

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

AUG 29 2019

PPPO-02-5710371-19B

Ms. Robin Green
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Mr. Todd Hendricks
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Dear Ms. Green and Mr. Hendricks:

C-746-S&T LANDFILLS SECOND QUARTER CALENDAR YEAR 2019 (APRIL–JUNE) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0088/V2, PERMIT NUMBER SW07300014, SW07300015, SW07300045, AGENCY INTEREST ID NO. 3059

Reference: Letter from L. Linehan to D. Hutchison, "Groundwater Report Review," Activity # CRV20190001, dated June 10, 2019

Enclosed is the subject report for the second quarter calendar year 2019. This report is required in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 (Permit). The report includes groundwater analytical data, surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the second quarter 2019 monitoring well data collected from the C-746-S&T Landfills were performed in accordance with Monitoring Condition GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance (1989). This report also serves as the statistical increase notification for the second quarter calendar year 2019, in accordance with Monitoring Condition GSTR0003, Standard Requirement 5, of the Permit.

The U.S. Department of Energy (DOE) is in receipt of the *Groundwater Report Review*, dated June 10, 2019, in which the Kentucky Division of Waste Management (KDWM) requested that additional information be included in future reports in order to assess accurately compliance with the regulations and permit conditions (Reference). The additional information requested includes laboratory analytical reports for all samples, chains-of-custody forms, lab quality

assurance/quality control data, and purge records. DOE assessed the request and requested a follow-up meeting with KDWM, which was held on July 22, 2019. As a result of this meeting, future reports will include laboratory accreditation documentation, a list of analytical methods used for compliance monitoring, and micropurging stability measurements obtained prior to sampling. All other requested information is on record and available upon request.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Junifu Woodard
Paducah Site Lead

Portsmouth/Paducah Project Office

Enclosure:

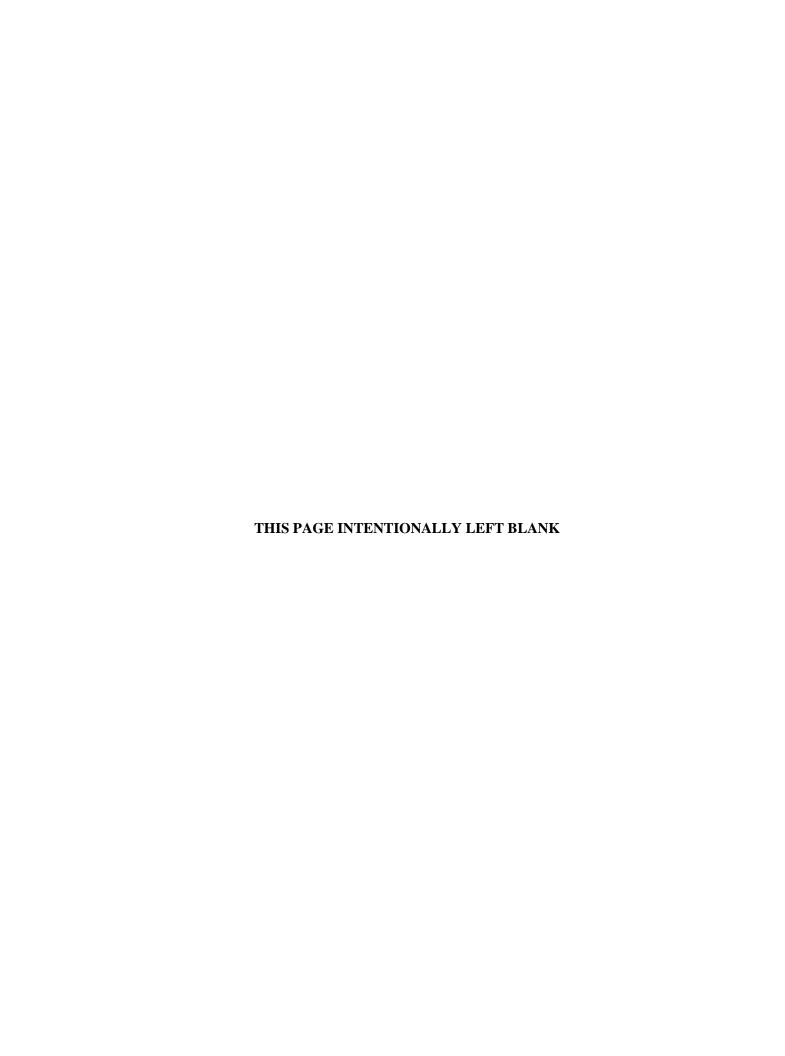
C-746-S&T Landfills 2nd Qtr CY 2019 (April-June) Compliance Monitoring Report

e-copy w/enclosure: abigail.parish@pppo.gov, PPPO april.webb@ky.gov, KDEP arcorrespondence@pad.pppo.gov, FRNP bill.clark@pad.pppo.gov, FRNP brian.begley@ky.gov, KDEP christopher.jung@ky.gov, KDEP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO dave.hutchison@pad.pppo.gov, FRNP dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov, FRNP jennifer.watson@pad.pppo.gov, FRNP jennifer.woodard@pppo.gov, PPPO jerry.arnzen@pad.pppo.gov, FRNP joel.bradburne@pppo.gov, PPPO kelly.layne@pad.pppo.gov, FRNP ken.davis@pad.pppo.gov, FRNP lauren.linehan@ky.gov, KDEP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov, SSI robert.edwards@pppo.gov, PPPO stephaniec.brock@ky.gov, KYRHB tabitha.owens@ky.gov, KDEP todd.hendricks@ky.gov, KDEP tracey.duncan@pppo.gov, PPPO

C-746-S&T Landfills Second Quarter Calendar Year 2019 (April—June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

FRNP Classification Support


Date

C-746-S&T Landfills
Second Quarter Calendar Year 2019
(April–June)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—August 2019

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895

CONTENTS

FI	GURES		v
TA	ABLES		v
ΑC	CRONYMS		vii
1.	INTRODUCTION	T	1
		UND	
		NG PERIOD ACTIVITIES	
		undwater Monitoring	
	1.2.2 Met	hane Monitoring	3
		Face Water Monitoring	
	1.3 KEY RESU	LTS	5
2	DATA EVALUAT	ΓΙΟΝ/STATISTICAL SYNOPSIS	Q
ے.		AL ANALYSIS OF GROUNDWATER DATA	
		er Continental Recharge System	
		er Regional Gravel Aquifer	
	2.1.3 Low	ver Regional Gravel Aquifer	11
	2.2 DATA VER	IFICATION AND VALIDATION	11
3	PROFESSIONAL	GEOLOGIST AUTHORIZATION	13
٥.	11101255101112		10
4.	REFERENCES		15
AF	PPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
AF	PPENDIX B:	FACILITY INFORMATION SHEET	B-1
ΑF	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C 1
		COMMENTS	C-1
AF	PPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑF	PPENDIX F:	NOTIFICATIONS	F-1
ΑF	PPENDIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑF	PPENDIX H:	METHANE MONITORING DATA	H-1
ΑF	PPENDIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
ΑF	PPENDIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1

APPENDIX K:	LABORATORY ANALYTICAL METHODS	K-1
APPENDIX L:	MICRO-PURGING STABILITY PARAMETERS	Ĺ-1

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	2
2.	C-746-S&T Landfills Surface Water Monitoring Locations	4
	TABLES	
	Summary of MCL Exceedances	
2.	Exceedances of Statistically Derived Historical Background Concentrations	6
3.	Exceedances of Current Background UTL in Downgradient Wells	7
4.	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters	7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations

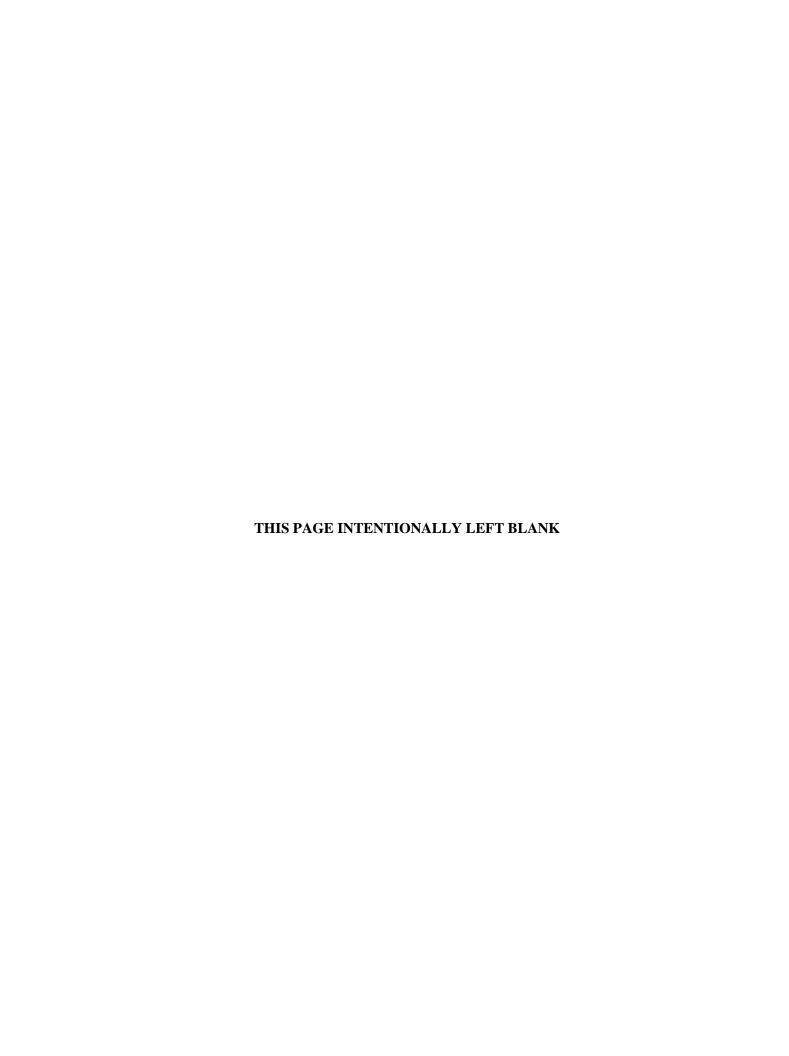
CY calendar year

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit


MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

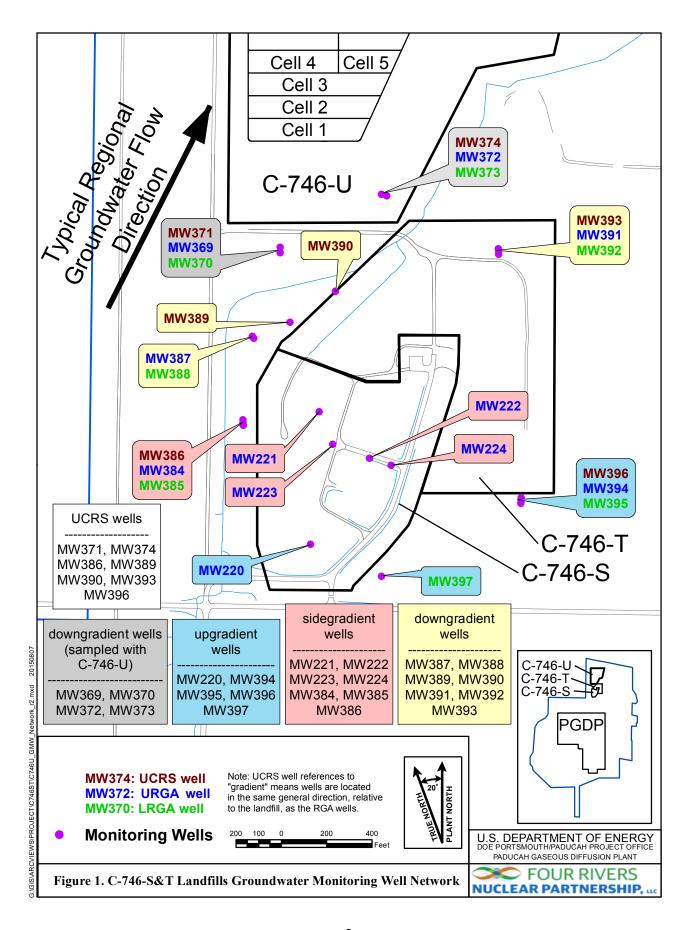
UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills Second Quarter Calendar Year 2019 (April—June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micro-purging stability parameter results are provided in Appendix L.

1.1 BACKGROUND


The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a final cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a final cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were

sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a water level measurement or sample; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan) (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the second quarter 2019 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on April 23, 2019, in MWs of the C-746-S&T Landfills (see Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During April, RGA groundwater flow in the area of the landfill was oriented northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in April was 5.08×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 4.91×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.835 to 1.42 ft/day (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the Solid Waste Landfill Permit. Landfill operations staff monitored for the occurrence of methane in one on-site building location, four locations along the landfill boundary, and 27 passive-gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on May 30, 2019. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at the three locations (see Figure 2) monitored for the C-746-S&T Landfills: (1) upstream location L135; (2) downstream location, L154; and (3) L136, a location capturing

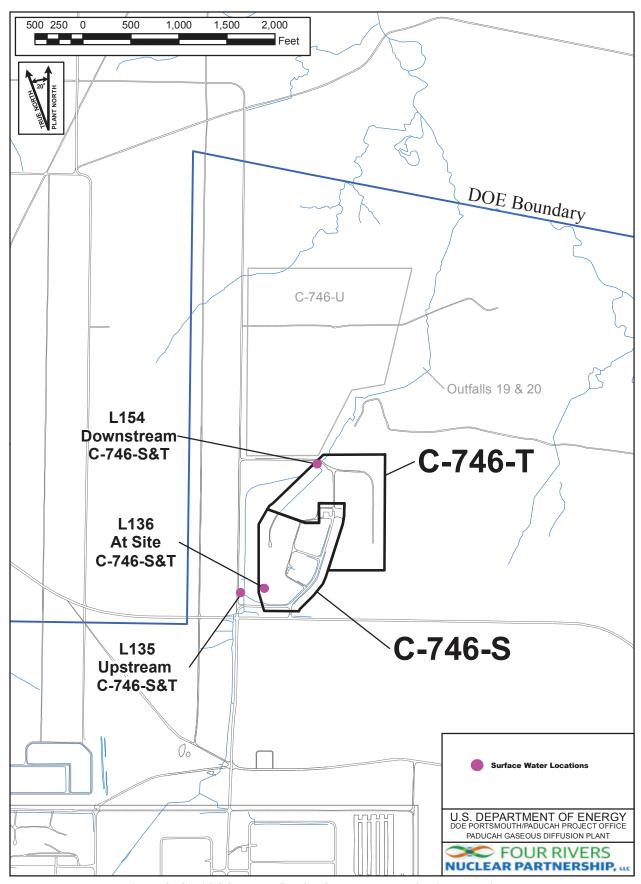


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

runoff from the landfill surface. Surface water was monitored, as specified in 401 *KAR* 48:300 § 2, and the approved *Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (PRS 2008), which is Technical Application Attachment 24 of the Solid Waste Landfill Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014) which is Technical Application, Attachment 25, of the Solid Waste Landfill Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were further evaluated against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the second quarter 2019, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW373, MW391, and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedances for beta activity in MW369, MW370, MW387, and MW388 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances. To evaluate these preliminary Type 2 exceedances further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All of these wells had no increasing Mann-Kendall trend for beta activity and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as upgradient, to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

_

¹ The UTL comparison for pH uses a two-sided test, both UTL and LTL. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW369: Beta activity	MW370: Beta activity
	MW384: Beta activity	MW373: Trichloroethene
	MW387: Beta activity	MW385: Beta activity
	MW391: Trichloroethene	MW388: Beta activity
		MW392: Trichloroethene

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: Oxidation-reduction potential, sulfate	MW370: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW390: Oxidation-reduction potential, technetium-99	MW221: Oxidation-reduction potential	MW373: Calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate
MW393: Oxidation-reduction potential	MW222: Oxidation-reduction potential	MW385: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW396: Chemical oxygen demand (COD), oxidation-reduction potential	MW223: Oxidation-reduction potential, sulfate	MW388: Beta activity, oxidation-reduction potential, sulfate, technetium-99
	MW224: Oxidation-reduction potential	MW392: Chloride, oxidation-reduction potential
	MW369: Beta activity, technetium-99	MW395: Oxidation-reduction potential
	MW372: Calcium, chemical oxygen demand (COD), dissolved solids, magnesium, oxidation-reduction potential, sulfate, technetium-99	MW397: Oxidation-reduction potential
	MW384: Beta activity, oxidation- reduction potential, sulfate, technetium-99	
	MW387: Beta activity, oxidation- reduction potential, sodium, sulfate, technetium-99	
	MW391: Chemical oxygen demand (COD), oxidation-reduction potential, sulfate	
*Conditions in the UCDS are deserved UCDS	MW394: Oxidation-reduction potential	

^{*}Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells. Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393 Upgradient wells: MW220, MW394, MW395, MW396, MW397

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA		
MW369: Beta activity, technetium-99	MW370: Beta activity, sulfate, technetium-99		
MW372: Calcium, chemical oxygen demand (COD), magnesium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate		
MW387: Beta activity, sodium, technetium-99	MW388: Beta activity, sulfate, technetium-99		
MW391: Chemical oxygen demand (COD), oxidation-reduction potential, sulfate	MW392: Chloride		

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
	MW369	Beta activity	8	0.05	0.451	-2	No Trend
	IVI W 309	Technetium-99	8	0.05	0.309	5	No Trend
		Beta activity	8	0.05	0.355	-4	No Trend
	MW370	Sulfate	8	0.05	0.133	10	No Trend
		Technetium-99	8	0.05	0.451	-2	No Trend
		Calcium	8	0.05	0.159	9	No Trend
		Chemical oxygen demand (COD)	8	0.05	0.133	10	No Trend
	MW372	Magnesium	8	0.05	0.268	6	No Trend
		Sulfate	8	0.05	0.268	6	No Trend
		Technetium-99	8	0.05	0.355	4	No Trend
	MW373	Calcium	8	0.05	0.193	8	No Trend
C-746-		Conductivity	8	0.05	0.193	8	No Trend
S&T Landfill		Dissolved Solids	8	0.05	0.309	5	No Trend
		Magnesium	8	0.05	0.193	8	No Trend
		Sulfate	8	0.05	0.193	8	No Trend
	MW387	Beta activity	8	0.05	0.451	-2	No Trend
		Sodium	8	0.05	0.0539	14	No Trend
		Technetium-99	8	0.05	0.451	2	No Trend
		Beta activity	8	0.05	0.355	-4	No Trend
	MW388	Sulfate	8	0.05	0.451	2	No Trend
		Technetium-99	8	0.05	0.548	0	No Trend
		Chemical oxygen demand (COD)	8	0.05	0.106	11	No Trend
	MW391	Oxidation-reduction potential	8	0.05	0.548	0	No Trend
		Sulfate	8	0.05	0.355	-4	No Trend

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Ouarters (Continued)

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
C-746- S&T Landfill	MW392	Chloride	8	0.05	0.355	4	No Trend

Footnotes:

Note: Statistics generated using ProUCL.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan. To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All of these preliminary Type 2 exceedances in downgradient wells did not have an increasing trend and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

In accordance with Permit Condition GSTR0003, Special Condition 2, of the Solid Waste Landfill Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified oxidation-reduction potential and technetium-99 values in UCRS well MW390 and an oxidation-reduction potential value in UCRS well MW393 that exceed both the historical and current backgrounds (Table 5). Because these wells are not hydrogeologically downgradient of the C-746-S&T Landfills, these exceedances are not attributable to C-746-S&T sources and are considered to be a Type 1 exceedance.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS
MW390: Oxidation-reduction potential, technetium-99
MW393: Oxidation-reduction potential

^{*}In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.

¹ An alpha of 0.05 represents a 95% confidence interval.

² The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 $^{^4}$ The Mann-Kendall decision operates on two hypotheses, the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the second quarter 2019 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both the UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389**	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396***	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	, 10
	MW387	
	MW391	
	MW394 (upgradient)	

^{*}A map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the UCRS. During the second quarter, chemical oxygen demand (COD), oxidation-reduction potential and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Oxidation-reduction potential and technetium-99 exceeded the current background UTL and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 32 parameters, including those with MCLs, required statistical analysis in the URGA. During the second quarter, beta activity, calcium, chemical oxygen demand (COD), dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, chemical oxygen demand (COD), magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

^{**}Well had insufficient water to permit a water sample for laboratory analysis.

^{***}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 31 parameters, including those with MCLs, required statistical analysis in the LRGA. During the second quarter, beta activity, calcium, chemical oxygen demand (COD), chloride, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, chloride, conductivity, dissolved solids, magnesium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices, and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills

Second Quarter Calendar Year 2019 (April–June)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FRNP-RPT-0088/V2)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

Regulation of Profession of Pr

<u>August 19, 2019</u>

Kenneth R. Davis

PG113927

13

4. REFERENCES

- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

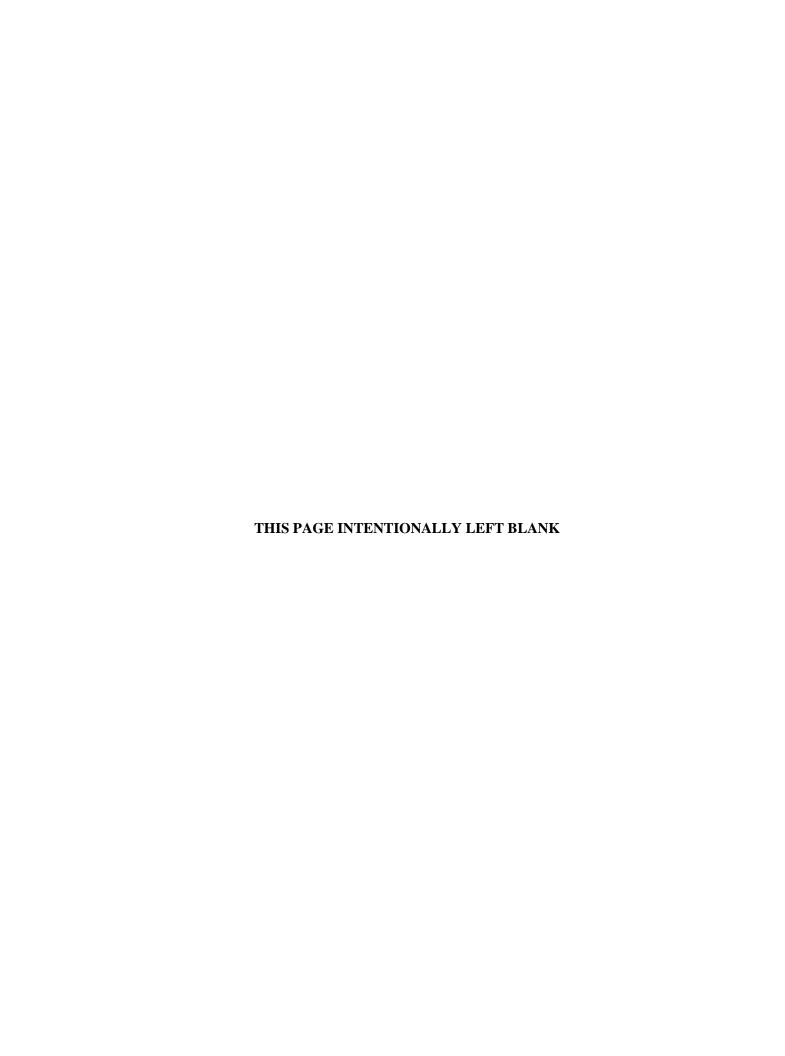
GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE–Paducah	Gaseous Diffusion Plant	Activity:	C-746-S&T Landfills
	(As officially shown	on DWM Permit Face)		
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	2nd Qtr. CY 2019
Please check the j	following as applicable	:		
Character	ization X Qua	rterly Semiannual	Annual	Assessment
Please check appl	licable submittal(s):	X Groundwater	X S	Surface Water
		Leachate	XN	Methane Monitoring
hours of making the	e determination using st	nent. You must report any indicatistical analyses, direct compan. Instructions for completing the	arison, or other simila	ar techniques. Submitting
accordance with a sy Based on my inquiry the best of my knowl	of the person or persons of edge and belief, true, accu	ment and all attachments were that qualified personnel properly directly responsible for gathering urate, and complete. I am aware ne and imprisonment for such vio	gather and evaluate the information, the inthat there are significant	he information submitted. formation submitted is, to
I Swall	Dayle		8/3	PILE
	d, Deputy Program Mear Partnership, LLC	lanager	Date	
Jennifer Woodard U.S. Department	, Paducah Site Lead of Energy	<u> </u>	Bate 2	9/19

APPENDIX B FACILITY INFORMATION SHEET



FACILITY INFORMATION SHEET

Sampling Date: Facility Name: Site Address: Phone No:	Groundwater: April/Ma Surface water: May 2011 Methane: May 2019 U.S. DOE—Paducah Ga (As of 5600 Hobbs Road Street	9		n Permit Nos. Longitude:	SW07300014, SW07300015, SW07300045 42053 Zip W 88° 47' 55.41"
OWNER INFORMATION					
Facility Owner: Contact Person: Contact Person Ti Mailing Address:	U.S. DOE, Robert E. Ed David Hutchison tle: Director, Environa 5511 Hobbs Road Street	mental Services, F	r Four Rivers Nuclear Partnership, Kevil, Kentucky City/State	Phone No:	(859) 227-5020 (270) 441-5929 42053 Zip
SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)					
Company: Contact Person: Mailing Address:	GEO Consultants, LLC Jason Boulton 199 Kentucky Avenue	2	Kevil, Kentucky	Phone No:	(270) 816-3415 42053
	Street		City/State		Zip
LABORATORY RECORD #1 Laboratory: GEL Laboratories, LLC Lab ID No: KY90129					
Contact Person: Mailing Address:	Valerie Davis 2040 Savage Road Street		harleston, South Carolina City/State	Phone No:	(843) 769-7391 29407 Zip
LABORATORY RECORD #2					
Laboratory: Contact Person: Mailing Address:	N/A N/A N/A Street		Lab ID No	: N/A Phone No:	N/A Zip
		LABORA	TORY RECORD #3		
Laboratory: Contact Person: Mailing Address:	N/A N/A N/A		Lab ID No	11/11	N/A
	Street		City/State		Zip

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-520	1	8000-52	202	8000-52	242	8000-524	13
Facility's Lo	cal Well or Spring Number (e.g., N	4W−1	, MW-2, etc	:.)	220		221		222		223	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/16/2019 12	2:45	4/16/2019	08:56	4/16/2019	10:23	4/16/2019 0	9:47
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW220SG3	3-19	MW221S	G3-19	MW222S0	33-19	MW223SG	3-19
Laboratory San	poratory Sample ID Number (if applicable))3	476611	007	4766110	009	4766110	11
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Ana				4/23/2019	9	4/22/20	19	4/22/20	19	4/22/201	9
Gradient with	adient with respect to Monitored Unit (UP,			IOWN)	UP		SIDE	Ξ	SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.211		0.433		0.424		0.384	
16887-00-6	Chloride(s)	т	mg/L	9056	18.7	*	32.6	*	31.4	*	27.6	*
16984-48-8	Fluoride	т	mg/L	9056	0.284		0.269		0.349		0.294	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.18		1.02		0.843		0.841	
14808-79-8	Sulfate	т	mg/L	9056	24.1	*	15.4	*	14.4	*	20.5	*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.1		30.1		30.1		30.1	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	435		427		334		425	_

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242) =	8000-5243	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	332.01		331.88		332.2		332.13	
N238	Dissolved Oxygen	т	mg/L	Field	3.69		2.91		2.99		2.39	
s0266	Total Dissolved Solids	т	mg/L	160.1	273		239		234		233	
s0296	рн	т	Units	Field	6.31		6.21		6.21		6.18	
NS215	Eh	т	mV	Field	471		469		463		460	
s0907	Temperature	т	°C	Field	17.94		16.11		16.94		16.67	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	0.0013	J	0.00123	J	0.00123	J	0.00134	J
7440-38-2	Arsenic	т	mg/L	6020	0.00232	J	0.00247	J	0.00286	J	0.0045	J
7440-39-3	Barium	т	mg/L	6020	0.232		0.201		0.274		0.227	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00652	J	0.0131	J	0.00887	J	0.00832	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	35.8		21.4		19		22.7	
7440-47-3	Chromium	Т	mg/L	6020	0.00518	J	0.0114		<0.01		0.0136	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.000745	J	0.000401	J	0.000498	J
7440-50-8	Copper	Т	mg/L	6020	0.000823	J	0.00101	J	0.000335	J	0.000459	J
7439-89-6	Iron	Т	mg/L	6020	0.0374	J	<0.1		<0.1		0.0474	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	T	mg/L	6020	10.3		9.25		8.59		9.65	
7439-96-5	Manganese	T	mg/L	6020	0.00188	J	<0.005		0.00829		0.00962	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8000-520	01	8000-52	02	8000-52	42	8000-52	43
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.00105		0.0104		<0.001		0.00644	
7440-02-0	Nickel	Т	mg/L	6020	0.0237		0.0715		0.0639		0.178	
7440-09-7	Potassium	Т	mg/L	6020	1.87		2.17		1.56		2.97	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	47.4		45.6		46.7		43.7	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	0.00369	BJ	0.00464	BJ	0.00668	BJ	0.00931	BJ
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-520	1	8000-520)2	8000-52	242	8000-52	243
Facility's Loc	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	cc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	0.00034	J	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00105		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	42	8000-524	43
Facility's Lo	cal Well or Spring Number (e.g., N	MW-	L, MW-2, et	cc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	0.00224	BJ	0.00256	J	0.00244	J	0.00282	J
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000196		<0.0000198		<0.0000197		<0.0000193	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	.3
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	T	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.15	*	4.47	*	-0.124	*	2.91	*
12587-47-2	Gross Beta	Т	pCi/L	9310	8.19	*	9.35	*	7.11	*	24.4	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.313	*	0.304	*	0.478	*	0.432	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.98	*	-1.09	*	-0.853	*	-2.83	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	17.1	*	14.4	*	2.01	*	9.75	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.356	*	-0.426	*	0.0883	*	-0.054	*
10028-17-8	Tritium	Т	pCi/L	906.0	-26.6	*	15.4	*	20	*	31.2	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	16.4	J	<20		13.3	J	<20	
57-12-5	Cyanide	T	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.09	J	0.931	J	0.886	J	1.03	J
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	318	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., N	1W−1	L, MW-2, etc	:.)	224		369		370		372	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		4/16/2019 12	2:11	4/15/2019	07:37	4/15/2019	08:17	4/11/2019 0	9:04
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW224SG3	-19	MW369U	G3-19	MW370U0	G3-19	MW372UG	3-19
Laboratory Sam	poratory Sample ID Number (if applicable)					3	476577	001	476577	003	47623900	07
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis)	4/20/20	19	4/20/20	19	4/17/201	9
Gradient with	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	IOWN)	SIDE		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.461		0.404		0.415		0.586	
16887-00-6	Chloride(s)	т	mg/L	9056	36.7	*	34.7	*	34.8	*	46.2	*
16984-48-8	Fluoride	т	mg/L	9056	0.33		0.184		0.157		0.198	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.974		0.544		0.993		0.676	
14808-79-8	Sulfate	т	mg/L	9056	14.1		14.6		20.7		71.3	*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.11		30.06		30.09		29.7	
s0145	Specific Conductance	т	μ MH 0/cm	Field	439		439		458		632	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1, N	MW-2, BLANK-I	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	332.22		332.24		332.22		332.9	
N238	Dissolved Oxygen	Т	mg/L	Field	2.97		0.71		2.99		0.95	
s0266	Total Dissolved Solids	т	mg/L	160.1	219		261	В	237	В	309	*
s0296	рн	т	Units	Field	6.23		6.21		6.18		6.25	
NS215	Eh	т	mV	Field	464		372		379		383	
s0907	Temperature	Т	ο°	Field	17.17		15.11		15.72		17.5	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	0.00124	J	<0.003		<0.003		0.00125	J
7440-38-2	Arsenic	т	mg/L	6020	0.00487	J	0.00215	J	0.00259	J	0.00347	J
7440-39-3	Barium	т	mg/L	6020	0.2		0.412		0.207		0.052	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0213		0.0187		0.0319		0.86	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	21.3		20		26.5		49.7	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00162		0.0033		0.000377	J	0.000571	J
7440-50-8	Copper	Т	mg/L	6020	0.000439	J	0.00247		0.00192	J	0.00058	J
7439-89-6	Iron	Т	mg/L	6020	0.0411	J	0.149		0.0351	J	0.236	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	9.54		9.06		12.1		18.2	
7439-96-5	Manganese	Т	mg/L	6020	0.0174		0.0201		0.00749		0.0049	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	R ¹ , Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	08
Facility's I	Local Well or Spring Number (e.g.	, MW-	-1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		<0.001		0.000389	J
7440-02-0	Nickel	Т	mg/L	6020	0.106		0.00656		0.000761	J	0.00125	J
7440-09-7	Potassium	Т	mg/L	6020	1.13		0.825		2.46		2.1	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	48.6		51.1		45.1		47.4	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	0.00964	BJ	0.0103	ВЈ	0.00499	BJ	0.00669	BJ
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		0.00375	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		0.00455	J	<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-482	20	8004-48	318	8004-48	808
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00052	J	0.00055	J	0.00478	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	4	8004-4820)	8004-481	18	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g., N	IW −1	L, MW-2, et	cc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00238	J	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000193		<0.0000192		<0.0000192		<0.0000193	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.1		<0.098		<0.0971	
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.1		<0.098		<0.0971	
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.1		<0.098		<0.0971	
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.1		<0.098		<0.0971	
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.1		<0.098		<0.0971	
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.1		<0.098		<0.0971	

C-13

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244		8004-4820		8004-481	8	8004-480	8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.1		<0.098		<0.0971	
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.1		<0.098		<0.0971	
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.1		<0.098		<0.0971	
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.843	*	5.69	*	0.212	*	3.12	*
12587-47-2	Gross Beta	Т	pCi/L	9310	2.3	*	83.7	*	61	*	41	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.449	*	0.366	*	0.21	*	0.316	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.29	*	0.59	*	-1.44	*	0.353	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	5.63	*	70.8	*	111	*	59.4	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.194	*	0.0643	*	-0.198	*	-0.358	*
10028-17-8	Tritium	Т	pCi/L	906.0	44.3	*	-60.7	*	-17.3	*	17.1	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	10.1	J	17.4	J	<20		52.6	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.863	J	1.19	J	0.964	J	1.1	J
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	2	8004-48	309	8004-48	310	8004-480)4
Facility's Loc	cal Well or Spring Number (e.g., M	1W−1	L, MW-2, etc	:.)	373		384		385		386	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/11/2019 09	9:47	4/17/2019	09:22	4/17/2019	11:26	4/17/2019 1	1:53
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG3	3-19	MW384S0	G3-19	MW385S0	G3-19	MW386SG	3-19
Laboratory San	poratory Sample ID Number (if applicable)					19	476794	003	476794	005	4767940	07
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ysis	4/17/2019)	4/24/20	19	4/24/20	19	4/24/201	9		
Gradient with	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	IOWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.572		0.33		0.365		0.169	J
16887-00-6	Chloride(s)	т	mg/L	9056	43.6	*	36.4	*	34.5	*	13.7	*
16984-48-8	Fluoride	т	mg/L	9056	0.262		0.227		0.155		0.637	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.944		1.1		0.912		0.221	
14808-79-8	Sulfate	т	mg/L	9056	126	*	22.8	*	22.4	*	49.1	*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.7		29.98		29.97		29.97	
S0145	Specific Conductance	т	μ MHO/cm	Field	730		452		427		593	

¹AKGWA # is 0000-0000 for any type of blank.

- STANDARD FLAGS: * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	ocal Well or Spring Number (e.g., MV	7-1, i	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	332.89		332.05		332.02		345.75	
N238	Dissolved Oxygen	т	mg/L	Field	1.49		3.38		2.89		3.3	
s0266	Total Dissolved Solids	т	mg/L	160.1	401	*	269	В	253	В	349	В
s0296	рн	т	Units	Field	6.21		6.17		6.14		6.81	
NS215	Eh	T	mV	Field	387		391		398		375	
S0907	Temperature	т	°C	Field	17.22		16.17		16.89		17.67	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0338	J	0.0198	J
7440-36-0	Antimony	т	mg/L	6020	0.00125	J	0.00138	BJ	0.00132	BJ	0.00134	BJ
7440-38-2	Arsenic	т	mg/L	6020	0.00338	J	0.00425	J	0.00349	J	0.00484	J
7440-39-3	Barium	т	mg/L	6020	0.0368		0.143		0.203		0.131	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	1.32		0.0268		0.0226		0.00596	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	64		23.3		22.8		19.3	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.000473	J	<0.001		<0.001		0.000739	J
7440-50-8	Copper	Т	mg/L	6020	0.000479	J	0.000617	J	0.000637	J	0.00102	J
7439-89-6	Iron	т	mg/L	6020	0.178		0.357		0.0611	J	0.318	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	23.7		9.71		9.05		8.85	
7439-96-5	Manganese	т	mg/L	6020	0.0177		0.0128		0.00288	J	0.0812	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUM	BER ¹ ,	Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-480	04
Facility'	s Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-02-0		Nickel	Т	mg/L	6020	0.000916	J	0.000607	J	0.000912	J	0.000699	J
7440-09-7		Potassium	Т	mg/L	6020	2.43		1.14		1.5		0.262	J
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6020	51.4		49.6		45.6		93.9	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005	*	<0.005	*	<0.005	*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	2	Vanadium	Т	mg/L	6020	0.00646	BJ	0.00679	J	0.00524	J	0.0101	J
7440-66-6		Zinc	Т	mg/L	6020	<0.02		0.00385	J	0.00386	J	<0.02	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-479	2	8004-480)9	8004-48	310	8004-4	804
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1, MW-2,	etc.)	373		384		385		386	i
CAS RN⁴	CONSTITUENT	T Unit D OF 5 MEASUR	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005	*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
79-01-6	Ethene, Trichloro-	T mg/L	8260	0.0052		0.00036	J	0.00041	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-4809)	8004-48	10	8004-48	04
Facility's Lo	ocal Well or Spring Number (e.g., N	1W −1	1, MW-2, et	cc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005	*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000193		<0.0000195		<0.0000195		<0.0000193	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
1336-36-3	PCB, Total	Т	ug/L	8082	<0.099			*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.099			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.099			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.099			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.099			*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.099			*		*		*

C-19

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-4809)	8004-481	0	8004-480)4
Facility's Loc	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.099			*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.099			*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.099			*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.109	*	0.122	*	2.56	*	1.4	*
12587-47-2	Gross Beta	Т	pCi/L	9310	13.7	*	97	*	138	*	-2.72	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.213	*	0.192	*	0.443	*	0.0899	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.966	*	0.592	*	-2.28	*	0.653	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	22.7	*	155	*	164	*	-2.67	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.561	*	0.561	*	-0.41	*	-0.356	*
10028-17-8	Tritium	Т	pCi/L	906.0	46.7	*	-45.4	*	3	*	-47	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	43.8		<20		<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	1.28	J	1.06	J	1.07	J	4.24	
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	316	8004-48	12	8004-481	1
Facility's Loc	cal Well or Spring Number (e.g., 1	4W-1	L, MW-2, etc	:.)	387		388		389		390	
Sample Sequenc	ce #				1		1		1		1	
If sample is a E	Blank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/17/2019 08	8:09	4/17/2019	08:46	NA		4/17/2019 07	7:32
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW387SG3	3-19	MW388S0	G3-19	NA		MW390SG3	3-19
Laboratory Sam	mple ID Number (if applicable)		47679400	9	476794	011	NA		47679400)1		
Date of Analys	sis (Month/Day/Year) For Volatile	ysis	4/24/2019	9	4/24/20	19	NA		4/24/2019	9		
Gradient with	respect to Monitored Unit (UP, Do	, NWC	, SIDE, UNKN	OWN)	DOWN		DOW	N	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.591		0.431			*	0.692	
16887-00-6	Chloride(s)	т	mg/L	9056	43.7	*	33.5	*		*	37.7	*
16984-48-8	Fluoride	Т	mg/L	9056	0.49		0.239			*	0.298	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.39		1.01			*	2.3	
14808-79-8	Sulfate	Т	mg/L	9056	20.8	*	23.7	*		*	43.5	*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.99		29.99			*	29.99	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	524		441			*	639	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	332.08		332.03			*	332.23	
N238	Dissolved Oxygen	т	mg/L	Field	2.62		3.19			*	4.55	
s0266	Total Dissolved Solids	т	mg/L	160.1	276	В	253	В		*	407	В
s0296	рн	т	Units	Field	6.26		6.13			*	6.3	
NS215	Eh	т	mV	Field	436		364			*	425	
s0907	Temperature	т	°C	Field	16.67		16.39			*	15.83	
7429-90-5	Aluminum	т	mg/L	6020	0.0206	J	0.0233	J		*	0.0818	
7440-36-0	Antimony	т	mg/L	6020	0.0013	BJ	0.00128	BJ		*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00402	J	0.00417	J		*	0.00226	J
7440-39-3	Barium	т	mg/L	6020	0.157		0.174			*	0.232	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0224		0.0222			*	0.0265	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	T	mg/L	6020	29.8		23.7			*	28.7	
7440-47-3	Chromium	т	mg/L	6020	0.00362	J	<0.01			*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000446	J	0.00043	J		*	0.00251	
7439-89-6	Iron	T	mg/L	6020	0.171		0.0964	J		*	0.0878	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	12.4		10.9			*	12.3	
7439-96-5	Manganese	Т	mg/L	6020	0.0933		0.00156	J		*	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

11NDB/ 0N11. 1010 090

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-48	15	8004-48	16	8004-48	12	8004-4811	
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001		<0.001			*	0.000498	J
7440-02-0		Nickel	Т	mg/L	6020	0.000689	J	0.0011	J		*	0.0015	J
7440-09-7		Potassium	Т	mg/L	6020	1.17		1.79			*	0.315	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4		Silver	T	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5		Sodium	Т	mg/L	6020	58.6		45.5			*	100	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*		*	<0.005	*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	0.000213	
7440-62-2		Vanadium	Т	mg/L	6020	0.00514	J	0.00567	J		*	<0.02	
7440-66-6		Zinc	Т	mg/L	6020	<0.02		<0.02			*	0.00393	J
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
108-88-3		Toluene	Т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-481	5	8004-48	16	8004-4	812	8004-4811	
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	387		388		389		390	
CAS RN⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
79-01-6	Ethene, Trichloro-	T mg/L	8260	0.00062	J	0.00047	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-4816	3	8004-48	12	8004-481	1
ľ	Facility's Loca	al Well or Spring Number (e.g., N	4W−1	L, MW-2, et	cc.)	387		388		389		390	
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
ľ	591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
	74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
2	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
7	96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000197		<0.0000193			*	<0.0000194	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
	106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
	1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
	12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
	11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
	11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
	53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
	12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815		8004-4816		8004-481	2	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	387		388		389		390	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	T	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	3.6	*	4.95	*		*	1.82	*
12587-47-2	Gross Beta	Т	pCi/L	9310	135	*	76.7	*		*	47.6	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.575	*	0.669	*		*	-0.0845	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.545	*	1.43	*		*	0.508	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	229	*	139	*		*	63.1	*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	0.287	*	0.395	*		*	0.357	*
10028-17-8	Tritium	Т	pCi/L	906.0	30.1	*	11	*		*	-15	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20			*	35.1	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.19	J	1.14	J		*	2.46	
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-48	306	8004-48	307	8004-480)2
Facility's Loc	cal Well or Spring Number (e.g., M	w−1	l, MW-2, etc	:.)	391		392		393		394	
Sample Sequenc	ce #				1		1		1		1	
If sample is a F	Slank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	Sample Date and Time (Month/Day/Year hour: minutes)					7:36	4/16/2019	08:16	4/15/2019	10:33	4/22/2019 0	7:52
Duplicate ("Y"	Duplicate ("Y" or "N") ²						N	N			N	
Split ("Y" or "N") ³					N		N		N		N	
Facility Sampl		MW391SG3	-19	MW392S	G3-19	MW393S0	G3-19	MW394SG	3-19			
Laboratory Sam	mple ID Number (if applicable)			47661100	476611001		015	476561	001	47722700	01	
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	Or	ganics Anal	ysis	4/23/2019)	4/22/20	19	4/20/20	19	4/29/201	9
Gradient with	respect to Monitored Unit (UP, DO	OWN, SIDE, UNKNOWN)			DOWN		DOWN		DOWN		UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.492		0.597		0.151	J	0.565	
16887-00-6	Chloride(s)	т	mg/L	9056	39.3	*	103	*	12.5	*	44.3	
16984-48-8	Fluoride	т	mg/L	9056	0.197		0.258		0.176		0.107	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.02		0.48		0.22		1.41	
14808-79-8	Sulfate	т	mg/L	9056	57.5	*	14.5	*	21.1		10.7	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.09		30.1		30.13		30.12	
S0145	Specific Conductance	т	μ MH 0/cm	Field	439		446		473		376	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER	1, Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807	•	8004-4802	
Facility's L	ocal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	332.04		331.9		341.06		332.2	
N238	Dissolved Oxygen	Т	mg/L	Field	4.58		2.41		2.76		4.03	
s0266	Total Dissolved Solids	т	mg/L	160.1	289		239		281	В	216	*
s0296	Нд	т	Units	Field	6.16		6.24		6.02		6.14	
NS215	Eh	т	mV	Field	469		461		305		446	
s0907	Temperature	т	ပ	Field	15.28		15.67		14.61		15.17	
7429-90-5	Aluminum	T	mg/L	6020	<0.05		0.0538		<0.05		<0.05	
7440-36-0	Antimony	T	mg/L	6020	0.0014	J	0.00123	J	0.00167	J	0.00126	J
7440-38-2	Arsenic	T	mg/L	6020	0.00253	J	0.00648		0.00369	J	<0.005	
7440-39-3	Barium	T	mg/L	6020	0.102		0.199		0.103		0.242	
7440-41-7	Beryllium	T	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.231		0.0305		0.0238		0.0245	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	32		28.4		13.9		24.7	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.000361	J	<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000335	J	0.00138	J	0.000919	J	0.000541	J
7439-89-6	Iron	т	mg/L	6020	0.0526	J	0.67		0.479		0.107	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	13.9		11		4.17		11	*
7439-96-5	Manganese	Т	mg/L	6020	0.00198	J	0.135		0.00768		0.00474	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002	_	<0.0002		<0.0002	

C-28

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-480	05	8004-48	06	8004-48	07	8004-48	02
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-02-0	Nickel	Т	mg/L	6020	<0.002		0.00161	J	<0.002		0.00424	
7440-09-7	Potassium	Т	mg/L	6020	1.61		1.77		0.476		1.34	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	39.7		42.3		83.1		30.8	*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	T	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000084	J	<0.0002	
7440-62-2	Vanadium	T	mg/L	6020	0.00407	BJ	0.0139	ВЈ	0.0152	BJ	<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		0.00352	J	<0.02		0.00354	J
108-05-4	Vinyl acetate	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	06	8004-48	307	8004-48	302
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	, MW-2, et	.c.)	391		392		393		394	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	0.00285	J	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		0.00131		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00688		0.0112		<0.001		0.00381	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	6	8004-480)7	8004-48	02
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00233	BJ	0.00262	J	<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000193		<0.0000196		<0.0000196	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
1336-36-3	PCB, Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

C-31

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4805		8004-4806		8004-480	7	8004-480)2
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-3.42	*	-4.36	*	2.25	*	-0.227	*
12587-47-2	Gross Beta	Т	pCi/L	9310	15.3	*	-4.1	*	1.83	*	2.82	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.268	*	0.081	*	0.329	*	0.347	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	1.82	*	-1.26	*	-1.26	*	1.51	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	12.5	*	2.84	*	4.03	*	2.55	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.125	*	-0.453	*	-0.175	*	-0.0679	*
10028-17-8	Tritium	Т	pCi/L	906.0	-25.4	*	30.7	*	-57.8	*	-48.7	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	44.5		<20		<20		20.3	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.888	J	1.15	J	2.51		0.935	J
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

C-32

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-48	303	8004-48	317	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., 1	/W-1	, MW-2, etc	:.)	395		396		397		E. BLAN	K
Sample Sequenc	e #				1		1		1		1	
If sample is a B	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipme						NA		NA		E	
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)						4/22/2019	09:09	4/16/2019	13:23	4/15/2019 0	9:50
Duplicate ("Y" or "N") ²					N		N		N		N	
Split ("Y" or		N		N		N		N				
Facility Sampl		MW395SG3	-19	MW396S0	G3-19	MW397S0	G3-19	RI1SG3-	19			
Laboratory Sam	uple ID Number (if applicable)				477227003		477227	005	476611	017	47656100	03
Date of Analys	is (Month/Day/Year) For Volatile	e Or	ganics Anal	4/29/2019		4/29/2019		4/22/20	19	4/20/201	9	
Gradient with	respect to Monitored Unit (UP, Do	, NWC	SIDE, UNKN	OWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.533		0.901		0.397			*
16887-00-6	Chloride(s)	т	mg/L	9056	43.5		54.7		34.5	*		*
16984-48-8	Fluoride	т	mg/L	9056	0.102		0.602		0.188			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.44		0.109		1.26			*
14808-79-8	Sulfate	Т	mg/L	9056	10.5		25.5		10	*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.13		30.14		30.08			*
S0145	Specific Conductance	Т	μ MH 0/cm	Field	355		710		325			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	,	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, I	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	332.57		374.11		332.21			*
N238	Dissolved Oxygen	т	mg/L	Field	4.41		3.52		5.28			*
S0266	Total Dissolved Solids	т	mg/L	160.1	173	*	393	*	229			*
s0296	рН	т	Units	Field	6.16		6.6		6.19			*
NS215	Eh	т	mV	Field	464		431		505			*
s0907	Temperature	т	°C	Field	15.72		15.5		17.56			*
7429-90-5	Aluminum	т	mg/L	6020	0.0296	J	0.0486	J	0.143		<0.05	
7440-36-0	Antimony	т	mg/L	6020	0.0013	J	0.00126	J	0.00123	J	0.00144	J
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00579		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.239		0.359		0.134		<0.004	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0245		0.00738	J	0.00975	J	<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	25.4		31.8		16.9		<0.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.000348	J	<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000551	J	0.00168	J	0.000691	J	<0.002	
7439-89-6	Iron	т	mg/L	6020	0.108		0.326		0.448		<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.1	*	14.7	*	7.65		<0.03	
7439-96-5	Manganese	т	mg/L	6020	0.00283	J	0.0305		0.0078		<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.	, MW-	·1, MW-2, e	tc.)	395		396		397		E. BLAI	ΝK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000266	J	<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.000866	J	0.000641	J	0.00102	J	<0.002	
7440-09-7	Potassium	Т	mg/L	6020	1.53		0.857		1.57		<0.3	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	30.6	*	98.1	*	36.2		<0.25	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.000069	J	<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		0.0135	BJ	0.0192	BJ
7440-66-6	Zinc	Т	mg/L	6020	0.00334	J	0.00438	J	0.00386	J	<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480)3	8004-48	317	0000-00	000
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00298		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g., N	1W −1	L, MW-2, et	cc.)	395		396		397		E. BLAN	١K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		0.00232	J	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000198		<0.0000194		<0.0000196		<0.0000194	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

C-3/

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-4801		8004-4803		8004-481	7	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	395		396		397		E. BLAN	K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	3.71	*	10.6	*	5.93	*	3.09	*
12587-47-2	Gross Beta	Т	pCi/L	9310	3.8	*	-3.26	*	7.45	*	6.56	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.449	*	0.162	*	0.457	*	0.145	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.0257	*	-0.695	*	1.34	*	-0.871	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	11.2	*	5.89	*	32.1	*	-1.33	*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	-0.876	*	0.849	*	-0.0319	*	-0.00618	*
10028-17-8	Tritium	Т	pCi/L	906.0	-92.2	*	17.9	*	39.1	*	53.2	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	26.2		43.8		<20			*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	0.904	J	4.53		0.784	J		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*
							_					

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u>

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g., N	⁄w-1	L, MW-2, etc	:.)	F. BLAN	K	T. BLAN	K 1	T. BLAN	ζ2	T. BLANK	3
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	F		Т		Т		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/16/2019 0	7:40	4/15/2019 (09:45	4/16/2019 (5:30	4/17/2019 0	5:40
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				FB1SG3-	19	TB1SG3	-19	TB2SG3-	19	TB3SG3-	19
Laboratory Sar	mple ID Number (if applicable)			4766110°	19	4765610	04	4766110	20	47679401	13	
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e 01	rganics Anal	ysis.	4/22/201	9	4/20/20	19	4/22/201	19	4/24/201	9
Gradient with	respect to Monitored Unit (UP, DO	NWC	, SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	Т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	μ M H0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	F. BLANI	<	T. BLANK	1	T. BLANK	2	T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	Нд	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	0.00116	J		*		*		*
7440-38-2	Arsenic	т	mg/L	6020	0.00486	J		*		*		*
7440-39-3	Barium	т	mg/L	6020	<0.004			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	T	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	T	mg/L	6020	<0.002			*		*		*
7439-89-6	Iron	Т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	Т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	Т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	Т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

C-4(

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				0000-000	00	0000-00	00	0000-00	00	0000-00	00
Facility's	Local Well or Spring Number (e.g	., MW-	1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	K 1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	Т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	T	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	Т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	Т	mg/L	6020	0.013	BJ		*		*		*
7440-66-6	Zinc	Т	mg/L	6020	<0.02			*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

11NDB/ CN11: 110 090 000

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-000	00	0000-00	000	0000-00	000
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	F. BLAN	(T. BLAN	(1	T. BLAN	IK 2	T. BLAN	NK 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	cal Well or Spring Number (e.g., M	1 ₩−1	1, MW-2, et	cc.)	F. BLANK	(T. BLANK	1	T. BLAN	< 2	T. BLANI	K 3
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00251	J	<0.005		0.00259	J	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000195		<0.0000193		<0.0000197		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

C-43

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-0000		0000-0000)	0000-0000	0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	F. BLANK		T. BLANK 1		T. BLANK 2	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	T	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.213	*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	-0.00207	*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.161	*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.16	*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	5.01	*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.27	*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0	-11.2	*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	T	mg/L	300.0	<0.5			*		*		*
S0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

C-44

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	8000-520)2	\setminus			/
Facility's Loca	al Well or Spring Number (e.g., N	/W−1	, MW-2, etc	:.)	T. BLANK	(4	221					
Sample Sequence	e #				1		2					
If sample is a Bl	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	Т		NA					/
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		4/22/2019 0	6:00	4/16/2019 0	8:56				
Duplicate ("Y"	or "N") ²				N		Y					
Split ("Y" or '	"N") ³				N		N			\		
Facility Sample	e ID Number (if applicable)		TB4SG3-	19	MW221DSG	3-19						
Laboratory Samp	coratory Sample ID Number (if applicable)						47661100	05				
Date of Analysi	e of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					9	4/23/201	9				
Gradient with	ce of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis adient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)						SIDE			\	X	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*	0.427		/	1		
16887-00-6	Chloride(s)	т	mg/L	9056		*	32.1	*				
16984-48-8	Fluoride	т	mg/L	9056		*	0.241					
s0595	Nitrate & Nitrite	т	mg/L	9056		*	1.02				,	
14808-79-8	Sulfate	Т	mg/L	9056	_	*	15.5	*	/			
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*				
S0145	Specific Conductance	Т	μ MH0/cm	Field		*		*				

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

					(00::0	- ' /						
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	8000-520	2	\			/
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	4	221					
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR POL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	E L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*			/	
N238	Dissolved Oxygen	т	mg/L	Field		*		*				
s0266	Total Dissolved Solids	т	mg/L	160.1		*	266					
s0296	рН	т	Units	Field		*		*				
NS215	Eh	т	mV	Field		*		*		\		
S0907	Temperature	Т	°C	Field		*		*			/	
7429-90-5	Aluminum	Т	mg/L	6020		*	<0.05			$\overline{}$		
7440-36-0	Antimony	Т	mg/L	6020		*	0.00126	J			/	
7440-38-2	Arsenic	т	mg/L	6020		*	0.00249	J			X	
7440-39-3	Barium	т	mg/L	6020		*	0.198					
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005					
7440-42-8	Boron	т	mg/L	6020		*	0.0134	J				
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001			/		
7440-70-2	Calcium	T	mg/L	6020		*	21.1					
7440-47-3	Chromium	т	mg/L	6020		*	0.00763	J				
7440-48-4	Cobalt	т	mg/L	6020		*	0.00141					
7440-50-8	Copper	Т	mg/L	6020		*	0.00101	J			\	
7439-89-6	Iron	т	mg/L	6020		*	<0.1				\	
7439-92-1	Lead	т	mg/L	6020		*	<0.002					
7439-95-4	Magnesium	т	mg/L	6020		*	9.42					
7439-96-5	Manganese	т	mg/L	6020		*	0.00284	J				
7439-97-6	Mercury	Т	mg/L	7470		*	<0.0002					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	8000-52	202	\			
Facility's I	ocal Well or Spring Number (e.g.	MW-	-1, MW-2, e	tc.)	T. BLAN	< 4	221					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	т	mg/L	6020		*	0.00844				/	
7440-02-0	Nickel	т	mg/L	6020		*	0.124					
7440-09-7	Potassium	т	mg/L	6020		*	1.82					
7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005					
7782-49-2	Selenium	Т	mg/L	6020		*	<0.005		Ì	\		
7440-22-4	Silver	Т	mg/L	6020		*	<0.001					
7440-23-5	Sodium	т	mg/L	6020		*	49.2					
7440-25-7	Tantalum	т	mg/L	6020		*	<0.005					
7440-28-0	Thallium	Т	mg/L	6020		*	<0.002			\rangle		
7440-61-1	Uranium	Т	mg/L	6020		*	<0.0002				\	
7440-62-2	Vanadium	Т	mg/L	6020		*	0.0045	BJ				
7440-66-6	Zinc	т	mg/L	6020		*	<0.02					
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		/			
67-64-1	Acetone	т	mg/L	8260	0.00665		<0.005					
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005					
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005				\	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001					
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001					
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003					
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001					
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001					
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			0000-000	0	8000-52	02	\setminus			
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2, €	etc.)	T. BLANK	4	221					$\overline{}$
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001					
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001				/	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001					
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005					
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005					
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005			$\overline{}$		
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001					
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001				/	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001				X I	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001					
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001					
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001			/		
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001			/		
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001					
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001					
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001					
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001					
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001					
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001					
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		<u> </u>			$\sqrt{}$
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001					$\overline{}$
79-01-6	Ethene, Trichloro-	T mg/L	8260	<0.001		<0.001		/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AK	AKGWA NUMBER ¹ , Facility Well/Spring Number)	8000-5202	2	\setminus			
Fa	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						4	221					
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR RQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	E L A G S
10	00-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001					
59	1-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005					
74	1-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005					
12	24-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		\			
56	5-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001			\setminus		
75	5-09-2	Dichloromethane	Т	mg/L	8260	<0.005		0.00279	BJ				
- 11	8-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005					
96	5-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000197		<0.0000196					
78	3-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001				X	
10	0061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001					
10	0061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001					
15	6-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001					
75	5-69-4	Trichlorofluoromethane	T	mg/L	8260	<0.001		<0.001			/		
96	5-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		/			
95	5-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001					
10	06-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001	*	<0.001					
13	336-36-3	PCB,Total	Т	ug/L	8082		*		*				
12	2674-11-2	PCB-1016	Т	ug/L	8082		*		*				
11	.104-28-2	PCB-1221	Т	ug/L	8082		*		*				
11	.141-16-5	PCB-1232	Т	ug/L	8082		*		*				
53	3469-21-9	PCB-1242	Т	ug/L	8082		*		*				
12	2672-29-6	PCB-1248	Т	ug/L	8082		*		*	/			\bigcup

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		8000-5202		<u> </u>			$\overline{}$
Facility's Lo	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						221					\int
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR EQL ⁶	F L A G	DETECTED F VALUE L OR A PQL ⁶ G	L A. G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*				
11096-82-5	PCB-1260	Т	ug/L	8082		*		*				
11100-14-4	PCB-1268	Т	ug/L	8082		*		*				
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	3.32	*				
12587-47-2	Gross Beta	Т	pCi/L	9310		*	3.2	*				
10043-66-0	Iodine-131	Т	pCi/L			*		*				
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*	0.407	*				
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	-4.17	*		/		
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	12.4	*			\land	
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	-0.762	*				
10028-17-8	Tritium	Т	pCi/L	906.0		*	66.7	*		\mathcal{I}		
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*	<20			/		
57-12-5	Cyanide	Т	mg/L	9012		*	<0.2		/			
20461-54-5	Iodide	T	mg/L	300.0		*	<0.5					
s0268	Total Organic Carbon	Т	mg/L	9060		*	0.996	J				
s0586	Total Organic Halides	т	mg/L	9020		*		*				
											V	
									7			
									/		\	\setminus
									/			egthankowskip

C-50

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5201 MW22	0 MW220SG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.38. Rad error is 6.37.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.68. Rad error is 5.51.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.413. Rad error is 0.412.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.15. Rad error is 3.15.
		Technetium-99		TPU is 8.66. Rad error is 8.45.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.839. Rad error is 0.834.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 133. Rad error is 133.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5202 MW221	MW221SG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.4. Rad error is 6.35.
		Gross beta		TPU is 5.85. Rad error is 5.64.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.402. Rad error is 0.4.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 2.52. Rad error is 2.52.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 12.3. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.724. Rad error is 0.722.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 135. Rad error is 135.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5242 MW222	2 MW222SG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 4.17. Rad error is 4.17.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 7.7. Rad error is 7.61.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.508. Rad error is 0.501.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.62. Rad error is 1.62.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 13. Rad error is 13.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.854. Rad error is 0.853.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 134. Rad error is 134.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5243 MW22	23 MW223SG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.8. Rad error is 5.77.
		Gross beta		TPU is 11.1. Rad error is 10.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.43. Rad error is 0.422.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.69. Rad error is 2.69.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 8.51. Rad error is 8.44.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.557. Rad error is 0.557.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 135. Rad error is 134.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5244 MW224 M	1W224SG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.55. Rad error is 5.54.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 9.14. Rad error is 9.13.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.45. Rad error is 0.438.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.57. Rad error is 2.54.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.89. Rad error is 7.87.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.802. Rad error is 0.801.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 136. Rad error is 135.
		Total Organic Halides		See resample.
004-4820 MW369 M	1W369UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 6.1. Rad error is 5.97.
		Gross beta		TPU is 18. Rad error is 11.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.484. Rad error is 0.482.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.48. Rad error is 2.48.
		Technetium-99		TPU is 13.4. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.01. Rad error is 1.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 132. Rad error is 132.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

•	Facility Sample ID	Constituent	Flag	Description
3004-4818 MW370 M\	N370UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 6.6. Rad error is 6.59.
		Gross beta		TPU is 15. Rad error is 11.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.641. Rad error is 0.64.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.39. Rad error is 2.39.
		Technetium-99		TPU is 17.5. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.572. Rad error is 0.571.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 134. Rad error is 134.
		Total Organic Halides		See resample.
004-4808 MW372 M\	N372UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Chlorobromomethane	L	LCS or LCSD recovery outside of control limits
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria
		1,1-Dichloroethylene	Y1	MS/MSD recovery outside acceptance criteria
		Iodomethane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		trans-1,2-Dichloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 6.74. Rad error is 6.72.
		Gross beta		TPU is 11.5. Rad error is 9.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 0.476. Rad error is 0.474.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 2.62. Rad error is 2.62.
		Technetium-99		TPU is 11.7. Rad error is 9.68.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 0.538. Rad error is 0.537.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 134. Rad error is 134.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4792 MW37	73 MW373UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Chlorobromomethane	L	LCS or LCSD recovery outside of control limits
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria
		1,1-Dichloroethylene	Y1	MS/MSD recovery outside acceptance criteria
		Iodomethane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		trans-1,2-Dichloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 4.76. Rad error is 4.76.
		Gross beta		TPU is 7.69. Rad error is 7.36.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TI is 0.415. Rad error is 0.414.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 3.03. Rad error is 3.03.
		Technetium-99		TPU is 9.14. Rad error is 8.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 0.788. Rad error is 0.786.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. This 139. Rad error is 138.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

•	Facility Sample ID	Constituent	Flag	Description													
004-4809 MW384 MV	V384SG3-19	Chloride	W	Post-digestion spike recovery out of control limits.													
		Sulfate	W	Post-digestion spike recovery out of control limits.													
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits													
		Benzene	Y2	MS/MSD RPD outside acceptance criteria													
												Styrene	L	LCS or LCSD recovery outside of control limits			
										Toluene	Y2	MS/MSD RPD outside acceptance criteria					
				Chlorobromomethane	Y1	MS/MSD recovery outside acceptance criteria											
		1,1,2-Trichloroethane	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD outside acceptance criteria													
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria													
		trans-1,3-Dichloropropene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD outside acceptance criteria													
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria													
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria													
		PCB, Total		Analysis of constituent not required and not performed.													
		PCB-1016		Analysis of constituent not required and not performed.													
		PCB-1221		Analysis of constituent not required and not performed.													
															PCB-1232		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.													
		PCB-1254		Analysis of constituent not required and not performed.													
			PCB-1260 PCB-1268	PCB-1260		Analysis of constituent not required and not performed.											
					Analysis of constituent not required and not performed.												
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.38. Rad error is 6.38.													
		Gross beta		TPU is 20.7. Rad error is 13.4.													
		lodine-131		Analysis of constituent not required and not performed.													
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.373. Rad error is 0.373.													
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.02. Rad error is 2.02.													
		Technetium-99		TPU is 24.1. Rad error is 16.9.													
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.09. Rad error is 1.08.													
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 126. Rad error is 126.													
		Total Organic Halides		See resample.													

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4810 MW38	5 MW385SG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Benzene	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	L	LCS or LCSD recovery outside of control limits
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Chlorobromomethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,2-Trichloroethane	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD loutside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		trans-1,3-Dichloropropene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD loutside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.16. Rad error is 6.13.
		Gross beta		TPU is 27.6. Rad error is 15.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.51. Rad error is 0.508.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.82. Rad error is 1.82.
		Technetium-99		TPU is 23.3. Rad error is 14.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.475. Rad error is 0.473.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 129. Rad error is 129.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

•	Facility Sample ID	Constituent	Flag	Description																												
04-4804 MW386 M\	N386SG3-19	Chloride	W	Post-digestion spike recovery out of control limits.																												
		Sulfate	W	Post-digestion spike recovery out of control limits.																												
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits																												
			Benzene	Y2	MS/MSD RPD outside acceptance criteria																											
										Styrene	L	LCS or LCSD recovery outside of control limits																				
									Toluene	Y2	MS/MSD RPD outside acceptance criteria																					
							Chlorobromomethane	Y1	MS/MSD recovery outside acceptance criteria																							
		1,1,2-Trichloroethane	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD outside acceptance criteria																												
								Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria																						
					trans-1,3-Dichloropropene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSE outside acceptance criteria																									
			1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria																											
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria																												
		PCB, Total		Analysis of constituent not required and not performed.																												
		PCB-1016		Analysis of constituent not required and not performed.																												
		PCB-1221		Analysis of constituent not required and not performed.																												
																													PCB-1232		Analysis of constituent not required and not performed.	
																			PCB-1242	Anal	Analysis of constituent not required and not performed.											
													PCB-1248		Analysis of constituent not required and not performed.																	
																																PCB-1254
		PCB-1260		Analysis of constituent not required and not performed.																												
		PCB-1268		Analysis of constituent not required and not performed.																												
																														Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.37. Rad error is 6.37.
												Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.64. Rad error is 6.64.																		
		lodine-131		Analysis of constituent not required and not performed.																												
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.378. Rad error is 0.377.																												
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.13. Rad error is 2.13.																												
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 10.6. Rad error is 10.6.																												
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.671. Rad error is 0.671.																												
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 127. Rad error is 127.																												
		Total Organic Halides		See resample.																												

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

	acility Sample ID	Constituent	Flag	Description
004-4815 MW387 MW	/387SG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Benzene	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	L	LCS or LCSD recovery outside of control limits
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Chlorobromomethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,2-Trichloroethane	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		trans-1,3-Dichloropropene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 7.86. Rad error is 7.84.
		Gross beta		TPU is 27. Rad error is 15.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.556. Rad error is 0.548.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.23. Rad error is 3.22.
		Technetium-99		TPU is 30.7. Rad error is 17.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.648. Rad error is 0.644.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 134. Rad error is 134.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4816 MW38	8 MW388SG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Benzene	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	L	LCS or LCSD recovery outside of control limits
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Chlorobromomethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,2-Trichloroethane	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		trans-1,3-Dichloropropene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.34. Rad error is 7.28.
		Gross beta		TPU is 17. Rad error is 11.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.548. Rad error is 0.533.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.53. Rad error is 2.52.
		Technetium-99		TPU is 20.9. Rad error is 14.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.904. Rad error is 0.898.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 133. Rad error is 133.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well was dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well was dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample wa collected.
		рН		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample w collected.
		Temperature		During sampling, the well was dry; therefore, no sample w collected.
		Aluminum		During sampling, the well was dry; therefore, no sample w collected.
		Antimony		During sampling, the well was dry; therefore, no sample w collected.
		Arsenic		During sampling, the well was dry; therefore, no sample w collected.
		Barium		During sampling, the well was dry; therefore, no sample w collected.
		Beryllium		During sampling, the well was dry; therefore, no sample w collected.
		Boron		During sampling, the well was dry; therefore, no sample w collected.
		Cadmium		During sampling, the well was dry; therefore, no sample was collected.
		Calcium		During sampling, the well was dry; therefore, no sample was collected.
		Chromium		During sampling, the well was dry; therefore, no sample was collected.
		Cobalt		During sampling, the well was dry; therefore, no sample was collected.
		Copper		During sampling, the well was dry; therefore, no sample was collected.
		Iron		During sampling, the well was dry; therefore, no sample w collected.
		Lead		During sampling, the well was dry; therefore, no sample was collected.
		Magnesium		During sampling, the well was dry; therefore, no sample was collected.
		Manganese		During sampling, the well was dry; therefore, no sample was collected.
		Mercury		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample wa collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample wa collected.
		Selenium		During sampling, the well was dry; therefore, no sample wa collected.
		Silver		During sampling, the well was dry; therefore, no sample wa collected.
		Sodium		During sampling, the well was dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well was dry; therefore, no sample wa collected.
		Thallium		During sampling, the well was dry; therefore, no sample was collected.
		Uranium		During sampling, the well was dry; therefore, no sample was collected.
		Vanadium		During sampling, the well was dry; therefore, no sample was collected.
		Zinc		During sampling, the well was dry; therefore, no sample w collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample w collected.
		Acetone		During sampling, the well was dry; therefore, no sample w collected.
		Acrolein		During sampling, the well was dry; therefore, no sample w collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample w collected.
		Benzene		During sampling, the well was dry; therefore, no sample w collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample w collected.
		Xylenes		During sampling, the well was dry; therefore, no sample w collected.
		Styrene		During sampling, the well was dry; therefore, no sample w collected.
		Toluene		During sampling, the well was dry; therefore, no sample w collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample w collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample w collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample w collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample w collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample w collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sample w collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Chloroform		During sampling, the well was dry; therefore, no sample w collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample w collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample w collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample w collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample v collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample v collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample v collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample v collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample v collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample v collected.
		lodomethane		During sampling, the well was dry; therefore, no sample v collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample v collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample v collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample v collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample v collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample v collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample v collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample v collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample v collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample v collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample v collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample v collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well was dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well was dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well was dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample wa collected.
		Tritium		During sampling, the well was dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well was dry; therefore, no sample wa collected.
		lodide		During sampling, the well was dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

•	Facility Sample ID	Constituent	Flag	Description
004-4811 MW390 MV	N390SG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Benzene	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	L	LCS or LCSD recovery outside of control limits
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Chlorobromomethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,2-Trichloroethane	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		trans-1,3-Dichloropropene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 7.84. Rad error is 7.81.
		Gross beta		TPU is 13.2. Rad error is 10.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.229. Rad error is 0.229.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.79. Rad error is 2.79.
		Technetium-99		TPU is 13. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.842. Rad error is 0.837.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 127. Rad error is 127.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4805 MW391	MW391SG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. This 5.76. Rad error is 5.76.
		Gross beta		TPU is 8.42. Rad error is 8.03.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 0.376. Rad error is 0.376.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 3.14. Rad error is 3.13.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 10.9. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 0.786. Rad error is 0.784.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TI is 131. Rad error is 131.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4806 MW392 MW392SG3-19		Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 3.76. Rad error is 3.75.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 7.3. Rad error is 7.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.341. Rad error is 0.34.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 2.02. Rad error is 2.02.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 8.39. Rad error is 8.38.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.801. Rad error is 0.801.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 135. Rad error is 135.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4807 MW39	93 MW393SG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.32. Rad error is 6.3.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.28. Rad error is 6.27.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.463. Rad error is 0.462.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.83. Rad error is 2.83.
	Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.97. Rad error is 7.95.	
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.06. Rad error is 2.06.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 131. Rad error is 131.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4802 MW394	MW394SG3-19	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Magnesium	Е	Result estimated due to matrix interferences.
		Sodium	Е	Result estimated due to matrix interferences.
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.89. Rad error is 4.89.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.08. Rad error is 6.06.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.487. Rad error is 0.487.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.78. Rad error is 3.77.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 10.3. Rad error is 10.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.09. Rad error is 1.09.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 128. Rad error is 128.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4801 MW39	95 MW395SG3-19	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Magnesium	Е	Result estimated due to matrix interferences.
		Sodium	Е	Result estimated due to matrix interferences.
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.45. Rad error is 4.41.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.87. Rad error is 5.83.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.54. Rad error is 0.539.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.7. Rad error is 3.7.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.68. Rad error is 1.68.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 126. Rad error is 126.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Magnesium	Е	Result estimated due to matrix interferences.
		Sodium	Е	Result estimated due to matrix interferences.
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 9.03. Rad error is 8.86.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.4. Rad error is 5.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.407. Rad error is 0.406.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.23. Rad error is 3.23.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 11.1. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.02. Rad error is 1.01.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 132. Rad error is 132.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4817 MW397	MW397SG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.39. Rad error is 7.32.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 8.18. Rad error is 8.09.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.492. Rad error is 0.474.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.35. Rad error is 2.34.
		Technetium-99		TPU is 11.2. Rad error is 10.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.752. Rad error is 0.752.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 137. Rad error is 137.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG3-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 5.75. Rad error is 5.73.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 7.27. Rad error is 7.19.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.365. Rad error is 0.365.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.39. Rad error is 3.39.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.689. Rad error is 0.689.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 136. Rad error is 136.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG3-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 3.27. Rad error is 3.26.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.95. Rad error is 5.95.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 0.407. Rad error is 0.404.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.22. Rad error is 2.2.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 8.49. Rad error is 8.47.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.629. Rad error is 0.626.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 133. Rad error is 133.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG3-19	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG3-19	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG3-19	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG3-19	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG3-19	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG3-19	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Benzene	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	L	LCS or LCSD recovery outside of control limits
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Chlorobromomethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,2-Trichloroethane	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD routside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		trans-1,3-Dichloropropene	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD Foutside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4SG3-19	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG3-19	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5202 MW221	MW221DSG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.1. Rad error is 5.07.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.84. Rad error is 4.81.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.399. Rad error is 0.397.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.23. Rad error is 3.23.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 8.79. Rad error is 8.69.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.688. Rad error is 0.685.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 134. Rad error is 133.
		Total Organic Halides		See resample.

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-520)1	8000-520)2	8000-524	2	8000-5243	1
Facility's Loc	cal Well or Spring Number (e.g., N	4W−1	L, MW-2, etc	:.)	220		221		222		223	
Sample Sequenc	ce #				3		3		3		3	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date as	nd Time (Month/Day/Year hour: minu	tes)		5/30/2019 (9:38	5/30/2019	07:58	5/30/2019 08	3:47	5/30/2019 08	:29
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW220SG3	-19R	MW221SG	3-19R	MW222SG3-	-19R	MW223SG3-	19R
Laboratory Sar	boratory Sample ID Number (if applicable)					01	4805270	03	48052700	4	48052700	5
Date of Analys	ate of Analysis (Month/Day/Year) For Volatile Organics Analysis					9	6/7/201	19	6/7/2019		6/7/2019	
Gradient with	respect to Monitored Unit (UP, DO	, NW C	, SIDE, UNKN	IOWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.84		29.85		29.85		29.85	
s0145	Specific Conductance	т	μ MH 0/cm	Field	424		396		375		407	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	2	8000-5243	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-1	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	332.39		332.34		332.47		332.5	
N238	Dissolved Oxygen	Т	mg/L	Field	4.02		3.6		3.29		2.8	
S0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
S0296	рН	т	Units	Field	6.31		6.2		6.26		6.23	
NS215	Eh	т	mV	Field	523		539		519		520	
S0907	Temperature	т	°C	Field	17.22		16.83		17.33		17.61	
7429-90-5	Aluminum	Т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	T	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	T	mg/L	6020		*		*		*		*
7440-39-3	Barium	T	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	T	mg/L	6020		*		*		*		*
7440-42-8	Boron	T	mg/L	6020		*		*		*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	T	mg/L	6020		*		*		*		*
7440-47-3	Chromium	T	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	T	mg/L	6020		*		*		*		*
7440-50-8	Copper	Т	mg/L	6020		*		*		*		*
7439-89-6	Iron	Т	mg/L	6020		*		*		*		*
7439-92-1	Lead	Т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	Т	mg/L	6020		*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	3
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*		*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020	0.00822	J	0.00588	J	0.00434	J	0.00582	J

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

					i		Ť		Ť			
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	14	8004-482	20	8004-481	8	8004-4808	}
Facility's Loc	cal Well or Spring Number (e.g., b	∕w-1	L, MW-2, etc	:.)	224		369		370		372	
Sample Sequence	ce #				3		3		3		3	
If sample is a l	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		5/30/2019 (9:13	5/28/2019	13:31	5/28/2019 14	1:07	5/28/2019 14	:29
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW224SG3	-19R	MW369UG	3-19R	MW370UG3-	-19R	MW372UG3-	-19R
Laboratory Sar	boratory Sample ID Number (if applicable)					06	4804040)14	48040401	5	480404017	7
Date of Analys	ate of Analysis (Month/Day/Year) For Volatile Organics Analysis					9	5/30/20)19	6/7/2019		5/31/201	9
Gradient with	respect to Monitored Unit (UP, DO	NWC	, SIDE, UNKN	IOWN)	SIDE		DOW	N	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.84		29.84		29.81		29.81	
S0145	Specific Conductance	т	μ MH 0/cm	Field	432		387		436		628	
	•		•			•						

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	332.63		332.7		332.67		332.76	
N238	Dissolved Oxygen	т	mg/L	Field	2.95		3.59		3.46		2.13	
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рН	т	Units	Field	6.29		6.4		6.11		6.22	
NS215	Eh	т	mV	Field	516		309		400		400	
s0907	Temperature	т	°C	Field	17.67		18.89		20.11		20.44	
7429-90-5	Aluminum	т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	т	mg/L	6020		*		*		*		*
7440-39-3	Barium	т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	т	mg/L	6020		*		*		*		*
7440-42-8	Boron	т	mg/L	6020		*		*		*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
7440-50-8	Copper	т	mg/L	6020		*		*		*		*
7439-89-6	Iron	Т	mg/L	6020		*		*		*		*
7439-92-1	Lead	Т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	Т	mg/L	6020		*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244		8004-4820		8004-481	8	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	T	mg/L	300.0		*		*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020	0.0135		0.0143		0.00514	BJ	0.0075	J

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	92	8004-480	9	8004-841	0	8004-4804	
Facility's Loc	cal Well or Spring Number (e.g., N	1W−1	L, MW-2, etc	:.)	373		384		385		386	
Sample Sequenc	ce #				3		3		3		3	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		5/28/2019 1	5:09	5/29/2019	13:23	5/29/2019 14	1:01	5/292019 13:	40
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW373UG3	-19R	MW384SG	3-19R	MW385SG3-	-19R	MW386SG3-	·19R
Laboratory San	boratory Sample ID Number (if applicable)					18	4805270	07	48052700	8	480527009	9
Date of Analys	ate of Analysis (Month/Day/Year) For Volatile Organics Analysis					9	6/8/201	19	6/9/2019		6/9/2019	
Gradient with	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	IOWN)	DOWN	I	SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.8		29.81		29.8		29.81	
s0145	Specific Conductance	т	μ MHO/cm	Field	767		425		418		576	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	332.76		332.29		332.33		345.62	
N238	Dissolved Oxygen	т	mg/L	Field	1.28		4.72		2.6		3.51	
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рН	т	Units	Field	6.21		6.14		6.14		6.92	
NS215	Eh	т	mV	Field	374		423		444		429	
s0907	Temperature	т	°c	Field	18.72		18.61		18.72		18.28	
7429-90-5	Aluminum	т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	т	mg/L	6020		*		*		*		*
7440-39-3	Barium	т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	т	mg/L	6020		*		*		*		*
7440-42-8	Boron	т	mg/L	6020		*		*		*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
7440-50-8	Copper	Т	mg/L	6020		*		*		*		*
7439-89-6	Iron	Т	mg/L	6020		*		*		*		*
7439-92-1	Lead	Т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	Т	mg/L	6020		*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-4809		8004-481	0	8004-480)4
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*		*		*		*
S0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020	0.0105	В	0.008	J	0.0114	В	0.108	В

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	15	8004-481	16	8004-481	1	8004-4805	5
Facility's Loc	cal Well or Spring Number (e.g., M	w−1	, MW-2, etc	:.)	387		388		390		391	
Sample Sequenc	ce #				3		3		3		3	
If sample is a F	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		5/29/2019 1	2:38	5/29/2019	12:58	5/29/2019 12	2:15	5/29/2019 08	:15
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW387SG3	-19R	MW388SG	3-19R	MW390SG3-	-19R	MW391SG3-	-19R
Laboratory Sam	boratory Sample ID Number (if applicable)					10	4805270)11	48052701	2	48052701	3
Date of Analys	ate of Analysis (Month/Day/Year) For Volatile Organics Analysis					9	6/9/201	19	6/9/2019		6/9/2019	
Gradient with	radient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)				DOW	'N	DOW	N	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056	_	*	_	*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.82		29.81		29.82		29.8	
S0145	Specific Conductance	т	μ MH 0/cm	Field	526		469		676		494	_

¹AKGWA # is 0000-0000 for any type of blank.

- STANDARD FLAGS:
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

^{* =} See Comments

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4811		8004-4805	
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	387		388		390		391	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	332.34		332.34		332.5		332.44	
N238	Dissolved Oxygen	Т	mg/L	Field	3.49		2.9		4.62		2.92	
S0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
S0296	рн	т	Units	Field	6.25		6.14		6.41		6.1	
NS215	Eh	т	mV	Field	436		405		464		462	
s0907	Temperature	т	°c	Field	18.11		18.61		18.06		18.67	
7429-90-5	Aluminum	Т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	Т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	Т	mg/L	6020		*		*		*		*
7440-39-3	Barium	Т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	т	mg/L	6020		*		*		*		*
7440-42-8	Boron	т	mg/L	6020		*		*		*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
7440-50-8	Copper	Т	mg/L	6020		*		*		*		*
7439-89-6	Iron	Т	mg/L	6020		*		*		*		*
7439-92-1	Lead	Т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	Т	mg/L	6020		*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	Т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815		8004-4816		8004-481	1	8004-480)5
Facility's Loc	cal Well or Spring Number (e.g.,	MW-:	L, MW-2, et	.c.)	387		388		390		391	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*		*		*		*
S0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020	0.00682	BJ	0.0129	В	0.0113	В	0.00728	J

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-480)6	8004-480)7	8004-4802	2	8004-4801	1
Facility's Lo	cal Well or Spring Number (e.g., N	/W−1	, MW-2, etc	:.)	392		393		394		395	
Sample Sequen	ce #				3		3		3		3	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		5/29/2019 (7:37	5/29/2019	07:56	5/29/2019 09	:18	5/29/2019 08	3:40
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW392SG3	-19R	MW393SG	3-19R	MW394SG3-	19R	MW395SG3-	-19R
Laboratory San	mple ID Number (if applicable)				4805270	14	4805270)15	480527010	6	48052701	7
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	6/9/201	9	6/9/20	19	6/9/2019		6/9/2019)
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	DOW	N	DOW	N	UP		UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.78		29.8		29.81		29.8	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	441		448		383		367	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-480	6	8004-480	7	8004-4802	2	8004-4801	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	392		393		394		395	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	332.39		342.05		332.75		333.11	
N238	Dissolved Oxygen	Т	mg/L	Field	0.81		2.38		3.93		4.57	
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рН	т	Units	Field	6.2		6.3		6.11		6.08	
NS215	Eh	т	mV	Field	429		454		463		477	
s0907	Temperature	т	°C	Field	17.89		18.5		17.5		17.28	
7429-90-5	Aluminum	т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	т	mg/L	6020		*		*		*		*
7440-39-3	Barium	т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	Т	mg/L	6020		*		*		*		*
7440-42-8	Boron	т	mg/L	6020		*		*		*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
7440-50-8	Copper	T	mg/L	6020		*		*		*		*
7439-89-6	Iron	T	mg/L	6020		*		*		*		*
7439-92-1	Lead	T	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	T	mg/L	6020		*		*		*		*
7439-96-5	Manganese	T	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4806		8004-4807	,	8004-480	2	8004-480)1
Facility's Loc	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	tc.)	392		393		394		395	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*		*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020	0.0227		0.0171		0.00508	J	0.00434	J

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480)3	8004-481	7	8000-520	2	\	-
Facility's Loc	al Well or Spring Number (e.g., M	ſW−1	, MW-2, etc	:.)	396		397		221		\	
Sample Sequenc	e #				3		3		4			
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA			
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		5/29/2019 (8:58	5/29/2019	11:53	5/30/2019 07	7:58		$ \top $
Duplicate ("Y"	or "N") ²				N		N		Υ			
Split ("Y" or	"N") ³				N		N		N			
Facility Sampl	e ID Number (if applicable)				MW396SG3	-19R	MW397SG	3-19R	MW221DSG	3-19R		
Laboratory Sam	mple ID Number (if applicable)				4805270	18	4805270	119	48052700	2	\ /	
Date of Analys	is (Month/Day/Year) For Volatile	Or	ganics Anal	ysis.	6/9/201	9	6/9/20	19	6/7/2019		\	
Gradient with	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	IOWN)	UP		UP		SIDE		Y	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQI	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.81		29.82			*		\
S0145	Specific Conductance	т	μ M H0/cm	Field	722		318			*		

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	3	8004-481	7	8000-5202	2	\	-
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	396		397		221			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	372.99		332.68			*		
N238	Dissolved Oxygen	Т	mg/L	Field	1.47		5.24			*		
S0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		
s0296	рН	Т	Units	Field	6.71		6.11			*		
NS215	Eh	Т	mV	Field	424		488			*		
S0907	Temperature	T	°C	Field	17.61		18.11			*	<u> </u>	
7429-90-5	Aluminum	Т	mg/L	6020		*		*		*	\	
7440-36-0	Antimony	Т	mg/L	6020		*		*		*	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
7440-38-2	Arsenic	Т	mg/L	6020		*		*		*	X.	
7440-39-3	Barium	Т	mg/L	6020		*		*		*		
7440-41-7	Beryllium	Т	mg/L	6020		*		*		*		
7440-42-8	Boron	Т	mg/L	6020		*		*		*	/ /	
7440-43-9	Cadmium	Т	mg/L	6020		*		*		*		\
7440-70-2	Calcium	т	mg/L	6020		*		*		*		<u> </u>
7440-47-3	Chromium	T	mg/L	6020		*		*		*		
7440-48-4	Cobalt	T	mg/L	6020		*		*		*		\Box
7440-50-8	Copper	T	mg/L	6020		*		*		*		$\bot \setminus$
7439-89-6	Iron	T	mg/L	6020		*		*		*		
7439-92-1	Lead	T	mg/L	6020		*		*		*		
7439-95-4	Magnesium	Т	mg/L	6020		*		*		*		
7439-96-5	Manganese	Т	mg/L	6020		*		*		*		
7439-97-6	Mercury	т	mg/L	7470		*		*		*	/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4803		8004-4817		8000-520	2	1	$\overline{}$
Facility's Loc	cal Well or Spring Number (e.g., N	∙w-:	L, MW-2, et	.c.)	396		397		221			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*		
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*	\ /	
10043-66-0	Iodine-131	Т	pCi/L			*		*		*	\ /	
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*		*		*	\	
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*		*	V	
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*		*	\land	
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*		*	/\	
10028-17-8	Tritium	Т	pCi/L	906.0		*		*		*	/ \	
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*	/ \	
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		
20461-54-5	Iodide	т	mg/L	300.0		*		*		*		
S0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		
S0586	Total Organic Halides	Т	mg/L	9020	0.031		0.0088	J	0.0167			

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitor Point	ing	Facility Sample ID	Constituent	Flag	Description
000-5201	MW220	MW220SG3-19R	Bromide		Analysis of constituent not required and not performed.
			Chloride		Analysis of constituent not required and not performed.
			Fluoride		Analysis of constituent not required and not performed.
			Nitrate & Nitrite		Analysis of constituent not required and not performed.
			Sulfate		Analysis of constituent not required and not performed.
			Total Dissolved Solids		Analysis of constituent not required and not performed.
			Aluminum		Analysis of constituent not required and not performed.
			Antimony		Analysis of constituent not required and not performed.
			Arsenic		Analysis of constituent not required and not performed.
			Barium		Analysis of constituent not required and not performed.
			Beryllium		Analysis of constituent not required and not performed.
			Boron		Analysis of constituent not required and not performed.
			Cadmium		Analysis of constituent not required and not performed.
			Calcium		Analysis of constituent not required and not performed.
			Chromium		Analysis of constituent not required and not performed.
			Cobalt		Analysis of constituent not required and not performed.
			Copper		Analysis of constituent not required and not performed.
			Iron		Analysis of constituent not required and not performed.
			Lead		Analysis of constituent not required and not performed.
			Magnesium		Analysis of constituent not required and not performed.
			Manganese		Analysis of constituent not required and not performed.
			Mercury		Analysis of constituent not required and not performed.
			PCB-1254		Analysis of constituent not required and not performed.
			PCB-1260		Analysis of constituent not required and not performed.
			PCB-1268		Analysis of constituent not required and not performed.
			Gross Alpha		Analysis of constituent not required and not performed.
			Gross Beta		Analysis of constituent not required and not performed.
			lodine-131		Analysis of constituent not required and not performed.
			Radium-226		Analysis of constituent not required and not performed.
			Strontium-90		Analysis of constituent not required and not performed.
			Technetium-99		Analysis of constituent not required and not performed.
			Thorium-230		Analysis of constituent not required and not performed.
			Tritium		Analysis of constituent not required and not performed.
			Chemical Oxygen Demand		Analysis of constituent not required and not performed.
			Cyanide		Analysis of constituent not required and not performed.
			lodide		Analysis of constituent not required and not performed.
			Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5202 MW221	MW221SG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5242 MW222	MW222SG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent I	Flag	Description
000-5243 MW223	MW223SG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5244 MW224	MW224SG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4820 MW369	MW369UG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4818 MW370	MW370UG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent F	lag	Description
004-4808 MW372	MW372UG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4792 MW373	MW373UG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4809 MW384	MW384SG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4810 MW385	MW385SG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4804 MW386	MW386SG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4815 MW387	MW387SG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4816 MW388	MW388SG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitori Point	ing	Facility Sample ID	Constituent	Flag	Description
004-4811	MW390	MW390SG3-19R	Bromide		Analysis of constituent not required and not performed.
			Chloride		Analysis of constituent not required and not performed.
			Fluoride		Analysis of constituent not required and not performed.
			Nitrate & Nitrite		Analysis of constituent not required and not performed.
			Sulfate		Analysis of constituent not required and not performed.
			Total Dissolved Solids		Analysis of constituent not required and not performed.
			Aluminum		Analysis of constituent not required and not performed.
			Antimony		Analysis of constituent not required and not performed.
			Arsenic		Analysis of constituent not required and not performed.
			Barium		Analysis of constituent not required and not performed.
			Beryllium		Analysis of constituent not required and not performed.
			Boron		Analysis of constituent not required and not performed.
			Cadmium		Analysis of constituent not required and not performed.
			Calcium		Analysis of constituent not required and not performed.
			Chromium		Analysis of constituent not required and not performed.
			Cobalt		Analysis of constituent not required and not performed.
			Copper		Analysis of constituent not required and not performed.
			Iron		Analysis of constituent not required and not performed.
			Lead		Analysis of constituent not required and not performed.
			Magnesium		Analysis of constituent not required and not performed.
			Manganese		Analysis of constituent not required and not performed.
			Mercury		Analysis of constituent not required and not performed.
			PCB-1254		Analysis of constituent not required and not performed.
			PCB-1260		Analysis of constituent not required and not performed.
			PCB-1268		Analysis of constituent not required and not performed.
			Gross Alpha		Analysis of constituent not required and not performed.
			Gross Beta		Analysis of constituent not required and not performed.
			lodine-131		Analysis of constituent not required and not performed.
			Radium-226		Analysis of constituent not required and not performed.
			Strontium-90		Analysis of constituent not required and not performed.
			Technetium-99		Analysis of constituent not required and not performed.
			Thorium-230		Analysis of constituent not required and not performed.
			Tritium		Analysis of constituent not required and not performed.
			Chemical Oxygen Demand		Analysis of constituent not required and not performed.
			Cyanide		Analysis of constituent not required and not performed.
			lodide		Analysis of constituent not required and not performed.
			Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4805 MW391	MW391SG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4806 MW392	MW392SG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitor Point	ing	Facility Sample ID	Constituent	Flag	Description
004-4807	MW393	MW393SG3-19R	Bromide		Analysis of constituent not required and not performed.
			Chloride		Analysis of constituent not required and not performed.
			Fluoride		Analysis of constituent not required and not performed.
			Nitrate & Nitrite		Analysis of constituent not required and not performed.
			Sulfate		Analysis of constituent not required and not performed.
			Total Dissolved Solids		Analysis of constituent not required and not performed.
			Aluminum		Analysis of constituent not required and not performed.
			Antimony		Analysis of constituent not required and not performed.
			Arsenic		Analysis of constituent not required and not performed.
			Barium		Analysis of constituent not required and not performed.
			Beryllium		Analysis of constituent not required and not performed.
			Boron		Analysis of constituent not required and not performed.
			Cadmium		Analysis of constituent not required and not performed.
			Calcium		Analysis of constituent not required and not performed.
			Chromium		Analysis of constituent not required and not performed.
			Cobalt		Analysis of constituent not required and not performed.
			Copper		Analysis of constituent not required and not performed.
			Iron		Analysis of constituent not required and not performed.
			Lead		Analysis of constituent not required and not performed.
			Magnesium		Analysis of constituent not required and not performed.
			Manganese		Analysis of constituent not required and not performed.
			Mercury		Analysis of constituent not required and not performed.
			PCB-1254		Analysis of constituent not required and not performed.
			PCB-1260		Analysis of constituent not required and not performed.
			PCB-1268		Analysis of constituent not required and not performed.
			Gross Alpha		Analysis of constituent not required and not performed.
			Gross Beta		Analysis of constituent not required and not performed.
			lodine-131		Analysis of constituent not required and not performed.
			Radium-226		Analysis of constituent not required and not performed.
			Strontium-90		Analysis of constituent not required and not performed.
			Technetium-99		Analysis of constituent not required and not performed.
			Thorium-230		Analysis of constituent not required and not performed.
			Tritium		Analysis of constituent not required and not performed.
			Chemical Oxygen Demand		Analysis of constituent not required and not performed.
			Cyanide		Analysis of constituent not required and not performed.
			lodide		Analysis of constituent not required and not performed.
			Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4802 MW394	MW394SG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point		Facility Sample ID	Constituent	Flag	Description
004-4801	MW395	MW395SG3-19R	Bromide		Analysis of constituent not required and not performed.
			Chloride		Analysis of constituent not required and not performed.
			Fluoride		Analysis of constituent not required and not performed.
			Nitrate & Nitrite		Analysis of constituent not required and not performed.
			Sulfate		Analysis of constituent not required and not performed.
			Total Dissolved Solids		Analysis of constituent not required and not performed.
			Aluminum		Analysis of constituent not required and not performed.
			Antimony		Analysis of constituent not required and not performed.
			Arsenic		Analysis of constituent not required and not performed.
			Barium		Analysis of constituent not required and not performed.
			Beryllium		Analysis of constituent not required and not performed.
			Boron		Analysis of constituent not required and not performed.
			Cadmium		Analysis of constituent not required and not performed.
			Calcium		Analysis of constituent not required and not performed.
			Chromium		Analysis of constituent not required and not performed.
			Cobalt		Analysis of constituent not required and not performed.
			Copper		Analysis of constituent not required and not performed.
			Iron		Analysis of constituent not required and not performed.
			Lead		Analysis of constituent not required and not performed.
			Magnesium		Analysis of constituent not required and not performed.
			Manganese		Analysis of constituent not required and not performed.
			Mercury		Analysis of constituent not required and not performed.
			PCB-1254		Analysis of constituent not required and not performed.
			PCB-1260		Analysis of constituent not required and not performed.
			PCB-1268		Analysis of constituent not required and not performed.
			Gross Alpha		Analysis of constituent not required and not performed.
			Gross Beta		Analysis of constituent not required and not performed.
			lodine-131		Analysis of constituent not required and not performed.
			Radium-226		Analysis of constituent not required and not performed.
			Strontium-90		Analysis of constituent not required and not performed.
			Technetium-99		Analysis of constituent not required and not performed.
			Thorium-230		Analysis of constituent not required and not performed.
			Tritium		Analysis of constituent not required and not performed.
			Chemical Oxygen Demand		Analysis of constituent not required and not performed.
			Cyanide		Analysis of constituent not required and not performed.
			lodide		Analysis of constituent not required and not performed.
			Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4803 MW396	MW396SG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

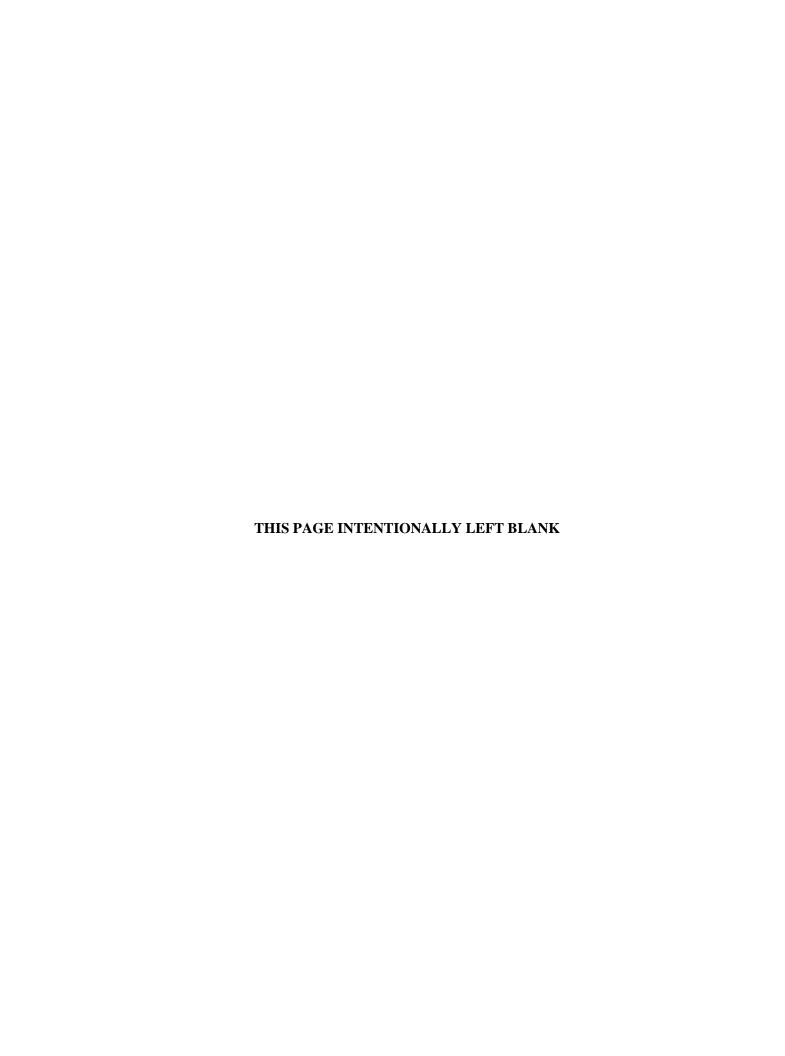
LAB ID:None

For Official Use Only

<u>Point</u> 004-4817 MW397	Sample ID	Constituent	Flag	Description
OT TOTA INIVIOUR	MW397SG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045


Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5202 MW221	MW221DSG3-19R	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pH		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross Alpha		Analysis of constituent not required and not performed.
		Gross Beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/INERT—QUARTERLY, 2nd CY 2019

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-980-008-982/1</u>

Lab ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the second quarter 2019 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The second quarter 2019 data used to conduct the statistical analyses were collected in April and May 2019. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that exceeded the historical background, using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
$MW390^1$	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
$MW396^1$	BG	UCRS
MW397	BG	LRGA

¹NOTE: The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, second quarter 2019. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

lower $TL = X - (K \times S)$

-

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters Acetone

Aluminum

Antimony

Beta Activity

Boron

Bromide

Calcium

Carbon Disulfide

Chemical Oxygen Demand (COD)

Chloride

cis-1,2-Dichloroethene

Cobalt

Conductivity

Copper

Dissolved Oxygen

Dissolved Solids

Iron

Magnesium

Manganese

Methylene Chloride

Molybdenum

Nickel

Oxidation-Reduction Potential

pH*

Potassium

Sodium

Sulfate

Technetium-99

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

Trichloroethene

Vanadium

Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	1	3	Yes
Antimony	4	2	2	Yes
Beryllium	4	4	0	No
Boron	4	0	4	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	2	2	Yes
Chloride Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
	4	4	0	
Chloroform	· · · · · ·	•		No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	2	2	Yes
Conductivity	4	0	4	Yes
Copper	4	0	4	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No
Iodide	4	4	0	No

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	1	3	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	2	2	Yes
Nickel	4	1	3	Yes
Oxidation-Reduction Potential	4	0	4	Yes
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Vanadium	4	3	1	Yes
Vinyl Acetate	4	4	0	No
Zinc	4	2	2	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	10	1	Yes
Antimony	11	3	8	Yes
Beryllium	11	11	0	No
Beta activity	11	4	7	Yes
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	10	1	Yes
Chemical Oxygen Demand (COD)	11	4	7	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	10	1	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	5	6	Yes
Conductivity	11	0	11	Yes
Copper	11	0	11	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Oxygen Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	2	9	Yes
Magnesium	11	0	11	Yes
Manganese	11	5	6	Yes
Methylene chloride	11	7	4	Yes
Molybdenum	11	7	4	Yes
Nickel	11	1	10	Yes
Oxidation-Reduction Potential	11	0	11	Yes
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	6	5	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	1	10	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	4	7	Yes
Trichlorofluoromethane	11	11	0	No
Vanadium	11	9	2	Yes
Vinyl Acetate	11	11	0	No
Zinc	11	8	3	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	6	1	Yes
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	2	5	Yes
Antimony	7	3	4	Yes
Beryllium	7	7	0	No
Beta activity	7	3	4	Yes
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	5	2	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	4	3	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	0	7	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Magnesium	7	0	7	Yes
Manganese	7	3	4	Yes
Methylene chloride	7	5	2	Yes
Molybdenum	7	7	0	No
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	2	5	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	1	6	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	1	6	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	5	2	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	3	4	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 27, 32, and 31 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background UTL for chemical oxygen demand (COD), oxidation-reduction potential, and technetium-99.

URGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, chemical oxygen demand (COD), dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, chemical oxygen demand (COD), chloride, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: Oxidation-reduction potential, sulfate	MW370: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW390: Oxidation-reduction potential, technetium-99	MW221: Oxidation-reduction potential	MW373: Calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate
MW393: Oxidation-reduction potential	MW222: Oxidation-reduction potential	MW385: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW396: Chemical Oxygen Demand (COD), oxidation-reduction potential	MW223: Oxidation-reduction potential, sulfate	MW388: Beta activity, oxidation-reduction potential, sulfate, technetium-99
	MW224: Oxidation-reduction potential	MW392: Chloride, oxidation-reduction potential
	MW369: Beta activity, technetium-99	MW395: Oxidation-reduction potential
	MW372: Calcium, chemical oxygen demand (COD), dissolved solids, magnesium, oxidation-reduction potential, sulfate, technetium-99	MW397: Oxidation-reduction potential
	MW384: Beta activity, oxidation-reduction potential, sulfate, technetium-99	
	MW387: Beta activity, oxidation-reduction potential, sodium, sulfate, technetium-99	
	MW391: Chemical oxygen demand (COD), oxidation-reduction potential, sulfate	
	MW394: Oxidation-reduction potential	

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	1.68	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	Current results exceed statistically derived historical background concentration in MW396.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	2.27	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentrations in MW369, MW384, and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentrations in MW372.
Carbon Disulfide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentrations in MW372 and MW391.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.
Methylene Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220, MW221, MW222, MW223, MW224, MW372, MW384, MW387, MW391, and MW394.
pH	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW387.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW220, MW223, MW372, MW384, MW387, and MW391.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW372, MW384, and MW387.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.08	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation

^{*} If CV > 1.0, used log-transformed data.

¹ Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	1.62	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	Current results exceed statistically derived historical background concentration in MW373.
Chloride	Tolerance Interval	0.22	Current results exceed statistically derived historical background concentration in MW392.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Methylene Chloride	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, MW395, and MW397.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 9, and 10 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW369: Beta activity, technetium-99	MW370: Beta activity, sulfate, technetium-99
MW372: Calcium, chemical oxygen demand (COD), magnesium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
MW387: Beta activity, sodium, technetium-99	MW388: Beta activity, sulfate, technetium-99
MW391: Chemical oxygen demand (COD), oxidation-reduction potential, sulfate	MW392: Chloride

<u>UCRS</u>

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the oxidation-reduction potential concentrations in two UCRS wells (i.e., MW390 and MW393) and technetium-99 concentration in one UCRS well (i.e., MW390) exceeded the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, chemical oxygen demand (COD), magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, chloride, conductivity, dissolved solids, magnesium, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

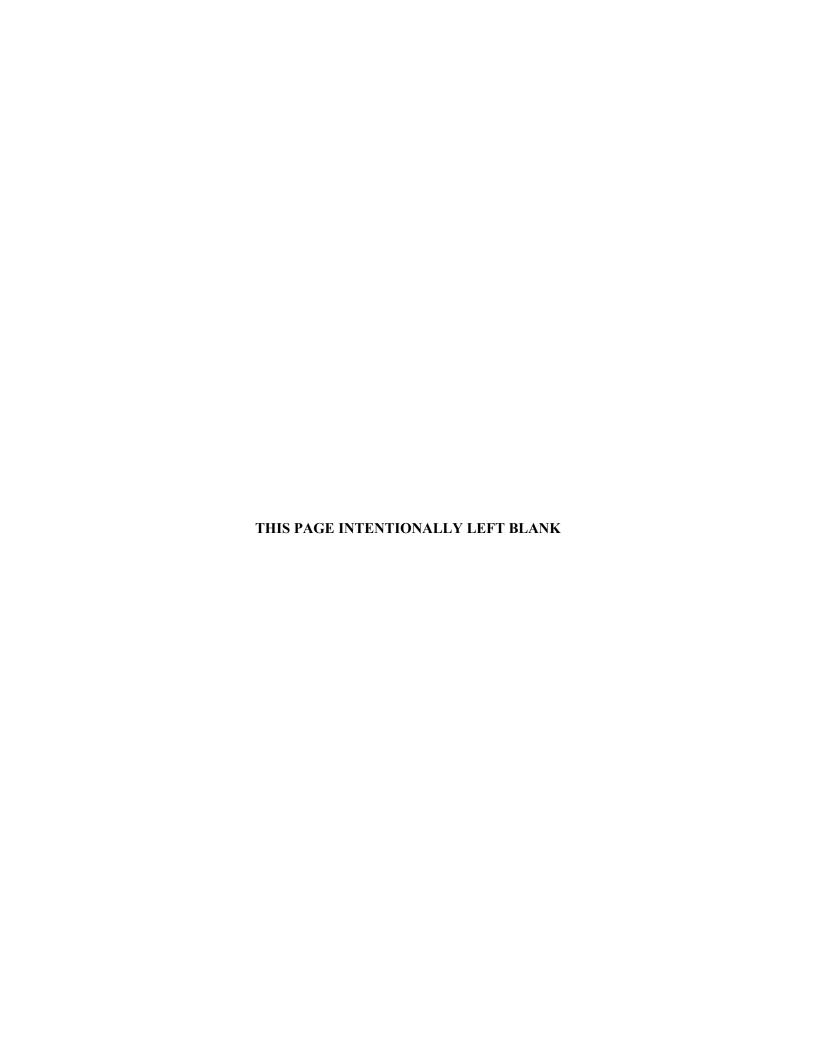
Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Chemical Oxygen Demand (COD)	Tolerance Interval	0.34	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.24	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390, MW393, and MW396 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	-3.16	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.74	MW369, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.12	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.41	MW372 and MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.32	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Magnesium	Tolerance Interval	0.12	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.14	MW220, MW221, MW222, MW223, MW224, and MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sodium	Tolerance Interval	0.17	MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.35	MW372 and MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.55	MW369, MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.


Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.38	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.19	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.63	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Chloride	Tolerance Interval	0.15	MW392 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.09	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.21	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.19	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.22	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.05	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.45	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Aluminum

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.320

CV(1)=0.567

K factor=** 3.188

TL(1) = 0.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.259 S = 0.503

S = 0.182

CV(2) = -0.400

K factor=** 3.188

TL(2) = 0.345

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.393	-0.934
9/16/2002	0.2	-1.609
10/16/2002	0.2	-1.609
1/13/2003	0.501	-0.691
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.668	-0.403

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	0.0198	NO	-3.922	N/A			
MW390	Downgradien	t Yes	0.0818	NO	-2.503	N/A			
MW393	Downgradien	t No	0.05	N/A	-2.996	N/A			
MW396	Upgradient	Yes	0.0486	NO	-3.024	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-3

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison Antimony** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.054

S = 0.090CV(1) = 1.679 **K factor**=** 3.188

TL(1) = 0.342

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.376 S = 1.708

CV(2) = -0.390

K factor=** 3.188

TL(2) = 1.068

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.005	-5.298
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Curr	Current Quarter Data							
Well N	No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW3	886	Sidegradient	No	0.00134	N/A	-6.615	N/A	
MW3	90	Downgradien	t No	0.003	N/A	-5.809	N/A	
MW3	93	Downgradien	t Yes	0.00167	N/A	-6.395	NO	
MW3	96	Upgradient	Yes	0.00126	N/A	-6.677	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-4

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S= 0.833 **CV(1)**=1.282

K factor**= 3.188

TL(1) = 3.306

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.066

CV(2) = -1.031

K factor**= 3.188

TL(2) = 2.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

1	Well Number:	MW396	
]	Date Collected	Result	LN(Result)
;	8/13/2002	2	0.693
9	9/16/2002	2	0.693
	10/16/2002	0.2	-1.609
	1/13/2003	0.2	-1.609
4	4/8/2003	0.2	-1.609
,	7/16/2003	0.2	-1.609
	10/14/2003	0.2	-1.609
	1/14/2004	0.2	-1.609

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.00596	N/A	-5.123	NO		
MW390	Downgradien	t Yes	0.0265	N/A	-3.631	NO		
MW393	Downgradien	t Yes	0.0238	N/A	-3.738	NO		
MW396	Upgradient	Yes	0.00738	N/A	-4.909	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.388

CV(1)=0.236

K factor=** 3.188

TL(1) = 2.430

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.301

S = 0.327S = 0.252

CV(2) = 0.838

K factor**= 3.188

TL(2)= 1.105

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.169	NO	-1.778	N/A
MW390	Downgradien	t Yes	0.692	NO	-0.368	N/A
MW393	Downgradien	t Yes	0.151	NO	-1.890	N/A
MW396	Upgradient	Yes	0.901	NO	-0.104	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.825 S = 8.445 CV(1) = 0.202

K factor=** 3.188

TL(1)= 68.748

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.711

S = 0.241

CV(2) = 0.065

K factor**= 3.188

TL(2) = 4.479

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	19.3	NO	2.960	N/A
MW390	Downgradien	t Yes	28.7	NO	3.357	N/A
MW393	Downgradien	t Yes	13.9	NO	2.632	N/A
MW396	Upgradient	Yes	31.8	NO	3.459	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.375 S = 0.744 CV(1) = 0.021

K factor**= 3.188

TL(1) = 37.747 LL(1)

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.566 **S**= 0.021

CV(2) = 0.006

K factor=** 3.188

TL(2)= 3.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	20	N/A	2.996	N/A
MW390	Downgradien	t Yes	35.1	NO	3.558	N/A
MW393	Downgradien	t No	20	N/A	2.996	N/A
MW396	Upgradient	Yes	43.8	YES	3.780	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 101.725 S = 5.245

CV(1)=0.052 K factor**= 3.188

TL(1)= 118.447 LL(

LL(1)=N/A

Statistics-Transformed Background Data

X= 4.621 **S**= 0.053

CV(2)=0.011

K factor**= 3.188

TL(2) = 4.789

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	13.7	NO	2.617	N/A
MW390	Downgradien	t Yes	37.7	NO	3.630	N/A
MW393	Downgradien	t Yes	12.5	NO	2.526	N/A
MW396	Upgradient	Yes	54.7	NO	4.002	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Cobalt

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.008

CV(1) = 1.340S = 0.011

K factor=** 3.188

TL(1) = 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.645 S = 1.339

CV(2) = -0.237

K factor=** 3.188

TL(2) = -1.377

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00073	9 N/A	-7.210	NO
MW390	Downgradien	t No	0.001	N/A	-6.908	N/A
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
MW396	Upgradient	Yes	0.00034	8 N/A	-7.963	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-10

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison **Conductivity** UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 922.500 S = 107.616 CV(1) = 0.117

K factor**= 3.188

TL(1)= 1265.579 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.822 S = 0.111

CV(2) = 0.016**K factor**=** 3.188 TL(2) = 7.175

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	784	6.664
9/30/2002	871	6.770
10/16/2002	868	6.766
1/13/2003	912	6.816
4/8/2003	942	6.848
7/16/2003	910	6.813
10/14/2003	935	6.841
1/14/2004	1158	7.054

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	593	NO	6.385	N/A
MW390	Downgradien	t Yes	676	NO	6.516	N/A
MW393	Downgradien	t Yes	473	NO	6.159	N/A
MW396	Upgradient	Yes	722	NO	6.582	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-11

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

CV(1)=0.481

K factor=** 3.188

TL(1) = 0.072

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.650 S = 0.414

S = 0.014

CV(2) = -0.113

K factor=** 3.188

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00102	NO	-6.888	N/A
MW390	Downgradien	t Yes	0.00251	NO	-5.987	N/A
MW393	Downgradien	t Yes	0.00091	9 NO	-6.992	N/A
MW396	Upgradient	Yes	0.00168	NO	-6.389	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-12

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.395

CV(1)=1.202

K factor=** 3.188

TL(1) = 6.743

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.043 S = 0.814

S = 1.677

CV(2) = -18.867

K factor=** 3.188

TL(2) = 2.553

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	3.51	N/A	1.256	NO	
MW390	Downgradien	t Yes	4.62	N/A	1.530	NO	
MW393	Downgradien	t Yes	2.76	N/A	1.015	NO	
MW396	Upgradient	Yes	3.52	N/A	1.258	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-13

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

K factor**= 3.188

TL(1)= 882.980 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.298

 $S = 0.162 \quad CV(2) = 0.026$

K factor**= 3.188

TL(2) = 6.815

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	349	NO	5.855	N/A	
MW390	Downgradien	t Yes	407	NO	6.009	N/A	
MW393	Downgradien	t Yes	281	NO	5.638	N/A	
MW396	Upgradient	Yes	393	NO	5.974	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.796

CV(1) = 0.478

K factor=** 3.188

TL(1)= 19.666

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.880

S = 0.723

S = 3.723

CV(2) = 0.384

K factor=** 3.188

TL(2) = 4.184

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well 1	Number:	MW396	
Date 0	Collected	Result	LN(Result)
8/13/2	2002	1.8	0.588
9/16/2	2002	9.53	2.254
10/16	/2002	7.43	2.006
1/13/2	2003	9.93	2.296
4/8/20	003	10.2	2.322
7/16/2	2003	9.16	2.215
10/14	/2003	11.9	2.477
1/14/2	2004	2.42	0.884

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.318	NO	-1.146	N/A
MW390	Downgradien	t Yes	0.0878	NO	-2.433	N/A
MW393	Downgradien	t Yes	0.479	NO	-0.736	N/A
MW396	Upgradient	Yes	0.326	NO	-1.121	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.196

Statistics-Background Data

X = 16.876 S = 3.313

K factor**= 3.188

TL(1) = 27.438

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.804

S= 0.240 **CV(2)**=0.086

K factor**= 3.188

TL(2) = 3.569

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	8.85	NO	2.180	N/A	
MW390	Downgradien	t Yes	12.3	NO	2.510	N/A	
MW393	Downgradien	t Yes	4.17	NO	1.428	N/A	
MW396	Upgradient	Yes	14.7	NO	2.688	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.774

CV(1) = 0.456S = 0.353

K factor=** 3.188

TL(1)= 1.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.566 S = 1.192 CV(2) = -2.105

K factor=** 3.188

TL(2) = 3.235

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
1	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW386	Sidegradient	Yes	0.0812	NO	-2.511	N/A
	MW390	Downgradien	t No	0.005	N/A	-5.298	N/A
	MW393	Downgradien	t Yes	0.00768	NO	-4.869	N/A
	MW396	Upgradient	Yes	0.0305	NO	-3.490	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-17

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.011

CV(1)=1.507 K factor**= 3.188

TL(1) = 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.928

S = 1.420

CV(2) = -0.240

K factor**= 3.188

TL(2) = -1.400

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00128	-6.661
4/8/2003	0.00271	-5.911
7/16/2003	0.00117	-6.751
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	0.001	N/A	-6.908	N/A		
MW390	Downgradien	t Yes	0.00049	8 N/A	-7.605	NO		
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW396	Upgradient	Yes	0.00026	6 N/A	-8.232	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

S= 0.021 **CV(1)**=1.272

K factor=** 3.188

TL(1) = 0.083

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.706 S = 1.057

CV(2) = -0.225

K factor**= 3.188

TL(2) = -1.338

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.00069	9 N/A	-7.266	NO		
MW390	Downgradien	t Yes	0.0015	N/A	-6.502	NO		
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A		
MW396	Upgradient	Yes	0.00064	1 N/A	-7.352	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UCRS UNITS: mV**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.000 S = 61.952 CV(1) = 4.766

K factor=** 3.188

TL(1)=210.502 LL(1)=N/A

Statistics-Transformed Background

X = 4.364

S = 0.333 CV(2) = 0.076

K factor=** 3.188

TL(2) = 4.736

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	429	N/A	6.061	YES		
MW390	Downgradien	t Yes	464	N/A	6.140	YES		
MW393	Downgradien	t Yes	454	N/A	6.118	YES		
MW396	Upgradient	Yes	431	N/A	6.066	YES		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390 MW393

MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-20

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.460

 $S= 0.350 \quad CV(1)=0.054$

K factor=** 3.736

TL(1)= 7.766

LL(1)=5.1541

Statistics-Transformed Background Data

X = 1.864

S = 0.054

CV(2) = 0.029

K factor**= 3.736

TL(2) = 2.067

LL(2)=1.6621

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 6.17 1.820 9/16/2002 6.4 1.856 5.9 10/16/2002 1.775 1/13/2003 6.4 1.856 4/8/2003 6.65 1.895 7/16/2003 6.4 1.856 10/14/2003 1.904 6.71 1/14/2004 7.05 1.953

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Curre	nt Oı	iartar	Data
Curre	111 (71	іягтег	17313

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	6.92	NO	1.934	N/A
MW390	Downgradien	t Yes	6.41	NO	1.858	N/A
MW393	Downgradien	t Yes	6.3	NO	1.841	N/A
MW396	Upgradient	Yes	6.71	NO	1.904	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.411

CV(1) = 0.282

K factor=** 3.188

TL(1) = 2.682

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.311

S= 0.399 **S**= 0.271

CV(2) = 0.870

K factor**= 3.188

TL(2) = 1.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	0.262	NO	-1.339	N/A			
MW390	Downgradien	t Yes	0.315	NO	-1.155	N/A			
MW393	Downgradien	t Yes	0.476	NO	-0.742	N/A			
MW396	Upgradient	Yes	0.857	NO	-0.154	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

K factor**= 3.188

TL(1)= 208.973

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.595 S = 0.5

S = 0.492 CV(2) = 0.107

K factor**= 3.188

TL(2) = 6.163

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	115	4.745
9/16/2002	116	4.754
10/16/2002	117	4.762
1/13/2003	122	4.804
4/8/2003	106	4.663
7/16/2003	117	4.762
10/14/2003	132	4.883
1/14/2004	29.6	3.388

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	93.9	NO	4.542	N/A			
MW390	Downgradien	t Yes	100	NO	4.605	N/A			
MW393	Downgradien	t Yes	83.1	NO	4.420	N/A			
MW396	Upgradient	Yes	98.1	NO	4.586	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.463 **S**= 8.876

CV(1) = 0.395

K factor**= 3.188

TL(1) = 50.759

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.054

S= 0.351

CV(2) = 0.115

K factor**= 3.188

TL(2) = 4.173

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	49.1	NO	3.894	N/A		
MW390	Downgradien	t Yes	43.5	NO	3.773	N/A		
MW393	Downgradien	t Yes	21.1	NO	3.049	N/A		
MW396	Upgradient	Yes	25.5	NO	3.239	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.624

CV(1) = 0.860

K factor=** 3.188

TL(1)= 28.531

LL(1)=N/A

Statistics-Transformed Background

X = 1.498

S= 1.321

S = 6.558

CV(2)=0.882

K factor**= 3.188

TL(2) = 5.710

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	-2.67	N/A	#Error	N/A
MW390	Downgradien	t Yes	63.1	YES	4.145	N/A
MW393	Downgradien	t No	4.03	N/A	1.394	N/A
MW396	Upgradient	No	5.89	N/A	1.773	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.988

CV(1) = 0.470

K factor=** 3.188

TL(1)= 24.959

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.210

S = 0.454

S = 4.696

CV(2) = 0.205

K factor**= 3.188

TL(2) = 3.657

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	19	2.944
9/16/2002	14.6	2.681
10/16/2002	10.4	2.342
1/13/2003	4.4	1.482
4/8/2003	7	1.946
7/16/2003	7.3	1.988
10/14/2003	9.1	2.208
1/14/2004	8.1	2.092

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	4.24	NO	1.445	N/A	
MW390	Downgradien	t Yes	2.46	NO	0.900	N/A	
MW393	Downgradien	t Yes	2.51	NO	0.920	N/A	
MW396	Upgradient	Yes	4.53	NO	1.511	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 142.650 S = 53.533 CV(1) = 0.375

K factor=** 3.188

TL(1)= 313.314 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.896

 $S = 0.390 \quad CV(2) = 0.080$

K factor**= 3.188

TL(2)= 6.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	108	NO	4.682	N/A		
MW390	Downgradien	t Yes	11.3	NO	2.425	N/A		
MW393	Downgradien	t Yes	17.1	NO	2.839	N/A		
MW396	Upgradient	Yes	31	NO	3.434	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.021

CV(1) = 0.109

K factor=** 3.188

TL(1)= 0.029

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.856 S = 0.103

CV(2) = -0.027

K factor**= 3.188

TL(2) = -3.527

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

W	ell Number:	MW396	
Da	te Collected	Result	LN(Result)
8/1	13/2002	0.025	-3.689
9/1	16/2002	0.025	-3.689
10	/16/2002	0.02	-3.912
1/1	13/2003	0.02	-3.912
4/8	3/2003	0.02	-3.912
7/1	16/2003	0.02	-3.912
10	/14/2003	0.02	-3.912
1/1	14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

S = 0.002

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.0101	NO	-4.595	N/A		
MW390	Downgradien	t No	0.02	N/A	-3.912	N/A		
MW393	Downgradien	t No	0.0152	N/A	-4.186	N/A		
MW396	Upgradient	No	0.02	N/A	-3.912	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Zinc

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.044

S = 0.035CV(1)=0.786 **K factor**=** 3.188

TL(1) = 0.156

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.342 S = 0.682

CV(2) = -0.204

K factor=** 3.188

TL(2) = -1.168

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.1 -2.3039/16/2002 0.1 -2.30310/16/2002 0.025 -3.6891/13/2003 0.035 -3.352 4/8/2003 0.035 -3.352 7/16/2003 0.02 -3.91210/14/2003 0.02 -3.912 -3.912 1/14/2004 0.02

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	0.02	N/A	-3.912	N/A		
MW390	Downgradien	t Yes	0.00393	NO	-5.539	N/A		
MW393	Downgradien	t No	0.02	N/A	-3.912	N/A		
MW396	Ungradient	Ves	0.00438	NO	-5 431	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-29

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Aluminum **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.221

CV(1)=0.277

K factor**= 2.523

TL(1) = 0.376

LL(1)=N/A

Statistics-Transformed Background

X = -1.534 S = 0.212 CV(2) = -0.138

S = 0.061

K factor=** 2.523

TL(2) = -0.999

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 0.2 1/15/2003 0.2 -1.6094/10/2003 0.2 -1.609 7/14/2003 0.2 -1.60910/13/2003 0.427 -0.8511/13/2004 0.309 -1.1744/13/2004 0.2 -1.609 7/21/2004 0.202 -1.599Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.2 -1.609 9/16/2002 0.2 -1.60910/16/2002 0.2 -1.6091/13/2003 0.2 -1.6094/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609

0.2

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.05	N/A	-2.996	N/A
MW221	Sidegradient	No	0.05	N/A	-2.996	N/A
MW222	Sidegradient	No	0.05	N/A	-2.996	N/A
MW223	Sidegradient	No	0.05	N/A	-2.996	N/A
MW224	Sidegradient	No	0.05	N/A	-2.996	N/A
MW369	Downgradien	t No	0.05	N/A	-2.996	N/A
MW372	Downgradien	t No	0.05	N/A	-2.996	N/A
MW384	Sidegradient	No	0.05	N/A	-2.996	N/A
MW387	Downgradien	t Yes	0.0206	NO	-3.882	N/A
MW391	Downgradien	t No	0.05	N/A	-2.996	N/A
MW394	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-30

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison Antimony** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=2.267**K** factor**= 2.523 **TL(1)=** 0.197 Statistics-Background Data X = 0.029S = 0.067LL(1)=N/A **Statistics-Transformed Background** X = -4.837 S = 1.260 CV(2) = -0.260

K factor=** 2.523

TL(2) = -1.658

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.005 -5.298 1/15/2003 0.005 -5.2984/10/2003 0.005 -5.298 7/14/2003 0.005 -5.298 -5.298 10/13/2003 0.005 1/13/2004 0.005 -5.2984/13/2004 0.005 -5.298 7/21/2004 0.005 -5.298Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.2 -1.609 9/16/2002 0.2 -1.6090.005 -5.298 10/16/2002 1/13/2003 0.005 -5.2984/10/2003 0.005-5.298 7/16/2003 0.005 -5.29810/14/2003 0.005 -5.2980.005 -5.298 1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	0.0013	N/A	-6.645	NO
Sidegradient	Yes	0.00126	N/A	-6.677	NO
Sidegradient	Yes	0.00123	N/A	-6.701	NO
Sidegradient	Yes	0.00134	N/A	-6.615	NO
Sidegradient	Yes	0.00124	N/A	-6.693	NO
Downgradien	t No	0.003	N/A	-5.809	N/A
Downgradien	t Yes	0.00125	N/A	-6.685	NO
Sidegradient	No	0.00138	N/A	-6.586	N/A
Downgradien	t No	0.0013	N/A	-6.645	N/A
Downgradien	t Yes	0.0014	N/A	-6.571	NO
Upgradient	Yes	0.00126	N/A	-6.677	NO
	Upgradient Sidegradient Sidegradient Sidegradient Sidegradient Downgradien Downgradien Downgradient Downgradient Downgradient Downgradien Upgradient	Gradient Detected? Upgradient Yes Sidegradient Yes Sidegradient Yes Sidegradient Yes Sidegradient Yes Downgradient No Downgradient No Downgradient No Downgradient No Downgradient No Downgradient Yes	Gradient Detected? Result Upgradient Yes 0.0013 Sidegradient Yes 0.00126 Sidegradient Yes 0.00124 Sidegradient Yes 0.00124 Downgradient Yes 0.00124 Downgradient No 0.003 Downgradient No 0.00138 Downgradient No 0.0013 Downgradient No 0.0013 Downgradient Yes 0.0014 Upgradient Yes 0.00126	Gradient Detected? Result Result >TL(1)? Upgradient Yes 0.0013 N/A Sidegradient Yes 0.00126 N/A Sidegradient Yes 0.00123 N/A Sidegradient Yes 0.00134 N/A Sidegradient Yes 0.00124 N/A Downgradient Yes 0.00125 N/A Sidegradient No 0.00138 N/A Downgradient No 0.0013 N/A Downgradient Yes 0.0014 N/A Upgradient Yes 0.00126 N/A	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 0.0013 N/A -6.645 Sidegradient Yes 0.00126 N/A -6.677 Sidegradient Yes 0.00123 N/A -6.701 Sidegradient Yes 0.00134 N/A -6.615 Sidegradient Yes 0.00124 N/A -6.693 Downgradient No 0.0013 N/A -5.809 Downgradient No 0.00125 N/A -6.685 Sidegradient No 0.00138 N/A -6.586 Downgradient Yes 0.0013 N/A -6.645 Downgradient Yes 0.0014 N/A -6.571 Upgradient Yes 0.00126 N/A -6.677

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-31

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison UNITS: pCi/L Beta activity **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 14.273 S = 13.883 CV(1) = 0.973

K factor**= 2.523

TL(1)= 49.300

LL(1)=N/A

Statistics-Transformed Background

X = 2.213 S = 1.033 CV(2) = 0.467

K factor=** 2.523

TL(2) = 4.819

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 15.2 2.721 1/15/2003 42.5 3.750 4/10/2003 45.4 3.816 7/14/2003 8.53 2.144 10/13/2003 11.7 2.460 1/13/2004 13.5 2.603 4/13/2004 33.5 3.512 7/21/2004 13.7 2.617 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5.03 1.615 9/16/2002 5.57 1.717 2.549 10/16/2002 12.8 1/13/2003 4.3 1.459 4/10/2003 9.52 2.253 7/16/2003 3.92 1.366 10/14/2003 0.058 1.06 1/13/2004 2.14 0.761

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW220	Upgradient	No	8.19	N/A	2.103	N/A		
MW221	Sidegradient	Yes	9.35	N/A	2.235	N/A		
MW222	Sidegradient	No	7.11	N/A	1.962	N/A		
MW223	Sidegradient	Yes	24.4	N/A	3.195	N/A		
MW224	Sidegradient	No	2.3	N/A	0.833	N/A		
MW369	Downgradien	t Yes	83.7	YES	4.427	N/A		
MW372	Downgradien	t Yes	41	N/A	3.714	N/A		
MW384	Sidegradient	Yes	97	YES	4.575	N/A		
MW387	Downgradien	t Yes	135	YES	4.905	N/A		
MW391	Downgradien	t Yes	15.3	N/A	2.728	N/A		
MW394	Upgradient	No	2.82	N/A	1.037	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-32

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison UNITS: mg/L **URGA Boron**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 1.447**K** factor**= 2.523 Statistics-Background Data X = 0.425S = 0.615**TL(1)=** 1.976 LL(1)=N/A **Statistics-Transformed Background**

X = -1.322 S = 0.786 CV(2) = -0.595

K factor=** 2.523

TL(2) = 0.663

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 0.2 1/15/2003 0.2 -1.6094/10/2003 0.2 -1.609 7/14/2003 0.2 -1.60910/13/2003 0.2 -1.6091/13/2004 0.2 -1.6094/13/2004 0.2 -1.609 7/21/2004 0.2 -1.609Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.6094/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.6091/13/2004 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	0.00652	N/A	-5.033	NO
MW221	Sidegradient	Yes	0.0134	N/A	-4.313	NO
MW222	Sidegradient	Yes	0.00887	N/A	-4.725	NO
MW223	Sidegradient	Yes	0.00832	N/A	-4.789	NO
MW224	Sidegradient	Yes	0.0213	N/A	-3.849	NO
MW369	Downgradien	t Yes	0.0187	N/A	-3.979	NO
MW372	Downgradien	t Yes	0.86	N/A	-0.151	NO
MW384	Sidegradient	Yes	0.0268	N/A	-3.619	NO
MW387	Downgradien	t Yes	0.0224	N/A	-3.799	NO
MW391	Downgradien	t Yes	0.231	N/A	-1.465	NO
MW394	Upgradient	Yes	0.0245	N/A	-3.709	NO
NI/A D	1, 11, 416, 1, 3	T D ()	1 1 1 1		1.4 11.1.2	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-33

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S= 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1)=N/A Statistics-Transformed Background X = 0.000 S= 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2)=N/A Data

Historical Background Data from

Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1 0.000 4/10/2003 0.000 7/14/2003 1 0.000 10/13/2003 1 0.000 1/13/2004 1 0.000 4/13/2004 1 0.000 7/21/2004 1 0.000Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/16/2002 0.000

1

1

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.211	NO	-1.556	N/A
MW221	Sidegradient	Yes	0.433	NO	-0.837	N/A
MW222	Sidegradient	Yes	0.424	NO	-0.858	N/A
MW223	Sidegradient	Yes	0.384	NO	-0.957	N/A
MW224	Sidegradient	Yes	0.461	NO	-0.774	N/A
MW369	Downgradien	t Yes	0.404	NO	-0.906	N/A
MW372	Downgradien	t Yes	0.586	NO	-0.534	N/A
MW384	Sidegradient	Yes	0.33	NO	-1.109	N/A
MW387	Downgradien	t Yes	0.591	NO	-0.526	N/A
MW391	Downgradien	t Yes	0.492	NO	-0.709	N/A
MW394	Upgradient	Yes	0.565	NO	-0.571	N/A
N/A - Resu	lts identified as N	Jon-Detects	during lah	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

0.000

0.000

0.000

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Calcium **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.172**K factor**=** 2.523 TL(1)= 39.604 Statistics-Background Data X = 27.638 S = 4.743LL(1)=N/A **Statistics-Transformed Background** X = 3.304 S = 0.183 CV(2) = 0.055**K factor**=** 2.523 TL(2) = 3.765LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 23.6 3.161 1/15/2003 25.9 3.254 4/10/2003 30.4 3.414 7/14/2003 33.9 3.523 10/13/2003 3.059 21.3 1/13/2004 20.3 3.011 4/13/2004 23.8 3.170 7/21/2004 19 2.944 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 29.5 3.384 9/16/2002 29.9 3.398 10/16/2002 31.2 3.440 1/13/2003 30.7 3.424 4/10/2003 34.4 3.538 7/16/2003 29.6 3.388 10/14/2003 30.3 3.411 1/13/2004 28.4 3.346

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	35.8	NO	3.578	N/A	
MW221	Sidegradient	Yes	21.4	NO	3.063	N/A	
MW222	Sidegradient	Yes	19	NO	2.944	N/A	
MW223	Sidegradient	Yes	22.7	NO	3.122	N/A	
MW224	Sidegradient	Yes	21.3	NO	3.059	N/A	
MW369	Downgradien	t Yes	20	NO	2.996	N/A	
MW372	Downgradien	t Yes	49.7	YES	3.906	N/A	
MW384	Sidegradient	Yes	23.3	NO	3.148	N/A	
MW387	Downgradien	t Yes	29.8	NO	3.395	N/A	
MW391	Downgradien	t Yes	32	NO	3.466	N/A	
MW394	Upgradient	Yes	24.7	NO	3.207	N/A	
N/A - Resu	lts identified as N	Non-Detects	during lab	oratory analysis or	data validation	n and were not	

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-35

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Carbon disulfide UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 5.000 S= 0.000 CV(1)=0.000 K factor**= 2.523 TL(1)=5.000 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.609 S= 0.000 CV(2)=0.000 K factor**= 2.523 TL(2)=1.609 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.609 1/15/2003 5 1.609 4/10/2003 5 1.609 7/14/2003 5 1.609 10/13/2003 5 1.609 1/13/2004 5 1.609 4/13/2004 5 1.609 5 7/21/2004 1.609 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW220	Upgradient	No	5	N/A	1.609	N/A		
MW221	Sidegradient	No	5	N/A	1.609	N/A		
MW222	Sidegradient	No	5	N/A	1.609	N/A		
MW223	Sidegradient	No	5	N/A	1.609	N/A		
MW224	Sidegradient	No	5	N/A	1.609	N/A		
MW369	Downgradien	t No	5	N/A	1.609	N/A		
MW372	Downgradien	t No	5	N/A	1.609	N/A		
MW384	Sidegradient	No	5	N/A	1.609	N/A		
MW387	Downgradien	t No	5	N/A	1.609	N/A		
MW391	Downgradien	t Yes	2.85	NO	1.047	N/A		
MW394	Upgradient	No	5	N/A	1.609	N/A		
N/A Pagu	Its identified as N	Jon Detects	during lab	oratory analysis or	data validatio	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 35.000
 S= 0.000
 CV(1)=0.000
 K factor**= 2.523
 TL(1)= 35.000
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.555
 S= 0.000
 CV(2)=0.000
 K factor**= 2.523
 TL(2)= 3.555
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.555 1/15/2003 35 3.555 4/10/2003 35 3.555 7/14/2003 35 3.555 10/13/2003 35 3.555 1/13/2004 35 3.555 4/13/2004 35 3.555 7/21/2004 35 3.555 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 35 4/10/2003 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555 1/13/2004 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	16.4	NO	2.797	N/A		
MW221	Sidegradient	No	20	N/A	2.996	N/A		
MW222	Sidegradient	Yes	13.3	NO	2.588	N/A		
MW223	Sidegradient	No	20	N/A	2.996	N/A		
MW224	Sidegradient	Yes	10.1	NO	2.313	N/A		
MW369	Downgradien	t Yes	17.4	NO	2.856	N/A		
MW372	Downgradien	t Yes	52.6	YES	3.963	N/A		
MW384	Sidegradient	No	20	N/A	2.996	N/A		
MW387	Downgradien	t No	20	N/A	2.996	N/A		
MW391	Downgradien	t Yes	44.5	YES	3.795	N/A		
MW394	Upgradient	Yes	20.3	NO	3.011	N/A		
N/A Pagu	Its identified as N	Jon Detects	during lab	oratory analysis or	data validatio	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Chloride **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.044 S = 11.278 CV(1) = 0.230

K factor**= 2.523

TL(1)= 77.499

LL(1)=N/A

Statistics-Transformed Background

X = 3.866 S = 0.244 CV(2) = 0.063

K factor=** 2.523

TL(2) = 4.482

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.798 44.6 1/15/2003 43.2 3.766 4/10/2003 31.5 3.450 7/14/2003 30.8 3.428 10/13/2003 40.9 3.711 1/13/2004 40.8 3.709 4/13/2004 37.5 3.624 7/21/2004 40.8 3.709 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 60.4 4.101 9/16/2002 60.3 4.099 10/16/2002 58 4.060 1/13/2003 60.7 4.106 4/10/2003 62.9 4.142 7/16/2003 58.1 4.062 10/14/2003 58.2 4.064 1/13/2004 4.025 56

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	18.7	NO	2.929	N/A		
MW221	Sidegradient	Yes	32.6	NO	3.484	N/A		
MW222	Sidegradient	Yes	31.4	NO	3.447	N/A		
MW223	Sidegradient	Yes	27.6	NO	3.318	N/A		
MW224	Sidegradient	Yes	36.7	NO	3.603	N/A		
MW369	Downgradien	t Yes	34.7	NO	3.547	N/A		
MW372	Downgradien	t Yes	46.2	NO	3.833	N/A		
MW384	Sidegradient	Yes	36.4	NO	3.595	N/A		
MW387	Downgradien	t Yes	43.7	NO	3.777	N/A		
MW391	Downgradien	t Yes	39.3	NO	3.671	N/A		
MW394	Upgradient	Yes	44.3	NO	3.791	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-38

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor**= 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.609 1/15/2003 5 1.609 4/10/2003 5 1.609 7/14/2003 5 1.609 10/13/2003 5 1.609 1/13/2004 5 1.609 4/13/2004 5 1.609 5 7/21/2004 1.609 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.34	NO	-1.079	N/A	
MW221	Sidegradient	No	1	N/A	0.000	N/A	
MW222	Sidegradient	No	1	N/A	0.000	N/A	
MW223	Sidegradient	No	1	N/A	0.000	N/A	
MW224	Sidegradient	No	1	N/A	0.000	N/A	
MW369	Downgradien	t No	1	N/A	0.000	N/A	
MW372	Downgradien	t No	1	N/A	0.000	N/A	
MW384	Sidegradient	No	1	N/A	0.000	N/A	
MW387	Downgradien	t No	1	N/A	0.000	N/A	
MW391	Downgradien	t No	1	N/A	0.000	N/A	
MW394	Upgradient	No	1	N/A	0.000	N/A	
N/A - Resu	lts identified as N	Jon-Detects	during lah	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Cobalt

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=2.440**K** factor**= 2.523 Statistics-Background Data X = 0.016S = 0.040TL(1) = 0.116LL(1)=N/A **Statistics-Transformed Background** X = -5.582 S = 1.573 CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.613

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0041 -5.497 1/15/2003 0.00496 -5.3064/10/2003 0.00289 -5.8467/14/2003 0.161 -1.82610/13/2003 0.0226 -3.7901/13/2004 0.00464 -5.3734/13/2004 0.001 -6.908 7/21/2004 0.00264 -5.937Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.6890.001 -6.908 10/16/2002 1/13/2003 0.001 -6.908 4/10/2003 0.001-6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.9080.001 1/13/2004 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	No	0.001	N/A	-6.908	N/A		
MW221	Sidegradient	Yes	0.00141	N/A	-6.564	NO		
MW222	Sidegradient	Yes	0.00040	1 N/A	-7.822	NO		
MW223	Sidegradient	Yes	0.00049	8 N/A	-7.605	NO		
MW224	Sidegradient	Yes	0.00162	N/A	-6.425	NO		
MW369	Downgradien	t Yes	0.0033	N/A	-5.714	NO		
MW372	Downgradien	t Yes	0.00057	1 N/A	-7.468	NO		
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A		
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW394	Upgradient	No	0.001	N/A	-6.908	N/A		
N/A - Resu	lts identified as N	Ion-Detects	during labo	oratory analysis or	data validatio	n and were not		

- Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-40

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison **Conductivity** UNITS: umho/cm **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 382.132 S = 107.134 CV(1) = 0.280

K factor**= 2.523

TL(1)= 652.432 LL(1)=N/A

Statistics-Transformed Background

X = 5.716 S = 1.164 CV(2) = 0.204

K factor=** 2.523

TL(2) = 8.652

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	368	5.908
1/15/2003	433.2	6.071
4/10/2003	489	6.192
7/14/2003	430	6.064
10/13/2003	346	5.846
1/13/2004	365	5.900
4/13/2004	416	6.031
7/21/2004	353	5.866
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 6.006
Date Collected	Result	
Date Collected 8/13/2002	Result 406	6.006
Date Collected 8/13/2002 9/16/2002	Result 406 418	6.006 6.035
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 406 418 411	6.006 6.035 6.019
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 406 418 411 422	6.006 6.035 6.019 6.045
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 406 418 411 422 420	6.006 6.035 6.019 6.045 6.040

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	435	NO	6.075	N/A
Sidegradient	Yes	427	NO	6.057	N/A
Sidegradient	Yes	375	NO	5.927	N/A
Sidegradient	Yes	425	NO	6.052	N/A
Sidegradient	Yes	439	NO	6.084	N/A
Downgradien	t Yes	439	NO	6.084	N/A
Downgradien	t Yes	632	NO	6.449	N/A
Sidegradient	Yes	452	NO	6.114	N/A
Downgradien	t Yes	526	NO	6.265	N/A
Downgradien	t Yes	494	NO	6.203	N/A
Upgradient	Yes	383	NO	5.948	N/A
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Sidegradient Downgradient Downgradient Downgradient Downgradient Downgradient Upgradient	Gradient Detected? Upgradient Yes Sidegradient Yes Sidegradient Yes Sidegradient Yes Sidegradient Yes Downgradient Yes Downgradient Yes Sidegradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Upgradient Yes	Gradient Detected? Result Upgradient Yes 435 Sidegradient Yes 375 Sidegradient Yes 425 Sidegradient Yes 439 Downgradient Yes 439 Downgradient Yes 632 Sidegradient Yes 452 Downgradient Yes 452 Downgradient Yes 526 Downgradient Yes 494 Upgradient Yes 383	Gradient Detected? Result Result >TL(1)? Upgradient Yes 435 NO Sidegradient Yes 375 NO Sidegradient Yes 425 NO Sidegradient Yes 425 NO Sidegradient Yes 439 NO Downgradient Yes 439 NO Downgradient Yes 632 NO Sidegradient Yes 452 NO Sidegradient Yes 452 NO Downgradient Yes 452 NO Downgradient Yes 452 NO Downgradient Yes 454 NO Downgradient Yes 494 NO Upgradient Yes 383 NO	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 435 NO 6.075 Sidegradient Yes 427 NO 6.057 Sidegradient Yes 375 NO 5.927 Sidegradient Yes 425 NO 6.052 Sidegradient Yes 439 NO 6.084 Downgradient Yes 439 NO 6.084 Downgradient Yes 632 NO 6.449 Sidegradient Yes 452 NO 6.114 Downgradient Yes 526 NO 6.265 Downgradient Yes 494 NO 6.203

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-41

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.429**K** factor**= 2.523 Statistics-Background Data X = 0.024S = 0.010TL(1) = 0.050LL(1)=N/A **Statistics-Transformed Background** X = -3.794 S = 0.312 CV(2) = -0.082**K factor**=** 2.523 TL(2) = -3.007LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0211 -3.8581/15/2003 0.02 -3.9124/10/2003 0.02 -3.912 7/14/2003 0.02 -3.912 10/13/2003 0.02 -3.912 1/13/2004 0.02 -3.912 4/13/2004 0.02 -3.912 -3.912 7/21/2004 0.02 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.9960.02 -3.91210/16/2002 1/13/2003 0.02 -3.9124/10/2003 0.02-3.912 -3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.00082	3 NO	-7.103	N/A		
MW221	Sidegradient	Yes	0.00101	NO	-6.898	N/A		
MW222	Sidegradient	Yes	0.00033	5 NO	-8.001	N/A		
MW223	Sidegradient	Yes	0.00045	9 NO	-7.686	N/A		
MW224	Sidegradient	Yes	0.00043	9 NO	-7.731	N/A		
MW369	Downgradien	t Yes	0.00247	NO	-6.004	N/A		
MW372	Downgradien	t Yes	0.00058	NO	-7.452	N/A		
MW384	Sidegradient	Yes	0.00061	7 NO	-7.391	N/A		
MW387	Downgradien	t Yes	0.00044	6 NO	-7.715	N/A		
MW391	Downgradien	t Yes	0.00033	5 NO	-8.001	N/A		
MW394	Upgradient	Yes	0.00054	1 NO	-7.522	N/A		
N/A - Resu	lts identified as N	Ion-Detects	during labo	oratory analysis or	data validatio	n and were not		

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-42

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.499**K** factor**= 2.523 TL(1) = 8.545Statistics-Background Data X = 3.784S = 1.887LL(1)=N/A **Statistics-Transformed Background** X = 1.182 $S= 0.612 \quad CV(2)=0.518$

K factor=** 2.523

TL(2) = 2.727

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.915 6.79 1/15/2003 7.25 1.981 4/10/2003 1.281 3.6 7/14/2003 0.94 -0.06210/13/2003 0.501 1.65 1/13/2004 3.48 1.247 4/13/2004 1.05 0.049 7/21/2004 4.46 1.495 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 6.09 1.807 9/16/2002 3.85 1.348 10/16/2002 5.11 1.631 1/13/2003 3.83 1.343 4/10/2003 4.15 1.423 7/16/2003 1.83 0.604 10/14/2003 3.33 1.203 1/13/2004 3.14 1.144

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	4.02	NO	1.391	N/A		
MW221	Sidegradient	Yes	3.6	NO	1.281	N/A		
MW222	Sidegradient	Yes	3.29	NO	1.191	N/A		
MW223	Sidegradient	Yes	2.8	NO	1.030	N/A		
MW224	Sidegradient	Yes	2.97	NO	1.089	N/A		
MW369	Downgradien	t Yes	3.59	NO	1.278	N/A		
MW372	Downgradien	t Yes	2.13	NO	0.756	N/A		
MW384	Sidegradient	Yes	4.72	NO	1.552	N/A		
MW387	Downgradien	t Yes	3.49	NO	1.250	N/A		
MW391	Downgradien	t Yes	4.58	NO	1.522	N/A		
MW394	Upgradient	Yes	4.03	NO	1.394	N/A		
NI/A Dans	14. :	T D-44-	Ji 1.1.		3-41: 3-4:			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-43

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 232.688 S = 27.490 CV(1) = 0.118

K factor**= 2.523

TL(1) = 302.045

LL(1)=N/A

Statistics-Transformed Background

X = 5.443 S = 0.118 CV(2) = 0.022

K factor=** 2.523

TL(2) = 5.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	,
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	273	NO	5.609	N/A		
MW221	Sidegradient	Yes	266	NO	5.583	N/A		
MW222	Sidegradient	Yes	234	NO	5.455	N/A		
MW223	Sidegradient	Yes	233	NO	5.451	N/A		
MW224	Sidegradient	Yes	219	NO	5.389	N/A		
MW369	Downgradien	t Yes	261	NO	5.565	N/A		
MW372	Downgradien	t Yes	309	YES	5.733	N/A		
MW384	Sidegradient	Yes	269	NO	5.595	N/A		
MW387	Downgradien	t Yes	276	NO	5.620	N/A		
MW391	Downgradien	t Yes	289	NO	5.666	N/A		
MW394	Upgradient	Yes	216	NO	5.375	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-44

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.897 S = 1.050 CV(1) = 1.170 K factor**= 2.523
 TL(1) = 3.545 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.565 S = 0.951 CV(2) = -1.683 K factor**= 2.523
 TL(2) = 1.834 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 0.2 1/15/2003 0.2 -1.6094/10/2003 -0.8460.429 7/14/2003 4.33 1.466 10/13/2003 0.593 1.81 1/13/2004 0.793 -0.2324/13/2004 0.13 -2.0407/21/2004 0.382 -0.962Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.34 0.293 9/16/2002 0.328 -1.115 0.322 10/16/2002 1.38 1/13/2003 1.3 0.262 4/10/2003 0.494-0.705-0.478 7/16/2003 0.62 10/14/2003 0.37 -0.9941/13/2004 0.251 -1.382

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.0374	N/A	-3.286	NO		
MW221	Sidegradient	No	0.1	N/A	-2.303	N/A		
MW222	Sidegradient	No	0.1	N/A	-2.303	N/A		
MW223	Sidegradient	Yes	0.0474	N/A	-3.049	NO		
MW224	Sidegradient	Yes	0.0411	N/A	-3.192	NO		
MW369	Downgradien	t Yes	0.149	N/A	-1.904	NO		
MW372	Downgradien	t Yes	0.236	N/A	-1.444	NO		
MW384	Sidegradient	Yes	0.357	N/A	-1.030	NO		
MW387	Downgradien	t Yes	0.171	N/A	-1.766	NO		
MW391	Downgradien	t Yes	0.0526	N/A	-2.945	NO		
MW394	Upgradient	Yes	0.107	N/A	-2.235	NO		
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.796 **S**= 1.703

CV(1)=0.158 **K factor**=** 2.523

TL(1)= 15.092

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.368

S= 0.158 **CV(2)**=0.067

K factor=** 2.523

TL(2) = 2.766

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 9.16 2.215 1/15/2003 10 2.303 4/10/2003 10.8 2.380 7/14/2003 14.7 2.688 10/13/2003 9.03 2.201 1/13/2004 8.49 2.139 4/13/2004 9.7 2.272 7/21/2004 8.06 2.087 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 11.8 2.468 9/16/2002 12.1 2.493 10/16/2002 11.3 2.425 1/13/2003 10.3 2.332 4/10/2003 11.7 2.460 7/16/2003 12 2.485 10/14/2003 12.2 2.501 1/13/2004 11.4 2.434

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW220	Upgradient	Yes	10.3	NO	2.332	N/A		
MW221	Sidegradient	Yes	9.42	NO	2.243	N/A		
MW222	Sidegradient	Yes	8.59	NO	2.151	N/A		
MW223	Sidegradient	Yes	9.65	NO	2.267	N/A		
MW224	Sidegradient	Yes	9.54	NO	2.255	N/A		
MW369	Downgradien	t Yes	9.06	NO	2.204	N/A		
MW372	Downgradien	t Yes	18.2	YES	2.901	N/A		
MW384	Sidegradient	Yes	9.71	NO	2.273	N/A		
MW387	Downgradien	t Yes	12.4	NO	2.518	N/A		
MW391	Downgradien	t Yes	13.9	NO	2.632	N/A		
MW394	Upgradient	Yes	11	NO	2.398	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=2.156**K** factor**= 2.523 Statistics-Background Data X = 0.287S = 0.619TL(1)= 1.848 LL(1)=N/A **Statistics-Transformed Background** X = -2.455 S = 1.619 CV(2) = -0.659**K factor**=** 2.523 TL(2) = 1.630LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0306 -3.4871/15/2003 0.0291 -3.5374/10/2003 0.0137 -4.2907/14/2003 2.54 0.932 10/13/2003 -0.9730.378 1/13/2004 0.159 -1.8394/13/2004 0.00707 -4.952 0.0841 7/21/2004 -2.476Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.542 -0.6129/16/2002 0.155 -1.864-2.27310/16/2002 0.103 1/13/2003 0.128 -2.0564/10/2003 0.005-5.298 7/16/2003 0.272 -1.30210/14/2003 0.0795 -2.532 0.0658 -2.721 1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	No	0.00188	N/A	-6.276	N/A		
MW221	Sidegradient	No	0.005	N/A	-5.298	N/A		
MW222	Sidegradient	Yes	0.00829	N/A	-4.793	NO		
MW223	Sidegradient	Yes	0.00962	N/A	-4.644	NO		
MW224	Sidegradient	Yes	0.0174	N/A	-4.051	NO		
MW369	Downgradien	t Yes	0.0201	N/A	-3.907	NO		
MW372	Downgradien	t No	0.0049	N/A	-5.319	N/A		
MW384	Sidegradient	Yes	0.0128	N/A	-4.358	NO		
MW387	Downgradien	t Yes	0.0933	N/A	-2.372	NO		
MW391	Downgradien	t No	0.00198	N/A	-6.225	N/A		
MW394	Upgradient	No	0.00474	N/A	-5.352	N/A		
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not		

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-47

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** Methylene chloride UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 4.813CV(1)=0.156**K** factor**= 2.523 Statistics-Background Data S = 0.750TL(1) = 6.705LL(1)=N/A **Statistics-Transformed Background** X = 1.552CV(2) = 0.148S = 0.229**K factor**=** 2.523 TL(2) = 2.130LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.609 1/15/2003 5 1.609 4/10/2003 5 1.609 7/14/2003 5 1.609 10/13/2003 5 1.609 1/13/2004 5 1.609 4/13/2004 5 1.609 5 7/21/2004 1.609 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 2 0.693 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW220	Upgradient	No	2.24	N/A	0.806	N/A		
MW221	Sidegradient	Yes	2.56	NO	0.940	N/A		
MW222	Sidegradient	Yes	2.44	NO	0.892	N/A		
MW223	Sidegradient	Yes	2.82	NO	1.037	N/A		
MW224	Sidegradient	Yes	2.38	NO	0.867	N/A		
MW369	Downgradien	t No	5	N/A	1.609	N/A		
MW372	Downgradien	t No	5	N/A	1.609	N/A		
MW384	Sidegradient	No	5	N/A	1.609	N/A		
MW387	Downgradien	t No	5	N/A	1.609	N/A		
MW391	Downgradien	t No	2.33	N/A	0.846	N/A		
MW394	Upgradient	No	5	N/A	1.609	N/A		
N/A - Recu	Its identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-48

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Molybdenum

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.008CV(1)=1.261**K** factor**= 2.523 Statistics-Background Data X = 0.006TL(1) = 0.026LL(1)=N/A **Statistics-Transformed Background**

X = -5.747 S = 1.205 CV(2) = -0.210

K factor=** 2.523

TL(2) = -2.708

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.00558 -5.189 1/15/2003 0.00983 -4.6224/10/2003 0.0109 -4.519 7/14/2003 0.00245 -6.012 10/13/2003 0.00566 -5.1741/13/2004 0.00572 -5.1644/13/2004 0.001 -6.908 7/21/2004 0.00392 -5.542Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.6890.001 -6.908 10/16/2002 1/13/2003 0.001 -6.908 4/10/2003 0.001-6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.9080.001 1/13/2004 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.00105	N/A	-6.859	NO		
MW221	Sidegradient	Yes	0.0104	N/A	-4.566	NO		
MW222	Sidegradient	No	0.001	N/A	-6.908	N/A		
MW223	Sidegradient	Yes	0.00644	N/A	-5.045	NO		
MW224	Sidegradient	No	0.001	N/A	-6.908	N/A		
MW369	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW372	Downgradien	t Yes	0.00038	9 N/A	-7.852	NO		
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A		
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW394	Upgradient	No	0.001	N/A	-6.908	N/A		
NI/A Pagu	lta identified as N	Ion Dotoota	during lab	rotory analyzia or	data validatio	n and wara not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-49

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.127 S = 0.228 CV(1) = 1.790 K factor** = 2.523
 TL(1) = 0.701 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.617 S = 1.837 CV(2) = -0.508 K factor** = 2.523
 TL(2) = 1.019 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.418 -0.8721/15/2003 0.738 -0.3044/10/2003 -0.609 0.544 7/14/2003 0.106 -2.24410/13/2003 0.0529 -2.9391/13/2004 0.0209 -3.8684/13/2004 0.005 -5.298 0.0192 7/21/2004 -3.953Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.99610/16/2002 0.005 -5.2981/13/2003 0.005 -5.2984/10/2003 0.005-5.298 7/16/2003 0.005 -5.298 10/14/2003 0.005 -5.298 0.005 -5.298 1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.0237	N/A	-3.742	NO		
MW221	Sidegradient	Yes	0.124	N/A	-2.087	NO		
MW222	Sidegradient	Yes	0.0639	N/A	-2.750	NO		
MW223	Sidegradient	Yes	0.178	N/A	-1.726	NO		
MW224	Sidegradient	Yes	0.106	N/A	-2.244	NO		
MW369	Downgradien	t Yes	0.00656	N/A	-5.027	NO		
MW372	Downgradien	t Yes	0.00125	N/A	-6.685	NO		
MW384	Sidegradient	Yes	0.00060	7 N/A	-7.407	NO		
MW387	Downgradien	t Yes	0.00068	9 N/A	-7.280	NO		
MW391	Downgradien	t No	0.002	N/A	-6.215	N/A		
MW394	Upgradient	Yes	0.00424	N/A	-5.463	NO		
N/A - Resu	lts identified as N	Jon-Detects	during labo	oratory analysis or	data validatio	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 179.872 S = 86.318 CV(1) = 0.480

K factor**= 2.523

TL(1)= 397.652 **LL(1)=**N/A

Statistics-Transformed Background

X = 4.861 S = 1.252 CV(2) = 0.258

K factor=** 2.523

TL(2) = 8.021

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	205	5.323
1/15/2003	1.95	0.668
4/10/2003	203	5.313
7/14/2003	30	3.401
10/13/2003	107	4.673
1/13/2004	295	5.687
4/13/2004	190	5.247
7/21/2004	319	5.765
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	
Date Collected 8/13/2002	Result 90	4.500
Date Collected 8/13/2002 9/16/2002	Result 90 240	4.500 5.481
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 90 240 185	4.500 5.481 5.220
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 90 240 185 220	4.500 5.481 5.220 5.394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 90 240 185 220 196	4.500 5.481 5.220 5.394 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	523	YES	6.260	N/A		
MW221	Sidegradient	Yes	539	YES	6.290	N/A		
MW222	Sidegradient	Yes	519	YES	6.252	N/A		
MW223	Sidegradient	Yes	520	YES	6.254	N/A		
MW224	Sidegradient	Yes	516	YES	6.246	N/A		
MW369	Downgradien	t Yes	372	NO	5.919	N/A		
MW372	Downgradien	t Yes	400	YES	5.991	N/A		
MW384	Sidegradient	Yes	423	YES	6.047	N/A		
MW387	Downgradien	t Yes	436	YES	6.078	N/A		
MW391	Downgradien	t Yes	469	YES	6.151	N/A		
MW394	Upgradient	Yes	463	YES	6.138	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-51

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW220

MW221

MW222

MW223

MW224 MW372

MW384

MW387

MW391

MW394

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-52

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.138 S = 0.282 CV(1) = 0.046 K factor**= 2.904 TL(1) = 6.957 LL(1) = 5.3179

Statistics-Transformed Background Data

X= 1.813 **S**= 0.047 **CV(2)**= 0.026

K factor**= 2.904

TL(2)= 1.950 I

LL(2)=1.6765

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.798 6.04 1/15/2003 6.31 1.842 4/10/2003 6.5 1.872 7/14/2003 6.3 1.841 10/13/2003 6.34 1.847 1/13/2004 6.33 1.845 4/13/2004 6.3 1.841 7/21/2004 5.9 1.775 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5.8 1.758 9/30/2002 5.93 1.780 10/16/2002 5.42 1.690 1/13/2003 6 1.792 4/10/2003 6.04 1.798 7/16/2003 6.2 1.825 10/14/2003 1.856 6.4 1/13/2004 6.39 1.855

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Onortor	Data
Current	Omarier	пин

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>` /</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	` /	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	6.31	NO	1.842	N/A
MW221	Sidegradient	Yes	6.21	NO	1.826	N/A
MW222	Sidegradient	Yes	6.26	NO	1.834	N/A
MW223	Sidegradient	Yes	6.23	NO	1.829	N/A
MW224	Sidegradient	Yes	6.29	NO	1.839	N/A
MW369	Downgradien	t Yes	6.4	NO	1.856	N/A
MW372	Downgradien	t Yes	6.25	NO	1.833	N/A
MW384	Sidegradient	Yes	6.17	NO	1.820	N/A
MW387	Downgradien	t Yes	6.26	NO	1.834	N/A
MW391	Downgradien	t Yes	6.16	NO	1.818	N/A
MW394	Upgradient	Yes	6.14	NO	1.815	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.654 S = 9.310 CV(1) = 1.399 K factor** = 2.523
 TL(1) = 30.144 LL(1) = N/A

 Statistics-Transformed Background
 X = 1.130 X = 1.208 X = 1.208

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.902 6.7 1/15/2003 29.7 3.391 4/10/2003 3.215 24.9 7/14/2003 1.13 0.122 10/13/2003 3.43 1.233 1/13/2004 6.71 1.904 4/13/2004 19.3 2.960 7/21/2004 3.97 1.379 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 1.03 0.030 1/13/2003 1.1 0.095 4/10/2003 1.24 0.215 7/16/2003 1.14 0.131 10/14/2003 1.05 0.049 1/13/2004 1.07 0.068

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.87	N/A	0.626	NO
MW221	Sidegradient	Yes	2.17	N/A	0.775	NO
MW222	Sidegradient	Yes	1.56	N/A	0.445	NO
MW223	Sidegradient	Yes	2.97	N/A	1.089	NO
MW224	Sidegradient	Yes	1.13	N/A	0.122	NO
MW369	Downgradien	t Yes	0.825	N/A	-0.192	NO
MW372	Downgradien	t Yes	2.1	N/A	0.742	NO
MW384	Sidegradient	Yes	1.14	N/A	0.131	NO
MW387	Downgradien	t Yes	1.17	N/A	0.157	NO
MW391	Downgradien	t Yes	1.61	N/A	0.476	NO
MW394	Upgradient	Yes	1.34	N/A	0.293	NO
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Ouarter Data

Statistics-Background Data

X = 36.363 S = 8.666

CV(1)=0.238

K factor**= 2.523

TL(1)= 58.227

LL(1)=N/A

Statistics-Transformed Background

X = 3.570

S = 0.222

CV(2) = 0.062

K factor**= 2.523

TL(2)= 4.129

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	35.4	3.567
1/15/2003	40.6	3.704
4/10/2003	51	3.932
7/14/2003	58.2	4.064
10/13/2003	38.1	3.640
1/13/2004	37	3.611
4/13/2004	43.2	3.766
7/21/2004	33.8	3.520
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.493
Date Collected	Result	
Date Collected 8/13/2002	Result 32.9	3.493
Date Collected 8/13/2002 9/16/2002	Result 32.9 29.9	3.493 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 32.9 29.9	3.493 3.398 3.367
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 32.9 29.9 29	3.493 3.398 3.367 3.300
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 32.9 29.9 29 27.1 24.8	3.493 3.398 3.367 3.300 3.211

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Dum						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	47.4	NO	3.859	N/A
MW221	Sidegradient	Yes	49.2	NO	3.896	N/A
MW222	Sidegradient	Yes	46.7	NO	3.844	N/A
MW223	Sidegradient	Yes	43.7	NO	3.777	N/A
MW224	Sidegradient	Yes	48.6	NO	3.884	N/A
MW369	Downgradien	t Yes	51.1	NO	3.934	N/A
MW372	Downgradien	t Yes	47.4	NO	3.859	N/A
MW384	Sidegradient	Yes	49.6	NO	3.904	N/A
MW387	Downgradien	t Yes	58.6	YES	4.071	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

NO

3.681

3.428

MW387

39.7

30.8

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

N/A

N/A

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW391

MW394 Upgradient

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Downgradient Yes

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Sulfate URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.481 S = 2.648

CV(1) = 0.253

K factor=** 2.523

TL(1)= 17.161

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.322

S = 0.239CV(2) = 0.103

K factor=** 2.523

TL(2) = 2.925

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	10.4	2.342
1/15/2003	9.8	2.282
4/10/2003	15.4	2.734
7/14/2003	14.9	2.701
10/13/2003	13.5	2.603
1/13/2004	10.3	2.332
4/13/2004	14.3	2.660
7/21/2004	10.5	2.351
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.416
Date Collected	Result	
Date Collected 8/13/2002	Result 11.2	2.416
Date Collected 8/13/2002 9/16/2002	Result 11.2 8.3	2.416 2.116
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.2 8.3 8	2.416 2.116 2.079
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.2 8.3 8 8.5	2.416 2.116 2.079 2.140
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.2 8.3 8 8.5 7.9	2.416 2.116 2.079 2.140 2.067

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	24.1	YES	3.182	N/A
MW221	Sidegradient	Yes	15.5	NO	2.741	N/A
MW222	Sidegradient	Yes	14.4	NO	2.667	N/A
MW223	Sidegradient	Yes	20.5	YES	3.020	N/A
MW224	Sidegradient	Yes	14.1	NO	2.646	N/A
MW369	Downgradien	t Yes	14.6	NO	2.681	N/A
MW372	Downgradien	t Yes	71.3	YES	4.267	N/A
MW384	Sidegradient	Yes	22.8	YES	3.127	N/A
MW387	Downgradien	t Yes	20.8	YES	3.035	N/A
MW391	Downgradien	t Yes	57.5	YES	4.052	N/A
MW394	Upgradient	Yes	10.7	NO	2.370	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW220
MW223
MW372
MW384
MW387
MW391

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-56

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.354

S= 9.280

CV(1)=0.992 K facto

K factor=** 2.523

TL(1)= 32.768

LL(1)=N/A

Statistics-Transformed Background

X = 2.270

S= 0.849

CV(2) = 0.374

K factor**= 2.523

TL(2) = 3.262

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	19.7	2.981
1/15/2003	26.1	3.262
4/10/2003	3.56	1.270
7/14/2003	0	#Func!
10/13/2003	21	3.045
1/13/2004	6.32	1.844
4/13/2004	3	1.099
7/21/2004	14.6	2.681
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.639
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 5.45	2.639 1.696
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 14 5.45 2.49	2.639 1.696 0.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 14 5.45 2.49 18.3	2.639 1.696 0.912 2.907
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 14 5.45 2.49 18.3 -1.45	2.639 1.696 0.912 2.907 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	17.1	NO	2.839	N/A	
MW221	Sidegradient	No	14.4	N/A	2.667	N/A	
MW222	Sidegradient	No	2.01	N/A	0.698	N/A	
MW223	Sidegradient	No	9.75	N/A	2.277	N/A	
MW224	Sidegradient	No	5.63	N/A	1.728	N/A	
MW369	Downgradien	t Yes	70.8	YES	4.260	N/A	
MW372	Downgradien	t Yes	59.4	YES	4.084	N/A	
MW384	Sidegradient	Yes	155	YES	5.043	N/A	
MW387	Downgradien	t Yes	229	YES	5.434	N/A	
MW391	Downgradien	t No	12.5	N/A	2.526	N/A	
MW394	Upgradient	No	2.55	N/A	0.936	N/A	
N/A - Recu	Its identified as N	Ion_Detects	during lab	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369 MW372

MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison URGA Total Organic Carbon (TOC)** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 1.494CV(1)=0.493**K** factor**= 2.523 TL(1) = 3.353Statistics-Background Data S = 0.737LL(1)=N/A **Statistics-Transformed Background** X = 0.315 $S= 0.402 \quad CV(2)=1.279$ LL(2)=N/A

K factor=** 2.523

TL(2) = 1.330

Historical Background Data from **Upgradient Wells with Transformed Result**

MW220 Well Number: Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1.1 0.095 4/10/2003 1 0.000 7/14/2003 3.3 1.194 10/13/2003 1.8 0.588 1/13/2004 1 0.000 4/13/2004 2 0.693 7/21/2004 3.1 1.131 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.3 0.262 9/16/2002 1 0.000 0.000 10/16/2002 1 1/13/2003 1.6 0.470 1 4/10/2003 0.0007/16/2003 1.4 0.336 10/14/2003 1.3 0.262 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.09	NO	0.086	N/A
MW221	Sidegradient	Yes	0.996	NO	-0.004	N/A
MW222	Sidegradient	Yes	0.886	NO	-0.121	N/A
MW223	Sidegradient	Yes	1.03	NO	0.030	N/A
MW224	Sidegradient	Yes	0.863	NO	-0.147	N/A
MW369	Downgradien	t Yes	1.19	NO	0.174	N/A
MW372	Downgradien	t Yes	1.1	NO	0.095	N/A
MW384	Sidegradient	Yes	1.06	NO	0.058	N/A
MW387	Downgradien	t Yes	1.19	NO	0.174	N/A
MW391	Downgradien	t Yes	0.888	NO	-0.119	N/A
MW394	Upgradient	Yes	0.935	NO	-0.067	N/A
NI/A Dans	14. :	T D-44-	Ji 1.1.		3-41: 3-4:	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 63.475 S = 163.135 CV(1) = 2.570

K factor**= 2.523

TL(1) = 475.063

LL(1)=N/A

Statistics-Transformed Background

X = 3.103 S = 1.145 CV(2) = 0.369

K factor**= 2.523

TL(2)= 5.992

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.912 1/15/2003 10 2.303 4/10/2003 10 2.303 7/14/2003 10 2.303 10/13/2003 10 2.303 1/13/2004 10 2.303 4/13/2004 10 2.303 10 7/21/2004 2.303 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 50 3.912 9/16/2002 672 6.510 3.912 10/16/2002 50 1/13/2003 36.1 3.586 4/10/2003 10 2.303 7/16/2003 42.7 3.754 10/14/2003 22 3.091 1/13/2004 12.8 2.549

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	8.22	N/A	2.107	NO
MW221	Sidegradient	Yes	16.7	N/A	2.815	NO
MW222	Sidegradient	Yes	4.34	N/A	1.468	NO
MW223	Sidegradient	Yes	5.82	N/A	1.761	NO
MW224	Sidegradient	Yes	13.5	N/A	2.603	NO
MW369	Downgradien	t Yes	14.3	N/A	2.660	NO
MW372	Downgradien	t Yes	7.5	N/A	2.015	NO
MW384	Sidegradient	Yes	8	N/A	2.079	NO
MW387	Downgradien	t No	6.82	N/A	1.920	N/A
MW391	Downgradien	t Yes	7.28	N/A	1.985	NO
MW394	Upgradient	Yes	5.08	N/A	1.625	NO
NI/A D	L 11 CC 1 N	T D ()			1.4 11.1.41	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 8.813
 S= 8.376
 CV(1)=0.951 K factor**= 2.523
 TL(1)=29.946 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.395
 S= 1.449
 CV(2)=1.039 K factor**= 2.523
 TL(2)=5.052 LL(2)=N/A

Historical Background Data from

Upgradient Wells with Transformed Result

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.773
Date Collected	Result	
Date Collected 8/13/2002	Result 16	2.773
Date Collected 8/13/2002 9/30/2002	Result 16 20	2.773 2.996
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 16 20 17	2.773 2.996 2.833
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 16 20 17 15	2.773 2.996 2.833 2.708
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 16 20 17 15	2.773 2.996 2.833 2.708 2.303

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	1.05	N/A	0.049	N/A	
MW221	Sidegradient	No	1	N/A	0.000	N/A	
MW222	Sidegradient	No	1	N/A	0.000	N/A	
MW223	Sidegradient	No	1	N/A	0.000	N/A	
MW224	Sidegradient	No	1	N/A	0.000	N/A	
MW369	Downgradien	t Yes	0.52	N/A	-0.654	N/A	
MW372	Downgradien	t Yes	4.78	N/A	1.564	N/A	
MW384	Sidegradient	Yes	0.36	N/A	-1.022	N/A	
MW387	Downgradien	t Yes	0.62	N/A	-0.478	N/A	
MW391	Downgradien	t Yes	6.88	NO	1.929	N/A	
MW394	Upgradient	Yes	3.81	N/A	1.338	N/A	
N/A Pagul	lts identified as N	Ion Dotoota	during lab	oratory analysis or	data validation	n and wara not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Vanadium

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.083**K factor**=** 2.523 TL(1) = 0.025Statistics-Background Data X = 0.021S = 0.002LL(1)=N/A **Statistics-Transformed Background** X = -3.884 S = 0.076CV(2) = -0.020**K factor**=** 2.523 TL(2) = -3.692LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.02 -3.912 1/15/2003 0.02 -3.9124/10/2003 0.02 -3.912 7/14/2003 0.02 -3.912 10/13/2003 0.02 -3.912 -3.912 1/13/2004 0.02 4/13/2004 0.02 -3.912 -3.912 7/21/2004 0.02 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.6890.02 -3.91210/16/2002 1/13/2003 0.02 -3.9124/10/2003 0.02-3.912 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.00369	N/A	-5.602	N/A	
MW221	Sidegradient	No	0.00464	N/A	-5.373	N/A	
MW222	Sidegradient	No	0.00668	N/A	-5.009	N/A	
MW223	Sidegradient	No	0.00931	N/A	-4.677	N/A	
MW224	Sidegradient	No	0.00964	N/A	-4.642	N/A	
MW369	Downgradien	t No	0.0103	N/A	-4.576	N/A	
MW372	Downgradien	t No	0.00669	N/A	-5.007	N/A	
MW384	Sidegradient	Yes	0.00679	NO	-4.992	N/A	
MW387	Downgradien	t Yes	0.00514	NO	-5.271	N/A	
MW391	Downgradien	t No	0.00407	N/A	-5.504	N/A	
MW394	Upgradient	No	0.02	N/A	-3.912	N/A	
N/A - Resu	lts identified as N	Non-Detects	during lab	oratory analysis or	data validatio	n and were not	

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-61

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 0.036
 S= 0.026
 CV(1)=0.722 K factor**= 2.523
 TL(1)=0.101 LL(1)=N/A

 Statistics-Transformed Background
 X= -3.485
 S= 0.525
 CV(2)=-0.151 K factor**= 2.523
 TL(2)=-2.162 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.025 -3.689 1/15/2003 0.035 -3.3524/10/2003 0.035 -3.3527/14/2003 0.0389 -3.24710/13/2003 0.026 -3.6501/13/2004 0.02 -3.9124/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.1 -2.303 9/16/2002 0.1 -2.3030.025 10/16/2002 -3.6891/13/2003 0.035 -3.3524/10/2003 0.035-3.352 -3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	No	0.02	N/A	-3.912	N/A
MW221	Sidegradient	No	0.02	N/A	-3.912	N/A
MW222	Sidegradient	No	0.02	N/A	-3.912	N/A
MW223	Sidegradient	No	0.02	N/A	-3.912	N/A
MW224	Sidegradient	No	0.02	N/A	-3.912	N/A
MW369	Downgradien	t No	0.02	N/A	-3.912	N/A
MW372	Downgradien	t Yes	0.00375	NO	-5.586	N/A
MW384	Sidegradient	Yes	0.00385	NO	-5.560	N/A
MW387	Downgradien	t No	0.02	N/A	-3.912	N/A
MW391	Downgradien	t No	0.02	N/A	-3.912	N/A
MW394	Upgradient	Yes	0.00354	NO	-5.644	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Acetone UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.063 **S**= 0.250

CV(1)=0.025

K factor**= 2.523

TL(1)= 10.693

LL(1)=N/A

Statistics-Transformed Background

X = 2.309

S = 0.024

CV(2) = 0.010

K factor=** 2.523

TL(2) = 2.369

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	10	2.303
10/16/2002	10	2.303
1/13/2003	10	2.303
4/10/2003	10	2.303
7/16/2003	10	2.303
10/14/2003	10	2.303
4/12/2004	10	2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.303
Date Collected	Result	` /
Date Collected 8/13/2002	Result 10	2.303
Date Collected 8/13/2002 9/30/2002	Result 10 10	2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 10 10 10	2.303 2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 10 10 10 10	2.303 2.303 2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 10 10 10 10 10	2.303 2.303 2.303 2.303 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	4.55	NO	1.515	N/A	
MW373	Downgradient	No	5	N/A	1.609	N/A	
MW385	Sidegradient	No	5	N/A	1.609	N/A	
MW388	Downgradient	No	5	N/A	1.609	N/A	
MW392	Downgradient	No	5	N/A	1.609	N/A	
MW395	Upgradient	No	5	N/A	1.609	N/A	
MW397	Upgradient	No	5	N/A	1.609	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Aluminum **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.258

S = 0.221

CV(1) = 0.856

K factor**= 2.523

TL(1) = 0.815

LL(1)=N/A

Statistics-Transformed Background

X = -2.266 S = 2.485 CV(2) = -1.097

K factor=** 2.523

TL(2) = 4.003

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.194
Date Collected	Result	
Date Collected 8/13/2002	Result 0.824	-0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	-0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	-0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	-0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	-0.194 -1.609 -8.517 -1.013 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	0.05	N/A	-2.996	N/A	
MW373	Downgradient	No	0.05	N/A	-2.996	N/A	
MW385	Sidegradient	Yes	0.0338	NO	-3.387	N/A	
MW388	Downgradient	Yes	0.0233	NO	-3.759	N/A	
MW392	Downgradient	Yes	0.0538	NO	-2.922	N/A	
MW395	Upgradient	Yes	0.0296	NO	-3.520	N/A	
MW397	Upgradient	Yes	0.143	NO	-1.945	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-64

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Antimony **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.054

S = 0.087

CV(1)=1.622

K factor**= 2.523

TL(1) = 0.274

LL(1)=N/A

Statistics-Transformed Background

X = -4.376 S = 1.650 CV(2) = -0.377

K factor=** 2.523

TL(2) = -0.214

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/10/2003	0.005	-5.298
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/17/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.005	-5.298
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	0.003	N/A	-5.809	N/A	
MW373	Downgradient	Yes	0.00125	N/A	-6.685	NO	
MW385	Sidegradient	No	0.00132	N/A	-6.630	N/A	
MW388	Downgradient	No	0.00128	N/A	-6.661	N/A	
MW392	Downgradient	Yes	0.00123	N/A	-6.701	NO	
MW395	Upgradient	Yes	0.0013	N/A	-6.645	NO	
MW397	Upgradient	Yes	0.00123	N/A	-6.701	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-65

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison UNITS: pCi/L Beta activity LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.364**K** factor**= 2.523 **TL(1)=** 13.773 Statistics-Background Data X = 7.183S = 2.612LL(1)=N/A **Statistics-Transformed Background** X = 1.870 S = 0.552 CV(2) = 0.295**K factor**=** 2.523 TL(2) = 3.261LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.09 0.086 9/16/2002 5.79 1.756 1.920 10/16/2002 6.82 1/13/2003 5.01 1.611 4/10/2003 1.808 6.1 7/16/2003 8.51 2.141 10/14/2003 4.99 1.607 1/13/2004 6.58 1.884 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 9.57 2.259 9/16/2002 11 2.398 9.3 10/17/2002 2.230 1/13/2003 8.63 2.155 4/8/2003 10 2.303 7/16/2003 6.89 1.930 10/14/2003 10.1 2.313 1/13/2004 4.55 1.515

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	61	YES	4.111	N/A	
MW373	Downgradient	Yes	13.7	N/A	2.617	N/A	
MW385	Sidegradient	Yes	138	YES	4.927	N/A	
MW388	Downgradient	Yes	76.7	YES	4.340	N/A	
MW392	Downgradient	No	-4.1	N/A	#Error	N/A	
MW395	Upgradient	No	3.8	N/A	1.335	N/A	
MW397	Upgradient	No	7.45	N/A	2.008	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-66

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.805

CV(1)=1.238

K factor**= 2.523

TL(1) = 2.681

LL(1)=N/A

Statistics-Transformed Background

X = -1.034 S = 1.030 CV(2) = -0.996

K factor=** 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	` /
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2 2 0.2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2 2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	0.0319	N/A	-3.445	NO
MW373	Downgradient	Yes	1.32	N/A	0.278	NO
MW385	Sidegradient	Yes	0.0226	N/A	-3.790	NO
MW388	Downgradient	Yes	0.0222	N/A	-3.808	NO
MW392	Downgradient	Yes	0.0305	N/A	-3.490	NO
MW395	Upgradient	Yes	0.0245	N/A	-3.709	NO
MW397	Upgradient	Yes	0.00975	N/A	-4.630	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.000

S = 0.000

CV(1)=0.000

K factor**= 2.523

TL(1)= 1.000

LL(1)=N/A

Statistics-Transformed Background

X = 0.000

S= 0.000

CV(2)=#Num!

K factor=** 2.523

TL(2) = 0.000

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1	0.000
9/16/2002	1	0.000
10/16/2002	1	0.000
1/13/2003	1	0.000
4/10/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result	0.000
Date Collected 8/13/2002 9/16/2002	Result 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	0.415	NO	-0.879	N/A
MW373	Downgradient	Yes	0.572	NO	-0.559	N/A
MW385	Sidegradient	Yes	0.365	NO	-1.008	N/A
MW388	Downgradient	Yes	0.431	NO	-0.842	N/A
MW392	Downgradient	Yes	0.597	NO	-0.516	N/A
MW395	Upgradient	Yes	0.533	NO	-0.629	N/A
MW397	Upgradient	Yes	0.397	NO	-0.924	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 23.103 S = 11.538 CV(1) = 0.499

K factor**= 2.523

TL(1) = 52.213

LL(1)=N/A

Statistics-Transformed Background

X = 2.357 S = 2.411 CV(2) = 1.023

K factor=** 2.523

TL(2) = 8.439

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.965
Date Collected	Result	
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	26.5	NO	3.277	N/A
MW373	Downgradient	Yes	64	YES	4.159	N/A
MW385	Sidegradient	Yes	22.8	NO	3.127	N/A
MW388	Downgradient	Yes	23.7	NO	3.165	N/A
MW392	Downgradient	Yes	28.4	NO	3.346	N/A
MW395	Upgradient	Yes	25.4	NO	3.235	N/A
MW397	Upgradient	Yes	16.9	NO	2.827	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-69

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.313 S = 1.250

CV(1) = 0.035

K factor=** 2.523

TL(1) = 38.466

LL(1)=N/A

Statistics-Transformed Background

X = 3.564

S = 0.033 CV(2) = 0.009

K factor**= 2.523

TL(2) = 3.648

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	3.555
4/10/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/13/2004	35	3.555
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 40	3.689
Date Collected 8/13/2002 9/16/2002	Result 40 35	3.689 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 40 35 35	3.689 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 40 35 35 35	3.689 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 40 35 35 35 35	3.689 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	No	20	N/A	2.996	N/A
MW373	Downgradient	Yes	43.8	YES	3.780	N/A
MW385	Sidegradient	No	20	N/A	2.996	N/A
MW388	Downgradient	No	20	N/A	2.996	N/A
MW392	Downgradient	No	20	N/A	2.996	N/A
MW395	Upgradient	Yes	26.2	NO	3.266	N/A
MW397	Upgradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-70

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Chloride **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.844 S = 11.652 CV(1) = 0.225

K factor=** 2.523

TL(1) = 81.242

LL(1)=N/A

Statistics-Transformed Background

X = 3.924 S = 0.229 CV(2) = 0.058

K factor=** 2.523

TL(2) = 4.501

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	62.2	4.130
9/16/2002	64.7	4.170
10/16/2002	62.2	4.130
1/13/2003	63.5	4.151
4/10/2003	64.1	4.160
7/16/2003	64	4.159
10/14/2003	63.2	4.146
1/13/2004	60.6	4.104
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.661
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 38.9	3.661
Date Collected 8/13/2002 9/16/2002	Result 38.9 39.8	3.661 3.684
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 38.9 39.8 39.3	3.661 3.684 3.671
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 38.9 39.8 39.3 40.5	3.661 3.684 3.671 3.701
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 38.9 39.8 39.3 40.5 42.1	3.661 3.684 3.671 3.701 3.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	34.8	NO	3.550	N/A
MW373	Downgradient	Yes	43.6	NO	3.775	N/A
MW385	Sidegradient	Yes	34.5	NO	3.541	N/A
MW388	Downgradient	Yes	33.5	NO	3.512	N/A
MW392	Downgradient	Yes	103	YES	4.635	N/A
MW395	Upgradient	Yes	43.5	NO	3.773	N/A
MW397	Upgradient	Yes	34.5	NO	3.541	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW392

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-71

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 5.000 S= 0.000 CV(1)=0.000 K factor**= 2.523 TL(1)=5.000 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.609 S= 0.000 CV(2)=0.000 K factor**= 2.523 TL(2)=1.609 LL(2)=N/A

Historical Background Data from

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.609 9/30/2002 5 1.609 5 10/16/2002 1.609 1/13/2003 5 1.609 4/10/2003 5 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 5 1/13/2004 1.609 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 5 1.609 1/13/2003 5 1.609 5 4/8/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
,	MW370	Downgradient	No	1	N/A	0.000	N/A
	MW373	Downgradient	No	1	N/A	0.000	N/A
	MW385	Sidegradient	No	1	N/A	0.000	N/A
	MW388	Downgradient	No	1	N/A	0.000	N/A
	MW392	Downgradient	Yes	1.31	NO	0.270	N/A
	MW395	Upgradient	No	1	N/A	0.000	N/A
	MW397	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Cobalt **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

CV(1)=1.515S = 0.011

K factor**= 2.523

TL(1) = 0.034

LL(1)=N/A

Statistics-Transformed Background

X = -6.053 S = 1.416 CV(2) = -0.234

K factor=** 2.523

TL(2) = -2.480

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
		-3.007
9/16/2002	0.025	-3.689
9/16/2002 10/17/2002	0.025 0.001	
		-3.689
10/17/2002	0.001	-3.689 -6.908
10/17/2002 1/13/2003	0.001 0.001	-3.689 -6.908 -6.908
10/17/2002 1/13/2003 4/8/2003	0.001 0.001 0.001	-3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	0.00037	7 N/A	-7.883	NO		
MW373	Downgradient	Yes	0.00047	3 N/A	-7.656	NO		
MW385	Sidegradient	No	0.001	N/A	-6.908	N/A		
MW388	Downgradient	No	0.001	N/A	-6.908	N/A		
MW392	Downgradient	Yes	0.00036	1 N/A	-7.927	NO		
MW395	Upgradient	No	0.001	N/A	-6.908	N/A		
MW397	Upgradient	No	0.001	N/A	-6.908	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-73

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison UNITS: umho/cm **Conductivity LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

K factor**= 2.523

TL(1)= 509.326 LL(1)=N/A

Statistics-Transformed Background

X = 5.926 S = 0.136 CV(2) = 0.023

K factor=** 2.523

TL(2) = 6.270

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.775
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	458	NO	6.127	N/A	
MW373	Downgradient	Yes	767	YES	6.642	N/A	
MW385	Sidegradient	Yes	427	NO	6.057	N/A	
MW388	Downgradient	Yes	469	NO	6.151	N/A	
MW392	Downgradient	Yes	446	NO	6.100	N/A	
MW395	Upgradient	Yes	367	NO	5.905	N/A	
MW397	Upgradient	Yes	325	NO	5.784	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.474**K** factor**= 2.523 Statistics-Background Data X = 0.028S = 0.013TL(1) = 0.061LL(1)=N/A **Statistics-Transformed Background** X = -3.662 S = 0.406

CV(2) = -0.111

K factor=** 2.523

TL(2) = -2.638

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.9960.0281 -3.572 10/16/2002 1/13/2003 0.02 -3.912 4/10/2003 0.02 -3.912 -3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.9960.02 -3.912 10/17/2002 1/13/2003 0.02 -3.912 4/8/2003 0.02-3.912 -3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912 1/13/2004 -3.912 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	0.00192	NO	-6.255	N/A	
MW373	Downgradient	Yes	0.00047	9 NO	-7.644	N/A	
MW385	Sidegradient	Yes	0.00063	7 NO	-7.359	N/A	
MW388	Downgradient	Yes	0.00043	NO	-7.752	N/A	
MW392	Downgradient	Yes	0.00138	NO	-6.586	N/A	
MW395	Upgradient	Yes	0.00055	1 NO	-7.504	N/A	
MW397	Upgradient	Yes	0.00069	1 NO	-7.277	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-75

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.520**K factor**=** 2.523 **TL(1)=** 10.812 Statistics-Background Data X = 4.678S = 2.431LL(1)=N/A **Statistics-Transformed Background** X = 1.414

 $S = 0.550 \quad CV(2) = 0.389$

K factor**= 2.523

TL(2) = 2.802

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 7.29 1.987 9/30/2002 4.03 1.394 10/16/2002 3.85 1.348 1/13/2003 2.36 0.859 4/10/2003 1.14 0.131 7/16/2003 1.76 0.565 10/14/2003 4.05 1.399 1/13/2004 4.26 1.449 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 11.56 2.448 9/16/2002 5.86 1.768 10/17/2002 5.94 1.782 1/13/2003 4.66 1.539 4/8/2003 3.77 1.327 7/16/2003 3.47 1.244 10/14/2003 5.34 1.675 1.707 1/13/2004 5.51

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	t Yes	3.46	NO	1.241	N/A	
MW373	Downgradient	t Yes	1.49	NO	0.399	N/A	
MW385	Sidegradient	Yes	2.89	NO	1.061	N/A	
MW388	Downgradient	t Yes	3.19	NO	1.160	N/A	
MW392	Downgradient	t Yes	2.41	NO	0.880	N/A	
MW395	Upgradient	Yes	4.57	NO	1.520	N/A	
MW397	Upgradient	Yes	5.28	NO	1.664	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-76

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

K factor**= 2.523

TL(1) = 305.301

LL(1)=N/A

Statistics-Transformed Background

X = 5.379 S = 0.152 CV(2) = 0.028

K factor=** 2.523

TL(2) = 5.762

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 249 5.517 9/16/2002 272 5.606 10/16/2002 255 5.541 1/13/2003 211 5.352 4/10/2003 289 5.666 7/16/2003 236 5.464 10/14/2003 224 5.412 1/13/2004 235 5.460 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 187 5.231 9/16/2002 197 5.283 10/17/2002 183 5.209 1/13/2003 182 5.204 4/8/2003 217 5.380 7/16/2003 196 5.278 10/14/2003 198 5.288 1/13/2004 177 5.176

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	237	NO	5.468	N/A		
MW373	Downgradient	Yes	401	YES	5.994	N/A		
MW385	Sidegradient	Yes	253	NO	5.533	N/A		
MW388	Downgradient	Yes	253	NO	5.533	N/A		
MW392	Downgradient	Yes	239	NO	5.476	N/A		
MW395	Upgradient	Yes	173	NO	5.153	N/A		
MW397	Upgradient	Yes	229	NO	5.434	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-77

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.400

S = 0.514 CV(1) = 1.286

K factor**= 2.523

TL(1)= 1.698

LL(1)=N/A

Statistics-Transformed Background

X = -2.197 S = 2.634 CV(2) = -1.199

K factor=** 2.523

TL(2) = 4.449

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.294	-1.224
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	1.33	0.285
4/10/2003	1.31	0.270
7/16/2003	0.2	-1.609
10/14/2003	0.1	-2.303
1/13/2004	0.1	-2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.457
Date Collected	Result	,
Date Collected 8/13/2002	Result 1.58	0.457
Date Collected 8/13/2002 9/16/2002	Result 1.58 0.232	0.457 -1.461
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1.58 0.232 0.0002	0.457 -1.461 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1.58 0.232 0.0002 0.453	0.457 -1.461 -8.517 -0.792
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1.58 0.232 0.0002 0.453 0.2	0.457 -1.461 -8.517 -0.792 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	0.0351	N/A	-3.350	NO		
MW373	Downgradient	Yes	0.178	N/A	-1.726	NO		
MW385	Sidegradient	Yes	0.0611	N/A	-2.795	NO		
MW388	Downgradient	Yes	0.0964	N/A	-2.339	NO		
MW392	Downgradient	Yes	0.67	N/A	-0.400	NO		
MW395	Upgradient	Yes	0.108	N/A	-2.226	NO		
MW397	Upgradient	Yes	0.448	N/A	-0.803	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-78

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 9.102

S= 4.685 **CV(1)**=0.515

K factor**= 2.523

TL(1)= 20.922

LL(1)=N/A

Statistics-Transformed Background

X = 1.423

S= 2.408

CV(2) = 1.692

K factor=** 2.523

TL(2) = 7.500

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	12.5	2.526
9/16/2002	13	2.565
10/16/2002	0.0127	-4.366
1/13/2003	11.2	2.416
4/10/2003	17.5	2.862
7/16/2003	12.9	2.557
10/14/2003	13.4	2.595
1/13/2004	12.4	2.518
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.058
Date Collected	Result	
Date Collected 8/13/2002	Result 7.83	2.058
Date Collected 8/13/2002 9/16/2002	Result 7.83 7.64	2.058 2.033
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 7.83 7.64 0.00658	2.058 2.033 -5.024
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 7.83 7.64 0.00658 6.69	2.058 2.033 -5.024 1.901
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 7.83 7.64 0.00658 6.69 7.28	2.058 2.033 -5.024 1.901 1.985

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2					
12.1	NO	2.493	N/A					
23.7	YES	3.165	N/A					
9.05	NO	2.203	N/A					
10.9	NO	2.389	N/A					
11	NO	2.398	N/A					
11.1	NO	2.407	N/A					
7.65	NO	2.035	N/A					
	12.1 23.7 9.05 10.9 11 11.1	12.1 NO 23.7 YES 9.05 NO 10.9 NO 11 NO 11.1 NO	23.7 YES 3.165 9.05 NO 2.203 10.9 NO 2.389 11 NO 2.398 11.1 NO 2.407					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.131

S = 0.195

CV(1) = 1.487

K factor**= 2.523

TL(1) = 0.624

LL(1)=N/A

Statistics-Transformed Background

X = -3.104 S = 1.529 CV(2) = -0.493

K factor=** 2.523

TL(2) = 0.755

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.466	-0.764
9/16/2002	0.077	-2.564
10/17/2002	0.028	-3.576
1/13/2003	0.0164	-4.110
4/8/2003	0.0407	-3.202
7/16/2003	0.0167	-4.092
10/14/2003	0.00555	-5.194
1/13/2004	0.005	-5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW370	Downgradient	Yes	0.00749	N/A	-4.894	NO			
MW373	Downgradient	Yes	0.0177	N/A	-4.034	NO			
MW385	Sidegradient	No	0.00288	N/A	-5.850	N/A			
MW388	Downgradient	No	0.00156	N/A	-6.463	N/A			
MW392	Downgradient	Yes	0.135	N/A	-2.002	NO			
MW395	Upgradient	No	0.00283	N/A	-5.867	N/A			
MW397	Upgradient	Yes	0.0078	N/A	-4.854	NO			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-80

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: ug/L Methylene chloride **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.547**K** factor**= 2.523 Statistics-Background Data X = 5.625S = 3.074**TL(1)=** 13.381 LL(1)=N/A **Statistics-Transformed Background** X = 1.614S = 0.483CV(2) = 0.300K factor**= 2.523 TL(2) = 2.834LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	14	2.639
9/30/2002	2	0.693
10/16/2002	5	1.609
1/13/2003	5	1.609
4/10/2003	5	1.609
7/16/2003	5	1.609
10/14/2003	5	1.609
1/13/2004	5	1.609
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.485
Date Collected	Result	
Date Collected 8/13/2002	Result 12	2.485
Date Collected 8/13/2002 9/30/2002	Result 12 2	2.485 0.693
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 12 2 5	2.485 0.693 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 12 2 5 5 5	2.485 0.693 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 12 2 5 5 5 5	2.485 0.693 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradien	t No	5	N/A	1.609	N/A
MW373	Downgradien	t No	5	N/A	1.609	N/A
MW385	Sidegradient	No	5	N/A	1.609	N/A
MW388	Downgradien	t No	5	N/A	1.609	N/A
MW392	Downgradien	t Yes	2.62	NO	0.963	N/A
MW395	Upgradient	No	5	N/A	1.609	N/A
MW397	Upgradient	Yes	2.32	NO	0.842	N/A
MW392 MW395 MW397	Downgradien Upgradient	t Yes No Yes	2.62 5	NO N/A	0.963 1.609	N/A N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-81

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Nickel **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.018

CV(1)=1.089 S = 0.020

K factor**= 2.523

TL(1) = 0.068

LL(1)=N/A

Statistics-Transformed Background

X = -4.540 S = 1.020 CV(2) = -0.225

K factor=** 2.523

TL(2) = -1.965

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.005 0.00502	-2.996 -2.996 -5.298 -5.294
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.005 0.005 0.00502 0.005	-2.996 -2.996 -5.298 -5.294 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	0.00076	1 N/A	-7.181	NO		
MW373	Downgradient	Yes	0.00091	6 N/A	-6.995	NO		
MW385	Sidegradient	Yes	0.00091	2 N/A	-7.000	NO		
MW388	Downgradient	Yes	0.0011	N/A	-6.812	NO		
MW392	Downgradient	Yes	0.00161	N/A	-6.432	NO		
MW395	Upgradient	Yes	0.00086	6 N/A	-7.052	NO		
MW397	Upgradient	Yes	0.00102	N/A	-6.888	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-82

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison UNITS: mV Oxidation-Reduction Potential LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 157.250 S = 52.376 CV(1) = 0.333

K factor**= 2.523

TL(1) = 289.395

LL(1)=N/A

Statistics-Transformed Background

X = 5.003 S = 0.348 CV(2) = 0.069

K factor=** 2.523

TL(2) = 5.880

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.745
Date Collected	Result	
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	400	YES	5.991	N/A		
MW373	Downgradient	Yes	387	YES	5.958	N/A		
MW385	Sidegradient	Yes	444	YES	6.096	N/A		
MW388	Downgradient	Yes	405	YES	6.004	N/A		
MW392	Downgradient	Yes	461	YES	6.133	N/A		
MW395	Upgradient	Yes	477	YES	6.168	N/A		
MW397	Upgradient	Yes	505	YES	6.225	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

wells with Exceedances	
MW370	
MW373	
MW385	
MW388	
MW392	
MW205	

MW395 MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-83

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X=

X = 6.048

S= 0.248 **CV(1)**=0.041

K factor=** 2.904

TL(1) = 6.767

LL(1)=5.3289

Statistics-Transformed Background

X= 1.799

S= 0.042

CV(2) = 0.023

K factor**= 2.904

TL(2)= 1.920

LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	5.8	1.758
9/16/2002	6	1.792
10/16/2002	5.47	1.699
1/13/2003	6	1.792
4/10/2003	6.18	1.821
7/16/2003	6	1.792
10/14/2003	6.31	1.842
1/13/2004	6.24	1.831
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	5.84	1.765
9/30/2002	6	1.792
10/17/2002		
	5.75	1.749
1/13/2003	5.75 6	1.749 1.792
1/13/2003 4/8/2003		
	6	1.792
4/8/2003	6 6.3	1.792 1.841

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	V mmi cci	Dutte

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW370	Downgradien	t Yes	6.18	NO	1.821	N/A
MW373	Downgradien	t Yes	6.21	NO	1.826	N/A
MW385	Sidegradient	Yes	6.14	NO	1.815	N/A
MW388	Downgradien	t Yes	6.14	NO	1.815	N/A
MW392	Downgradien	t Yes	6.24	NO	1.831	N/A
MW395	Upgradient	Yes	6.16	NO	1.818	N/A
MW397	Upgradient	Yes	6.19	NO	1.823	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Potassium LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.590

S = 0.642

CV(1) = 0.404

K factor**= 2.523

TL(1) = 3.208

LL(1)=N/A

Statistics-Transformed Background

X = -0.306 S = 2.457 CV(2) = -8.028

K factor=** 2.523

TL(2) = 5.892

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.00129	-6.653
1/13/2003	1.51	0.412
4/10/2003	1.67	0.513
7/16/2003	1.73	0.548
10/14/2003	1.7	0.531
1/13/2004	1.58	0.457
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	2.03	0.708
9/16/2002	2	0.693
10/17/2002	0.00145	-6.536
1/13/2003	1.69	0.525
4/8/2003		
1/0/2003	1.73	0.548
7/16/2003		0.548 0.693
	1.73	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	2.46	NO	0.900	N/A	
MW373	Downgradient	Yes	2.43	NO	0.888	N/A	
MW385	Sidegradient	Yes	1.5	NO	0.405	N/A	
MW388	Downgradient	Yes	1.79	NO	0.582	N/A	
MW392	Downgradient	Yes	1.77	NO	0.571	N/A	
MW395	Upgradient	Yes	1.53	NO	0.425	N/A	
MW397	Upgradient	Yes	1.57	NO	0.451	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-85

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 29.560 **S**= 13.894 **CV(1)**= 0.470

K factor**= 2.523

TL(1)= 64.616

LL(1)=N/A

Statistics-Transformed Background

X= 2.615 **S**= 2.411

CV(2)=0.922

K factor=** 2.523

TL(2)= 8.699

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 3.296 9/16/2002 27.2 3.303 0.0253 10/16/2002 -3.6771/13/2003 22.6 3.118 4/10/2003 53.9 3.987 7/16/2003 30 3.401 10/14/2003 29.1 3.371 1/13/2004 26.4 3.273 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 35.2 3.561 9/16/2002 34.3 3.535 0.0336 -3.39310/17/2002 1/13/2003 31.3 3.444 4/8/2003 46.1 3.831 7/16/2003 38.4 3.648 10/14/2003 37.1 3.614 1/13/2004 34.3 3.535

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	45.1	NO	3.809	N/A	
MW373	Downgradient	Yes	51.4	NO	3.940	N/A	
MW385	Sidegradient	Yes	45.6	NO	3.820	N/A	
MW388	Downgradient	Yes	45.5	NO	3.818	N/A	
MW392	Downgradient	Yes	42.3	NO	3.745	N/A	
MW395	Upgradient	Yes	30.6	NO	3.421	N/A	
MW397	Upgradient	Yes	36.2	NO	3.589	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Sulfate LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.756 S = 2.147

CV(1) = 0.200

K factor=** 2.523

TL(1)= 16.173

LL(1)=N/A

Statistics-Transformed Background

X = 2.356 S = 0.203 CV(2) = 0.086

K factor**= 2.523

TL(2) = 2.869

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	10.3	2.332
9/16/2002	9.1	2.208
10/16/2002	8.8	2.175
1/13/2003	9	2.197
4/10/2003	8.3	2.116
7/16/2003	8.2	2.104
10/14/2003	8.3	2.116
1/13/2004	8.2	2.104
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.639
Date Collected	Result	
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 12.8	2.639 2.549
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 14 12.8 12.3	2.639 2.549 2.510
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 14 12.8 12.3 12.7	2.639 2.549 2.510 2.542
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 14 12.8 12.3 12.7 12.8	2.639 2.549 2.510 2.542 2.549

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	20.7	YES	3.030	N/A		
MW373	Downgradient	Yes	126	YES	4.836	N/A		
MW385	Sidegradient	Yes	22.4	YES	3.109	N/A		
MW388	Downgradient	Yes	23.7	YES	3.165	N/A		
MW392	Downgradient	Yes	14.5	NO	2.674	N/A		
MW395	Upgradient	Yes	10.5	NO	2.351	N/A		
MW397	Upgradient	Yes	10	NO	2.303	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-87

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison **Technetium-99** UNITS: pCi/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1) = 0.805**K factor**=** 2.523 **TL(1)=** 34.414 Statistics-Background Data X = 11.359 S = 9.138LL(1)=N/A **Statistics-Transformed Background** X = 2.398CV(2) = 0.358S = 0.859K factor**= 2.523 TL(2) = 3.246LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	20.8	3.035
9/16/2002	16.2	2.785
10/16/2002	8.28	2.114
1/13/2003	13	2.565
4/10/2003	-9.37	#Func!
7/16/2003	0.826	-0.191
10/14/2003	14.1	2.646
1/13/2004	0	#Func!
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 8/13/2002	Result 6.06	1.802
Date Collected 8/13/2002 9/16/2002	Result 6.06 17.3	1.802 2.851
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 6.06 17.3 25.7	1.802 2.851 3.246
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 6.06 17.3 25.7 20.9	1.802 2.851 3.246 3.040
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 6.06 17.3 25.7 20.9 20.1	1.802 2.851 3.246 3.040 3.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	111	YES	4.710	N/A	
MW373	Downgradient	Yes	22.7	NO	3.122	N/A	
MW385	Sidegradient	Yes	164	YES	5.100	N/A	
MW388	Downgradient	Yes	139	YES	4.934	N/A	
MW392	Downgradient	No	2.84	N/A	1.044	N/A	
MW395	Upgradient	No	11.2	N/A	2.416	N/A	
MW397	Upgradient	Yes	32.1	NO	3.469	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-88

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison Total Organic Carbon (TOC)** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 1.544S = 0.856CV(1)=0.554**K** factor**= 2.523 Statistics-Background Data TL(1) = 3.702LL(1)=N/A **Statistics-Transformed Background** X = 0.325S = 0.452 CV(2) = 1.393**K factor**=** 2.523 TL(2) = 1.465LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.470 1.6 9/16/2002 1.1 0.095 10/16/2002 1 0.000 1/13/2003 2 0.693 4/10/2003 3 4 1.224 7/16/2003 2 0.693 10/14/2003 0.000 1 1/13/2004 0.000Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/17/2002 1 0.000 1/13/2003 3.6 1.281 4/8/2003 1.9 0.642 7/16/2003 1.1 0.095 10/14/2003 0.000 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	0.964	NO	-0.037	N/A	
MW373	Downgradient	Yes	1.28	NO	0.247	N/A	
MW385	Sidegradient	Yes	1.07	NO	0.068	N/A	
MW388	Downgradient	Yes	1.14	NO	0.131	N/A	
MW392	Downgradient	Yes	1.15	NO	0.140	N/A	
MW395	Upgradient	Yes	0.904	NO	-0.101	N/A	
MW397	Upgradient	Yes	0.784	NO	-0.243	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-89

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 31.513 S = 18.609 CV(1) = 0.591

K factor**= 2.523

TL(1) = 78.462

LL(1)=N/A

Statistics-Transformed Background

X = 3.240 S = 0.707 CV(2) = 0.218

K factor=** 2.523

TL(2) = 5.024

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	50	3.912
9/16/2002	50	3.912
10/16/2002	50	3.912
1/13/2003	18.3	2.907
4/10/2003	51.2	3.936
7/16/2003	42.6	3.752
10/14/2003	12.3	2.510
1/13/2004	10	2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 50	3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 50 50 50	3.912 3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 50 50 50 12	3.912 3.912 3.912 2.485
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 50 50 50 12 19.9	3.912 3.912 3.912 2.485 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	No	5.14	N/A	1.637	N/A		
MW373	Downgradient	Yes	10.5	NO	2.351	N/A		
MW385	Sidegradient	Yes	11.4	NO	2.434	N/A		
MW388	Downgradient	Yes	12.9	NO	2.557	N/A		
MW392	Downgradient	Yes	22.7	NO	3.122	N/A		
MW395	Upgradient	Yes	4.34	NO	1.468	N/A		
MW397	Upgradient	Yes	8.8	NO	2.175	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-90

C-746-S/T Second Quarter 2019 Statistical Analysis Historical Background Comparison **Trichloroethene** UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.313

CV(1) = 0.780

K factor**= 2.523

TL(1)= 21.695

LL(1)=N/A

Statistics-Transformed Background

X = 1.467

S = 5.701

 $S= 1.213 \quad CV(2)=0.827$

K factor=** 2.523

TL(2) = 4.528

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 2.398 9/30/2002 14 2.639 12 10/16/2002 2.485 1/13/2003 14 2.639 4/10/2003 14 2.639 7/16/2003 13 2.565 10/14/2003 12 2.485 1/13/2004 11 2.398 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 1 0.000 1/13/2003 0.000 4/8/2003 0.0007/16/2003 1 0.000 10/14/2003 0.000 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	0.55	N/A	-0.598	N/A	
MW373	Downgradient	Yes	5.2	NO	1.649	N/A	
MW385	Sidegradient	Yes	0.41	N/A	-0.892	N/A	
MW388	Downgradient	Yes	0.47	N/A	-0.755	N/A	
MW392	Downgradient	Yes	11.2	NO	2.416	N/A	
MW395	Upgradient	Yes	2.98	N/A	1.092	N/A	
MW397	Upgradient	No	1	N/A	0.000	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-91

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Vanadium **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.105**K** factor**= 2.523 TL(1) = 0.027Statistics-Background Data X = 0.021S = 0.002LL(1)=N/A **Statistics-Transformed Background** X = -3.856 S = 0.100CV(2) = -0.026**K factor**=** 2.523 TL(2) = -3.604LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.68910/16/2002 0.02 -3.912 1/13/2003 0.02 -3.912 7/16/2003 0.02 -3.912 -3.912 10/14/2003 0.02 1/13/2004 0.02 -3.912 -3.912 4/12/2004 0.02 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 0.025 -3.689 9/16/2002 0.025 -3.689 0.02 -3.912 10/17/2002 1/13/2003 0.02 -3.912 4/8/2003 0.02-3.912 -3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	. No	0.00499	N/A	-5.300	N/A	
MW373	Downgradient	No	0.00646	N/A	-5.042	N/A	
MW385	Sidegradient	Yes	0.00524	NO	-5.251	N/A	
MW388	Downgradient	Yes	0.00567	NO	-5.173	N/A	
MW392	Downgradient	No	0.0139	N/A	-4.276	N/A	
MW395	Upgradient	No	0.02	N/A	-3.912	N/A	
MW397	Upgradient	No	0.0135	N/A	-4.305	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-92

C-746-S/T Second Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Zinc **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.760**K** factor**= 2.523 Statistics-Background Data X = 0.044S = 0.034TL(1) = 0.129LL(1)=N/A **Statistics-Transformed Background** X = -3.342 S = 0.659CV(2) = -0.197**K factor**=** 2.523 TL(2) = -1.679LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 -2.303 0.1 9/16/2002 0.1 -2.3030.025 10/16/2002 -3.6891/13/2003 0.035 -3.352 4/10/2003 0.035 -3.352 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 1/13/2004 0.02 -3.912Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 0.1 -2.303 9/16/2002 0.1 -2.3030.025 10/17/2002 -3.6891/13/2003 0.035 -3.352 4/8/2003 0.035-3.352 -3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	0.02	N/A	-3.912	N/A
MW373	Downgradient	t No	0.02	N/A	-3.912	N/A
MW385	Sidegradient	Yes	0.00386	NO	-5.557	N/A
MW388	Downgradient	t No	0.02	N/A	-3.912	N/A
MW392	Downgradient	Yes	0.00352	. NO	-5.649	N/A
MW395	Upgradient	Yes	0.00334	NO	-5.702	N/A
MW397	Upgradient	Yes	0.00386	NO	-5.557	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

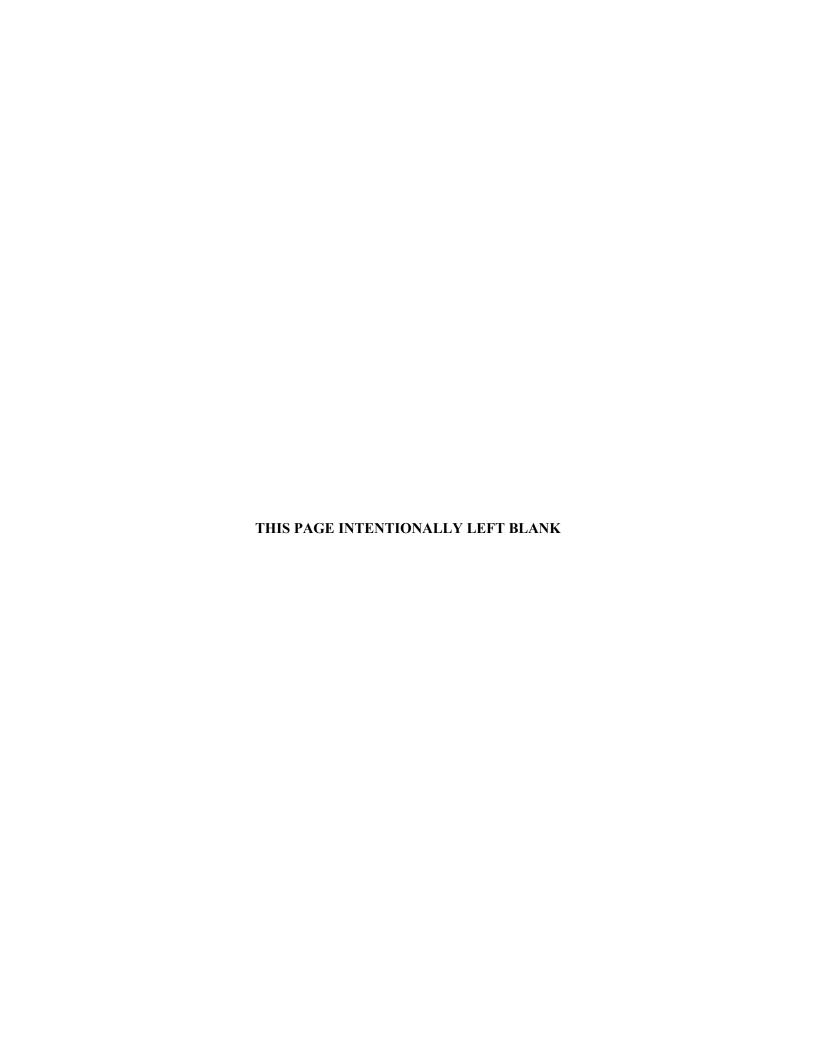
Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL


X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-93

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-S/T Second Quarter 2019 Statistical Analysis Current Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 26.338 **S**= 8.924

CV(1)=0.339

K factor**= 3.188

TL(1) = 54.787

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.212

S = 0.384 CV(2) = 0.119

119

K factor=** 3.188

TL(2) = 4.435

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 4/20/2017 36.8 3.605 7/19/2017 3.082 21.8 10/9/2017 3.300 27.1 1/23/2018 37.6 3.627 4/19/2018 23.1 3.140 7/19/2018 32.5 3.481 10/22/2018 11.8 2.468 1/23/2019 20 2.996

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW396	Ungradient	Ves	43.8	NO	3 780	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **UNITS:** mV **Oxidation-Reduction Potential**

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 244.000 S = 58.517 CV(1) = 0.240

K factor**= 3.188

TL(1)= 430.553

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.473

S = 0.231

CV(2) = 0.042

K factor**= 3.188

TL(2) = 6.209

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 4/20/2017 172 5.147 7/19/2017 291 5.673 10/9/2017 217 5.380 1/23/2018 203 5.313 4/19/2018 275 5.617 7/19/2018 353 5.866 10/22/2018 210 5.347 1/23/2019 231 5.442

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	429	NO	6.061	N/A
MW390	Downgradient	Yes	464	YES	6.140	N/A
MW393	Downgradient	Yes	454	YES	6.118	N/A
MW396	Upgradient	Yes	431	YES	6.066	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW390 MW393 MW396

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-4

C-746-S/T Second Quarter 2019 Statistical Analysis **Current Background Comparison Technetium-99 UCRS** UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = -2.208**S**= 6.987 CV(1) = -3.165K factor**= 3.188 TL(1)= 20.066 **LL(1)=**N/A Statistics-Background Data **Statistics-Transformed Background** X = 1.094S = 0.831CV(2)=0.759TL(2)= 1.828 LL(2)=N/A

Data

K factor**= 3.188

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 4/20/2017 -7.44#Func! 7/19/2017 1.19 0.174 10/9/2017 #Func! -11.3 1.766 1/23/2018 5.85 4/19/2018 -10.3#Func! 7/19/2018 1.84 0.610 10/22/2018 -3.72#Func! 1/23/2019 6.22 1.828

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW390	Downgradien	t Yes	63.1	YES	4.145	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-5

C-746-S/T Second Quarter 2019 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 10.292 S = 7.571 CV(1) = 0.736 K factor** = 2.523
 TL(1) = 29.394 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.341 X = 0.598 X = 0.598

Data

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/19/2017	20.1	3.001
7/19/2017	22.5	3.114
10/9/2017	13.1	2.573
1/23/2018	12.8	2.549
4/17/2018	14.4	2.667
7/19/2018	8.64	2.156
10/15/2018	12.2	2.501
1/22/2019	23	3.135
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.207
Date Collected	Result	, ,
Date Collected 4/20/2017	Result 9.09	2.207
Date Collected 4/20/2017 7/19/2017	Result 9.09 6.29	2.207 1.839
Date Collected 4/20/2017 7/19/2017 10/9/2017	Result 9.09 6.29 -0.603	2.207 1.839 #Func!
Date Collected 4/20/2017 7/19/2017 10/9/2017 1/23/2018	Result 9.09 6.29 -0.603 -3.27	2.207 1.839 #Func! #Func!
Date Collected 4/20/2017 7/19/2017 10/9/2017 1/23/2018 4/19/2018	Result 9.09 6.29 -0.603 -3.27 8.1	2.207 1.839 #Func! #Func! 2.092
Date Collected 4/20/2017 7/19/2017 10/9/2017 1/23/2018 4/19/2018 7/19/2018	Result 9.09 6.29 -0.603 -3.27 8.1 2.94	2.207 1.839 #Func! #Func! 2.092 1.078

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradient	Yes	83.7	YES	4.427	N/A
MW384	Sidegradient	Yes	97	YES	4.575	N/A
MW387	Downgradient	Yes	135	YES	4.905	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW369 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Curre Calcium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 24.325 S = 2.997

CV(1)=0.123

K factor**= 2.523

TL(1) = 31.886

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.184 S = 0.128

CV(2)=0.040

K factor**= 2.523

TL(2) = 3.508

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/19/2017	20.8	3.035
7/19/2017	22.7	3.122
10/9/2017	19.9	2.991
1/23/2018	18.8	2.934
4/17/2018	22.6	3.118
7/19/2018	25.5	3.239
10/15/2018	20.6	3.025
1/22/2019	26	3.258

1/22/2019	26	3.258
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/20/2017	27.9	3.329
7/19/2017	26.1	3.262
10/9/2017	25.7	3.246
1/23/2018	26	3.258
4/19/2018	25.4	3.235
7/19/2018	27.9	3.329
10/22/2018	25.4	3.235
1/23/2019	27.9	3.329

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW372	Downgradient	t Yes	49 7	YES	3 906	N/A	

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis Current Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 21.156 S = 8.670

CV(1)=0.410

K factor**= 2.523

TL(1)= 43.032

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.986

S = 0.362

CV(2)=0.121

K factor**= 2.523

TL(2) = 3.900

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/19/2017 24 3.178 7/19/2017 46.8 3.846 10/9/2017 14.2 2.653 2.939 1/23/2018 18.9 4/17/2018 26.3 3.270 7/19/2018 29.3 3.378 10/15/2018 20 2.996 1/22/2019 20 2.996

Well Number:	MW394	
Date Collected	Result	LN(Result)
4/20/2017	16.1	2.779
7/19/2017	20	2.996
10/9/2017	12.5	2.526
1/23/2018	12.6	2.534
4/19/2018	18.4	2.912
7/19/2018	27.6	3.318
10/22/2018	11.8	2.468
1/23/2019	20	2.996

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	52.6	YES	3.963	N/A
MW391	Downgradient	Yes	44.5	YES	3.795	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis **Current Background Comparison Dissolved Solids** URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 213.750 S = 69.035 CV(1) = 0.323

K factor**= 2.523

TL(1)= 387.925

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.331

S = 0.249

CV(2) = 0.047

K factor**= 2.523

TL(2) = 5.960

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/19/2017 193 5.263 7/19/2017 6.111 451 10/9/2017 4.990 147 5.094 1/23/2018 163 4/17/2018 183 5.209 7/19/2018 207 5.333 10/15/2018 226 5.421

1/22/2019	209	5.342
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/20/2017	203	5.313
7/19/2017	203	5.313
10/9/2017	170	5.136
1/23/2018	187	5.231
4/19/2018	271	5.602
7/19/2018	204	5.318
10/22/2018	206	5.328
1/23/2019	197	5.283

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	309	NO	5 733	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-9

C-746-S/T Second Quarter 2019 Statistical Analysis Current Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.488 **S**= 1.309

CV(1)=0.125

K factor**= 2.523

TL(1)= 13.790

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.342 S = 0.131

CV(2) = 0.056

K factor**= 2.523

TL(2)= 2.672

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/19/2017 9.11 2.209 7/19/2017 9.36 2.236 10/9/2017 8.67 2.160 2.084 1/23/2018 8.04 4/17/2018 9.63 2.265 7/19/2018 11.1 2.407 10/15/2018 8.8 2.175 1/22/2019 10.8 2.380

1/22/2017	10.0	2.300
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/20/2017	11.6	2.451
7/19/2017	11.4	2.434
10/9/2017	11.4	2.434
1/23/2018	11.5	2.442
4/19/2018	11.7	2.460
7/19/2018	12	2.485
10/22/2018	11.3	2.425
1/23/2019	11.4	2.434

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

1	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW372	Downgradient	t Yes	18.2	YES	2.901	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2019 Statistical Analysis **UNITS:** mV **Oxidation-Reduction Potential**

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 345.625 S = 47.539 CV(1) = 0.138

K factor**= 2.523

TL(1)= 465.567

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.836 S = 0.138CV(2) = 0.024 K factor**= 2.523

TL(2) = 6.186

LL(2)=N/A

Current Background Data from Upgradient

Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/19/2017	283	5.645
7/19/2017	350	5.858
10/9/2017	436	6.078
1/23/2018	362	5.892
4/17/2018	305	5.720
7/19/2018	390	5.966
10/15/2018	413	6.023
1/22/2019	361	5.889
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/20/2017	306	5.724
7/19/2017	338	5.823
10/9/2017	337	5.820
1/23/2018	264	5.576
4/19/2018	310	5.737
7/19/2018	375	5.927

386

314

10/22/2018

1/23/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	523	YES	6.260	N/A	
MW221	Sidegradient	Yes	539	YES	6.290	N/A	
MW222	Sidegradient	Yes	519	YES	6.252	N/A	
MW223	Sidegradient	Yes	520	YES	6.254	N/A	
MW224	Sidegradient	Yes	516	YES	6.246	N/A	
MW372	Downgradient	Yes	400	NO	5.991	N/A	
MW384	Sidegradient	Yes	423	NO	6.047	N/A	
MW387	Downgradient	Yes	436	NO	6.078	N/A	
MW391	Downgradient	Yes	469	YES	6.151	N/A	
MW394	Upgradient	Yes	463	NO	6.138	N/A	

Conclusion of Statistical Analysis on Current Data

5.956

5.749

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances
MW220
MW221
MW222
MW223
MW224

MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-11

C-746-S/T Second Quarter 2019 Statistical Analysis Sodium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 37.163 S = 6.336

CV(1)=0.170

K factor**= 2.523

TL(1)= 53.148

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.602 S = 0.169

CV(2) = 0.047

K factor**= 2.523

TL(2)= 4.027

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/19/2017 41.4 3.723 7/19/2017 42 3.738 10/9/2017 40.9 3.711 1/23/2018 38.8 3.658 4/17/2018 44.6 3.798 7/19/2018 49.6 3.904 10/15/2018 39 3.664

1/22/2019	45.1	3.809
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/20/2017	30.7	3.424
7/19/2017	28.7	3.357
10/9/2017	33.6	3.515
1/23/2018	33.5	3.512
4/19/2018	30.4	3.414
7/19/2018	30.2	3.408
10/22/2018	33.4	3.509

32.7

1/23/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW387	Downgradien	t Yes	58.6	YES	4 071	N/A

Conclusion of Statistical Analysis on Current Data

3.487

Wells with Exceedances

MW387

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2019 Statistical Analysis **Current Background Comparison Sulfate** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 15.300 S = 5.341

CV(1)=0.349

K factor**= 2.523

TL(1) = 28.776

URGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.671

S = 0.345CV(2)=0.129 K factor**= 2.523

TL(2) = 3.542

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/19/2017 19.9 2.991 7/19/2017 22.7 3.122 10/9/2017 17.6 2.868 2.797 1/23/2018 16.4 4/17/2018 21.1 3.049 7/19/2018 24.7 3.207 10/15/2018 16.9 2.827 1/22/2019 3.063 21.4 Well Number: MW394 Date Collected Result LN(Result) 4/20/2017 10.5 2.351 7/19/2017 10.2 2.322 10/9/2017 10.5 2.351

10.4

10.4

10.5

10.6

1/23/2018

4/19/2018

7/19/2018

10/22/2018

1/23/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	24.1	NO	3.182	N/A
MW223	Sidegradient	Yes	20.5	NO	3.020	N/A
MW372	Downgradien	t Yes	71.3	YES	4.267	N/A
MW384	Sidegradient	Yes	22.8	NO	3.127	N/A
MW387	Downgradien	t Yes	20.8	NO	3.035	N/A
MW391	Downgradien	t Yes	57.5	YES	4.052	N/A

Conclusion of Statistical Analysis on Current Data

2.342

2.342

2.351

2.361

2.398

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2019 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 14.120 **S**= 7.706

CV(1)=0.546

K factor**= 2.523

TL(1) = 33.563

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.283 S = 1.274

CV(2)=0.558

K factor**= 2.523

TL(2) = 5.498

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/19/2017 20.7 3.030 7/19/2017 22.7 3.122 10/9/2017 2.907 18.3 1/23/2018 27.4 3.311 4/17/2018 19.9 2.991 7/19/2018 14 2.639 10/15/2018 20.8 3.035 1/22/2019 19.4 2.965 Well Number: MW394 Date Collected Result LN(Result) 4/20/2017 7.82 2.057 7/19/2017 11.1 2.407 10/9/2017 1.99 0.688 1/23/2018 6.15 1.816 4/19/2018 0.158 -1.845

10.6

13.4

11.5

7/19/2018

10/22/2018

1/23/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradien	t Yes	70.8	YES	4.260	N/A
MW372	Downgradien	t Yes	59.4	YES	4.084	N/A
MW384	Sidegradient	Yes	155	YES	5.043	N/A
MW387	Downgradien	t Yes	229	YES	5.434	N/A

Conclusion of Statistical Analysis on Current Data

2.3612.595

2.442

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW369 MW372 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2019 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.833

S= 2.999 **CV(1)**=0.383

K factor**= 2.523

TL(1)= 15.399

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.983

S = 0.417

CV(2)=0.210

K factor**= 2.523

TL(2) = 3.034

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/20/2017 7.61 2.029 7/19/2017 5.16 1.641 10/9/2017 2.100 8.17 2.027 1/23/2018 7.59 4/19/2018 5.4 1.686 7/19/2018 7.89 2.066 10/22/2018 9.41 2.242 1/23/2019 1 656 5 24

1/23/2019	3.24	1.030
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/20/2017	12.1	2.493
7/19/2017	9.5	2.251
10/9/2017	11.9	2.477
1/23/2018	2.66	0.978
4/17/2018	5.57	1.717
7/19/2018	13.8	2.625
10/15/2018	5.14	1.637
1/23/2019	8.19	2.103

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	61	YES	4.111	N/A
MW385	Sidegradient	Yes	138	YES	4.927	N/A
MW388	Downgradient	Yes	76.7	YES	4.340	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2019 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.063 **S**= 4.193

CV(1)=0.190

K factor**= 2.523

TL(1)=32.642

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.077

S = 0.192

CV(2) = 0.062

K factor**= 2.523

TL(2) = 3.561

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/20/2017 28.2 3.339 7/19/2017 26.2 3.266 10/9/2017 25.3 3.231 1/23/2018 24.5 3.199 4/19/2018 24.5 3.199 7/19/2018 27.1 3.300 10/22/2018 24 4 3.195

1/23/2019	27.3
Well Number:	MW397
Data Callastad	Dogult

Date Collected	Result	LN(Result)
4/20/2017	18.2	2.901
7/19/2017	17.2	2.845
10/9/2017	18.7	2.929
1/23/2018	19.4	2.965
4/17/2018	16.8	2.821
7/19/2018	16.9	2.827
10/15/2018	19.3	2.960
1/23/2019	19	2.944

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW373	Downgradient	Yes	64	YES	4 159	N/A	

Conclusion of Statistical Analysis on Current Data

3.307

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2019 Statistical Analysis Current Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 21.859 S = 13.787 CV(1) = 0.631

K factor**= 2.523

TL(1) = 56.644

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.943 **S**= 0.520

CV(2) = 0.177

K factor=** 2.523

TL(2) = 4.254

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/20/2017	12.6	2.534
7/19/2017	12.7	2.542
10/9/2017	14.2	2.653
1/23/2018	18.9	2.939
4/19/2018	42.2	3.742
7/19/2018	24.3	3.190
10/22/2018	9.87	2.289
1/23/2019	20	2.996

1/23/2019	20	2.996
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/20/2017	9.17	2.216
7/19/2017	20	2.996
10/9/2017	14.2	2.653
1/23/2018	18.9	2.939
4/17/2018	37.4	3.622
7/19/2018	14.5	2.674
10/15/2018	60.8	4.108
1/23/2019	20	2.996

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	43.8	NO	3 780	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2019 Statistical Analysis C

Current Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Chloride

X=40.006 **S**= 6.032

CV(1)=0.151

K factor**= 2.523

TL(1) = 55.225

LRGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.679 S = 0.149

CV(2) = 0.041

UNITS: mg/L

K factor**= 2.523

TL(2) = 4.055

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected LN(Result) Result 4/20/2017 51.6 3.944 7/19/2017 48.1 3.873 10/9/2017 43 3.761 3.704 1/23/2018 40.6 4/19/2018 46.5 3.839 7/19/2018 47.5 3.861 10/22/2018 39.9 3.686

1/23/2019	41.7	3.731
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/20/2017	35.5	3.570
7/19/2017	34	3.526
10/9/2017	37.6	3.627
1/23/2018	39.1	3.666
4/17/2018	30.7	3.424
7/19/2018	33.5	3.512
10/15/2018	36.1	3.586
1/23/2019	34.7	3.547

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW392	Downgradien	t Yes	103	YES	4 635	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances
MW392

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2019 Statistical Analysis Current Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 350.750 S = 32.840 CV(1) = 0.094

K factor=** 2.523

TL(1)= 433.605 L

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.856 S = 0.094 CV(2) = 0.016

K factor**= 2.523

TL(2)= 6.092

Because CV(1) is less than or equal to

1, assume normal distribution and

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/20/2017 392 5.971 7/19/2017 392 5.971 10/9/2017 378 5.935 1/23/2018 384 5.951 4/19/2018 372 5.919 7/19/2018 396 5.981 10/22/2018 375 5.927 1/23/2019 5.883 359

continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Culltuit	Vual tti	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	Vec	767	VES	6.642	N/A

Well Number:	MW397	
Date Collected	Result	LN(Result)
4/20/2017	320	5.768
7/19/2017	315	5.753
10/9/2017	333	5.808
1/23/2018	326	5.787
4/17/2018	307	5.727
8/21/2018	326	5.787
10/15/2018	321	5.771
1/23/2019	316	5.756

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2019 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 186.688 **S**= 39.128 **CV(1)**=0.210

K factor**= 2.523

TL(1)= 285.408

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.211 S = 0.197

CV(2) = 0.038

K factor**= 2.523

TL(2)= 5.709

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/20/2017 204 5.318 7/19/2017 210 5.347 10/9/2017 5.094 163 1/23/2018 176 5.170 4/19/2018 257 5.549 7/19/2018 203 5.313 10/22/2018 5.170 176

1/02/2010	204	5.170
1/23/2019	284	5.649
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/20/2017	180	5.193
7/19/2017	171	5.142
10/9/2017	156	5.050
1/23/2018	179	5.187
4/17/2018	124	4.820
7/19/2018	160	5.075

184

160

10/15/2018

1/23/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	401	YES	5 994	N/A

Conclusion of Statistical Analysis on Current Data

5.215

5.075

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2019 Statistical Analysis **Current Background Comparison** Magnesium UNITS: mg/L

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.532

CV(1)=0.189

K factor**= 2.523

TL(1)= 14.085

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.237

S = 0.194

S = 1.804

CV(2) = 0.087

K factor**= 2.523

TL(2) = 2.727

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/20/2017 11.6 2.451 7/19/2017 10.9 2.389 10/9/2017 11.4 2.434 1/23/2018 10.8 2.380 4/19/2018 11.4 2.434 7/19/2018 11.7 2.460 10/22/2018 10.7 2.370 1/23/2019 11.2 2.416

Well Number: MW397 Date Collected Result LN(Result) 4/20/2017 7.83 2.058 7/19/2017 7.37 1.997 10/9/2017 8.41 2.129 1/23/2018 8.61 2.153 4/17/2018 6.89 1.930 7/19/2018 7.38 1.999 10/15/2018 8.48 2.138

7.84

1/23/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	23.7	YES	3 165	N/A

Conclusion of Statistical Analysis on Current Data

2.059

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2019 Statistical Analysis **UNITS:** mV **Oxidation-Reduction Potential**

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 338.500 S = 75.098 CV(1) = 0.222

K factor**= 2.523

TL(1)= 527.973

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.796

S = 0.257

CV(2) = 0.044

K factor**= 2.523

TL(2) = 6.446

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/20/2017	190	5.247
7/19/2017	392	5.971
10/9/2017	385	5.953
1/23/2018	195	5.273
4/19/2018	367	5.905
7/19/2018	336	5.817
10/22/2018	237	5.468
1/23/2019	433	6.071
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.642
Date Collected	Result	
Date Collected 4/20/2017	Result 282	5.642
Date Collected 4/20/2017 7/19/2017	Result 282 352	5.642 5.864
Date Collected 4/20/2017 7/19/2017 10/9/2017	Result 282 352 362	5.642 5.864 5.892
Date Collected 4/20/2017 7/19/2017 10/9/2017 1/23/2018	Result 282 352 362 361	5.642 5.864 5.892 5.889
Date Collected 4/20/2017 7/19/2017 10/9/2017 1/23/2018 4/17/2018	Result 282 352 362 361 319	5.642 5.864 5.892 5.889 5.765

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	400	NO	5.991	N/A
MW373	Downgradient	Yes	387	NO	5.958	N/A
MW385	Sidegradient	Yes	444	NO	6.096	N/A
MW388	Downgradient	Yes	405	NO	6.004	N/A
MW392	Downgradient	Yes	461	NO	6.133	N/A
MW395	Upgradient	Yes	477	NO	6.168	N/A
MW397	Upgradient	Yes	505	NO	6.225	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-22

C-746-S/T Second Quarter 2019 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.284 S = 0.511

CV(1)=0.050

K factor**= 2.523

TL(1)= 11.573

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.329

S= 0.050 **CV(2)**=0.021

K factor**= 2.523

TL(2) = 2.455

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/20/2017 10.4 2.342 7/19/2017 10 2.303 10/9/2017 2.313 10.1 1/23/2018 10.4 2.342 4/19/2018 10.5 2.351 7/19/2018 10.4 2.342

 10/22/2018
 10.2
 2.322

 1/23/2019
 10.6
 2.361

Well Number:	MW397	
Date Collected	Result	LN(Result)
4/20/2017	9.7	2.272
7/19/2017	10.1	2.313
10/9/2017	11.1	2.407
1/23/2018	11.4	2.434
4/17/2018	9.21	2.220
7/19/2018	9 94	2 297

10.4

10.1

10/15/2018

1/23/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	20.7	YES	3.030	N/A
MW373	Downgradient	t Yes	126	YES	4.836	N/A
MW385	Sidegradient	Yes	22.4	YES	3.109	N/A
MW388	Downgradient	t Yes	23.7	YES	3.165	N/A

Conclusion of Statistical Analysis on Current Data

2.342

2.313

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2019 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 14.251 **S**= 6.391

CV(1)=0.448

K factor**= 2.523

TL(1) = 30.375

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.553

S= 0.498

CV(2)=0.195

K factor**= 2.523

TL(2) = 3.809

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/20/2017 9.95 2.298 7/19/2017 2.955 19.2 10/9/2017 3.67 1.300 1/23/2018 15.7 2.754 4/19/2018 9.83 2.285 7/19/2018 9.05 2.203 10/22/2018 13.2 2.580

1/23/2019	10.3	2.332
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/20/2017	14.9	2.701
7/19/2017	29.8	3.395
10/9/2017	13	2.565
1/23/2018	13.2	2.580
4/17/2018	18.9	2.939
7/19/2018	21.9	3.086
10/15/2018	18.3	2.907
1/23/2019	7.12	1.963

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	111	YES	4.710	N/A
MW385	Sidegradient	Yes	164	YES	5.100	N/A
MW388	Downgradient	Yes	139	YES	4.934	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

July 2, 2019

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an Environmental Scientist, with a bachelor's degree in science, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the second quarter 2019 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Jennifer R. Watson

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

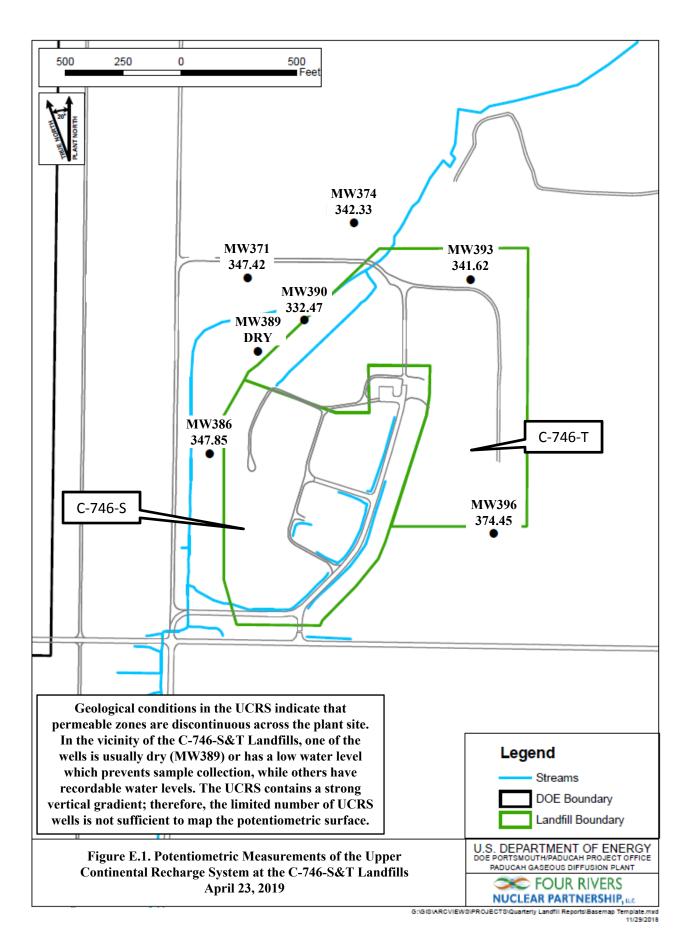
RESIDENTIAL/INERT—QUARTERLY, 2nd CY 2019 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID: None
For Official Use Only

Finds/Unit: KY8-890-008-982/1

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the second quarter 2019 and to determine the groundwater flow rate and direction.


Water levels during this reporting period were measured on April 23, 2019. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 4.91×10^{-4} ft/ft. Additional water level measurements in April (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 5.08×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the administrative application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for April 2019, the groundwater flow direction in the immediate area of the landfill was oriented to the northeast.

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

E-4

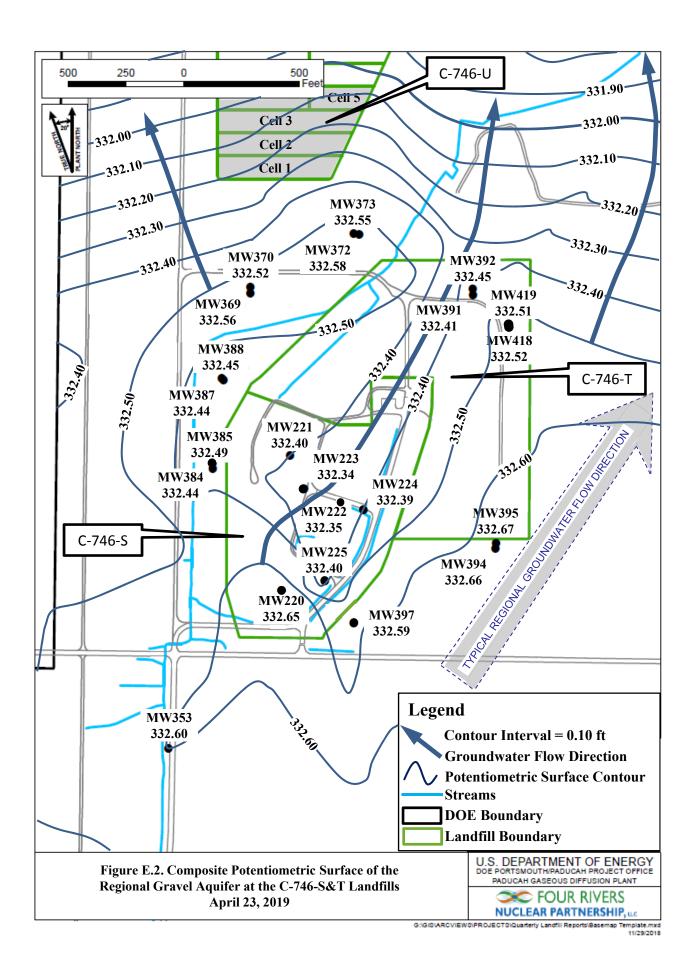
Table E.1. C-746-S&T Landfills Second Quarter 2019 (April) Water Levels

C-746-S&T Landfills (April 2019) Water Levels										
							Rav	v Data	*Corre	cted Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H ₂ O)	(ft)	(ft amsl)	(ft)	(ft amsl)
4/23/2019	14:15	MW220	URGA	382.27	30.01	0.01	49.61	332.66	49.62	332.65
4/23/2019	14:22	MW221	URGA	391.51	30.01	0.01	59.10	332.41	59.11	332.40
4/23/2019	14:20	MW222	URGA	395.39	30.01	0.01	63.03	332.36	63.04	332.35
4/23/2019	14:21	MW223	URGA	394.49	30.01	0.01	62.14	332.35	62.15	332.34
4/23/2019	14:19	MW224	URGA	395.82	30.01	0.01	63.42	332.40	63.43	332.39
4/23/2019	14:17	MW225	URGA	385.88	30.01	0.01	53.47	332.41	53.48	332.40
4/23/2019	12:54	MW353	LRGA	375.12	30.02	0.00	42.52	332.60	42.52	332.60
4/23/2019	14:11	MW384	URGA	365.42	30.01	0.01	32.97	332.45	32.98	332.44
4/23/2019	14:12	MW385	LRGA	365.86	30.01	0.01	33.36	332.50	33.37	332.49
4/23/2019	14:13	MW386	UCRS	365.47	30.01	0.01	17.61	347.86	17.62	347.85
4/23/2019	14:09	MW387	URGA	363.65	30.01	0.01	31.20	332.45	31.21	332.44
4/23/2019	14:10	MW388	LRGA	363.64	30.01	0.01	31.18	332.46	31.19	332.45
4/23/2019	14:08	MW389	UCRS	364.26			DRY		DRY	
4/23/2019	14:07	MW390	UCRS	360.60	30.01	0.01	28.12	332.48	28.13	332.47
4/23/2019	13:54	MW391	URGA	366.83	30.01	0.01	34.41	332.42	34.42	332.41
4/23/2019	13:55	MW392	LRGA	366.07	30.01	0.01	33.61	332.46	33.62	332.45
4/23/2019	13:56	MW393	UCRS	366.81	30.01	0.01	25.18	341.63	25.19	341.62
4/23/2019	14:00	MW394	URGA	378.64	30.01	0.01	45.97	332.67	45.98	332.66
4/23/2019	14:01	MW395	LRGA	379.34	30.01	0.01	46.66	332.68	46.67	332.67
4/23/2019	14:02	MW396	UCRS	378.84	30.01	0.01	4.38	374.46	4.39	374.45
4/23/2019	14:03	MW397	LRGA	387.12	30.01	0.01	54.52	332.60	54.53	332.59
4/23/2019	13:57	MW418	URGA	367.37	30.01	0.01	34.84	332.53	34.85	332.52
4/23/2019	13:58	MW419	LRGA	367.22	30.01	0.01	34.70	332.52	34.71	332.51
Initial Barom	etric Pres	ssure	30.02							_

Elev = elevation

amsl = above mean sea level

BP = barometric pressure


DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

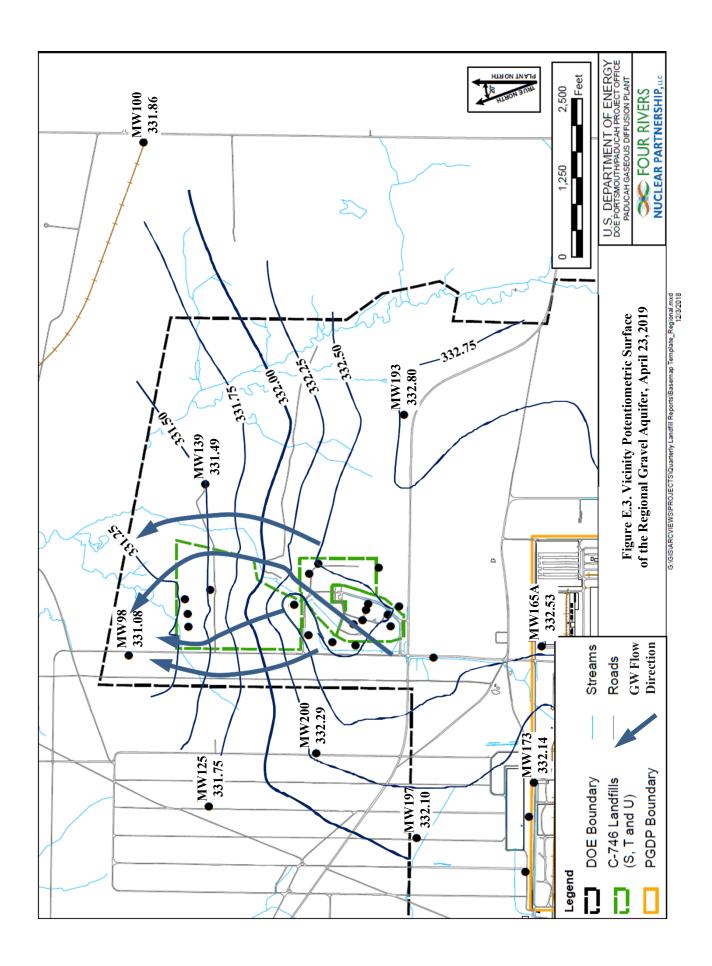


Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	4.91×10^{-4}
Vicinity	5.08×10^{-4}

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific l	Discharge (q)	Average Linear Velocity (v)						
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s					
Beneath Landfill Mound										
725	0.256	0.356	1.26×10^{-4}	1.42	5.03×10^{-4}					
425	0.150	0.209	7.37×10^{-5}	0.835	2.95×10^{-4}					
<u>Vicinity</u>										
725	0.256	0.369	1.30×10^{-4}	1.47	5.21×10^{-4}					
425	0.150	0.216	7.63×10^{-5}	0.864	3.05×10^{-4}					

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the second quarter 2019 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).*

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	Parameter	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW387 MW369, MW372, MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW370, MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

6/11/2019

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4820	MW369	Beta activity	9310	83.7	pCi/L	50
8004-4818	MW370	Beta activity	9310	61	pCi/L	50
8004-4792	MW373	Trichloroethene	8260B	5.2	ug/L	5
8004-4809	MW384	Beta activity	9310	97	pCi/L	50
8004-4810	MW385	Beta activity	9310	138	pCi/L	50
8004-4815	MW387	Beta activity	9310	135	pCi/L	50
8004-4816	MW388	Beta activity	9310	76.7	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	6.88	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	11.2	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills

Groundwater Flow System	UCRS								1	URGA									LRGA	RGA			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
ACETONE																							
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
ALPHA ACTIVITY																							
Quarter 4, 2002																							\Box
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*						*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003							*	*			*			*									
Quarter 1, 2004			*				*	*			*												
Quarter 2, 2004							*							*									
Quarter 3, 2004							*							*									
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*				*																
Quarter 3, 2005			*				*			*											*		\vdash
Quarter 4, 2005			*				*				*												
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																-
Quarter 3, 2006							*																\vdash
Quarter 4, 2006			*				*																-
							*										*						
Quarter 1, 2007							*										*						<u> </u>
Quarter 2, 2007							*										*						
Quarter 3, 2007																							
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												
Quarter 1, 2010			*				*				*												
Quarter 2, 2010			*								*												
Quarter 3, 2010			*								*			*			*			*			
Quarter 1, 2011							*				*												
Quarter 2, 2011			*								*												
Quarter 2, 2012			*																				
Quarter 3, 2012							*																
Quarter 1, 2013							*				*												\vdash
Quarter 3, 2013			*																				H
Quarter 1, 2014							*																H
Quarter 2, 2014											*												\vdash
Quarter 4, 2014			*								Ė												₩
Quarter 1, 2016		 	-	-			*	-			-				 	 				 	 		\vdash
Quarter 2, 2016														*									
Quarter 1, 2017							*																
Quarter 4, 2017							Ė																*
Quarter 1, 2018							*																┢
BARIUM																							
Quarter 3, 2003																							
Quarter 4, 2003																							┢
BETA ACTIVITY																							
Quarter 4, 2002																							
Quarter 1, 2003																							\vdash

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	4								LRGA	١		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																	•						
Quarter 3, 2004																	•						
Quarter 4, 2004																	-						
Quarter 1, 2005																	•						
Quarter 2, 2005																	•						
Quarter 3, 2005										•													
Quarter 4, 2005																	•						
Quarter 1, 2006																	•						
Quarter 2, 2006																	•						
Quarter 3, 2006																	•						
Quarter 4, 2006																							
Quarter 1, 2007																	•						
Quarter 2, 2007																							
Quarter 3, 2007																	•						
Quarter 4, 2007																	•						
Quarter 1, 2008																							
Quarter 2, 2008																	•						
Quarter 3, 2008																	•						
Quarter 4, 2008																							
Quarter 1, 2009																	•						
Quarter 2, 2009																	•						
Quarter 3, 2009										•							-						
Quarter 4, 2009																	•						
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																	•						
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																	•						
Quarter 1, 2013										•			-										
Quarter 2, 2013										•		L_	_				-		L				
Quarter 3, 2013										_							_						<u> </u>
Quarter 4, 2013			<u> </u>							_							_		<u> </u>				<u> </u>
Quarter 1, 2014										_									<u> </u>	_			<u> </u>
Quarter 2, 2014										_												Ш	
Quarter 3, 2014										_		<u> </u>	_						<u> </u>	_			<u> </u>
Quarter 4, 2014										_		_							<u> </u>	_			<u> </u>
Quarter 1, 2015										_										-		Ш	
Quarter 2, 2015										_							•			-		Ш	
Quarter 3, 2015										_		_					•			-		Ш	
Quarter 4, 2015			_							-									<u> </u>			\vdash	<u> </u>
Quarter 1, 2016										_							•			-		Ш	
Quarter 2, 2016										_			_						<u> </u>	_			<u> </u>
Quarter 3, 2016										_	_						-			-		Ш	_
Quarter 4, 2016										_										-		Ш	
Quarter 1, 2017										_										-		Ш	
Quarter 2, 2017										-								_	<u> </u>			\vdash	<u> </u>
Quarter 3, 2017	_		Ц_	Ц_	Щ	_	_	Щ		▝	Ц_	Ц_	▝	Ц_	Щ		╚	▝		_	Щ		_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	3						1	URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2017																							
Quarter 1, 2018																							
Quarter 2, 2018													•										
Quarter 3, 2018													•					•					
Quarter 4, 2018																							
Quarter 1, 2019																						Ш	
Quarter 2, 2019																						Ш	
BROMIDE																							
Quarter 1, 2003			*																			ш	
Quarter 4, 2003			*																			ш	
Quarter 1, 2004			*																			ш	
Quarter 2, 2004			*																			Ш	
Quarter 3, 2004			*																			Ш	
Quarter 4, 2004			*																			lacksquare	
Quarter 1, 2005			*							<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>				<u> </u>			ш	
Quarter 3, 2006			*																			ш	
CALCIUM																							
Quarter 1, 2003			*						<u> </u>			<u> </u>							<u> </u>			ш	<u> </u>
Quarter 2, 2003			*									*										Ш	
Quarter 3, 2003			*							<u> </u>	<u> </u>	414		<u> </u>	<u> </u>				,1.			ш	
Quarter 4, 2003			*									*		4					*			Ш	
Quarter 1, 2004			*									*		*					*			Ш	
Quarter 2, 2004			*									*							*			Ш	
Quarter 3, 2004			*									*							*			\vdash	
Quarter 4, 2004			不																			Ш	
Quarter 1, 2005												*							*			ш	
Quarter 2, 2005												*							*			Ш	
Quarter 3, 2005												*							*			Ш	
Quarter 4, 2005												*							*			Ш	
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*			\vdash	
Quarter 3, 2008			 									*							*			$\vdash \vdash$	_
Quarter 4, 2008									 			*							*			$\vdash\vdash$	
Quarter 1, 2009						-						*					-		*			\vdash	\vdash
Quarter 2, 2009	_	-	 		\vdash				-			*							*	-		$\vdash\vdash$	<u> </u>
Quarter 3, 2009 Quarter 3, 2009		-	-						 	-	-	*		-	-		-		*	-		$\vdash\vdash$	<u> </u>
						-			<u> </u>			*					-		*			$\vdash \vdash$	<u> </u>
Quarter 4, 2009			ļ																			ш	-
Quarter 1, 2010					Щ	<u> </u>						*					<u> </u>		*			Щ	<u> </u>
Quarter 2, 2010					Щ	<u> </u>						*					<u> </u>		*			Щ	<u> </u>
Quarter 3, 2010										<u> </u>	<u> </u>	*		<u> </u>	<u> </u>				*			ш	<u> </u>
Quarter 4, 2010										<u> </u>	<u> </u>	*		<u> </u>	<u> </u>				*			ш	<u> </u>
Quarter 1, 2011												*							*			Ш	
Quarter 2, 2011									<u></u>			*	*						*			لــــا	
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*			\sqcap	

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						Ī	URGA	١								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CALCIUM																							
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*						*	*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016						1		-			-	*	-	*	-				*	 			
Quarter 3, 2016						1		-			-	*	-	H	-				*	 			
Quarter 4, 2016						_		_			_	*	_	_	_				*	_	 		<u> </u>
Quarter 1, 2017						 		-			-	*	-	-	-				*	-			
Quarter 2, 2017						-						*							*				
						_		-			-	*	-	-	-				*	-			
Quarter 4, 2017								<u> </u>			<u> </u>	*	<u> </u>	<u> </u>	<u> </u>				*	<u> </u>			
Quarter 4, 2017												*							*				
Quarter 1, 2018																							
Quarter 2, 2018												*							*				
Quarter 4, 2018												*							*				
Quarter 1, 2019												*							*				
Quarter 2, 2019												*							*				
CARBON DISULFIDE											4												
Quarter 4, 2010											*	¥									.		
Quarter 1, 2011												*	4								*		
Quarter 2, 2017													*										
CHEMICAL OXYGEN DEMAN	D			- W																			
Quarter 1, 2003				*																			
Quarter 2, 2003 Quarter 3, 2003				*		-	*			*													
Quarter 4, 2003				*			~			•													
Quarter 1, 2004	*			*																			
Quarter 4, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*					_		_		*	_	*	_	_	_				_	_	*		<u> </u>
Quarter 4, 2005	*									*		.,,											
Quarter 1, 2006	*					-																	
Quarter 2, 2006	*					-																	
Quarter 3, 2006	*					-																	
Quarter 3, 2006 Quarter 4, 2006	_																*						
,	*									*							*						
Quarter 1, 2007	*									*													
Quarter 2, 2007	*					!														<u> </u>			
Quarter 3, 2007	*																						
Quarter 4, 2007																							
Quarter 1, 2008	*					!		<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>	-		
Quarter 2, 2008	*																						
Quarter 3, 2008	*													<u> </u>					<u> </u>	<u> </u>			
Quarter 4, 2008	*							<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>			
Quarter 1, 2009	*																			L_			
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*																						

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						ī	URGA	4]	LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221			224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHEMICAL OXYGEN DEMAN	D																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 3, 2011	*																						
Quarter 4, 2011	*																						
Quarter 1, 2012	*																						-
Quarter 1, 2013	*																						
Quarter 3, 2013	*																						
Quarter 3, 2014	*								*				*					*					
Quarter 4, 2014							*																
Quarter 2, 2015																*							-
Quarter 3, 2015															*								
Quarter 3, 2016			*								*				-								-
Quarter 4, 2016		<u> </u>	_	<u> </u>				<u> </u>			<u> </u>		*			<u> </u>		<u> </u>	\vdash				
Quarter 2, 2017						_	*										-				-		\vdash
Quarter 2, 2017 Quarter 3, 2017	*	<u> </u>	<u> </u>	<u> </u>			*	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	*					<u> </u>		<u> </u>	
						*									*		-			<u> </u>			₩
Quarter 4, 2017	_					*								JE.								JE.	₩
Quarter 2, 2018	-	<u> </u>	<u> </u>	<u> </u>		!		<u> </u>			<u> </u>	10	<u> </u>	*	<u> </u>					<u> </u>	-	*	₩
Quarter 3, 2018												*											L.,
Quarter 4, 2018																							*
Quarter 2, 2019					*							*		*					*				
CHLORIDE																							
Quarter 1, 2003			*																				<u> </u>
Quarter 2, 2003			*																				
Quarter 3, 2003			*																				-
Quarter 1, 2003			*																				-
Quarter 1, 2004 Quarter 2, 2004			*																				-
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				
Quarter 3, 2005			*																				-
Quarter 4, 2005			*																				-
Quarter 1, 2006																		*					-
			*															•					-
Quarter 2, 2006			*																				-
Quarter 3, 2006																							
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				<u> </u>
Quarter 2, 2007			*																				<u> </u>
Quarter 3, 2007		<u> </u>	*	<u> </u>				<u> </u>						<u> </u>						<u> </u>		<u> </u>	<u> </u>
Quarter 4, 2007		<u> </u>	*	<u> </u>				<u> </u>			<u> </u>					<u> </u>		<u> </u>	<u> </u>				
Quarter 1, 2008		<u> </u>	*											<u> </u>						<u> </u>		<u> </u>	<u> </u>
Quarter 2, 2008			*																				<u> </u>
Quarter 3, 2008			*																				<u> </u>
Quarter 4, 2008			*																				<u> </u>
Quarter 1, 2009			*																				<u> </u>
Quarter 2, 2009			*																				
Quarter 3, 2009			*			L																	L
Quarter 4, 2009			*																				
Quarter 1, 2010			*																				
Quarter 2, 2010			*																				
Quarter 3, 2010			*																				
Quarter 4, 2010			*																				
	_		_	_							_					_	_				_		

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR!	S						Ţ	URGA	4								LRGA	١		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHLORIDE																							
Quarter 2, 2011			*																				
Quarter 3, 2011			*																				
Quarter 4, 2011			*																				
Quarter 3, 2012			*																				
Quarter 3, 2013			*																				
Quarter 4, 2013			*																				
Quarter 4, 2014			*																				-
Quarter 2, 2019																					*		_
CHROMIUM																							1
Quarter 4, 2002																							
Quarter 1, 2003																							<u> </u>
Quarter 2, 2003																							
Quarter 3, 2009																							
Quarter 1, 2019																							
COBALT																							
Quarter 3, 2003							*																
CONDUCTIVITY																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*					*		*									*				
Quarter 4, 2003			*							*									*				
Quarter 1, 2004																			*				<u> </u>
Quarter 2, 2004										*									*				<u> </u>
Quarter 3, 2004			*							*									*				
Quarter 4, 2004 Quarter 1, 2005			不							*		*							*				-
										•		*							*				
Quarter 2, 2005 Quarter 3, 2005												~							*				
Quarter 4, 2005										*		*							*				-
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006																	*		*				<u> </u>
Quarter 1, 2007												*							*				
Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007												*					*		*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008				<u> </u>	<u> </u>			<u> </u>				*	<u> </u>	<u> </u>					*	<u> </u>			<u> </u>
Quarter 1, 2009												*					<u> </u>		*				<u> </u>
Quarter 2, 2009				<u> </u>	<u> </u>		<u> </u>	<u> </u>			<u> </u>	*	<u> </u>	<u> </u>			-		*	<u> </u>	<u> </u>		<u> </u>
Quarter 3, 2009		-	-	-	-	-	-	-			-	*	-	-			*		*	-	-		₩
Quarter 4, 2009												*					*		*				
Quarter 1, 2010 Quarter 2, 2010												*					-		*				\vdash
Quarter 3, 2010				_	_		_	_			_	*	_	_			\vdash		*	_	_		\vdash
Quarter 4, 2010				 	 		-	 			-	*	 	 					*	 	-		\vdash
Quarter 1, 2011										*		*							*				\vdash
Quarter 2, 2011												*							*				\vdash
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				T
Quarter 1, 2012											*	*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
																			_				-

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Gradient S D D D U S S S S D D D U S S S S D D D U S D D D D	Groundwater Flow System			UCRS	S						Ţ	JRGA	١								LRGA	1		
CONDECTIVITY		S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D				U	U
CONDECTIVITY	Monitoring Well	386	389	390	393	396		222	223	224	384	369	372	387	391	220	394		370	373	388	392	395	397
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2005 Quarter 4, 2006 Quarter 4,	_																							
Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2,	Quarter 4, 2012												*							*				
Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4,													*							*				
Outret 4, 2013 Outret 1, 2014 Outret 2, 2014 Outret 2, 2014 Outret 2, 2014 Outret 3, 2014 Outret 2, 2014 Outret 3, 2014 Outret 2, 2014 Outret 2, 2015 Outret 2, 2016 Outret 2, 2017 Outret 2, 2017 Outret 2, 2017 Outret 2, 2018 Outret 2, 2019 Outret 2, 2000 Outret	Quarter 2, 2013												*							*				
Quarter 1, 2014 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2016 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2009 Quarter 3, 2006 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2006 Quarter 4, 2008 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 200	Quarter 3, 2013												*							*				
Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2019 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 5, 2009 Quarter 6, 2008 Quarter 6, 2008 Quarter 6, 2													*							*				
Ounter 2, 2014 Ounter 3, 2014 Ounter 4, 2015 Ounter 1, 2015 Ounter 2, 2016 Ounter 2, 2017 Ounter 2, 2018 Ounter 2, 2019 Ounter 2, 2000 Ounter													*							*				
Ounter 4, 2014 Ounter 4, 2015 Ounter 2, 2016 Ounter 2, 2017 Ounter 3, 2017 Ounter 2, 2017 Ounter 3, 2017 Ounter 4, 2017 Ounter 2, 2018 Ounter 3, 2017 Ounter 4, 2018 Ounter 4, 2018 Ounter 4, 2019 Ounter 2, 2018 Ounter 4, 2019 Ounter 2, 2019 Ounter 2, 2019 Ounter 3, 2019 Ounter 2, 2019 Ounter 4, 2000 Ounter 2, 2000 Ounter 3, 2000 Ounter 3, 2000 Ounter 3, 2000 Ounter 3, 2000 Ounter		t											*							*				
Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 2, 2018 Quarter 1, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 2, 2004 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 200		t											*							*				
Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2018 Quarter 4, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 200		1											*							*				
Quarter 2, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 2, 2019 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2003 Quarter 1, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2008 Quarter 2, 200		1											*							*				
Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2002 Quarter 4, 2002 Quarter 3, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2004 Quarter 3, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 200													*							*				
Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 3, 2018 Quarter 1, 2018 Quarter 3, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2008 Quarter 3, 200	· ·												*							*				
Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 1, 2017 Quarter 1, 2018 Quarter 3, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 2, 2018 Quarter 1, 2019 Quarter 3, 2008 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 200																								
Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 1, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 4, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2003 ** ** ** ** ** ** ** ** **		1																						
Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2018 Quarter 4, 2018 Quarter 3, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2001 Quarter 4, 2002 Quarter 4, 2002 Quarter 3, 2003 ** Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008		1																						
Quarter 4, 2016 Quarter 1, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 3, 2019 Quarter 3, 2018 Quarter 1, 2019 Quarter 3, 2018 Quarter 3, 2019 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 3, 2006 ** ** ** ** ** ** ** ** **		\vdash	\vdash	\vdash			-						*			\vdash								
Quarter 1, 2017 Quarter 2, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 2, 2009 Quarter 3, 2006 * * * * * * * * * * * * * * * * * * *		\vdash	\vdash	\vdash			-						<u> </u>			\vdash								
Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2006 PISSOLVED OXYGEN Quarter 4, 2018 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2004 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2		1																						
Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2006 W W W W W W W W W W W W W	,	\vdash	-	-			-		<u> </u>		_		_	<u> </u>	_			_			<u> </u>	_	_	
Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 3, 2006 ** ** ** ** ** ** ** ** **		\vdash	-	-			-		<u> </u>		_		_	<u> </u>	_			_			<u> </u>	_	_	
Quarter 1, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009		 		-			-		-					-							-			
Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 1, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2006 PISSOLVED OXYGEN Quarter 1, 2002 Quarter 1, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2009		-																						
Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2019 DISSOLVED OXYGEN Quarter 4, 2006 Quarter 4, 2002 Quarter 4, 2003 Quarter 3, 2003 ** Quarter 2, 2003 ** Quarter 2, 2003 ** Quarter 2, 2003 ** Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 2, 2008 Quarter 1, 2009		!																						
Quarter 1, 2018 Quarter 2, 2019 DISSOLVED OXYGEN Quarter 3, 2006 W																								
Quarter 1, 2019 Quarter 2, 2019 Quarter 3, 2006 PUSSOLVED OXYGEN Quarter 3, 2006 PUSSOLVED OXYGEN Quarter 1, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009		<u> </u>																						
Quarter 2, 2019		<u> </u>																						
DISSOLVED OXYGEN																								
Quarter 3, 2006 * * *																				*				
DISSOLVED SOLIDS Quarter 4, 2002 Quarter 1, 2003																								
Quarter 4, 2002 Quarter 1, 2003				*					*															
Quarter I, 2003																								
Quarter 2, 2003 *																								
Quarter 3, 2003																								
Quarter 4, 2003 * * * * * * * * Quarter 1, 2004 *																								
Quarter 1, 2004	Quarter 3, 2003								*															
Quarter 2, 2004	Quarter 4, 2003			*				*		*	*		*							*				
Quarter 3, 2004 * * * * * * * * * * * * * * * * * * * Quarter 4, 2004 * * * * * * * * * * * * * * * * * * *	Quarter 1, 2004			*									*							*				
Quarter 4, 2004	Quarter 2, 2004										*		*							*				
Quarter 1, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2009	Quarter 3, 2004										*		*							*				
Quarter 2, 2005	Quarter 4, 2004										*		*							*				
Quarter 2, 2005	Quarter 1, 2005	1											*							*				
Quarter 3, 2005	Ouarter 2, 2005	1																		*				
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009		t																*	*		*	*		
Quarter 1, 2006		-																						
Quarter 2, 2006	,	 		-			-		-					-										
Quarter 3, 2006 * * * * * * Quarter 4, 2006 * * * * * * * Quarter 1, 2007 * * * * * * * * Quarter 2, 2007 * * * * * * * * * * * * * * * * * * *		<u> </u>	-						<u> </u>					<u> </u>										
Quarter 4, 2006		<u> </u>							ļ					ļ					*		*	*		
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 5, 2008 Quarter 6, 2008 Quarter 7, 2009 Quarter 7, 2009 Quarter 1, 2009 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 200																			*		*	*		
Quarter 2, 2007 *	Quarter 4, 2006										*		*					*		*				
Quarter 3, 2007	Quarter 1, 2007																			*				
Quarter 3, 2007 *	Quarter 2, 2007										*		*							*				
Quarter 4, 2007 * * * * * Quarter 1, 2008 * <t< td=""><td></td><td>t</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>*</td><td></td><td>*</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>*</td><td>1</td><td></td><td></td><td></td></t<>		t							1		*		*	1						*	1			
Quarter 1, 2008 * * * Quarter 2, 2008 * * * Quarter 3, 2008 * * * Quarter 4, 2008 * * * Quarter 1, 2009 * * *		t											*											
Quarter 2, 2008		1		1					 					 							 			
Quarter 3, 2008 * * * Quarter 4, 2008 * * * Quarter 1, 2009 * * *		 	-	-			-		-					-							-			
Quarter 4, 2008 * * Quarter 1, 2009 * *		.							<u> </u>					<u> </u>							<u> </u>			
Quarter 1, 2009 ** *		<u> </u>		L																				
											*													
Quarter 2, 2009 * * * * *	Quarter 1, 2009												*							*				
	Quarter 2, 2009												*	*						*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	1		UCRS	S		1				,	URGA	١								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393		221		223				372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS										-	-		-				-	-	-			-	-
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010	1									*		*	*						*				-
	1									*		*	т.						*				-
Quarter 3, 2010	-											*							*				-
Quarter 4, 2010										*													
Quarter 1, 2011										*		*	46						*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				<u> </u>
Quarter 4, 2011												*							*				<u> </u>
Quarter 1, 2012											*	*	*						*				<u></u>
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013	1											*							*				
Quarter 3, 2013	1	 	 	 				1			1	*		 					*				t
Quarter 4, 2013	1	 	 	 	 	1		 		l -	 	*		 	 	 			*	 	 		
Quarter 1, 2014	1				-	1		 			 	*	*		-	-			*	-	-		
Quarter 2, 2014 Ouarter 2, 2014	1	-	-	-	-	1		-		-	-	*		-	-	-			*	-	-		╁
` '	-								*			*	*						*				
Quarter 3, 2014									不														
Quarter 4, 2014												*	*						*				<u> </u>
Quarter 1, 2015												*							*				<u> </u>
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				<u></u>
Quarter 4, 2015									*			*						*	*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*	*	*					*				
Quarter 3, 2016	i											*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				
Quarter 2, 2017	1											*							*				1
Quarter 3, 2017												*		*	*				*				
Quarter 4, 2017	1											*		-	-				*				-
	-											*							*				-
Quarter 1, 2018	-																						
Quarter 2, 2018												*		-14					*				Ь.
Quarter 3, 2018												*		*					*				
Quarter 4, 2018												*							*				<u> </u>
Quarter 1, 2019	1											*							*				<u> </u>
Quarter 2, 2019												*							*				<u></u>
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	
Quarter 3, 2003	İ												*										
Quarter 1, 2004	1			*																			
Quarter 3, 2010	1																				*		
Quarter 2, 2013	1				l	1		l		*	l				l	l				l	l		
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003	1					1	_	 		*	*	*	*	<u> </u>	-	-				-	-		
-	1	-	-	-	-	1	*	*	*	*	*	*		-	-	-				-	-		╁
Quarter 3, 2003	₽	-	-	-		!	*	*	*	*		*	<u> </u>	-				<u> </u>				<u> </u>	├
Quarter 4, 2003	1-				<u> </u>			<u> </u>		ļ	*				<u> </u>	<u> </u>				<u> </u>	<u> </u>		₩
Quarter 1, 2004	1							ļ		L	*												Ь_
Quarter 2, 2004	1									*	*												<u> </u>
Quarter 3, 2004							L_			*			L_					L_				L_	L
Quarter 4, 2004										*													
Quarter 1, 2001																							

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		-	UCRS	S						1	URGA	4								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
IRON																							
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007											*												
Quarter 2, 2008	l											*											
Quarter 3, 2008												*											
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				L
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006	l											*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007	l											*							*				
Quarter 4, 2007	t											*							*				
Quarter 1, 2008	t											*							*				
Quarter 2, 2008	1											*							*				
Quarter 3, 2008	1											*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009	1											*	*						*				
Quarter 4, 2009	1											*							*				
Quarter 1, 2010												*							*				
•	!											*	*						*				
Quarter 2, 2010	!											*	*						*				
Quarter 3, 2010																							
Quarter 4, 2010	₩					_						*							*				<u> </u>
Quarter 1, 2011	 		<u> </u>			-	<u> </u>			<u> </u>	<u> </u>		طو		<u> </u>								<u> </u>
Quarter 2, 2011	!					_						*	*						*		Щ		<u> </u>
Quarter 3, 2011	!		<u> </u>			_				<u> </u>		*							*		Щ		<u> </u>
Quarter 4, 2011	<u> </u>		<u> </u>				<u> </u>			<u> </u>	<u> </u>	*			<u> </u>				*				
Quarter 1, 2012	<u> </u>		<u> </u>				<u> </u>			<u> </u>	<u> </u>	*			<u> </u>				*				<u> </u>
Quarter 2, 2012	<u> </u>											*							*				
Quarter 3, 2012	<u> </u>											*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013												*							*				L
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014	Ĭ																	*	*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URG	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394		370		388	392	395	397
MAGNESIUM																							
Quarter 2, 2014												*	*						*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*	*						*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*		-					*				
Quarter 4, 2016												*		*					*				
Quarter 1, 2017												*		*					*				
Quarter 2, 2017												*		-									
Quarter 3, 2017												*		*									
Quarter 4, 2017												*							*				
Quarter 1, 2018			 	 				 				*	*						*				
Quarter 2, 2018												*	-						-				
Quarter 3, 2018		-	-	-				-		-	-	*	-				-			-			<u> </u>
Quarter 4, 2018												*	*	*					*				
Quarter 1, 2019		-	-	-				-		-	-	*	-	*			-		*	-			<u> </u>
Quarter 2, 2019												*		т —					*				
MANGANESE												т-							т-				
Quarter 4, 2002																					*		
Quarter 3, 2003							*	*													т —		
Quarter 4, 2003							*	*															
Quarter 1, 2004							*	-															
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															
7							*	•															
Quarter 1, 2005							•														46		
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
OXIDATION-REDUCTION POT	ENT	IAL																					
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006			*															*					
Quarter 4, 2006			*	ļ				ļ															
Quarter 1, 2007			*																				
Quarter 2, 2007			*				*																
Quarter 3, 2007			*				*																
Quarter 4, 2007			*									L											
Quarter 1, 2008			*			*			*														
Quarter 2, 2008	*		*	*		*							*				*		*	*			
Quarter 3, 2008			*	*		*						L	*				*		*	*			
Quarter 4, 2008			*	*		*	*	*	*				*				*	*		*			
Quarter 1, 2009			*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*											*	*	*	*			
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*											*	*	*	*			
	_		_	_	_	_		_		_	_		_	_		_		_					_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Gradient S D D D U S S S S S D D D U S S S S S D D D D	Groundwater Flow System			UCRS	3							URG	4								LRG/	١		
Moniform Well	•	S				U	S	S	S	S				D	D	U	U	S	D			_	U	U
ONDATIONSEDUCTION POTENTIAL		386	389	390	393	396					_				391	220			370	373	388		395	397
Quarter 4, 2010	Ü	ENT																						
Ounter 1, 2011				*					*			*			*			*	*	*	*			
Ounter 2, 2011		*			*		*	*	*	*		*		*	*			*	*		*	*		
Ounter 1, 2011		*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Ounter 4, 2011		*		*	*			*	*		*			*		*		*	*	*	*			
Quarter 1, 2012		*		*	*			*				*						*	*		*			
Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 3, 2015 Quarter 2, 2018 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 4, 2018 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2018 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 200		*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 200	Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 3, 2018 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2000 Quarter 3, 200	Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 3, 2018 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2000 Quarter 3, 200					*		*		*	*	*	*		*	*			*	*	*	*	*		
Ounter 2, 2013	Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		
Ounter 4, 2013 Ounter 1, 2014 Ounter 2, 2014 Ounter 3, 2015 Ounter 3, 2015 Ounter 3, 2015 Ounter 3, 2015 Ounter 3, 2016 Ounter 3, 2017 Ounter 4, 2015 Ounter 4, 2015 Ounter 4, 2016 Ounter 4, 2017 Ounter 5, 2017 Ounter 6, 2017 Ounter 6, 2017 Ounter 7, 2018 Ounter 7, 2019 Ounter 7, 2019 Ounter 7, 2019 Ounter 7, 2019 Ounter 7, 2009	*			*			*		*		*		*				*	*	*	*	*			
Quarter J. 2014 Quarter J. 2016 Quarter J. 2015 Quarter J. 2016 Quarter J. 2017 Quarter J. 2017 Quarter J. 2017 Quarter J. 2018 Quarter J. 2019 Quarter J. 2006 Quarter J. 2006 Quarter J. 2007 Quarter J. 2006 Quarter J. 2007 Quarter J. 2006 Quarter J. 2007 Quarter J. 2009 Quarter J. 2000 Quarter J. 2009 Quarte	Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 3, 2014	Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 4, 2014	Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 4, 2014	Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		
Quarter 1, 2015 ** * * * * * * * * * * * * * * * * *	Quarter 3, 2014	*		*	*		*											*	*	*	*			
Quarter 2, 2015		*		*	*							*		*				*	*	*	*	*		
Quarter 3, 2015 # # # # # # # # # # # # # # # # # # #	Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2015 * * * * * * * * * * * * * * * * * * *	Quarter 2, 2015	*		*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 1, 2016	Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2016	Quarter 4, 2015	*		*	*	*	*	*	*	*	*			*		*	*	*	*	*	*	*	*	*
Quarter 3, 2016	Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 4, 2016	Quarter 2, 2016	*		*	*	*	*		*	*	*			*	*	*	*	*	*		*	*	*	*
Quarter 1, 2017	Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 2, 2017	Quarter 4, 2016	*		*	*	*		*	*		*			*		*		*	*	*	*	*	*	*
Quarter 3, 2017	Quarter 1, 2017	*		*	*	*			*	*						*			*		*		*	*
Quarter 4, 2017	Quarter 2, 2017	*		*	*	*												*			*	*		
Quarter 1, 2018	Quarter 3, 2017	*		*	*	*												*	*	*	*	*	*	*
Quarter 2, 2018	Quarter 4, 2017	*		*	*	*	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*	*
Quarter 3, 2018	Quarter 1, 2018	*		*	*	*	*												*	*	*	*		*
Quarter 4, 2018	Quarter 2, 2018	*		*	*	*												*	*	*	*	*	*	*
Quarter 1, 2019	Quarter 3, 2018	*		*	*	*	*	*	*	*								*	*	*	*	*	*	*
Quarter 2, 2019		*		*	*	*	*				*			*		*		*	*	*	*	*		*
PCRB-1016 Quarter 4, 2003 Quarter 3, 2004 Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2009 Quarter 3, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010	Quarter 1, 2019					*						*												*
Quarter 4, 2003 * * * * * * *	Quarter 2, 2019	*		*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2004	PCB-1016																							
Warter 3, 2005	Quarter 4, 2003							*	*	*									*					
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010																								
Quarter 2, 2006 * * .								*																
Quarter 4, 2006	,																							
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2000 Quarter 3, 200																								
Quarter 2, 2007 * *													,,,											
Quarter 3, 2007												*												<u> </u>
Quarter 2, 2008												120	*											<u> </u>
Quarter 3, 2008	· ·												120											<u> </u>
Quarter 4, 2008 * *	* /												*											<u> </u>
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010																								<u> </u>
Quarter 2, 2009 * * <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></t<>																								<u> </u>
Quarter 3, 2009																								
Quarter 4, 2009 *	Quarter 2, 2009		LĪ							L	L	*												L
Quarter 1, 2010 * Quarter 2, 2010 * Quarter 3, 2010 *	Quarter 3, 2009											*												
Quarter 2, 2010	Quarter 4, 2009											*												
Quarter 2, 2010 * Quarter 3, 2010 *												*												
Quarter 3, 2010 *												*												
Ç , = 0.10		1											 											\vdash
Quarter 7, 2010	,					-	-	-						-						-				\vdash
	Quarter 4, 2010						_			_		·*		_		_		_		_		_		_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S							URGA	1								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
PCB-1232																							
Quarter 1, 2011											*												
PCB-1248																							
Quarter 2, 2008												*											
PCB-1260												-											
																		*					
Quarter 2, 2006																		т					
pH																	*						
Quarter 4, 2002	-				-	-											*						-
Quarter 2, 2003	-				-	-											*						-
Quarter 3, 2003	-				-	-	<u> </u>										*						-
Quarter 4, 2003							*																<u> </u>
Quarter 1, 2004	_						*										*						<u> </u>
Quarter 2, 2004																	*						<u> </u>
Quarter 3, 2004																	*						<u> </u>
Quarter 4, 2004			<u> </u>				L										*						匚
Quarter 3, 2005										*							*				*		<u> </u>
Quarter 4, 2005										*							*						Щ
Quarter 1, 2006																	*						L
Quarter 2, 2006																	*						
Quarter 3, 2006																	*						
Quarter 3, 2007																	*						
Quarter 4, 2007																	*						
Quarter 4, 2008																	*						†
Quarter 1, 2009																	*						†
Quarter 1, 2011																	*						
Quarter 2, 2011	1										*												
Quarter 3, 2011	-										*												
Quarter 1, 2012	-					-								*									
	-									*			*	т.			*						
Quarter 1, 2013	-									Ψ.			•				<u> </u>				*		
Quarter 4, 2014																		.	.		*		
Quarter 2, 2016																		*	*				
POTASSIUM																		4	44				
Quarter 4, 2002	_																	*	*				<u>↓</u>
Quarter 3, 2004																			*				<u> </u>
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				Т
Quarter 1, 2013																			*				
Quarter 2, 2013	+						t												*				\vdash
Quarter 3, 2013	+	 		 	 	1	 	 		 	 				 	 			*	 		 	\vdash
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004	+		-		-	1	-	<u> </u>			<u> </u>	_	-	-					*			<u> </u>	\vdash
	+		-		 		-		*														<u> </u>
Quarter 2, 2005	+		<u> </u>			<u> </u>	 		*		طو												\vdash
Quarter 1, 2009	4—	<u> </u>		<u> </u>		!		<u> </u>	,I.	<u> </u>	*	,I.			<u> </u>	<u> </u>			<u> </u>	<u> </u>		<u> </u>	<u> </u>
Quarter 3, 2014	4—		41.			<u> </u>		<u> </u>	*		,,,	*						584				<u> </u>	<u> </u>
Quarter 4, 2014			*			<u> </u>	L	ļ			*							*				ļ	Щ
Quarter 1, 2015			*				*			*		*						*					匚
Quarter 2, 2015			*				*			*		*						*					匚
Quarter 3, 2015			*		i	ı	ĺ	l			l	i		Ī	l	l			l	l	ĺ	l	1

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	3						1	URG	A								LRGA	Ι.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
RADIUM-226																							
Quarter 4, 2015					*	*									*		*				*	*	
Quarter 2, 2016			*						*		*	*	*	*	*	*		*					
Quarter 3, 2016																		*					
Quarter 4, 2016	*		*			*			*				*		*					*		*	
Quarter 1, 2017			*							*	*							*					
Quarter 2, 2017																	*	*		*	*		
Quarter 3, 2017					*				*	*	*									*			
Quarter 4, 2017																		*		*			
Quarter 1, 2018												*						*		*			
Quarter 4, 2018													*				*						
RADIUM-228																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
SELENIUM	Ĺ																						
Quarter 4, 2002																							
Quarter 1, 2003	1																						
Quarter 2, 2003	1																						
Quarter 3, 2003	Ī																						
Quarter 4, 2003																							
SODIUM																							
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*												
Quarter 2, 2003	1			*						*	*		*										
Quarter 3, 2003	1						*	*		*													
Quarter 4, 2003	1						*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004	1									*													
Quarter 3, 2004	1									*													
Quarter 4, 2004	1								*	*													
Quarter 1, 2005	1								_	*									*				
	1									*									*				
Quarter 2, 2005									4	*									*				
Quarter 3, 2005									*										不				
Quarter 4, 2005									*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006									*														
Quarter 3, 2006									*	*		*							*				
Quarter 4, 2006	1								*	*							*						
Quarter 1, 2007	Ī								*			*											
Quarter 2, 2007	1		1					1	*	*					1			1		1			
Quarter 3, 2007	1								*														<u> </u>
Quarter 4, 2007	1								*														
Quarter 1, 2008	1—	-	 					 	*			-			 		_	 		 			
	1-	-	-					-	_			*			-		-	-		-			
Quarter 3, 2008	1								12.	410		*											<u> </u>
Quarter 4, 2008	<u> </u>								*	*									L.				<u> </u>
Quarter 1, 2009	<u> </u>								*			*							*				
Quarter 3, 2009						L						*											
Quarter 4, 2009									*			*											
Quarter 1, 2010												*											
Quarter 2, 2010	Ī									*		*											
Quarter 3, 2010	t	t								*		t											
Quarter 4, 2010	┢								*	*													
Quarter 1, 2011	┢	-	<u> </u>	_		-		<u> </u>	Ë	*		-		_	<u> </u>		-	<u> </u>		<u> </u>	_	_	_
	├	 							JU.	*		 					-						
Quarter 2, 2011	<u> </u>	<u> </u>							*			<u> </u>							L_				
Quarter 4, 2011	<u> </u>		<u> </u>	<u> </u>	<u> </u>	Ц_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	*	<u> </u>	<u> </u>	<u> </u>	

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		,	UCRS	3						1	URG	4								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	_	369	372	387	391	220	394	385	370		388	392	395	397
SODIUM																							
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
Quarter 2, 2014									*		*	*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014									*	*		*	*										
Quarter 1, 2015													*										
Quarter 2, 2015												*											
Quarter 3, 2015										*		*											
Quarter 4, 2015									*	*		*											
Quarter 2, 2016											*												
Quarter 3, 2016										,,,	*							. ال					*
Quarter 1, 2017										*	*		*					*					
Quarter 2, 2017	!	<u> </u>	<u> </u>			-	<u> </u>		*	*	*	<u> </u>	ىد	<u> </u>					<u> </u>	<u> </u>			
Quarter 2, 2018 Quarter 3, 2018		<u> </u>	<u> </u>			-	<u> </u>			<u> </u>	<u> </u>	<u> </u>	*	*					<u> </u>	<u> </u>			
Quarter 1, 2019													*	Ψ.									
Quarter 2, 2019													*										
STRONTIUM-90																							
Quarter 2, 2003																							
Quarter 1, 2004																							
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004									4	*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004																	4						
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*				4	*	*				
Quarter 3, 2005										*		*	*				*	*	*				
Quarter 4, 2005		<u> </u>	<u> </u>				<u> </u>			*	<u> </u>	*	*	<u> </u>			JL.	*	*	*			
Quarter 1, 2006						_			10	*		*	*				*	*	*	*			
Quarter 2, 2006		<u> </u>	<u> </u>				<u> </u>		*	*	<u> </u>	*	*	<u> </u>			*	*	*	*			
Quarter 3, 2006		<u> </u>	<u> </u>						*	*	<u> </u>	*	*				*		*	*			
Quarter 4, 2006									*	*		*	*				*		*				
Quarter 1, 2007		<u> </u>							*	*	<u> </u>	*	*				*		*	*			
Quarter 2, 2007		<u> </u>							*	*	<u> </u>	*	*	<u> </u>			*		*	*			
Quarter 3, 2007		<u> </u>	<u> </u>				<u> </u>		*	*	<u> </u>	*	*	<u> </u>			*		*	*			
Quarter 4, 2007		<u> </u>	<u> </u>				<u> </u>			*	<u> </u>	*	*	<u> </u>			*	*	*	*			
Quarter 1, 2008								L.		*	L.	*	*	L.			*	*	*	*			
Quarter 2, 2008		<u> </u>	<u> </u>				<u> </u>	*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
Quarter 4, 2009	*									*		*	*				*	*	*				L
Quarter 1, 2010	*								*	*		*	*				*		*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Gradient S D D D D U U S S S S D D D D U U S D D D U U U S D D D D	Groundwater Flow System			UCRS	S						1	URGA	١								LRGA	١		
Montering Well 386 389 390 393 396 221 222 223 224 384 369 372 387 391 290 394 385 370 373 388 392 395 397 398 397 398	Gradient	S				U	S	S	S	S				D	D	U	U	S	D				U	U
SULFATE	Monitoring Well		389		393	396										220	394		_				395	397
Sunter 3, 2010 Sunter 4, 2010 Sunter 5, 2011 Sunter 6, 2011 Sunter 6, 2011 Sunter 7, 2011 Sunter 8, 2011 Sunter 8, 2011 Sunter 9, 2011 Sunter 9, 2011 Sunter 9, 2011 Sunter 9, 2012 Sunter 9, 2013 Sunter 9, 2013 Sunter 9, 2014 Sunter 9, 2015 Sunter 9, 2016 Sunter 9, 2017 Sunter 9, 2016 Sunter 9, 2017 Sunter 9, 2016 Sunter 9, 2017 Sunter 9, 2017 Sunter 9, 2017 Sunter 9, 2016 Sunter 9, 2017 Sunter 9, 2018 Sunter 9, 2017 SULFATE																								
Seator 4, 2010	Quarter 2, 2010									*	*		*	*				*	*	*	*			
Journet 4, 2010 Journet 7, 2011 Journet 7, 2011 Journet 7, 2011 Journet 7, 2011 Journet 8, 2011 Journet 9, 2012 Journet 9, 2013 Journet 9, 2013 Journet 9, 2013 Journet 9, 2013 Journet 9, 2014 Journet 9, 2015 Journet 9, 2015 Journet 9, 2015 Journet 9, 2015 Journet 9, 2016 Journet 9, 2017 Journet 9, 2018 Journet 9, 2001 Journet 9, 2005 Journet 9, 2005 Journet 9, 2005 Journet 9, 2006 Journet 9, 200	Quarter 3, 2010										*		*	*				*	*	*	*			
Deuter 1, 2011		*									*		*	*				*	*	*				
Deuter 4, 2011		*									*		*	*				*	*	*				
Spanter 3, 2011 Spanter 3, 2011 Spanter 3, 2011 Spanter 4, 2012 Spanter 2, 2012 Spanter 3, 2013 Spanter 3, 2014 Spanter 3, 2015 Spanter 3, 2016 Spanter 3, 2017 Spanter 3, 2017 Spanter 3, 2017 Spanter 3, 2018 Spanter 3, 2019 Spanter 3, 2019 Spanter 3, 2019 Spanter 3, 2016 Spanter 3, 2017 Spanter 3, 2016 Spanter 3, 2017 Spanter 3, 2017 Spanter 3, 2018 Spanter 3, 2019 Spanter 3, 2019 Spanter 3, 2007 Spanter 3, 2007 Spanter 3, 2007 Spanter 4, 2016 Spanter 4, 2016 Spanter 4, 2016 Spanter 4, 2016 Spanter 4, 2007 Spanter 4, 2007 Spanter 4, 2006 Spante	•														*						*			
Danter 4, 2011 A																								-
Quarter 1, 2012															-									
Danter 2, 2012																								\vdash
Danter 3, 2012																								
Danter 4, 2012 Danter 1, 2013 Danter 2, 2013 Danter 3, 2013 Danter 4, 2014 Danter 2, 2014 Danter 3, 2015 Danter 3, 2016 Danter 3, 2016 Danter 4, 2017 Danter 4, 2016 Danter 4, 2016 Danter 4, 2016 Danter 4, 2017 Danter 4, 2016 Danter 4, 2017 Danter 4, 2019 Danter 4, 2000 Danter 5, 2000 Danter 6, 2000 Danter 6, 2000 Danter 7, 2000 Danter 7, 2000 Danter 8, 2000 Danter 9, 2000	7 .																							
Dauter 1, 2013	7	*																						
Danter 2, 2013	Quarter 4, 2012																							
Dauter 3, 2013 Dauter 4, 2013 Dauter 4, 2013 Dauter 1, 2014 Dauter 2, 2014 Dauter 2, 2014 Dauter 3, 2014 Dauter 3, 2014 Dauter 4, 2015 Dauter 4, 2016 Dauter 5, 2017 Dauter 5, 2018 Dauter 6, 2018 Dauter 7, 2019 Dauter 7, 2000 Dauter 7, 2001 Quarter 1, 2013										*		*	*				*	*	*	*				
Daurier 4, 2013	Quarter 2, 2013										*		*	*	*			*	*	*	*			
Durter 1, 2014 Durter 2, 2014 Durter 3, 2014 Durter 4, 2014 Durter 4, 2014 Durter 1, 2015 Durter 2, 2015 Durter 2, 2015 Durter 2, 2015 Durter 3, 2015 Durter 4, 2016 Durter 4, 2017 Durter 3, 2017 Durter 4, 2018 Durter 4, 2018 Durter 4, 2018 Durter 4, 2018 Durter 4, 2019 Durter 4, 2000 Durter 4, 2000 Durter 4, 2000 Durter 4, 2001 Durter 4, 2000 Durter 5, 2000 Durter 6, 2000 Durter 6, 2000 Durter 7, 2000 Durter 8, 2000 Durter 8, 2000 Durter 9, 2000	Quarter 3, 2013										*		*	*	*			*	*	*	*			
Quarter 2, 2014	Quarter 4, 2013										*		*	*				*	*	*	*			
Dunter 2, 2014 Dunter 3, 2014 Dunter 3, 2014 Dunter 4, 2014 Dunter 1, 2015 Dunter 2, 2015 Dunter 2, 2015 Dunter 2, 2015 Dunter 2, 2015 Dunter 3, 2016 Dunter 4, 2016 Dunter 3, 2016 Dunter 3, 2016 Dunter 4, 2016 Dunter 5, 2017 Dunter 5, 2017 Dunter 6, 2017 Dunter 7, 2017 Dunter 7, 2017 Dunter 8, 2017 Dunter 9, 2018 Dunter 9, 2019 Dunter 1, 2004 Dunter 1, 2005 Dunter 1, 2005 Dunter 1, 2006 Dunter 2, 2006 Dunter 2, 2006 Dunter 2, 2006 Dunter 4, 2006 Dunter 4, 2006 Dunter 5, 2006 Dunter 6, 2006 Dunter 8, 2006 Dunter 9, 2006	Quarter 1, 2014								*		*		*	*				*	*	*	*			
Quarter 3, 2014															*									H
Quarter 4, 2014											*		*	*	*			*	*	*	*			H
Quarter 1, 2015			-					-	 						H									\vdash
Quarter 2, 2015																								
The state of the	. ,											*			*	*								
Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 7, 200									*			-												
Duarter 1, 2016																								
Duarter 2, 2016									*										*					
Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 2, 2019 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2010 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 4, 2001 Quarter 2, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 200																*								
Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 2, 2019 Quarter 2, 2019 Quarter 3, 2019 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 200									*		*		*	*		*		*		*	*			
Quarter 1, 2017													*			*		*			*			
											*		*	*		*		*	_	*	*			
Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 1, 20019 Quarter 2, 2019 Quarter 3, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 20									*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2017									*		*		*	*	*	*		*	*	*	*			
Quarter 1, 2018											*		*	*	*	*		*	*	*	*			
											*		*	*	*			*	*	*	*			
Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2019 Quarter 2, 2019 RECHNETIUM-99 Quarter 1, 2003 Quarter 2, 2003 RECHNETIC 3, 2003 Quarter 3, 2003 RECHNETIC 3, 2004 RECHNETIC 3,	Quarter 2, 2018								*		*	*	*	*	*	*		*	*	*	*			
Quarter 4, 2018 Quarter 1, 2019	Quarter 3, 2018								*		*		*		*	*		*	*	*	*			
Quarter 1, 2019 Quarter 2, 2019											*		*	*							*			
TECHNETIUM-99	Quarter 1, 2019								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2002									*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2002																								
Quarter 1, 2003 *	Quarter 4, 2002																			*				
Quarter 2, 2003 *	Quarter 1, 2003													*				*		*				
Quarter 3, 2003 *	Quarter 2, 2003	*		*							*							*						
Quarter 4, 2003 *	Quarter 3, 2003			*										*				*			*			
Quarter 1, 2004 * <td>Quarter 4, 2003</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td>	Quarter 4, 2003			*							*		*	*				*		*	*			
The second color of the	Quarter 1, 2004			*									*	*				*		*				
Quarter 3, 2004 *	Quarter 2, 2004			*									*	*				*		*	*			
Quarter 4, 2004 * <td>Quarter 3, 2004</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td>	Quarter 3, 2004			*									*					*		*				
Quarter 1, 2005 * <td>Quarter 4, 2004</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td></td>	Quarter 4, 2004			*							*		*	*				*	*	*				
Table Tabl	Quarter 1, 2005			*							*		*	*				*			*			
Quarter 3, 2005 * <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td>				*							*			*				*	*	*	*			
Quarter 4, 2005 * * * * * * Quarter 1, 2006 * * * * * * Quarter 2, 2006 * * * * * * * Quarter 3, 2006 * * * * * * * Quarter 4, 2006 * * * * * * *																								
Quarter 1, 2006 * * * * Quarter 2, 2006 * * * * * * * Quarter 2, 2006 * * * * * * * * Quarter 3, 2006 * * * * * * * * Quarter 4, 2006 * * * * * * * *													*											_
Quarter 2, 2006 * * * * * * Quarter 3, 2006 * * * * * * Quarter 4, 2006 * * * * * *			-	-				-	-						-			<u> </u>						-
Quarter 3, 2006 *			-	<u> </u>			-	-					·*					<u> </u>	3½					₩
Quarter 4, 2006 * * * * * * * * * * * * * * * * * *	-																							
*******		,,,		*									ų.					*	*					
Quarter 1, 2007 *		*											*											
	Quarter 1, 2007			*							*			*				*		*	*			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	3						1	URGA	4								LRGA	١		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 2, 2007			*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*						
Quarter 1, 2010			*							*		*	*				*						
Quarter 2, 2010			*							*			*				*	*		*			
Quarter 3, 2010			*							*	*	*	*				*						
Quarter 4, 2010			*							*		*	*				*						
Quarter 1, 2011										*			*				*						
Quarter 2, 2011			*							*			*				*			*			
Quarter 3, 2011			*							*			*				*			*			
Quarter 4, 2011			*							*	*	*	*				*						
Quarter 1, 2012			*							*			*				*			*			
Quarter 2, 2012			*							*			*				*		*	*			
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012										*		*	*				*		*	*			
Quarter 1, 2013										*			*				*		*	*			
Quarter 2, 2013										*		*	*				*		*	*			
Quarter 3, 2013			*							*		*	*				*		*	*			
Quarter 4, 2013			*							*		*	*				*		*	*			
Quarter 1, 2014			*							*	*		*				*		*	*			
Quarter 2, 2014			*							*	*		*	*			*		*	*			
Quarter 3, 2014			*							*			*				*			*			
Quarter 4, 2014			*							*	*	*	*				*		*	*			
Quarter 1, 2015			*							*	*	*	*				*			*			
Quarter 2, 2015			*							*	*		*				*			*			
Quarter 3, 2015			*							*	*	*	*				*	*	*	*			
Quarter 4, 2015			*							*	*	*	*				*	*		*			
Quarter 1, 2016			*							*	*		*				*		*	*			
Quarter 2, 2016			*			*				*			*				*	*		*			
Quarter 3, 2016			*							*		*	*				*	*		*			
Quarter 4, 2016			*							*	*		*				*			*			
Quarter 1, 2017			*							*			*				*	*		*			
Quarter 2, 2017			*							*			*				*	*		*			
Quarter 3, 2017			*							*	*		*				*	*		*			
Quarter 4, 2017			*							*		*	*				*	*		*			
Quarter 1, 2018			*							*	*		*				*	*		*			
Quarter 2, 2018			*							*	*	*	*				*	*		*			
Quarter 3, 2018			*							*		*	*				*	*		*			
Quarter 4, 2018			*							*	*	*	*				*	*		*			
Quarter 1, 2019			*							*	*	*	*				*	*		*			
Quarter 2, 2019			*							*	*	*	*				*	*		*			
THORIUM-230																							
Quarter 1, 2012	*								*					*									
Quarter 4, 2014	*		*																				
Quarter 3, 2015	*		L.						*	*			*		*								
Quarter 1, 2017			*							*							*						
THORIUM-234						ىد			JU.					ىد									
Quarter 4, 2003						*			*					*			<u> </u>						<u> </u>
Quarter 4, 2007	_					_			*														_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System Gradient Monitoring Well TOLUENE	S 386	D	UCRS D	D	U	S	c	С	~		URG			_						LRG			
Monitoring Well	_					D.	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
_		389	390	393	396	221	222	223	224	384	369	372	387	391	220	394		370		388	392	395	397
IULUENE																							
Quarter 2, 2014										*	*		*										
TOTAL ORGANIC CARBON																							
Quarter 4, 2002																					*		
Quarter 1, 2003	t			*						*	*							*	*		*		
Quarter 2, 2003										*	*		*								*		
Quarter 3, 2003	t						*	*	*	*	*	*											
Quarter 4, 2003	t						*		*	*													
Quarter 1, 2004										*													
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005										*													
Quarter 2, 2005										*											*		
Quarter 3, 2005	\vdash									*		*									*		\vdash
Quarter 4, 2005	1									*	-	<u> </u>	-						-	-	*		\vdash
	\vdash	-								*		 					-						├
Quarter 1, 2006	₩					_				*		<u> </u>											<u> </u>
Quarter 2, 2006	₩					_				不		*					*						<u> </u>
Quarter 4, 2006										120		ļ					*						<u> </u>
Quarter 1, 2007	*					L.				*			L.										<u> </u>
Quarter 3, 2007	*					*	*	*	*	*			*	*			*						
Quarter 2, 2011											*												
Quarter 3, 2012	*																						
Quarter 3, 2016																			*				
TOTAL ORGANIC HALIDES																							
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*														*			*		
Quarter 3, 2003				*																	*		
Quarter 2, 2004																					*		
Quarter 3, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*																						
Quarter 4, 2005	*																						
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*																						
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																				*		
Quarter 1, 2008	*																						
Quarter 4, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																				*		
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 1, 2011	*																						
Quarter 3, 2013																					*		

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

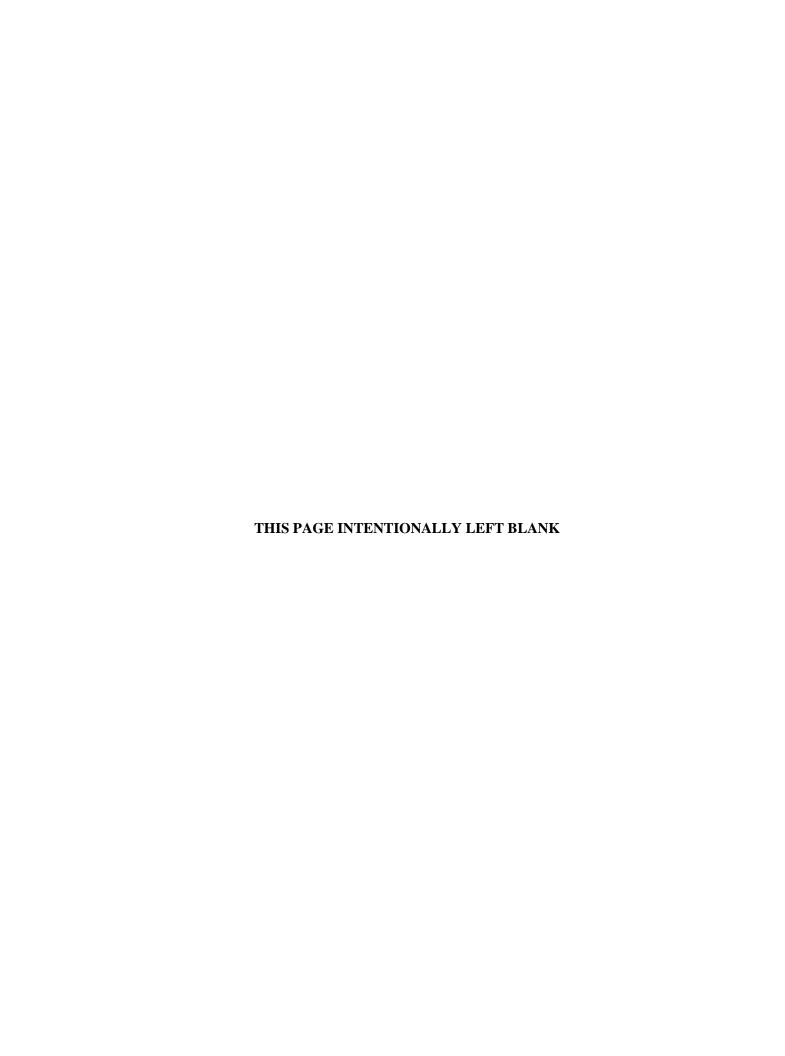
Groundwater Flow System Gradient	_	D 389	D 390	D 393	U 396	S 221	S 222	S 223	S 224	S 384	D 369	D 372	D 387	D 391	U 220	U 394	S 385	D 370	D 373	D 388	D 392	U 395	U 397
TRICHLOROETHENE Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008	886	389	390	393	396	221	222	223	224	384	369	372	387	•	220		385	370	373	388			397
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008																							
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008																					_		
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008												_		_					1		_	_	
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008																							
Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008																							
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008																							
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008																							
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008																							
Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008																							
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008																							
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008																							
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008																							1
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008																							
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008														ī		▔			ī				
Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008												ī		Ŧ		Ŧ		Ī	Ŧ		=		-
Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008												=		i		-		Ŧ	-		=		
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008				_		-						÷						÷	=	-			_
Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008	+					_						-				-	\vdash	_	-	-		-	
Quarter 4, 2007 Quarter 1, 2008	- 1					_						=		÷		-	\vdash			-		-	
Quarter 1, 2008	\dashv					-								-						-			-
	4					-										-	\vdash			<u> </u>		-	
BUDDATTER / TODA	4					-						-		-			\vdash		-	<u> </u>			
	4											_		-		-	Ш		_				<u> </u>
Quarter 3, 2008	4											_		_		_			_				<u> </u>
Quarter 4, 2008																-			_				
Quarter 1, 2009												-				•							<u> </u>
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																•					•	•	
Quarter 4, 2010																•							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011												•											
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012	7																						
Quarter 4, 2012	+										-												
Quarter 1, 2013	+																						
Quarter 2, 2013	+																						\vdash
Quarter 3, 2013	\dashv															H	Н						\vdash
Quarter 4, 2013	\dashv													=			Н		Ī				\vdash
Quarter 1, 2014	\dashv													ī					ī				
Quarter 2, 2014	\dashv					-						ī		ī	\vdash	-	H		<u> </u>	 	=		\vdash
Quarter 3, 2014 Quarter 3, 2014	\dashv					-						=		i	\vdash		H			 	=		\vdash
Quarter 4, 2014	+											=		i			\vdash		i	1	Ŧ		
Quarter 1, 2015	\dashv			_		-						÷		i		÷			=	-			_
Quarter 1, 2015 Quarter 2, 2015	\dashv			_		-						=		i						-			_
	+					-						=		=			\vdash		=	-	=		
Quarter 4, 2015	4					-						-		=						-			-
Quarter 4, 2015	4					-						-		=		-				-			-
Quarter 1, 2016	4					-											\vdash		-	<u> </u>			
Quarter 2, 2016	4											_					Ш		_				<u> </u>
Quarter 3, 2016	_													_		-			_				<u> </u>
Quarter 4, 2016	_															-			_		-		<u> </u>
Quarter 1, 2017	_											-							•				
Quarter 2, 2017																				<u> </u>			
Quarter 3, 2017																				<u> </u>			
Quarter 4, 2017	- 1			ĺ																			1
	_																						

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						Ţ	URGA	A]	LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TRICHLOROETHENE																							
Quarter 1, 2018														•		•							
Quarter 2, 2018																							
Quarter 3, 2018																							
Quarter 4, 2018																							
Quarter 1, 2019														•									
Quarter 2, 2019																							
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														
* Statistical test results indicate an	elevat	ed co	ncentr	ration	(i.e.,	a stati	stical	ly sigi	nificar	nt incr	ease)												
MCL F 1																							

UCRS = Upper Continental Recharge System

URGA = Upper Regional Gravel Aquifer LRGA = Lower Regional Gravel Aquifer


S = Sidegradient; D = Downgradient; U = Upgradient

[■] MCL Exceedance

■ Previously reported as an MCL exceedance; however, result was equal to MCL.

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	5/30	/20	19				7	Гime	: 0	830	0-0	94	5		Mon	itor:	N	/lic	ch	ael	Hide	eg
Weather Co			0 De	grees	3		-4				7477411											
Monitoring I RAE Systems	Equipm	ent:	:							•												A 17.11.V
	,					/lon	itori	ng L	ocat	ion											Readin % LEL	
Ogden Landii Road Entrand		Ch	ecl	ked	at (gro	unc	l lev	/el											0		
North Landfil	l Gate	Ch	eck	ked	at (gro	unc	l lev	/el			211								0		
West Side of Landfill: North 37° (West 88° 4		Ch	eck	ed a	at gr	our	nd le	evel												0		
East Side of Landfill: North 37° (West 88° 4		Ch	eck	ed a	at gr	our	nd le	evel												0		
Cell 1 Gas Ve		1 0	0	0	0	5 0	6	7	8 0	9	10 0	11 0	12 0	13 0	14 0	15 0	16 0	0		0		
Cell 2 Gas Ve	ent (3)	1 0	0	3 0																0		
Cell 3 Gas Ve	ent (7)	1 0	0	3 0	0	5 0	6 0	7 0												0		
Landfill		Ch	eck	ced	at f	loo	r le	vel										va		0		
Suspect or Pi	roblem Areas	No	are	eas	no	ted														NA		
Remarks:	L VENT	S C	HEC	KED	1" F	RO	м ті	HE M	TUOI	TH O	F VE	NT .										
						1 /																
Performed b Michael Hi	•				//	le le	\mathcal{Y}	×_										<u>.</u>	5/	130	/10	7
					Si	gna	ture												,	D	ate	

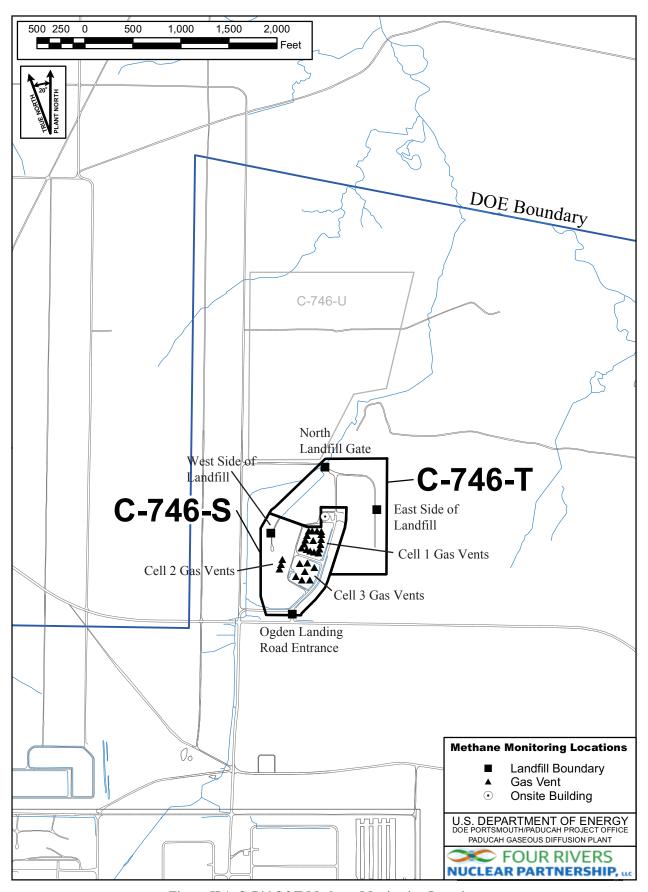


Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L135 UPSTRE	AM	L154 DOWNSTI	REAM	L136 AT SI	TE		
Sample Seque	nce	#				1		1		1			
If sample is	а В	lank, specify Type: (F)ield, (T) r	ip, (M)ethod	, or (E)quipment	NA		NA		NA			
Sample Date	and	Time (Month/Day/Year hour: π	inu	tes)		5/2/2019 15:0	01	5/2/2019 14:	36	5/2/2019 14	:50		
Duplicate ("	Y" (or "N") ¹				N		N		N			
Split ('Y' o	r "1	N") ²				N		N		N			\overline{I}
Facility Sam	ple	ID Number (if applicable)				L135SS3-19	9	L154US3-1	9	L136SS3-1	19		1
Laboratory S	amp.	le ID Number (if applicable)				478099001		478102002	<u> </u>	47809900	2		
Date of Anal	ysi	s (Month/Day/Year)				5/25/2019		5/26/2019		5/25/2019	9		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL	F L A G
A200-00-0	0	Flow	Т	MGD	Field		*		*		*	/ \	
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	0.635		0.597		0.322			
14808-79-8	0	Sulfate	Т	MG/L	300.0	1.68		1.81		5.42			
7439-89-6	0	Iron	Т	MG/L	200.8	0.748		1.41		0.592			
7440-23-5	0	Sodium	Т	MG/L	200.8	0.885		0.899		0.945			
s0268	0	Organic Carbon ⁶	т	MG/L	9060	14.3		14		11.9			
s0097	0	BOD ⁶	Т	MG/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	Т	NA									

¹Respond "Y" if the sample was a duplicate of another sample in this report

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	oint	(KPDES Discharge Number, or	r "(JPSTREAM" or	"DOWNSTREAM")	L135 UPSTRI	EAM	L154 DOWNSTF	REAM	L136 AT S	ITE		\perp
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	A G S ⁷
S0145	1	Specific Conductance	т	µнмs/см	Field	73		72		199			
S0270	0	Total Suspended Solids	Т	MG/L	160.2	33	*	29.4	*	7.4	*	\ /	
S0266	0	Total Dissolved Solids	Т	MG/L	160.1	62.9	*	117	*	183	*	\ /	
S0269	0	Total Solids	т	MG/L	SM-2540 B 17	106		91		160		\ /	
S0296	0	рН	Т	Units	Field	7.29		7.09		7.34		\ /	
7440-61-1		Uranium	т	MG/L	200.8	0.000726		0.000601		0.0008		\	
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	5.97	*	-0.408	*	-0.602	*	\/	
12587-47-2		Gross Beta (β)	Т	pCi/L	9310	3.14	*	1.46	*	1.3	*	X	
												$/\setminus$	
												/ \	
												/	
												/	\
													\setminus
													\perp
													\
												/	

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit:	KY8-890-008-982 /	1
LAB ID:	None	
For Official U	se Only	

SURFACE WATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
L135	L135SS3-19	Flow Rate		Analysis of constituent not required and not performed
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed
		Suspended Solids	*	Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.49. Rad error is 6.41.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.92. Rad error is 4.89.
L154	L154US3-19	Flow Rate		Analysis of constituent not required and not performed
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed
		Suspended Solids	*	Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.01. Rad error is 3.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.39. Rad error is 4.39.
L136	L136SS3-19	Flow Rate		Analysis of constituent not required and not performed
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed
		Suspended Solids	*	Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.98. Rad error is 3.98.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.29. Rad error is 6.29.

APPENDIX J ANALYTICAL LABORATORY CERTIFICATION

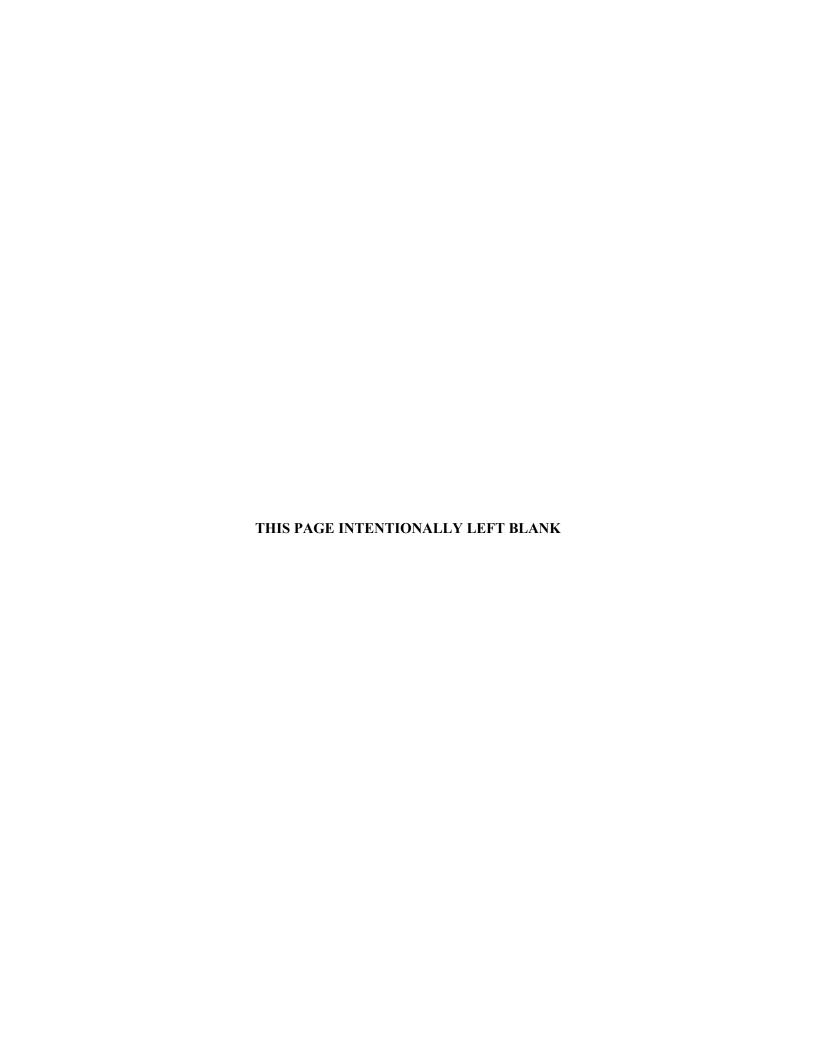
Accredited Laboratory

A2LA has accredited

GEL LABORATORIES, LLC

Charleston, SC

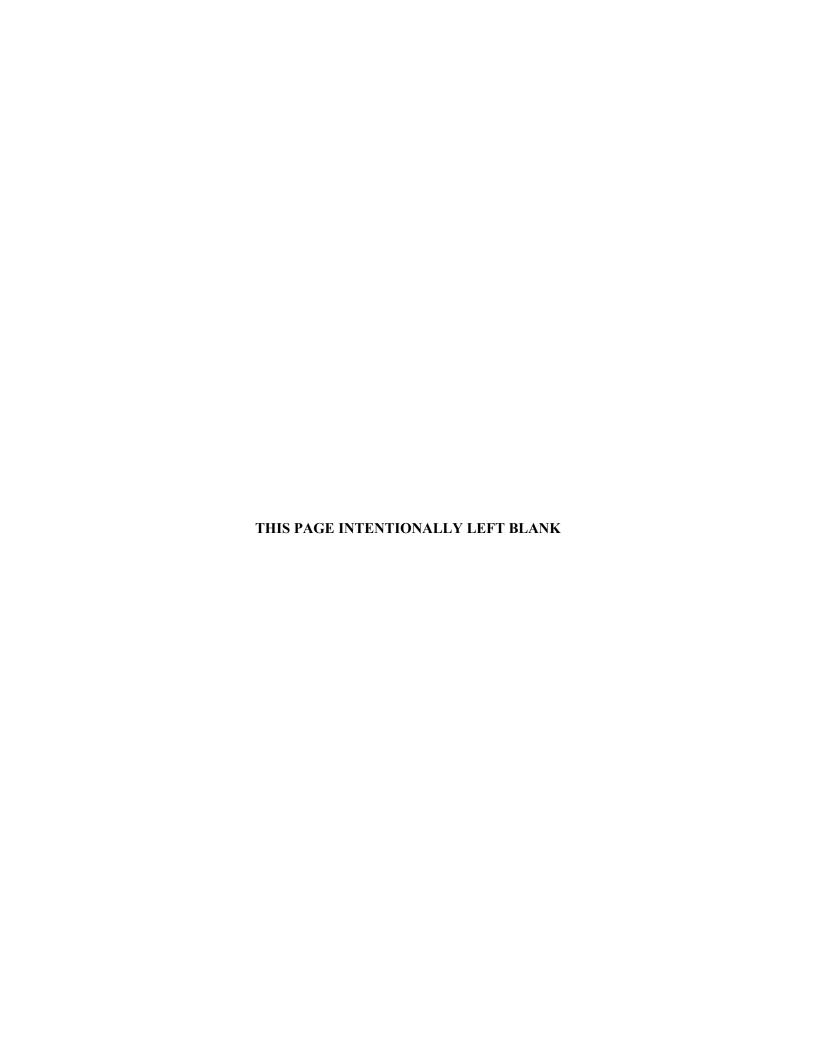
for technical competence in the field of


Environmental Testing

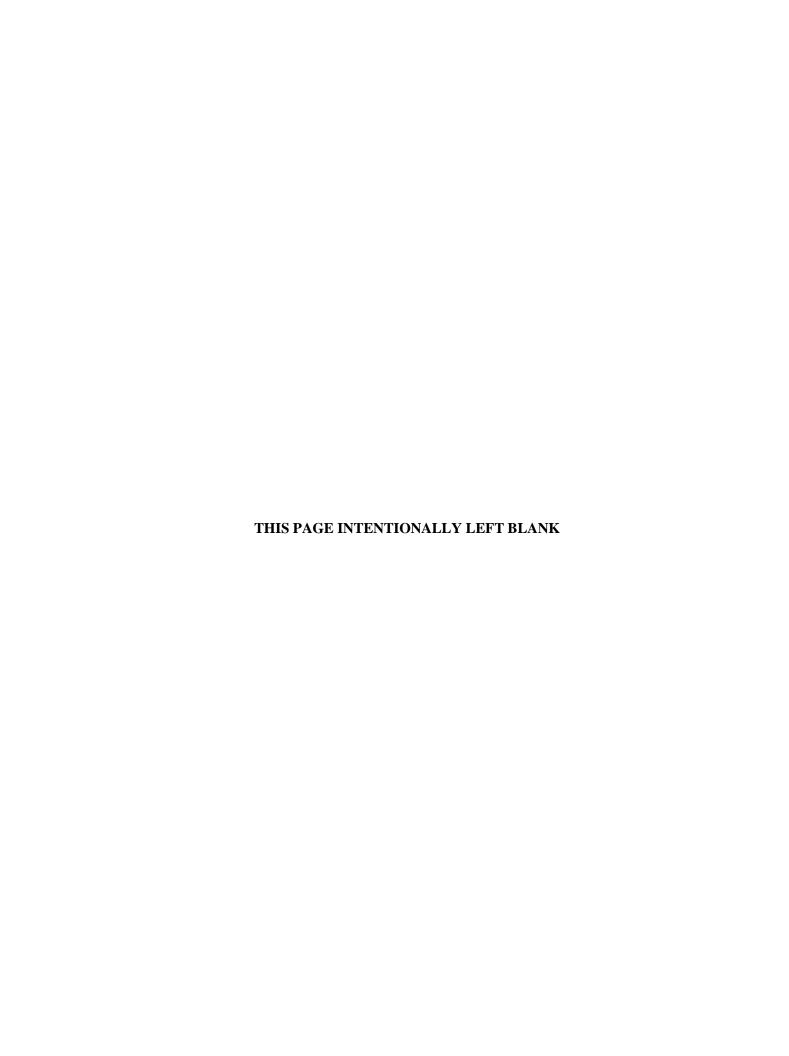
In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2005, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DoD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.1.1 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 30th day of August 2017.

President and CEO For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2019 Revised July 30, 2018



APPENDIX K LABORATORY ANALYTICAL METHODS



LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and 1,2,3-
		Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of The Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid

APPENDIX L MICRO-PURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-S&T Landfills

		_						_			
					And Anticipation of the Control of t					Jisgali ^d	/
	Leitige	Stree Condition	with /		goth.		- Ferriter	Conduc	ill Pilis		807
		in Jul	× /	gh.	Surrichité (Surrichité	· /		ir Jai	× /	- Jah	ت ا
	Kert	Con	\\$\frac{1}{2}	Qiga	Till	<u>/</u>	15 STA	Cott	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Digg	jo ^{ot}
MW220						MW 221					
Date Collected: 4/16/2019						Date Collected: 4/16/2019					
1238	63.3	436	6.32	3.79	0.0	0849	60.4	426	6.22	3.28	(
1241	64.0	436	6.29	3.71	0.0	0852	60.8	426	6.21	2.95	(
1244	64.3	435	6.31	3.69	0.0	0855	61.0	427	6.21	2.91	(
MW222						MW223					
Date Collected: 4/16/2019						Date Collected: 4/16/2019					
1016	61.6	335	6.23	3.11	0.0	0940	61.2	425	6.18	2.54	(
1019	62.3	334	6.22	3.01	0.0	0943	61.9	425	6.19	2.40	(
1022	62.5	334	6.21	2.99	0.0	0946	62.0	425	6.18	2.39	(
MW224						MW369					
Date Collected: 4/16/2019						Date Collected: 4/15/2019					
1204	62.1	439	6.21	3.21	0.0	0730	59.4	439	6.20	0.70	
1207	62.8	439	6.24	3.01	0.0	0733	59.3	439	6.20	0.70	(
1210	62.9	439	6.23	2.97	0.0	0736	59.2	439	6.21	0.71	(
MW370 ¹						MW372					
Date Collected: 4/15/2019						Date Collected: 4/11/2019					
0812	60.1	458	6.17	3.19	0.0	0857	62.8	633	6.26	1.08	3
0814	60.3	457	6.16	3.04	0.0	0900	63.2	632	6.25	0.97	3
0816	60.3	458	6.18	2.99	0.0	0903	63.5	632	6.25	0.97	
MW373	00.5	730	0.10	2.77	0.0	MW384	03.3	032	0.23	0.73	·
Date Collected: 4/11/2019						Date Collected: 4/17/2019					
)940	62.2	731	6.23	1.57	5.3	0915	60.9	453	6.17	3.34	(
0943	62.6	730	6.22	1.51	4.8	0918	61.0	452	6.16	3.35	
0946	63.0	730	6.21	1.49	4.6	0921	61.1	452	6.17	3.38	(
MW385	03.0	730	0.21	1.49	4.0	MW386	01.1	432	0.17	3.38	
						Date Collected: 4/17/2019					
Date Collected: 4/17/2019	61.2	420	6.17	2.00	0.0		(2.6	500	6.72	2.46	—
1119	61.3	428	6.17	2.90	0.0	1146	62.6	592	6.73	3.46	(
1122	62.0	428	6.13	2.86	0.0	1149	63.2	593	6.84	3.32	(
1125	62.4	427	6.14	2.89	0.0	1152	63.8	593	6.81	3.30	(
MW387						MW388					
Date Collected: 4/17/2019						Date Collected: 4/17/2019					<u> </u>
0802	61.9	525	6.27	2.87	0.0	0839	61.4	441	6.16	3.24	(
0805	61.9	524	6.26	2.66	0.0	0842	61.4	441	6.14	3.17	(
0808	62.0	524	6.26	2.62	0.0	0845	61.5	441	6.13	3.19	(
MW390						MW391					
Date Collected: 4/17/2019				<u> </u>		Date Collected: 4/16/2019	1	<u> </u>	1	<u> </u>	<u> </u>
0725	60.4	638	6.29	4.71	0.0	0729	59.4	438	6.17	5.17	(
0728	60.5	639	6.29	4.59	0.0	0732	59.5	439	6.16	4.62	(
0731	60.5	639	6.30	4.55	0.0	0735	59.5	439	6.16	4.58	(
MW392						MW393					
Date Collected: 4/16/2019						Date Collected: 4/15/2019					<u> </u>
0809	60.1	446	6.25	2.92	10.0	1026	57.8	474	5.96	3.35	
0812	60.1	446	6.23	2.48	10.8	1029	58.1	474	6.04	2.80	4
0815	60.2	446	6.24	2.41	10.4	1032	58.3	473	6.02	2.76	4
MW394						MW395					
Date Collected: 4/22/2019						Date Collected: 4/22/2019					L
0745	59.0	375	6.13	4.17	0.0	0824	59.6	354	6.17	4.51	(
0748	59.2	376	6.14	4.06	0.0	0827	60.2	355	6.15	4.40	(
0751	59.3	376	6.14	4.03	0.0	0830	60.3	355	6.16	4.41	(
MW396						MW397					
Date Collected: 4/22/2019						Date Collected: 4/16/2019					
0902	59.8	709	6.58	3.51	0.0	1316	62.8	326	6.20	5.86	
0905	59.8	710	6.61	3.53	0.0	1319	63.3	325	6.18	5.29	
0908	59.9	710	6.60	3.52	0.0	1322	63.6	325	6.19	5.28	

¹ Readings were collected at a frequency not consistent with procedure. Data was considered useable based on consistent stability of parameters.

Micro-Purge Stability Parameters for the C-746-S&T Landfills (Continued)

					Tutniti
	Leitze t	Sur Conduction	rited /	/ /	2017°
	, age	or Adia		Sola	Ed OF. Futridit
N.W.220	140	\(\int_{\text{Cov}}\)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Q.B.	14
MW220					
Date Collected: 5/30/2019	61.6	426	6.33	4.52	0.2
0931 0934	63.1	426		4.52	2.1
0937	63.0	423	6.32	4.04	2.1
MW222	03.0	424	0.31	4.02	2.9
Date Collected: 5/30/2019					
	62.6	272	6.20	2.00	0.0
0840	62.6	373	6.28	3.90	0.0
0843	63.1	372	6.25	3.31	0.1
0846	63.2	375	6.26	3.29	0.0
MW224					
Date Collected: 5/30/2019					
906	62.4	433	6.31	3.99	0.0
909	63.7	432	6.27	2.98	0.5
912	63.8	432	6.29	2.95	0.0
MW370					
Date Collected: 5/28/2019					
1400	66.2	444	6.23	5.04	5.3
1403	68.0	437	6.12	3.54	0.0
1406	68.2	436	6.11	3.46	0.0
MW373					
Date Collected: 5/28/2019					
1502	68.1	772	6.23	1.35	1.4
1505	65.8	768	6.20	1.28	0.2
1508	65.7	767	6.21	1.28	1.1
AW385					
Date Collected: 5/29/2019					
1354	65.1	418	6.17	3.02	1.4
1357	65.6	419	6.19	2.57	0.3
1400	65.7	418	6.14	2.60	1.0
MW387					
Date Collected: 5/29/2019					
1231	63.8	525	6.27	4.02	0.1
1234	64.5	524	6.24	3.57	0.7
1237	64.6	526	6.25	3.49	0.5
MW390					
Date Collected: 5/29/2019					
1208	63.0	676	6.47	5.12	1.3
1211	64.4	676	6.42	4.68	3.2
1214	64.5	676	6.41	4.62	3.0
MW392					
Date Collected: 5/29/2019					
0730	62.9	443	6.22	1.46	2.0
0733	64.1	442	6.25	0.89	3.0
0736	64.2	441	6.20	0.81	2.3
MW394					
Date Collected: 5/29/2019	61.4	383	6.13	4.57	1.8
		384	6.11	3.98	3.5
0911				3.93	4.0
0911 0914	63.5		6.11		
0911 0914 0917		383	6.11	3.93	
0911 0914 0917 MW396	63.5		6.11	3.93	
0911 0914 0917 MW396 Date Collected: 5/29/2019	63.5	383			0.9
0914 0917 MW396 Date Collected: 5/29/2019 0851	63.5 63.5	723	6.71	1.91	0.9
0911 0914 0917 MW396 Date Collected: 5/29/2019	63.5	383			0.9 1.3 1.4