quarter 4, 2014									*		*	*				*	*	*	*			
Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2006 * * * * * * * * * * * * * * * * * * *	Quarter 1, 2015									*		*	*				*	*	*	*			
Quarter 1, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 200	Quarter 2, 2015									*	*	*	*	*	*		*	*	*	*			
Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2000 Quarter 2, 2004 Resident and the control of	Quarter 3, 2015							*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 1, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2005 Quarter 3, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 X X X X X X X X X X X X X	Quarter 4, 2015									*		*	*	*			*		*	*			
Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2000 Quarter 3, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 6, 200	Quarter 1, 2016							*		*		*	*	*			*	*	*	*			
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 6, 200	Quarter 2, 2016							*		*		*	*	*	*		*	*	*	*			
Quarter 1, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 4, 2019 ** ** ** ** ** ** ** ** ** ** ** ** **	Quarter 3, 2016							*		*		*	*	*	*		*	*	*	*			
Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2001 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 6, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 6, 200	Quarter 4, 2016												*					*					
Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 3, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 ** ** ** ** ** ** ** ** ** ** ** ** *	Quarter 1, 2017																						
Quarter 1, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 ** ** ** ** ** ** ** ** ** ** ** ** **	Quarter 2, 2017																						
Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 ** * * * * * * * * * * * * * * * * *								*															
Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 ** * * * * * * * * * * * * * * * * *															*								
Quarter 3, 2018	, ,										4											<u> </u>	
Quarter 4, 2018											*		*									\vdash	
Quarter 1, 2019								*					.		*							\vdash	
Quarter 2, 2019 Quarter 3, 2019								- JE							- JE							\vdash	
Quarter 3, 2019																						\vdash	
Quarter 4, 2019			*																		*	\vdash	
Comparison of								*							~							\vdash	
Quarter 4, 2002	, ,		~							~		•	~	Α.			<u> </u>	~	•	~	•		
Quarter 1, 2003																			*				
Quarter 2, 2003	,												*				*						
Quarter 3, 2003		*	*							*													
Quarter 1, 2003		H																		*			\vdash
Quarter 1, 2004										*		*							*				\vdash
Quarter 2, 2004																							
Quarter 3, 2004 *	Quarter 2, 2004																			*			
Quarter 4, 2004 * <td>Quarter 3, 2004</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td>	Quarter 3, 2004		*									*					*		*				
Quarter 2, 2005 * <td>Quarter 4, 2004</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td></td>	Quarter 4, 2004		*							*		*	*				*	*	*				
Quarter 2, 2005 * <td>Quarter 1, 2005</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td>	Quarter 1, 2005		*							*		*	*				*			*			
Quarter 3, 2005 * <td>Quarter 2, 2005</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td>	Quarter 2, 2005		*							*			*				*	*	*	*			
Quarter 4, 2005 * <td>Quarter 3, 2005</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td>	Quarter 3, 2005		*							*			*				*	*	*	*			
Quarter 2, 2006 *	Quarter 4, 2005		*							*		*	*				*		*	*			
Quarter 2, 2006 * * * * * * Quarter 3, 2006 * * * * * * * Quarter 4, 2006 * * * * * * *	Quarter 1, 2006									*		*	*						*	*			
Quarter 3, 2006 * * * * * * Quarter 4, 2006 * * * * *	Quarter 2, 2006		*							*			*				*	*	*	*			
(amar 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9	Quarter 3, 2006		*							*			*				*	*	*	*			
	Quarter 4, 2006	*								*		*	*						*	*			
	Quarter 1, 2007		*							*			*				*		*	*			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URG	A								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372		391	220	394	385	370		388	392	395	397
TECHNETIUM-99																							
Quarter 2, 2007			*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*						
Quarter 1, 2010			*							*		*	*				*						
Quarter 2, 2010			*							*			*				*	*		*			
Quarter 3, 2010			*							*	*	*	*				*						<u> </u>
Quarter 4, 2010			*							*		*	*				*						<u> </u>
Quarter 1, 2011										*			*				*						\vdash
Quarter 2, 2011			*							*			*	1			*			*			
Quarter 3, 2011			*							*			*				*			*			\vdash
Quarter 4, 2011			*				-			*	*	*	*		-		*	 	 	Ė			
Quarter 1, 2012	—		*			<u> </u>	<u> </u>			*	H	Ė	*	 	<u> </u>		*	<u> </u>	 	*			\vdash
Quarter 2, 2012			*							*			*	 			*		*	*			
Quarter 3, 2012			*							*		*	*				*			<u> </u>			-
Quarter 4, 2012										*		*	*				*		*	*			-
Quarter 1, 2013										*		т-	*				*		*	*			-
Quarter 2, 2013										*		*	*				*		*	*			-
Quarter 3, 2013			*							*		*	*				*		*	*			-
			*							*		*	*				*		*	*			-
Quarter 4, 2013 Quarter 1, 2014			*							*	*	•	*				*		*	*			
			*							*	*		*	*			*		*	*			
Quarter 2, 2014			*							*	-		*	•			*		•	*			
Quarter 3, 2014			*								- Jan	- NE					*		*	*			-
Quarter 4, 2014			*							*	*	*	*				*		不	*			-
Quarter 1, 2015			*							*	*	*	*				*			*			-
Quarter 2, 2015												3						4	4				₩
Quarter 3, 2015			*							*	*	*	*				*	*	*	*			
Quarter 4, 2015			*							*	*	*	*				*	*	4	*			-
Quarter 1, 2016			*							*	*		*				*		*	*			<u> </u>
Quarter 2, 2016			*			*				*			*				*	*		*			<u> </u>
Quarter 3, 2016			*							*		*	*				*	*		*			
Quarter 4, 2016			*							*	*		*				*			*			<u> </u>
Quarter 1, 2017			*							*			*				*	*		*			
Quarter 2, 2017			*				<u> </u>			*	L.		*		<u> </u>		*	*	<u> </u>	*			
Quarter 3, 2017			*				<u> </u>			*	*		*		<u> </u>		*	*	<u> </u>	*			
Quarter 4, 2017			*				<u> </u>			*	L.	*	*		<u> </u>		*	*	<u> </u>	*			
Quarter 1, 2018			*							*	*		*				*	*		*			
Quarter 2, 2018			*							*	*	*	*				*	*		*			<u> </u>
Quarter 3, 2018			*							*		*	*				*	*		*			<u> </u>
Quarter 4, 2018			*							*	*	*	*				*	*		*			$ldsymbol{f eta}$
Quarter 1, 2019			*							*	*	*	*				*	*		*			
Quarter 2, 2019			*							*	*	*	*				*	*		*			
Quarter 3, 2019			*							*	*	*	*				*	*		*			<u> </u>
Quarter 4, 2019			*							*		*	*				*	*	*	*			L
THORIUM-230																							
Quarter 1, 2012	*								*					*									<u> </u>
Quarter 4, 2014	*		*										ļ.,										
Quarter 3, 2015	*								*	*			*		*								
Quarter 1, 2017			*							*							*						
THORIUM-234																							
Quarter 2, 2003						*			*					*					<u> </u>				<u> </u>
Quarter 4, 2007						Ц_			*								Ц_						Щ

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		1	UCRS	S						1	URG	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TOLUENE																							
Quarter 2, 2014										*	*		*										
TOTAL ORGANIC CARBON																							
Quarter 4, 2002																					*		
Quarter 1, 2003				*						*	*							*	*		*		
Quarter 2, 2003										*	*		*								*		
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003							*		*	*													
Quarter 1, 2004										*													
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005										*													
Quarter 2, 2005										*											*		
Quarter 3, 2005										*		*									*		1
Quarter 4, 2005						-	1			*		H							1		*		\vdash
Quarter 1, 2006		-	-	-	-	-		-		*	-		-	-				-		-	-T		\vdash
		-	-	-			-	-		*		*					-		-		-		
Quarter 2, 2006	<u> </u>						 			*		*					<u></u>		 				
Quarter 4, 2006	ىرر									سر		-					*						<u> </u>
Quarter 1, 2007	*					,1.		,1.	,1.	*			,1.	,1.			,1.						
Quarter 3, 2007	*					*	*	*	*	*			*	*			*						
Quarter 2, 2011											*												
Quarter 3, 2012	*																						
Quarter 3, 2016																			*				
TOTAL ORGANIC HALIDES																							
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*														*			*		
Quarter 3, 2003				*																	*		
Quarter 2, 2004																					*		
Quarter 3, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*																						
Quarter 4, 2005	*																						
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*	1	1	1				1													1		
Quarter 2, 2007	*																						\vdash
Quarter 3, 2007	*																						\vdash
Quarter 4, 2007	*																				*		\vdash
Quarter 1, 2008	*																						T
Quarter 4, 2008	*																						\vdash
Quarter 4, 2008	*																						\vdash
Quarter 1, 2009	*	 	1	1	-			1		-	-		-	-				-		-	1		\vdash
Quarter 2, 2009	*					 	 					\vdash					-		 		*		\vdash
Quarter 3, 2009	*	 	 	 	-			 		-	-		-	-				-		-	Ė		\vdash
Quarter 4, 2009	*											 											\vdash
Quarter 1, 2010	*	 	1	1			1	1				1							1		1		
	*	<u> </u>	<u> </u>	<u> </u>		-	-	<u> </u>	_			-					-		-		<u> </u>	_	\vdash
Quarter 2, 2010	*	-	-	-			-	-				-					-		-		-		-
Quarter 3, 2010	*	-	-	-			-	-				-					-		-		-		-
Quarter 4, 2010	*	-	-	-			-	-				-					-		-		-		-
Quarter 1, 2011	*						 					<u> </u>					-		 		<u> </u>		
Quarter 3, 2013	Щ				_	_				_	_		_	_	Щ		Щ	_		_	*		_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Gradient S S D D D D U S S S S S D D D D U S S S S	Groundwater Flow System		-	UCRS	S						Ţ	JRGA	4								LRGA	١		
BRICH LOROSCHIENE	Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Quanter 4, 2002 Quanter 2, 2003 Quanter 2, 2003 Quanter 3, 2004 Quanter 3, 2004 Quanter 4, 2005 Quanter 2, 2005 Quanter 2, 2006 Quanter 3, 2006 Quanter 3, 2007 Quanter 3, 2008 Quanter 4, 2007 Quanter 4, 2007 Quanter 4, 2008 Quanter 4, 2008 Quanter 5, 2008 Quanter 6, 2008 Quanter 6, 2008 Quanter 7, 2008 Quanter 6, 2008 Quanter 7, 2008 Quanter 7, 2008 Quanter 8, 2008 Quanter 9, 2009 Quanter 9, 2008 Quanter 9, 2009 Quanter 9, 200	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Dauter 1, 2003 Dauter 2, 2003 Dauter 3, 2004 Dauter 4, 2004 Dauter 4, 2004 Dauter 5, 2004 Dauter 6, 2004 Dauter 6, 2004 Dauter 6, 2004 Dauter 6, 2005 Dauter 6, 2006 Dauter 6, 2006 Dauter 6, 2006 Dauter 6, 2006 Dauter 7, 2006 Dauter 7, 2006 Dauter 7, 2006 Dauter 7, 2006 Dauter 8, 2007 Dauter 8, 2007 Dauter 9, 2007 Dauter 9, 2007 Dauter 1, 2008 Dauter 9, 2008 Dauter 1, 2008 Dauter 1, 2008 Dauter 1, 2008 Dauter 1, 2009 Dauter 1, 2010 Dauter 2, 2009 Dauter 2, 2010 Dauter	TRICHLOROETHENE																							
Danter 2, 2003 Danter 3, 2004 Danter 3, 2004 Danter 4, 2004 Danter 5, 2004 Danter 6, 2005 Danter 6, 2006 Danter 6, 2006 Danter 6, 2008 Danter 6, 2009 Danter 7, 2009 Danter 6, 2009 Danter 6, 2009 Danter 7, 2009 Danter 7, 2009 Danter 7, 2009 Danter 7, 2009 Danter 8, 2009 Danter 8, 2009 Danter 8, 2009 Danter 9, 2010 Danter 1, 2010 Danter 1, 2010 Danter 1, 2010 Danter 1, 2010 Danter 6, 2010 Danter 7, 2010 Danter 7, 2010 Danter 7, 2010 Danter 7, 2010 Danter 8, 2010 Danter 8, 2010 Danter 8, 2010 Danter 9, 2010 Danter	Quarter 4, 2002														•									
Daumer 1, 2003 Daumer 1, 2004 Daumer 2, 2004 Daumer 3, 2004 Daumer 4, 2004 Daumer 4, 2004 Daumer 4, 2004 Daumer 4, 2005 Daumer 2, 2005 Daumer 2, 2005 Daumer 2, 2005 Daumer 2, 2005 Daumer 3, 2006 Daumer 3, 2007 Daumer 3, 2007 Daumer 3, 2007 Daumer 4, 2007 Daumer 4, 2007 Daumer 4, 2009 Daumer 4, 2010 Daumer 5, 2010 Daumer 6, 2010 Daumer 7, 2010 Daumer 7, 2010 Daumer 8, 2010 Daumer 9, 2010 Daumer	Quarter 1, 2003														•									
Damber 4, 2005 Damber 9, 2004 Damber 1, 2004 Damber 1, 2004 Damber 2, 2004 Damber 1, 2005 Damber 1, 2006 Damber 2, 2007 Damber 2, 2007 Damber 2, 2008 Damber 2, 2008 Damber 2, 2008 Damber 2, 2009 Damber 2, 2008 Damber 2, 2009 Damber 3, 2009 Damber 3, 2009 Damber 4, 2010 Damber	Quarter 2, 2003																							
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 1, 2006 Quarter 2, 2007 Quarter 1, 2008 Quarter 2, 2007 Quarter 1, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 2, 2013 Quarter 4, 2010 Quarter 2, 2013 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017	Quarter 3, 2003																							
Dearer 2, 2004 Dearer 3, 2004 Dearer 4, 2004 Dearer 4, 2005 Dearer 5, 2005 Dearer 6, 2005 Dearer 7, 2005 Dearer 7, 2006 Dearer 9, 2007 Dearer 9, 2007 Dearer 1, 2006 Dearer 1, 2007 Dearer 1, 2009 Dearer 2, 2009 Dearer 1, 2009 Dearer 2, 2009 Dearer 1, 2009 Dearer 2, 2009 Dearer 2, 2009 Dearer 3, 2009 Dearer 4, 2001 Dearer 5, 2001 Dearer 6, 2001 Dearer 6, 2001 Dearer 6, 2001 Dearer 7, 2001 Dearer 8, 2001 Dearer 9, 2002 Dearer	Quarter 4, 2003														•									
Dauter 3, 2004 Dauter 4, 2005 Dauter 9, 2006 Dauter 9, 2006 Dauter 9, 2007 Dauter 9, 2008 Dauter 1, 2009 Dauter 1, 2009 Dauter 1, 2009 Dauter 1, 2010 Dauter 2, 2013 Dauter 4, 2013 Dauter 2, 2013 Dauter 2, 2013 Dauter 2, 2015 Dauter 2, 2015 Dauter 2, 2015 Dauter 2, 2015 Dauter 2, 2016 Dauter 2, 2017 Dauter 2, 2016 Dauter 2, 2017 Dauter 2, 2016 Dauter 2, 2017 Dauter 2, 2016 Dauter 2, 2016 Dauter 2, 2017 Dauter 2, 2016 Dauter 2, 2017 Dauter 2, 2016 Dauter 2, 2017 Dauter 3, 2017	Quarter 1, 2004														•									
Quarter 2004 Quarter 2005 Quarter 2005 Quarter 2005 Quarter 2005 Quarter 2005 Quarter 2005 Quarter 2006 Quarter 2006 Quarter 2006 Quarter 2006 Quarter 2006 Quarter 2006 Quarter 2007 Quarter 2006 Quarter 2007 Quarter 2007 Quarter 2008 Quarter 2009 Quar	Quarter 2, 2004																							
Deuter 1, 2005 Deuter 2, 2005 Deuter 2, 2005 Deuter 3, 2005 Deuter 3, 2005 Deuter 4, 2005 Deuter 6, 2006 Deuter 6, 2006 Deuter 6, 2006 Deuter 7, 2006 Deuter 7, 2006 Deuter 7, 2006 Deuter 7, 2007 Deuter 1, 2008 Deuter 2, 2008 Deuter 2, 2008 Deuter 2, 2008 Deuter 3, 2007 Deuter 4, 2008 Deuter 4, 2008 Deuter 4, 2008 Deuter 2, 2009 Deuter 4, 2001 Deuter 6, 2001 Deuter 6, 2001 Deuter 7, 2001 Deuter 7, 2001 Deuter 8, 2001 Deuter 9, 2001 Deuter	Quarter 3, 2004														•									
Quarter 2, 2005	Quarter 4, 2004														•									
Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 200	Quarter 1, 2005																							
Quarter 1, 2006	Quarter 2, 2005														•									
Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 6, 2013 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2017 Quarter 7, 2017 Quarter 7, 2017 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2018 Quarter 7, 201	Quarter 3, 2005																							
Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2014 Quarter 4, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 5, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2016 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2017 Quarter 7, 2016 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2016 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2016 Quarter 7, 2017 Quarter 7, 2018 Quarter 7, 2018 Quarter 7, 2018 Quarter 7, 2018 Quarter 7, 201	Quarter 4, 2005																							
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 5, 2014 Quarter 6, 2015 Quarter 6, 2016 Quarter 7, 2016 Quarter 7, 2016 Quarter 1, 2017 Quarter 9, 2016 Quarter 1, 2017 Quarter 2, 2016 Quarter 1, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 6, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 7, 2016 Quarter 7, 2016 Quarter 9, 2016 Quarter 9, 2017 Quarter 9, 201	Quarter 1, 2006																							
Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 6, 2015 Quarter 7, 2016 Quarter 7, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 201	Quarter 2, 2006																							
Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 5, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 6, 2012 Quarter 7, 2012 Quarter 7, 2012 Quarter 7, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 7, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 7, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017	Quarter 2, 2007																							
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2012 Quarter 6, 2013 Quarter 6, 2013 Quarter 6, 2013 Quarter 7, 2014 Quarter 6, 2013 Quarter 6, 2014 Quarter 6, 2015 Quarter 6, 2015 Quarter 7, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 6, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 6, 2016 Quarter 1, 2017 Quarter 7, 2016 Quarter 1, 2017 Quarter 3, 2017	Quarter 3, 2007																							
Quarter 1, 2008	Quarter 4, 2007																							
Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 1, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 5, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 7, 2011 Quarter 6, 2011 Quarter 7, 2011 Quarter 7, 2011 Quarter 8, 2011 Quarter 9, 2012 Quarter 9, 2012 Quarter 9, 2012 Quarter 9, 2012 Quarter 9, 2013 Quarter 9, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 7, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 1, 2017 Quarter 3, 2016 Quarter 1, 2017 Quarter 2, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017																								
Quarter 4, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 5, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 1, 2017 Quarter 3, 2016 Quarter 3, 2016 Quarter 1, 2017 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017	Quarter 2, 2008			1	1																		1	
Quarter 1, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2000 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 1, 2017 Quarter 3, 2016 Quarter 1, 2017 Quarter 3, 2016 Quarter 1, 2017 Quarter 1, 2016 Quarter 2, 2016 Quarter 1, 2017 Quarter 3, 2016 Quarter 1, 2017 Quarter 3, 2016 Quarter 1, 2017 Quarter 3, 2017			t																		t			
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2017																								
Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 5, 2017 Quarter 6, 201																								
Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 2, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 5, 2017 Quarter 5, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 7, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 7, 2017 Quarter 7, 2017 Quarter 7, 2017																								
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017																								
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 3, 2017																								
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017												_												
Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 5, 2017 Quarter 6, 201																								
Quarter 1, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017																								
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2017																						_		
Quarter 3, 2011 Quarter 4, 2011 Quarter 7, 2012 Quarter 7, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2016 Quarter 3, 2017																								
Quarter 3, 2011 Quarter 4, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017		-																					-	
Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 1, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017		-																						
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2017		-																						
Quarter 2, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2017		_																						
Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017		-															_						-	
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2017		_																						
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017												_					_							
Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017		-	-				_					_						-			-			
Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 1, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017																	-							-
Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017		-																						<u> </u>
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017				<u> </u>	<u> </u>																		<u> </u>	<u> </u>
Quarter 3, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017		-																						<u> </u>
Quarter 3, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017		<u> </u>															•			_				
Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017				<u> </u>	<u> </u>															_			<u> </u>	
Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2017	• /		<u> </u>																		<u> </u>			
Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 5, 2017 Quarter 9, 2017 Quarter 9, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 3, 2017	• /			ļ	ļ																		ļ	
Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 5, 2017 Quarter 7, 2017 Quarter 9, 2017 Quarter 9, 2017 Quarter 1, 2017				ļ	ļ																		ļ	
Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017			L																		L			
Quarter 1, 2016 Image: Control of the control of t			L																		L			
Quarter 2, 2016 Image: Control of the control of t			L																		L			
Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017	Quarter 1, 2016																							
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017	Quarter 2, 2016																							
Quarter 1, 2017 Image: Control of the control of th	Quarter 3, 2016																							
Quarter 2, 2017	Quarter 4, 2016																							
Quarter 3, 2017	Quarter 1, 2017																							
Ç v, = v · ·	Quarter 2, 2017																							
Quarter 4, 2017	Quarter 3, 2017																							
	Quarter 4, 2017																							
																_								

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S							URGA	A								LRGA	A.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TRICHLOROETHENE																							
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																							
Quarter 4, 2018																							
Quarter 1, 2019																							
Quarter 2, 2019																							
Quarter 3, 2019																							
Quarter 4, 2019																							
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														
		•			•		•		•	•	•		•		•	•			•		•		
* Statistical test results indicate a	n elevat	ed co	ncentr	ation	(i.e.,	a stati	stical	ly sig	nificai	nt inci	ease)												_
■ MCL Exceedance																							

[■] Previously reported as an MCL exceedance; however, result was equal to MCL. UCRS = Upper Continental Recharge System

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

S = Sidegradient; D = Downgradient; U = Upgradient

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	12/0	3/19	9				Time:	1245		Monitor:	Robe	ert Kirby
Weather Co Sunny, Slight			Dea	rees					***************************************			
Monitoring RAE Systems	Equipm	ent::	:									
					M	onito	ring Lo	cation				Reading (% LEL)
Ogden Landi Road Entrand		Ch	eck	ced	at g	roui	nd leve	el				0
North Landfil		Ch	eck	ced	at g	rour	nd leve	el				0
West Side of Landfill: North 37° West 88°	07.652	Che	ecke	ed a	at gro	ound	level					0
East Side of Landfill: North 37° (West 88° 4		Che	∍cke	ed a	at gro	ound	level					0
Cell 1 Gas Ve	ent (17)	0	2 0	3 0	0 0	5 0 0	6 7	8 9 10 0 0 0		13 14 15 0 0 0 0	16 17 0	0
Cell 2 Gas Ve	ent (3)	0	0	3 0								0
Cell 3 Gas Ve	ent (7)	0	0	3 0	0 0	5 0 0	6 7 0					0
Landfill	Office	Che	eck	æd	at fl	oor	level					0
Suspect or Pr	roblem Areas	No	are	as	note	ed						NA
·	L VENT	S CH	IECI	KED	1" FF	ROM	THE MC	OUTH OF V	ENT		•	
Performed b	y:	11		1		_					12,	03/15
		Cr.			Sig	natui	re				, / (Date

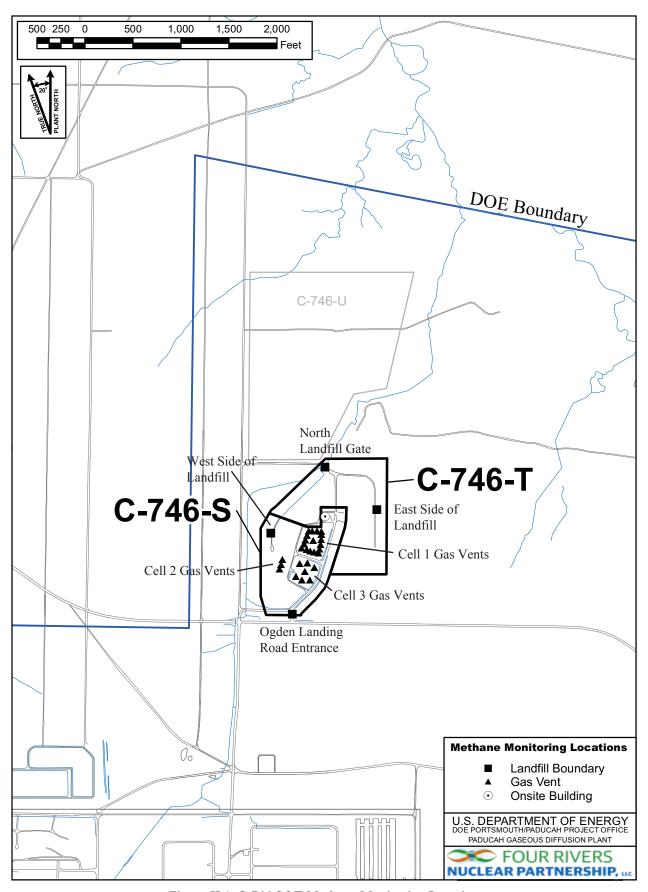


Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Monitorin	ng Poi	nt	(KPDES Discharge Number, or "U	PST	REAM", or "DO	OWNSTREAM")	L135 UPSTREA	ΑM	L154 DOWNSTR	EAM	L136 AT SIT	Έ	F. BLAN	K
Sample Se	equenc	e	#				1		1		1		1	
If sample	e is a	в1	ank, specify Type: (F)ield, (r) ri	p, (M) ethod	, or (E)quipment	NA		NA		NA		F	
Sample Da	ate ar	nd	Time (Month/Day/Year hour: m	inut	tes)		10/21/2019 11:	09	10/21/2019 10:	34	10/21/2019 10):51	10/21/2019	11:19
Duplicate	e ("Y'	' 0	r "N") ¹				N		N		N		N	
Split ('Y	Y' or	"N	") ²				N		N		N		N	
Facility	Sampl	Le	ID Number (if applicable)				L135SS1-20		L154US1-20)	L136SS1-2	0	FB1SS1-	20
Laborator	ry San	ıp1	e ID Number (if applicable)				493759002		493724003		493759003	3	49375900	04
Date of A	Analys	sis	(Month/Day/Year)		11/8/2019		11/8/2019		11/12/2019)	11/11/201	19		
CAS RN	RN ³ CONSTITUENT		T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G							
A200-00-0	0	0	Flow	Т	MGD	Field		*		*		*		*
16887-00-	-6	2	Chloride(s)	Т	mg/L	300.0	3.27		2.42		2.22		<0.2	
14808-79-	-8	0	Sulfate	Т	mg/L	300.0	14.1		4.95		7.31		<0.4	
7439-89-6	6	0	Iron	Т	mg/L	200.8	0.434		0.713		0.0754	J	<0.1	
7440-23-5	40-23-5 0 Sodium T mg/L 200.8				200.8	4.38		1.63		1.17		<0.25		
s0268		0	Organic Carbon ⁶	Т	mg/L	9060	11.2		19.6		17			*
s0097		0	BOD ⁶	Т	mg/L	not applicable		*		*		*		*
s0130		0	Chemical Oxygen Demand	Т	mg/L	410.4	44	*	115	*	26.9	*		*

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

I-3

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: sw07300014, sw07300015, sw07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

SURFACE WATER SAMPLE ANALYSIS - (Cont.) For Official Use Only

						7000		<u></u>	01 01				
Monitoring Po	int	(KPDES Discharge Number, or	r "(JPSTREAM" or	"DOWNSTREAM")	L135 UPSTRI	EAM	L154 DOWNST	REAM	L136 AT SI	TE	F. BLANK	
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G
S0145	1	Specific Conductance	т	µhmo/cm	Field	199		90		172			*
s0270	0	Total Suspended Solids	Т	mg/L	160.2	24.6		24		3	J		*
s0266	0	Total Dissolved Solids	т	mg/L	160.1	174	*	150	*	160	*		*
s0269	0	Total Solids	т	mg/L	SM-2540B	174		111		165			*
s0296	0	рн	т	Units	Field	7.16		7.54		7.32			*
7440-61-1		Uranium	т	mg/L	200.8	0.00665		0.000846		0.000195	J	<0.0002	
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	8.61	*	-0.575	*	-0.817	*	4.41	*
12587-47-2		Gross Beta (β)	T	pCi/L	9310	31.8	*	13.9	*	-0.407	*	-0.96	*
													igsqcup

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L135 UPSTRE	AM						
Sample Seque	nce	#				1							$\overline{/}$
If sample is	а В	lank, specify Type: (F)ield, (T) r	ip, (M)ethod	, or (E) quipment	NA						/	
Sample Date	and	Time (Month/Day/Year hour: m	inu	tes)		10/21/2019 11	:09						
Duplicate ("	Y" (or "N") ¹				Y							
Split ('Y' o	r "]	آ") ²				N			eg				
Facility Sam	ple	ID Number (if applicable)				L135DSS1-2	20						
Laboratory S	amp.	le ID Number (if applicable)				493759001							
Date of Anal	ysi	s (Month/Day/Year)				11/8/2019							
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OB DOL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷
A200-00-0	0	Flow	Т	MGD	Field		*				$\overline{}$		
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	3.26			/		`		
14808-79-8	0	Sulfate	Т	MG/L	300.0	13.9			$\overline{/}$				
7439-89-6	0	Iron	Т	MG/L	200.8	0.407		/					
7440-23-5	0	Sodium	Т	MG/L	200.8	4.43							
S0268	0	Organic Carbon ⁶	т	MG/L	9060	11							
s0097	0	BOD ⁶	Т	MG/L	not applicable		*						
s0130	0	Chemical Oxygen Demand	Т	MG/L	410.4	29.3	*						

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

		- WIII DI CILII			111010	(0011	<u> </u>						
Monitoring Po	oin	t (KPDES Discharge Number, o	r "(JPSTREAM" or	"DOWNSTREAM")	L135 UPSTR	EAM						$\overline{}$
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQD ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷
S0145	1	Specific Conductance	Т	µнмѕ/см	Field		*						
S0270	0	Total Suspended Solids	Т	MG/L	160.1	27							
s0266	0	Total Dissolved Solids	Т	MG/L	160.2	191	*						
S0269	0	Total Solids	Т	MG/L	SM-2540B	180			\				
s0296	0	рН	Т	Units	Field		*						
7440-61-1		Uranium	Т	MG/L	200.8	0.00671							
12587-46-1		Gross Alpha (α)	Т	pCi/L	9310	8.11	*						
12587-47-2		Gross Beta (β)	Т	pCi/L	9310	23	*						
									/				<u> </u>
													<u> </u>
													<u> </u>
													<u> </u>
	_												
								/					

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/U	nit: <u>KY8-890-008-982 / 1</u>
LAB ID:	None
or Offic	ial Use Only

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ing Facility Sample ID	Constituent	Flag	Description
L135	L135SS1-20	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control limit
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.89. Rad error is 6.74.
		Beta activity		TPU is 9.38. Rad error is 7.81.
L154	L154US1-20	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control limit
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.69. Rad error is 4.68.
		Beta activity		TPU is 6.4. Rad error is 5.99.
L136	L136SS1-20	Flow Rate		Insufficient flow to collect a sample.
		Biochemical Oxygen Demand (BOD)		Insufficient flow to collect a sample.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control limit
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.07. Rad error is 4.07.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.62. Rad error is 4.62.
QC	FB1SS1-20	Flow Rate		Analysis of constituent not required and not performed.
		Total Organic Carbon (TOC)		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)		Analysis of constituent not required and not performed.
		Conductivity		Analysis of constituent not required and not performed.
		Suspended Solids		Analysis of constituent not required and not performed.
		Dissolved Solids		Analysis of constituent not required and not performed.
		Total Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.39. Rad error is 7.35.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6. Rad error is 6.

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit:	<u>KY8-890-008-982 / 1</u>
LAB ID:	None
For Official U	se Only

SURFACE WATER WRITTEN COMMENTS

Monitoring Point	g Facility Sample ID	Constituent	Flag	Description
L135	L135DSS1-20	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control limit
		Conductivity		Analysis of constituent not required and not performed.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		рН		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.48. Rad error is 6.34.
		Beta activity		TPU is 9.85. Rad error is 9.06.

APPENDIX J ANALYTICAL LABORATORY CERTIFICATION

Accredited Laboratory

A2LA has accredited

GEL LABORATORIES, LLC

Charleston, SC

for technical competence in the field of

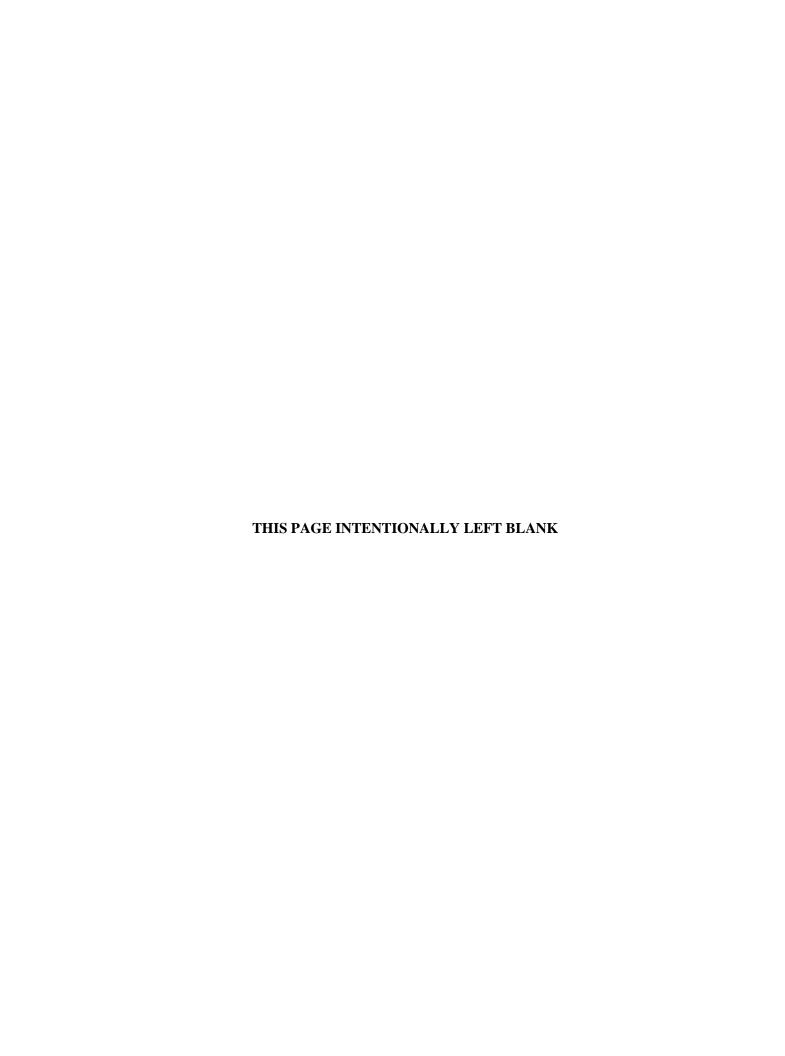
Environmental Testing

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DOD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 15th day of July 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2021

APPENDIX K LABORATORY ANALYTICAL METHODS



LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and 1,2,3-
		Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of The Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid

APPENDIX L MICROPURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-S&T Landfills

			July State S	m /	Turniti	\otimes / /			July Leiter Leit	jrill Jrigati	_
			Thol			°/_ /			ande		
		Strike Condition	igited legit		Tutidit		,	Conduc	Jeffer Sta		Turid Curid
		ature /	itale,	On /	\$ ⁰ / .s			gure /	ing,	J11 /	, s ^o /
	STITE	Cridit	136	, sgot	Zoigi		S.Tille.	Sidu	136	. Segla	, igoit
MW220	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	MW221	<u> </u>	70	<u> </u>	<u> </u>	<u> </u>
Date Collected: 10/8/2019						Date Collected: 10/8/2019					
0927	61.8	344	6.20	5.95	0.6	1253	63.0	388	6.40	5.02	1.2
0930	62.2	345	6.14	5.32	0.0	1256	63.9	388	6.46	5.02	9.7
0933	62.3	346	6.06	5.26	0.0	1259	64.1	390	6.41	5.05	2.4
MW222						MW223					
Date Collected: 10/8/2019						Date Collected: 10/8/2019					
1358	64.6	368	6.41	4.74	0.0	1033	63.9	377	6.58	3.58	0.0
1401	64.7	368	6.50	4.37	0.0	1036	63.9	378	6.64	3.55	0.0
1404	64.8	367	6.54	4.30	0.0	1039	64.0	378	6.70	3.35	0.0
MW224						MW369					
Date Collected: 10/9/2019 1243	63.0	425	6.33	1.87	0.0	Date Collected: 10/16/2019 0739	60.3	384	6.62	3.07	4.7
1246	62.9	423	6.31	1.67	0.0	0742	60.3	367	6.22	1.89	3.5
1249	62.9	428	6.30	1.65	0.0	0745	60.4	367	6.19	1.88	2.9
MW370	02.7	.20	0.50	1.05	5.0	MW372	55.1	201	V.17	1.00	
Date Collected: 10/16/2019						Date Collected: 10/16/2019					
0823	60.7	450	6.23	4.02	1.1	1209	61.5	704	6.62	2.88	2.0
)826	60.6	437	6.06	3.68	2.0	1212	61.9	698	6.39	1.99	1.7
1829	60.5	434	6.06	3.70	1.8	1215	62.0	697	6.37	1.93	1.6
MW373						MW384					
Date Collected: 10/16/2019						Date Collected: 10/9/2019					
004	61.8	809	6.30	4.23	2.1	1005	62.9	446	6.22	4.65	0.0
007	62.3 62.6	807	6.17	1.94	1.6	1008 1011	62.8 62.8	448 444	6.28	4.48	0.0
010 4W385	02.0	806	6.16	1.98	1.0	MW386	02.8	444	0.37	4.38	0.0
Date Collected: 10/9/2019						Date Collected: 10/8/2019					
049	62.0	484	6.40	3.59	0.0	0800	60.5	587	6.49	0.69	0.0
052	62.3	487	6.56	2.65	0.0	0803	60.5	580	6.50	0.57	0.0
055	62.4	488	6.55	2.59	0.0	0806	60.7	580	6.51	0.46	0.0
						0809	60.8	579	6.51	0.42	0.0
1W387						MW388					
Date Collected: 10/9/2019						Date Collected: 10/9/2019			L		
842	62.4	606	6.24	3.50	0.0	0924	63.4	428	6.20	4.15	0.0
845	62.2 62.2	610	6.23	3.14	0.0	0927 0930	63.6	428 425	6.22	4.09	0.0
0848 MW390	02.2	619	0.22	2.89	0.0	MW391	63.6	423	0.23	4.02	0.0
Date Collected: 10/9/2019						Date Collected: 10/10/2019					
0739	59.9	714	6.33	4.12	0.0	0946	62.5	473	6.34	3.71	0.0
1742	60.0	716	6.35	4.13	0.0	0949	62.9	428	6.22	3.38	0.0
)745	60.0	717	6.37	4.15	0.0	0952	62.9	424	6.23	3.34	0.0
MW392						MW393					
Date Collected: 10/10/2019						Date Collected: 10/10/2019					
216	62.4	426	6.49	2.89	5.6	1258	63.7	409	6.71	2.34	8.4
219	64.8	422	6.46	2.07	0.0	1301	64.3	404	6.48	1.26	9.0
222	64.8	419	6.45	2.03	0.0	1304	64.5	406	6.44	1.20	8.5
MW394						MW395					
Date Collected: 10/10/2019	60.1	205	6.20	4.20	0.0	Date Collected: 10/10/2019	60.0	270	6.26	5 71	0.0
728 731	60.1	395	6.20	4.39	0.0	0816 0819	60.9	370	6.26	5.71	0.0
0731 0734	60.6	381 382	6.15	4.12 4.17	0.0	0819	61.1	351 357	6.04	4.88	0.0
MW396	00.0	302	0.10	7.1/	0.0	MW397	01.2	١٥٥	0.03	7.72	0.0
Date Collected: 10/10/2019						Date Collected: 10/9/2019					
)900	62.7	753	6.57	4.01	0.0	1333	63.9	319	6.20	5.19	0.0
0903	63.0	761	6.52	1.18	0.0	1336	63.5	319	6.24	5.17	0.0
0903											
0906	62.9	764	6.52	1.12	0.0	1339	63.3	319	6.27	5.21	0.0

