C-746-S&T Landfills Fourth Quarter Calendar Year 2018 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by: 2-18-19 FRNP Classification Date Support

FRNP-RPT-0028/V4

C-746-S&T Landfills Fourth Quarter Calendar Year 2018 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—February 2019

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FOUR RIVERS NUCLEAR PARTNERSHIP, LLC, managing the Deactivation and Remediation Project at the Paducah Gaseous Diffusion Plant under Contract DE-EM0004895

FIC	GURE	S		v
TA	BLES	5		v
AC	CRON	YMS		vii
1.		INTRODUCTION		
	1.1		GROUND	
	1.2		TORING PERIOD ACTIVITIES	
		1.2.1 1.2.2	Groundwater Monitoring	
		1.2.2	Methane Monitoring Surface Water Monitoring	
	1.3		ESULTS.	
2.	DAT	'A EVAI	LUATION/STATISTICAL SYNOPSIS	9
2.	2.1		STICAL ANALYSIS OF GROUNDWATER DATA	
		2.1.1	Upper Continental Recharge System	
		2.1.2	Upper Regional Gravel Aquifer	
		2.1.3	Lower Regional Gravel Aquifer	
	2.2	DATA	VERIFICATION AND VALIDATION	11
3.	PRO	FESSIO	NAL GEOLOGIST AUTHORIZATION	13
4.	REF	ERENCI	ES	15
AP	PENE	DIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
AP	PEND	DIX B:	FACILITY INFORMATION SHEET	B-1
AP	PENE	DIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
AP	PEND	DIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
AP	PEND	DIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
AP	PENE	DIX F:	NOTIFICATIONS	F-1
AP	PENE	DIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
AP	PENE	DIX H:	METHANE MONITORING DATA	H-1
AP	PEND	DIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1

CONTENTS

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	2
2.	C-746-S&T Landfills Surface Water Monitoring Locations	5

TABLES

1.	Summary of MCL Exceedances	6
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells	6
4.	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	8
6.	Monitoring Wells Included in Statistical Analysis	10

ACRONYMS

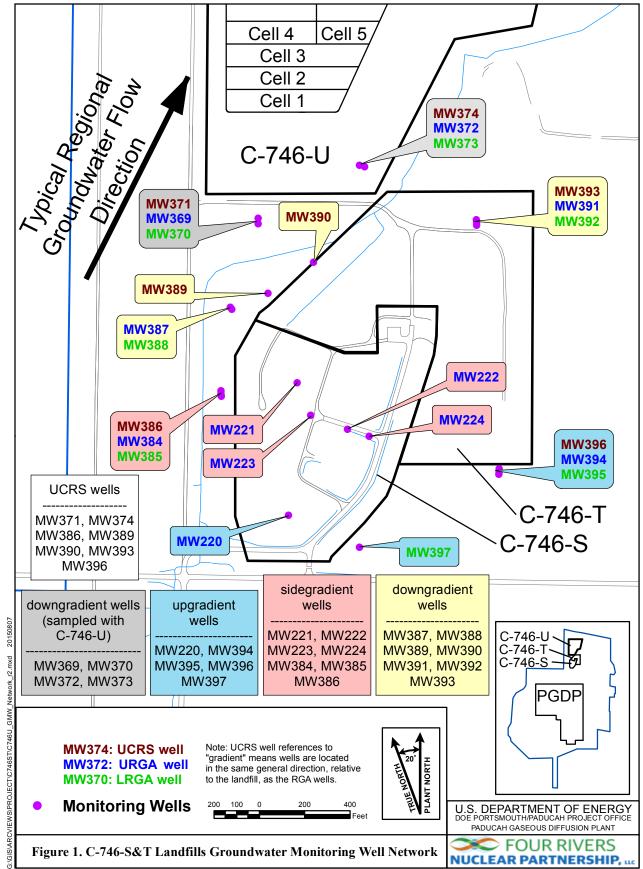
CFR CY	Code of Federal Regulations calendar year
KAR	Kentucky Administrative Regulations
KDWM	Kentucky Division of Waste Management
KRS	Kentucky Revised Statutes
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
LTL	lower tolerance limit
MCL	maximum contaminant level
MW	monitoring well
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer
UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills Fourth Quarter Calendar Year 2018 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 *KAR* 47:030 § 6 and for all permit required parameters listed in 40 *CFR* § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090 § 5. Surface water results are provided in Appendix I.

1.1 BACKGROUND


The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a final cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a final cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a water level measurement or sample; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan) (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the fourth quarter 2018 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on October 24, 2018, in MWs of the C-746-S&T Landfills (see Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During October, RGA groundwater flow in the area of the landfill was oriented primarily north to northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in October was 5.58×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 5.01×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.851 to 1.45 ft/day (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the Solid Waste Landfill Permit. Landfill operations staff monitored for the occurrence of methane in one on-site building location, four locations along the landfill boundary, and 27 passive-gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on November 14, 2018. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application Attachment 24 of the Solid Waste Landfill Permit. Sampling was performed at the three locations

(see Figure 2) monitored for the C-746-S&T Landfills. The landfills have an upstream location, L135; a downstream location, L154; and a location capturing runoff from the landfill surface, L136. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014) which is Technical Application, Attachment 25, of the Solid Waste Landfill Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were further evaluated against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded their statistically derived historical background UTL¹ during the fourth quarter 2018, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW372, MW373, MW391, and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedances for beta activity in MW370, MW372, MW387, and MW388 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances. To evaluate these preliminary Type 2 exceedances further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All of these wells had no increasing Mann-Kendall trend for beta activity and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as upgradient, to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

¹ The UTL comparison for pH uses a two-sided test, both UTL and LTL. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

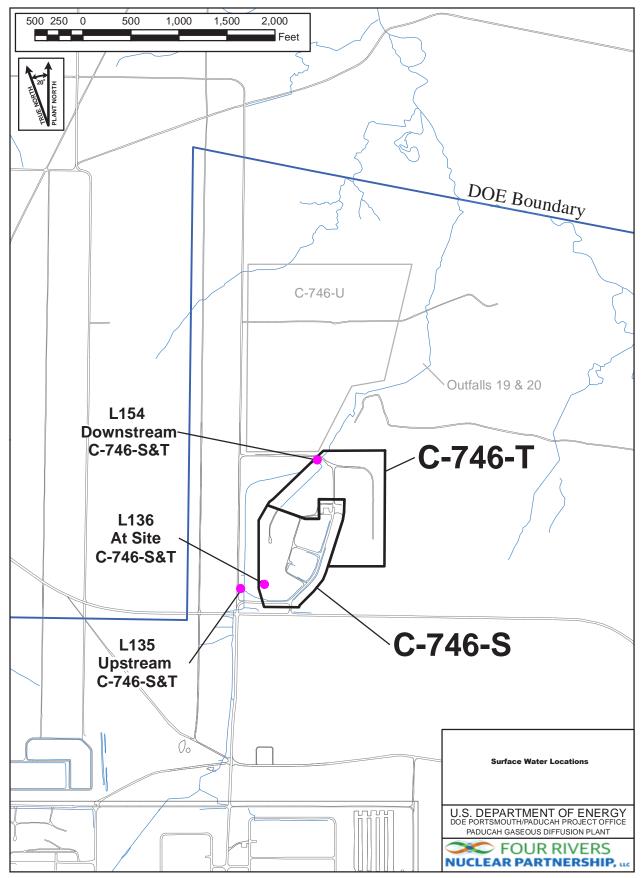


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA	
None	MW372: Beta activity, trichloroethene	MW370: Beta activity	
	MW384: Beta activity	MW373: Trichloroethene	
	MW387: Beta activity	MW388: Beta activity	
	MW391: Trichloroethene	MW392: Trichloroethene	

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Oxidation-reduction	MW220: Oxidation-reduction	MW370: Beta activity, oxidation-
potential	potential	reduction potential, sulfate,
		technetium-99
MW390: Oxidation-reduction	MW221: Oxidation-reduction	MW373: Calcium, conductivity,
potential, technetium-99	potential	dissolved solids, magnesium,
		oxidation-reduction potential, sulfate
MW393: Oxidation-reduction	MW369: Technetium-99	MW385: Oxidation-reduction
potential		potential, radium-226, sulfate,
		technetium-99
MW396: Oxidation-reduction	MW372: Beta activity, calcium,	MW388: Beta activity,
potential	dissolved solids, magnesium,	oxidation-reduction potential,
	sulfate, technetium-99	sulfate, technetium-99
	MW384: Beta activity, oxidation-	MW392: Oxidation-reduction
	reduction potential, sulfate,	potential
	technetium-99	
	MW387: Beta activity, magnesium,	MW397: Chemical oxygen demand
	oxidation-reduction potential,	(COD), oxidation-reduction
	radium-226, sulfate, technetium-99	potential
	MW391: Magnesium, sulfate	

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393 Upgradient wells: MW220, MW394, MW395, MW396, MW397

Table 3. Exceedances of Current Background UTL in **Downgradient Wells**

URGA	LRGA
MW369: Technetium-99	MW370: Beta activity, sulfate, technetium-99
MW372 : Beta activity, calcium, magnesium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
MW387: Beta activity, magnesium, radium- 226, sulfate, technetium-99	MW388: Beta activity, sulfate, technetium-99
MW391: Magnesium, sulfate	

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S ³	Decision ⁴
	MW369	Technetium-99	8	0.05	0.0868	12	No Trend
		Beta activity	8	0.05	0.0868	12	No Trend
	MW370	Sulfate	8	0.05	0.0539	14	No Trend
		Technetium-99	8	0.05	0.268	6	No Trend
		Beta activity	8	0.05	0.0539	14	No Trend
		Calcium	8	0.05	0.268	6	No Trend
	MW372	Magnesium	8	0.05	0.451	2	No Trend
		Sulfate	8	0.05	0.133	10	No Trend
		Technetium-99	8	0.05	0.0539	14	No Trend
		Calcium	8	0.05	0.0868	-12	No Trend
		Conductivity	8	0.05	0.133	-10	No Trend
C-746- S&T	MW373	Dissolved Solids	8	0.05	0.159	-9	No Trend
Landfill		Magnesium	8	0.05	0.355	-4	No Trend
		Sulfate	8	0.05	0.133	-10	No Trend
		Beta activity	8	0.05	0.451	-2	No Trend
		Magnesium	8	0.05	0.451	-2	No Trend
	MW387	Radium-226	8	0.05	0.193	8	No Trend
		Sulfate	8	0.05	0.268	-6	No Trend
		Technetium-99	8	0.05	0.193	-8	No Trend
		Beta activity	8	0.05	0.355	-4	No Trend
	MW388	Sulfate	8	0.05	0.309	5	No Trend
		Technetium-99	8	0.05	0.133	-10	No Trend
	MW391	Magnesium	8	0.05	0.106	-11	No Trend
	141 44 391	Sulfate	8	0.05	0.355	4	No Trend

 Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary

 Utilizing the Previous Eight Quarters

Footnotes:

¹ An alpha of 0.05 represents a 95% confidence interval.

 2 The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

 3 The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

⁴ The Mann-Kendall decision operates on two hypotheses, the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

Note: Statistics generated using ProUCL.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan. To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All of these preliminary Type 2 exceedances in downgradient wells did not have an increasing trend and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

In accordance with Permit Condition GSTR0003, Special Condition 2, of the Solid Waste Landfill Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS well MW390 with a technetium-99 value that exceeds both the historical and current backgrounds (Table 5). Because this well is not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T sources and is considered to be a Type 1 exceedance.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS	
MW390: Technetium-99	
*In the same direction (relative to the landfill) as RGA wells.	

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the fourth quarter 2018 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both the UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

UCRS	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389**	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396***	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	
	MW387	
	MW391	
	MW394 (upgradient)	

Table 6. Monitoring Wells Included in Statistical Analysis*

*A map showing the MW locations is shown on Figure 1.

**MW389 had insufficient water to permit a water sample for laboratory analysis.

***In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the UCRS. During the fourth quarter, oxidation-reduction potential and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Technetium-99 exceeded the current background UTL and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 31 parameters, including those with MCLs, required statistical analysis in the URGA. During the fourth quarter, beta activity, calcium, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, magnesium, radium-226, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.1.3 Lower Regional Gravel Aquifer

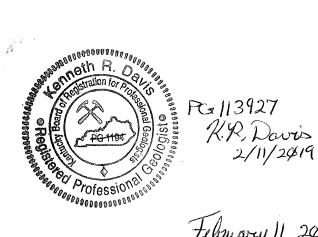
In this quarter, 30 parameters, including those with MCLs, required statistical analysis in the LRGA. During the fourth quarter, beta activity, calcium, chemical oxygen demand, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices, and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.


Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills Fourth Quarter Calendar Year 2018 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FRNP-RPT-0028/V4)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

avis

enneth R. Davis

PG113927

February 11, 2019 Date

4. REFERENCES

- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET **DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD** FRANKFORT, KY 40601

Facility Name:		n Gaseous Diffusion Plant m on DWM Permit Face)	Activity: C-746-S&T Landfills	
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	4th Qtr. CY 2018
Please check the	following as applicabl	e:		
Characte	rization <u>X</u> Qu	arterly Semiannual	Annual	Assessment
Please check app	plicable submittal(s):	X Groundwater	X Su	rface Water
		Leachate	X Me	thane Monitoring

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is NOT considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Myrna E. Redfield, Deputy Program Manager Four Rivers Nuclear Partnership, LLC

ifer Woodard, Paducah Site Lead S. Department of Energy

2/27/19 Date

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY	INFORMATION	SHEET
----------	--------------------	-------

Sampling Date:	Groundwater: October 2 Surface water: October 2 Methane: November 201	2018	County:	McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045	
Facility Name:	U.S. DOE—Paducah Gas	seous Diffusion Plan	t		_		
(As officially shown on DWM Permit Face)							
Site Address:	5600 Hobbs Road		Kevil, Kentucky			42053	
	Street		City/State		Zip		
Phone No:	(270) 441-6800	Latitude:	N 37° 07' 37	.70"	Longitude:	W 88° 47' 55.41"	
OWNER INFORMATION							
Facility Owner:	U.S. DOE, Robert E. Edv	wards III. Manager			Phone No:	(859) 227-5020	
Contact Person: David Hutchison						(270) 441-5929	
Contact Person Title: Director, Environmental Services, Four Rivers Nuclear Partnership, LLC							
Mailing Address:	5511 Hobbs Road	· · ·	Kevil, Kentucky			42053	
6	Street City/State				Zip		
SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)							
Company:	GEO Consultants, LLC						
Contact Person:	Sam Martin				Phone No: (270) 441-6755		
Mailing Address:	199 Kentucky Avenue Street		Kevil, Kentucky City/State		42053 Zip		
LABORATORY RECORD #1							
Laboratory:	GEL Laboratories, LLO	2	Lab ID No: KY				
Contact Person:	Valerie Davis				Phone No:	(843) 769-7391	
Mailing Address:	2040 Savage Road	Cha	rleston, South Ca	rolina		29407	
	Street		City/State			Zip	
LABORATORY RECORD #2							
Laboratory:	N/A			Lab ID No:	N/A		
Contact Person:	N/A				Phone No:	N/A	
Mailing Address:	N/A						
	Street		City/State			Zip	
LABORATORY RECORD #3							
Laboratory:	N/A			Lab ID No:	N/A		
Contact Person:	N/A				Phone No:	N/A	
Mailing Address:	N/A						
0	Street		City/State			Zip	

APPENDIX C

GROUNDWATER SAMPLE ANALYSES

AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1,	, Facility Well/Spring Number				8000-520	1	8000-52	202	8000-52	242	8000-524	3
Facility's Lo	cal Well or Spring Number (e.g., M	4W-1	., MW-2, etc	2.)	220		221		222		223	
Sample Sequen	ce #				1		1		1		1	
If sample is a :	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/15/2018 0	7:52	10/15/2018	8 10:00	10/15/2018	3 13:43	10/15/2018 ⁻	12:52
Duplicate ("Y	" or "N") ²				N		Ν		Ν		Ν	
Split ("Y" or	"N") ³				N		Ν		N		Ν	
Facility Samp	le ID Number (if applicable)				MW220SG1	-19	MW221S0	G1-19	MW222S0	G1-19	MW223SG	1-19
Laboratory Sa	mple ID Number (if applicable)				46184800	1	461806	001	461848	003	46180600	03
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	10/19/201	8	10/19/20	018	10/19/20	018	10/19/201	18
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.205		0.418		0.416		0.416	
16887-00-6	Chloride (s)	т	mg/L	9056	20.6		31.1	*	30.1		28	*
16984-48-8	Fluoride	т	mg/L	9056	0.176		0.17		0.257		0.235	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.07	*	0.949		1.09		0.981	
14808-79-8	Sulfate	т	mg/L	9056	16.9		15		12.9		16	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.1		30.2		30.24		30.25	
s0145	Specific Conductance	т	µMH0/cm	Field	342		338		360		334	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

С.

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 'Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER1	, Facility Well/Spring Number				8000-520)1	8000-520	2	8000-5242	2	8000-5243	
	Facility's Lo	ocal Well or Spring Number (e.g., M	W-1,	MW-2, BLANK-	F, etc.)	220		221		222		223	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ľ	s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.93		323.86		324.19		323.94	
ľ	N238	Dissolved Oxygen	т	mg/L	Field	6.37		3.95		4.4		3.48	
ľ	s0266	Total Dissolved Solids	т	mg/L	160.1	226	*	180	*	234	*	181	*
ľ	s0296	рн	т	Units	Field	5.87		6.07		6.23		6.12	
ľ	NS215	Eh	т	mV	Field	413		410		352		357	
	s0907	Temperature	т	°c	Field	14.67		14.33		14.44		14	
	7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0461	J	<0.05	
	7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
	7440-38-2	Arsenic	т	mg/L	6020	0.0024	J	0.00214	BJ	0.00259	J	0.00219	BJ
	7440-39-3	Barium	т	mg/L	6020	0.194		0.22		0.271		0.243	
	7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
	7440-42-8	Boron	т	mg/L	6020	0.0101	J	0.0168		0.00995	J	0.00787	J
	7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
	7440-70-2	Calcium	т	mg/L	6020	20.6		21.4		17.6		21.6	
	7440-47-3	Chromium	т	mg/L	6020	0.00362	J	<0.01		<0.01		0.0105	
	7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		0.000591	J	0.000543	J
	7440-50-8	Copper	т	mg/L	6020	0.00101		0.000683	J	0.000372	J	0.000357	J
	7439-89-6	Iron	т	mg/L	6020	0.0373	J	<0.1		0.0586	J	<0.1	
	7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7439-95-4	Magnesium	т	mg/L	6020	8.8		9.89		8.32		9.64	
	7439-96-5	Manganese	т	mg/L	6020	0.00215	J	<0.005		0.00551		0.00603	
Γ	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-5

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-520	01	8000-52	02	8000-524	42	8000-52	43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.000752		0.00149		0.000393	J	0.00469	
7440-02-0	Nickel	т	mg/L	6020	0.0132		0.0139		0.0292		0.132	
7440-09-7	Potassium	т	mg/L	6020	2.21		1.35		0.664		1.82	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	39		44.9		48.3		47.6	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005		<0.005	*	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		0.000072	J	<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		0.00474	J	<0.01	
7440-66-6	Zinc	т	mg/L	6020	0.00409	J	0.00341	J	0.00359	J	<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8000-520	1	8000-520)2	8000-52	242	8000-5	243
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et)	220		221		222		223	i .
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ĺ	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	2	8000-524	43
	Facility's Loc	al Well or Spring Number (e.g., M	4W-1	., MW-2, et)	220		221		222		223	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
Ģ	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000192		<0.0000196		<0.0000195	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3	PCB,Total	т	ug/L	8082	<0.0952		<0.098		<0.0943		<0.0952	
	12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.098		<0.0943		<0.0952	
	11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.098		<0.0943		<0.0952	
	11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.098		<0.0943		<0.0952	
	53469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.098		<0.0943		<0.0952	
	12672-29-6	PCB-1248	т	ug/L	8082	<0.0952		<0.098		<0.0943		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	13
Facility's Lo	ocal Well or Spring Number (e.g	., MW-1	., MW-2, et	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.098		<0.0943		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952		<0.098		<0.0943		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.098		<0.0943		<0.0952	
12587-46-1	Gross Alpha	т	pCi/L	9310	0.0412	*	-5.37	*	2.23	*	-0.81	*
12587-47-2	Gross Beta	т	pCi/L	9310	12.2	*	13.6	*	-1.66	*	3.85	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.0489	*	0.152	*	0.0716	*	0.282	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-2.23	*	2.53	*	-2.44	*	-0.809	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	20.8	*	7.17	*	3.63	*	3.91	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.398	*	-0.0241	*	-0.517	*	-0.315	*
10028-17-8	Tritium	т	pCi/L	906.0	-12.1	*	-4.67	*	1.52	*	-29.9	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		11.7	J	15.1	J	13.4	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	0.855	J	0.845	J	0.829	J	0.953	J
s0586	Total Organic Halides	т	mg/L	9020	0.0109		0.00602	J	0.00554	J	0.00902	J

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1,	, Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	318	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	2.)	224		369		370		372	
Sample Sequen	ce #				1		1		1		1	
If sample is a 3	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/15/2018 1	4:34	10/9/2018	13:24	10/9/2018	12:37	10/10/2018	10:10
Duplicate ("Y	" or "N") ²				Ν		Ν		N		Ν	
Split ("Y" or	"N") ³				Ν		Ν		N		Ν	
Facility Samp	le ID Number (if applicable)				MW224SG1	-19	MW369U0	G1-19	MW370U0	G1-19	MW372UG	1-19
Laboratory Sa	mple ID Number (if applicable)				46180600	5	461323	011	461323	013	4614320	05
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	10/19/201	8	10/15/20	018	10/15/20	018	10/15/201	18
Gradient with	respect to Monitored Unit (UP, DC), NWC	SIDE, UNKN	IOWN)	SIDE		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.396		0.391		0.419		0.573	
16887-00-6	Chloride(s)	т	mg/L	9056	29.9	*	33.6	*	35.8	*	47.9	
16984-48-8	Fluoride	т	mg/L	9056	0.248		0.261		0.218		0.189	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.762		0.769		1.19		0.957	
14808-79-8	Sulfate	т	mg/L	9056	12.1		9.41	*	21.7	*	66.9	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.22		29.96		29.98		29.78	
s0145	Specific Conductance	т	µMH0/cm	Field	412		374		442		618	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

<u>5</u>.0

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 'Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AK	GWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Fa	cility's Lo	ocal Well or Spring Number (e.g., M	w-1 , 1	MW-2, BLANK-	F, etc.)	224		369		370		372	
c	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
s0	906	Static Water Level Elevation	т	Ft. MSL	Field	324.05		324.59		324.56		324.77	1
N2	38	Dissolved Oxygen	т	mg/L	Field	2.54		1.36		3.31		0.79	
S0	266	Total Dissolved Solids	т	mg/L	160.1	204	*	196		223		336	
S0	296	рн	т	Units	Field	6.1		6.05		6.01		6.14	
NS	215	Eh	т	mV	Field	364		341		346		295	
s0	907	Temperature	т	°c	Field	14.61		21.39		19.83		19.11	
74	29-90-5	Aluminum	т	mg/L	6020	<0.05		0.0812		<0.05		<0.05	
74	40-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
74	40-38-2	Arsenic	т	mg/L	6020	0.00206	BJ	<0.005		0.00254	J	0.00241	J
74	40-39-3	Barium	т	mg/L	6020	0.214		0.405		0.229		0.0549	
74	40-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	*
74	40-42-8	Boron	т	mg/L	6020	0.0153		0.0175	*	0.0326	*	0.899	
74	40-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
74	40-70-2	Calcium	т	mg/L	6020	20.7		16.3		26.1		49.7	
74	40-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
74	40-48-4	Cobalt	т	mg/L	6020	0.000358	J	0.00626		<0.001		0.00116	
74	40-50-8	Copper	т	mg/L	6020	0.000731	J	0.00123		0.000653	J	0.000787	J
74	39-89-6	Iron	т	mg/L	6020	<0.1		0.16		<0.1		0.0592	J
74	39-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
74	39-95-4	Magnesium	т	mg/L	6020	9.66		7.02		11.5		19.1	
74	39-96-5	Manganese	т	mg/L	6020	0.00335	J	0.0166		<0.005		0.00402	J
74	39-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	Τ

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-524	14	8004-48	20	8004-481	18	8004-48	08
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.000346	J	<0.0005		<0.0005		0.000255	J
7440-02-0	Nickel	т	mg/L	6020	0.0131		0.00681		0.000706	J	0.00158	J
7440-09-7	Potassium	т	mg/L	6020	0.902		0.551		2.24		2.15	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00208	J	<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	50.3		49.3		40.4		49.8	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		0.0039	J	0.00376	J	<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		0.00497	J	0.00576	J	<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		0.00247	J	<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003	*	<0.003	*	<0.003	*
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244	1	8004-482	20	8004-48	318	8004-4	808
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-:	1, MW-2, et)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00103		0.00067	J	0.00572	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

Γ	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	4	8004-4820)	8004-481	18	8004-480)8
	Facility's Loca	al Well or Spring Number (e.g., M	w−1	, MW-2, et)	224		369		370		372	
	CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
ſ	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
Ģ	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
٩	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000196		<0.0000197		<0.0000199		<0.0000195	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
	1336-36-3	PCB,Total	т	ug/L	8082	<0.0952		<0.0971		<0.0962		<0.0962	
	12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.0971		<0.0962		<0.0962	
	11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.0971		<0.0962		<0.0962	
	11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.0971		<0.0962		<0.0962	
	53469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.0971		<0.0962		<0.0962	
ſ	12672-29-6	PCB-1248	т	ug/L	8082	<0.0952		<0.0971		<0.0962		<0.0962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244		8004-4820		8004-481	8	8004-480	08
Facility's Lo	ocal Well or Spring Number (e.g	., MW-1	, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.0971		<0.0962		<0.0962	1
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952		<0.0971		<0.0962		<0.0962	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.0971		<0.0962		<0.0962	
12587-46-1	Gross Alpha	т	pCi/L	9310	1.28	*	1.2	*	6.45	*	-0.885	*
12587-47-2	Gross Beta	т	pCi/L	9310	13	*	23.2	*	81.7	*	123	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.224	*	0.475	*	0.24	*	0.219	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.91	*	1.94	*	-1.98	*	2.11	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	3.72	*	55	*	114	*	158	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.447	*	1.22	*	1.21	*	1.07	*
10028-17-8	Tritium	т	pCi/L	906.0	-63.7	*	50.9	*	16.8	*	43.4	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	9.97	J	21.4	В	31.4	В	16.4	BJ
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	Τ
S0268	Total Organic Carbon	т	mg/L	9060	0.796	J	1.2	J	1.02	J	1	J
S0586	Total Organic Halides	т	mg/L	9020	0.0153		0.0157		0.00616	J	0.0143	
												+
												–

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4792	2	8004-48	309	8004-48	310	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	:.)	373		384		385		386	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/10/2018 0	8:42	10/16/2018	8 09:20	10/16/2018	10:26	10/16/2018	11:43
Duplicate ("Y	" or "N") ²				N		Ν		N		Ν	
Split ("Y" or	"N") ³				N		N		N		Ν	
Facility Samp	le ID Number (if applicable)				MW373UG1	-19	MW384S0	G1-19	MW385S0	G1-19	MW386SG	1-19
Laboratory Sa	mple ID Number (if applicable)				46143200	7	461934	001	461934	003	4619340	07
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	10/15/201	8	10/19/2	018	10/19/20	018	10/19/20	18
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	DOWN		SIDE	-	SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.572		0.31		0.228		0.153	J
16887-00-6	Chloride(s)	т	mg/L	9056	44.8		37.3		24		14.4	
16984-48-8	Fluoride	т	mg/L	9056	0.188		0.171		0.17		0.617	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.952		1.14	*	0.353	J*	<0.4	*
14808-79-8	Sulfate	т	mg/L	9056	113		21.4		18.8		44.8	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.78		30.31		30.31		30.31	
s0145	Specific Conductance	т	µMH0/cm	Field	725		451		436		606	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	cal Well or Spring Number (e.g., MW	1-1, 1	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.76		323.7		323.59		343.61	
N238	Dissolved Oxygen	т	mg/L	Field	1.79		3.3		1.27		2.54	
S0266	Total Dissolved Solids	т	mg/L	160.1	393		254	*	277	*	361	*
S0296	рН	т	Units	Field	6.19		6.21		6.45		6.64	
NS215	Eh	т	mV	Field	438		418		405		232	
S0907	Temperature	т	°C	Field	19.39		15.17		14.72		15.39	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00219	J	0.00289	J	0.00289	J	0.00341	J
7440-39-3	Barium	т	mg/L	6020	0.0357		0.167		0.273		0.243	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005	*	<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	1.24		0.0223		0.0155		<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	57.4		25.7		42.9		22.9	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00119		<0.001		<0.001		0.0149	
7440-50-8	Copper	т	mg/L	6020	0.000373	J	0.00037	J	0.000321	J	0.000681	J
7439-89-6	Iron	т	mg/L	6020	0.0428	J	0.0397	J	<0.1		0.938	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	23.2		11		17		9.93	
7439-96-5	Manganese	т	mg/L	6020	0.0258		0.00795		0.00976		1.87	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-17

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-479	92	8004-48	09	8004-481	10	8004-48	04
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005		0.000829		0.000714	
7440-02-0	Nickel	т	mg/L	6020	0.00176	J	0.000718	J	0.00136	J	0.0033	
7440-09-7	Potassium	т	mg/L	6020	2.5		1.47		2.1		0.303	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00201	J	<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	50.2		50.6		33.3		99.5	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005	*	<0.005	*	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.000288		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		0.00382	J	0.00417	J	<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		0.0045	J	0.00448	J	0.00543	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003	*	<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-480)9	8004-48	310	8004-4	804
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-:	1, MW-2, et)	373		384		385		386	1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00791		0.00041	J	<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809	9	8004-481	10	8004-480)4
	Facility's Loc	al Well or Spring Number (e.g., M	1W-1	., MW-2, et	.c.)	373		384		385		386	
	CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
0	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
6	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000191		<0.0000192		<0.0000193	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
	1336-36-3	PCB,Total	т	ug/L	8082	<0.0952		<0.101		<0.098		<0.099	
	12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.101		<0.098		<0.099	
	11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.101		<0.098		<0.099	
	11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.101		<0.098		<0.099	
	53469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.101		<0.098		<0.099	
	12672-29-6	PCB-1248	т	ug/L	8082	<0.0952		<0.101		<0.098		<0.099	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-4792	2	8004-4809)	8004-481	0	8004-480)4
Facility's L	ocal Well or Spring Number (e.g.	, MW-1	., MW-2, et	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.101		<0.098		<0.099	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952		<0.101		<0.098		<0.099	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.101		<0.098		<0.099	
12587-46-1	Gross Alpha	т	pCi/L	9310	2.25	*	3.98	*	1.33	*	0.294	*
12587-47-2	Gross Beta	т	pCi/L	9310	22.8	*	116	*	45.9	*	0.519	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.416	*	0.535	*	0.905	*	0.6	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.24	*	1.23	*	-1.7	*	-0.0779	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	20.3	*	168	*	91.9	*	3.84	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.317	*	-0.305	*	-0.153	*	0.199	*
10028-17-8	Tritium	т	pCi/L	906.0	63.2	*	-51.9	*	23.6	*	-46.4	*
S0130	Chemical Oxygen Demand	т	mg/L	410.4	14.7	BJ	20.1		18.4	J	30.3	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		0.168	J
S0268	Total Organic Carbon	т	mg/L	9060	1.2	J	1.13	J	1.01	J	5.85	
s0586	Total Organic Halides	т	mg/L	9020	0.0116		0.0044	BJ	0.00878	BJ	0.142	В
												+
												1
										1		1

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-481	5	8004-48	316	8004-48	12	8004-481	1
Facility's Loo	cal Well or Spring Number (e.g., M	/₩-1	L, MW-2, etc	:.)	387		388		389		390	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/16/2018 0	7:48	10/16/2018	8 08:34	NA		10/22/2018 0	7:46
Duplicate ("Y	" or "N") ²				Ν		Ν		N		Ν	
Split ("Y" or	"N") ³				Ν		N		N		Ν	
Facility Samp	le ID Number (if applicable)				MW387SG1	-19	MW388S0	G1-19	NA		MW390SG1	-19
Laboratory Sar	mple ID Number (if applicable)				46193400	9	461934	011	NA		46233100	3
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	rganics Anal	ysis	10/19/201	8	10/19/20	018	NA		10/27/201	8
Gradient with	respect to Monitored Unit (UP, DC) WN ,	, SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.437		0.35			*	0.471	
16887-00-6	Chloride(s)	т	mg/L	9056	39.7		30.9			*	55.3	
16984-48-8	Fluoride	т	mg/L	9056	0.478		0.172			*	0.263	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.06	*	0.938	*		*	2.82	
14808-79-8	Sulfate	т	mg/L	9056	28.5		24.9			*	28.3	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.31		30.3			*	30.26	
S0145	Specific Conductance	т	µMH0/cm	Field	536		454			*	690	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

C-2

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 'Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
	Facility's Lo	ocal Well or Spring Number (e.g., M	₩-1,	MW-2, BLANK-	F, etc.)	387		388		389		390	
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
ľ	s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.73		323.66			*	323.87	1
ľ	N238	Dissolved Oxygen	т	mg/L	Field	3.56		3.53			*	5.9	
ľ	s0266	Total Dissolved Solids	т	mg/L	160.1	297	*	279	*		*	359	
ľ	s0296	рн	т	Units	Field	6.05		6.11			*	6.07	
ľ	NS215	Eh	т	mV	Field	438		421			*	413	
	S0907	Temperature	т	°c	Field	14.33		15.61			*	12.83	
	7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.14			*	0.0967	
	7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
	7440-38-2	Arsenic	т	mg/L	6020	0.00437	J	0.00306	J		*	<0.005	
	7440-39-3	Barium	т	mg/L	6020	0.126		0.229			*	0.245	
	7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
	7440-42-8	Boron	т	mg/L	6020	0.0364		0.0301			*	0.00975	J
	7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
	7440-70-2	Calcium	т	mg/L	6020	35.5		28.1			*	29.4	
	7440-47-3	Chromium	т	mg/L	6020	0.00339	J	<0.01			*	<0.01	
	7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001			*	<0.001	
	7440-50-8	Copper	т	mg/L	6020	0.000509	J	0.00125			*	0.00122	
ľ	7439-89-6	Iron	т	mg/L	6020	<0.1		0.483			*	0.0989	J
	7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	<0.002	
Γ	7439-95-4	Magnesium	т	mg/L	6020	15.5		13			*	12.4	
Γ	7439-96-5	Manganese	т	mg/L	6020	0.00397	J	0.00393	J		*	0.00156	J
ľ	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-481	15	8004-48	16	8004-48	12	8004-481	1
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.000279	J		*	0.000875	
7440-02-0	Nickel	т	mg/L	6020	0.000683	J	0.00146	J		*	0.00217	
7440-09-7	Potassium	т	mg/L	6020	1.9		2.3			*	0.312	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	т	mg/L	6020	57		49.9			*	91.8	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005			*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002			*	0.000155	J
7440-62-2	Vanadium	т	mg/L	6020	<0.01		0.00343	J		*	<0.01	
7440-66-6	Zinc	т	mg/L	6020	0.00435	J	0.00519	J		*	<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4815	5	8004-48	16	8004-481	2	8004-481	1
Facility's Loo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0007	J	0.00065	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-4816	6	8004-481	2	8004-481	1
	Facility's Loca	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	387		388		389		390	
	CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
ľ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
C-72	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
Ч	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000192		<0.0000198			*	<0.0000194	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	1336-36-3	PCB,Total	т	ug/L	8082	<0.0962		<0.0962			*	<0.1	
	12674-11-2	PCB-1016	т	ug/L	8082	<0.0962		<0.0962			*	<0.1	
ſ	11104-28-2	PCB-1221	т	ug/L	8082	<0.0962		<0.0962			*	<0.1	
	11141-16-5	PCB-1232	т	ug/L	8082	<0.0962		<0.0962			*	<0.1	
	53469-21-9	PCB-1242	т	ug/L	8082	<0.0962		<0.0962			*	<0.1	
	12672-29-6	PCB-1248	т	ug/L	8082	<0.0962		<0.0962			*	<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4815		8004-4816	6	8004-481	2	8004-481	. 1
Facility's Lo	ocal Well or Spring Number (e.g	., MW-1	, MW-2, et	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0962		<0.0962			*	<0.1	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0962		<0.0962			*	<0.1	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0962		<0.0962			*	<0.1	
12587-46-1	Gross Alpha	т	pCi/L	9310	10.1	*	-1.2	*		*	1.64	*
12587-47-2	Gross Beta	т	pCi/L	9310	185	*	83.1	*		*	41.5	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	1.55	*	0.616	*		*	0.14	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.418	*	-0.0523	*		*	-0.627	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	223	*	117	*		*	67.7	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.0504	*	0.413	*		*	-0.0784	*
10028-17-8	Tritium	т	pCi/L	906.0	-98.7	*	75.5	*		*	-87.6	*
S0130	Chemical Oxygen Demand	т	mg/L	410.4	25.2		13.4	J		*	23.3	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.26	J	1.18	J		*	2.13	
S0586	Total Organic Halides	т	mg/L	9020	0.0139	В	0.0115	В		*	0.0269	

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-480	5	8004-48	306	8004-48	307	8004-480)2
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	2.)	391		392		393		394	
Sample Sequen	ce #				1		1		1		1	
If sample is a 3	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/22/2018 1	3:49	10/22/2018	8 12:18	10/22/2018	13:01	10/22/2018 (08:36
Duplicate ("Y	" or "N") ²				Ν		Ν		N		Ν	
Split ("Y" or	"N") ³				N		N		N		Ν	
Facility Samp	le ID Number (if applicable)				MW391SG1	-19	MW392S0	G1-19	MW393SC	G1-19	MW394SG	1-19
Laboratory Sa	mple ID Number (if applicable)				46233100	5	462331	007	4623310	009	46233100	01
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	10/27/201	8	10/27/20	018	10/27/20	018	10/27/201	18
Gradient with	respect to Monitored Unit (UP, DO) WN ,	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWI	N	UP	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.496		0.526		0.131	J	0.588	
16887-00-6	Chloride (s)	т	mg/L	9056	41.2		45.7		13.2		46.1	
16984-48-8	Fluoride	т	mg/L	9056	0.129		0.18		0.142		0.128	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.933		0.59		<0.1		1.18	
14808-79-8	Sulfate	т	mg/L	9056	64.2		8.68		14.1		10.6	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.2		30.25		30.22		30.25	
s0145	Specific Conductance	т	µMH0/cm	Field	525		425		404		410	

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807	7	8004-4802	
Facility's Lo	cal Well or Spring Number (e.g., MW	1 -1, 1	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.79		323.73		338.91		324.02	
N238	Dissolved Oxygen	т	mg/L	Field	3.46		1.71		4.3		4.1	
S0266	Total Dissolved Solids	т	mg/L	160.1	254		197		200		206	
S0296	рН	т	Units	Field	5.86		5.88		6.01		6.36	
NS215	Eh	т	mV	Field	309		375		303		386	
S0907	Temperature	т	°c	Field	16.5		16.78		17.06		14.06	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0298	J	0.025	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00481	J	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.102		0.182		0.126		0.234	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.255		0.026		0.0188		0.022	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	36.1		27.1		11.8		25.4	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000601	J	0.00571		0.00126		0.000794	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.0992	J	1.94		0.12	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	15.6		9.79		3.52		11.3	
7439-96-5	Manganese	т	mg/L	6020	0.00109	J	0.0132		0.046		0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number		8004-480)5	8004-48	06	8004-48	07	8004-48	02		
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.0007	J	0.00617		<0.002		0.0047	
7440-09-7	Potassium	т	mg/L	6020	1.63		1.64		0.365		1.19	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	36		34.6		71.3		33.4	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		0.00881	J	<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480)6	8004-48	307	8004-4	802
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	0.00043	J	0.00113		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00887		0.0141		0.00091	J	0.00485	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKO	GWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	6	8004-480)7	8004-480)2
Fac	cility's Loca	al Well or Spring Number (e.g., M	1W-1	., MW-2, et	.c.)	391		392		393		394	
С	AS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100	0-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591	1-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-	-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124	4-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-	-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-	-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
ှ 108	8-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-	-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000193		<0.0000191		<0.0000193		<0.0000195	
78-	-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
100	061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
100	061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
150	6-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-	-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-	-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-	-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
100	6-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
133	36-36-3	PCB,Total	т	ug/L	8082	<0.0952		<0.0962		<0.0962		<0.0971	
120	674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.0962		<0.0962		<0.0971	
111	104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.0962		<0.0962		<0.0971	
111	141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.0962		<0.0962		<0.0971	
534	469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.0962		<0.0962		<0.0971	
120	672-29-6	PCB-1248	т	ug/L	8082	<0.0952		<0.0962		<0.0962		<0.0971	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

, Facility Well/Spring Number				8004-4805		8004-4806		8004-480	7	8004-480	02
ocal Well or Spring Number (e.g.	., MW-1	, MW-2, et	tc.)	391		392		393		394	
CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
PCB-1254	т	ug/L	8082	<0.0952		<0.0962		<0.0962		<0.0971	
PCB-1260	т	ug/L	8082	<0.0952		<0.0962		<0.0962		<0.0971	
PCB-1268	т	ug/L	8082	<0.0952		<0.0962		<0.0962		<0.0971	
Gross Alpha	т	pCi/L	9310	8.52	*	2.54	*	4.98	*	7.03	*
Gross Beta	т	pCi/L	9310	6.71	*	4.52	*	12	*	11.1	*
Iodine-131	т	pCi/L			*		*		*		*
Radium-226	т	pCi/L	AN-1418	0.261	*	0.383	*	0.0636	*	0.442	*
Strontium-90	т	pCi/L	905.0	2.1	*	0.658	*	-2.06	*	-2.27	*
Technetium-99	т	pCi/L	Tc-02-RC	12.5	*	5.15	*	2.21	*	13.4	*
Thorium-230	т	pCi/L	Th-01-RC	-0.072	*	-0.36	*	0.235	*	-0.336	*
Tritium	т	pCi/L	906.0	29.9	*	62	*	48	*	-3.96	*
Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		11.8	J
Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
Total Organic Carbon	т	mg/L	9060	0.953	J	1.1	J	2.6		0.897	J
Total Organic Halides	Т	mg/L	9020	0.0126		0.0236		0.019		0.00626	J
											+
											–
	cal Well or Spring Number (e.g CONSTITUENT PCB-1254 PCB-1260 PCB-1268 Gross Alpha Gross Beta Iodine-131 Radium-226 Strontium-90 Technetium-99 Thorium-230 Tritium Chemical Oxygen Demand Cyanide Iodide Total Organic Carbon	cal Well or Spring Number (e.g., MW-1 CONSTITUENT T PCB-1254 T PCB-1260 T PCB-1268 T Gross Alpha T Gross Beta T Iodine-131 T Radium-226 T Strontium-90 T Thorium-230 T Tritium T Chemical Oxygen Demand T Iodide T Total Organic Carbon T	cal Well or Spring Number (e.g., MW-1, MW-2, eCONSTITUENTT D D SUnit OF MEASUREPCB-1254Tug/LPCB-1260Tug/LPCB-1268Tug/LGross AlphaTpCi/LGross BetaTpCi/LIodine-131TpCi/LStrontium-90TpCi/LTechnetium-99TpCi/LThorium-230TpCi/LTritiumTpCi/LCyanideTmg/LIodideTmg/LTotal Organic CarbonTmg/L	cal Well or Spring Number (e.g., MW-1, MW-2, etc.)CONSTITUENTT D SUnit OF MEASUREMETHODPCB-1254Tug/L8082PCB-1260Tug/L8082PCB-1268Tug/L8082Gross AlphaTpCi/L9310Gross BetaTpCi/L9310Iodine-131TpCi/L9310Iodine-131TpCi/L905.0Technetium-99TpCi/L100.0Thorium-230TpCi/LTh-01-RCTritiumTpCi/L906.0Chemical Oxygen DemandTmg/L9012IodideTmg/L300.0Total Organic CarbonTmg/L9060	cal Well or Spring Number (e.g., MW-1, MW-2, etc.) 391 CONSTITUENT T Unit D METHOD DETECTED VALUE OF MEASURE DETECTED VALUE OR PQL ⁶ PCB-1254 T ug/L 8082 <0.0952	Cal Well or Spring Number (e.g., MW-1, MW-2, etc.) 391 CONSTITUENT T Unit D METHOD VALUE OF MEASURE DETECTED VALUE OR PQL ⁶ F PCB-1254 T ug/L 8082 <0.0952	cal Well or Spring Number (e.g., MW-1, MW-2, etc.) 391 392 CONSTITUENT T Unit OF METHOD DETECTED VALUE OR F L A G DETECTED VALUE OR F C OR OR	Sel well or Spring Number (e.g., MW-1, MW-2, etc.) 391 392 CONSTITUENT T Unit OF MEASURE METHOD OR MEASURE DETECTED VALUE OR PQL ⁶ F L A G S DETECTED VALUE OR PQL ⁶ F L A G S PCB-1254 T ug/L 8082 <0.0952	Cal Well or Spring Number (e.g., MW-1, MW-2, etc.) 391 392 393 CONSTITUENT T Unit DF METHOD OF DETECTED VALUE OR F OR OR	391 392 393 CONSTITUENT T D Unit OF METHOD (P) DETECTED (POL ⁶) F DETECTED (POL ⁶) <	Cal Well or Spring Number (e.g., MW-1, MW-2, etc.) 391 392 393 394 CONSTITUENT T Unit OF MEASURE METHOD OF MEASURE DETECTED VALUE OR PQL ⁶ F L G S DETECTED VALUE OR S F L G S S </td

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-48	303	8004-48	317	0000-000	0
Facility's Loc	al Well or Spring Number (e.g., M	₩-1	., MW-2, etc	.)	395		396		397		E. BLAN	к
Sample Sequenc	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		Е	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		10/22/2018 1	0:48	10/22/2018	8 09:41	10/15/2018	8 09:06	10/16/2018 ()7:05
Duplicate ("Y"	or "N") ²				N		Ν		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW395SG1	-19	MW396S0	G1-19	MW397S0	G1-19	RI1SG1-1	19
Laboratory Sam	mple ID Number (if applicable)				46233101	1	462331	013	461848	005	46193401	14
Date of Analys	is (Month/Day/Year) For <u>Volatile</u>	o Or	ganics Anal	ysis	10/27/201	8	10/27/20	018	10/19/20	018	10/19/201	18
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	OWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.451		0.924	J	0.422			*
16887-00-6	Chloride(s)	т	mg/L	9056	39.9		66		36.1			*
16984-48-8	Fluoride	т	mg/L	9056	0.114		0.507		0.173			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.42		<0.5		1.41	*		*
14808-79-8	Sulfate	т	mg/L	9056	10.2		24.5		10.4			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.27		30.26		30.17			*
S0145	Specific Conductance	т	µMH0/cm	Field	375		775		321			*

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 'Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: <u>None</u> For Official Use Only

ſ	AKGWA NUMBER1	, Facility Well/Spring Number				8004-480)1	8004-480	3	8004-4817	7	0000-0000	
ľ	Facility's Lo	ocal Well or Spring Number (e.g., M	W-1,	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
ľ	s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.39		365.64		324.15			*
ľ	N238	Dissolved Oxygen	т	mg/L	Field	4.29		0.92		5.46			*
ľ	s0266	Total Dissolved Solids	т	mg/L	160.1	176		404		184	*		*
	s0296	рн	т	Units	Field	6.21		6.54		5.98			*
ľ	NS215	Eh	т	mV	Field	237		210		407			*
	S0907	Temperature	т	°c	Field	16.5		15.39		14.17			*
	7429-90-5	Aluminum	т	mg/L	6020	0.199		<0.05		0.0301	J	<0.05	
	7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
ſ	7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00349	J	0.00237	J	0.00213	J
	7440-39-3	Barium	т	mg/L	6020	0.236		0.389		0.137		<0.002	
	7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
	7440-42-8	Boron	т	mg/L	6020	0.0228		0.00827	J	0.00936	J	<0.015	
	7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
	7440-70-2	Calcium	т	mg/L	6020	24.4		32.5		19.3		<0.2	
	7440-47-3	Chromium	т	mg/L	6020	0.00338	J	<0.01		<0.01		<0.01	
	7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00356		<0.001		<0.001	
	7440-50-8	Copper	т	mg/L	6020	0.00177		0.00115		0.000692	J	<0.001	
	7439-89-6	Iron	т	mg/L	6020	0.63		2.2		0.0442	J	<0.1	
ſ	7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7439-95-4	Magnesium	т	mg/L	6020	10.7		15		8.48		<0.03	
	7439-96-5	Manganese	т	mg/L	6020	0.0123		0.528		0.00171	J	<0.005	
ſ	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-35

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-480	01	8004-48	03	8004-481	17	0000-00	00
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	395		396		397		E. BLAN	١K
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.000347	J	0.00056		<0.0005		<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.00147	J	0.00154	J	0.000711	J	<0.002	
7440-09-7	Potassium	т	mg/L	6020	1.44		0.689		1.95		<0.3	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	28.5		70.9		33.2		<0.25	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		0.000078	J	<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	0.00352	J	<0.01		0.00464	J	0.00335	J
7440-66-6	Zinc	т	mg/L	6020	0.00398	J	0.00428	J	0.00519	J	<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480)3	8004-48	317	0000-0	000
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00291		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER	¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-481	17	0000-000	20
	Facility's L	oca	al Well or Spring Number (e.g., M	1W-1	, MW-2, et	.c.)	395		396		397		E. BLAN	IK
Ĩ	CAS RN ⁴		CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
	100-41-4		Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	591-78-6		2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
ľ	74-88-4		Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1		Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5		Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2		Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
9	108-10-1		Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
7	96-12-8		Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000194		<0.0000196		<0.0000193		<0.0000193	
	78-87-5		Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6		trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5		cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5		trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4		Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4		1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1		Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7		Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3		PCB,Total	т	ug/L	8082	<0.0971		<0.0952		<0.0943		<0.0962	
	12674-11-2		PCB-1016	т	ug/L	8082	<0.0971		<0.0952		<0.0943		<0.0962	
	11104-28-2		PCB-1221	т	ug/L	8082	<0.0971		<0.0952		<0.0943		<0.0962	
	11141-16-5		PCB-1232	т	ug/L	8082	<0.0971		<0.0952		<0.0943		<0.0962	
	53469-21-9		PCB-1242	т	ug/L	8082	<0.0971		<0.0952		<0.0943		<0.0962	
	12672-29-6		PCB-1248	т	ug/L	8082	<0.0971		<0.0952		<0.0943		<0.0962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4801		8004-4803		8004-481	7	000-000)0
Facility's Lo	ocal Well or Spring Number (e.g	., MW-1	, MW-2, e	tc.)	395		396		397		E. BLAN	K
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0971		<0.0952		<0.0943		<0.0962	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0971		<0.0952		<0.0943		<0.0962	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0971		<0.0952		<0.0943		<0.0962	
12587-46-1	Gross Alpha	т	pCi/L	9310	0.647	*	2.11	*	1.91	*	10.5	*
12587-47-2	Gross Beta	т	pCi/L	9310	9.41	*	5.24	*	5.14	*	-5.54	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.612	*	0.171	*	0.415	*	-0.0319	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.73	*	1.99	*	1.05	*	-1.16	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	13.2	*	-3.72	*	18.3	*	6.87	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.00943	*	0.272	*	0.132	*	0.155	*
10028-17-8	Tritium	т	pCi/L	906.0	9.23	*	-4.09	*	20.7	*	-102	*
S0130	Chemical Oxygen Demand	т	mg/L	410.4	9.87	J	11.8	J	60.8			*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		0.682		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	0.921	J	4.96		0.778	J		*
s0586	Total Organic Halides	т	mg/L	9020	0.0444		0.0371		0.00542	J		*
												<u> </u>
												_

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				000-000	00	0000-00	00	0000-000	00	0000-000)0
Facility's Loc	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	:.)	F. BLAN	К	T. BLAN	K 1	T. BLANI	< 2	T. BLANK	(3
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	F		Т		Т		Т	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/16/2018 ⁻	11:45	10/15/2018	07:00	10/16/2018	07:00	10/22/2018 (07:00
Duplicate ("Y	" or "N") ²				Ν		N		N		Ν	
Split ("Y" or	"N") ³				Ν		N		N		Ν	
Facility Samp	le ID Number (if applicable)				FB1SG1-	19	TB1SG1	-19	TB2SG1-	·19	TB3SG1-	19
Laboratory Sam	mple ID Number (if applicable)				4619340	13	4618060	07	4619340	15	4623310	15
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	10/19/20 ⁻	18	10/19/20	18	10/19/20	18	10/27/201	18
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	µMH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 'Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				0000-000	0	000-000	00	0000-000	C	0000-0000	1
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	F. BLAN	K	T. BLANK	(1	T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°c	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	т	mg/L	6020	0.00207	J		*		*		*
7440-39-3	Barium	т	mg/L	6020	<0.002			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	0.0943	J		*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	т	mg/L	6020	<0.001			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-41

AKGWA NUMBEI	R ¹ , Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-00	00
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	K 1	T. BLANI	< 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	т	mg/L	6020	0.00349	J		*		*		*
7440-66-6	Zinc	т	mg/L	6020	0.0043	J		*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				0000-000	0	000-000	00	0000-0	000	0000-0	000
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et)	F. BLAN	<	T. BLAN	۲1	T. BLAN	NK 2	T. BLAN	VK 3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	0.00421	J	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER1	,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-00	00
	Facility's Lo	oca	al Well or Spring Number (e.g., M	1W-1	, MW-2, et		F. BLANK	(T. BLANK	1	T. BLAN	< 2	T. BLANI	К 3
	CAS RN ⁴		CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	100-41-4		Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
ľ	591-78-6		2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
ľ	74-88-4		Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
ľ	124-48-1		Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5		Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2		Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
Ċ	108-10-1		Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
ц	96-12-8		Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000192		<0.0000192		<0.0000194		<0.0000194	
	78-87-5		Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6		trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5		cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5		trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4		Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4		1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1		Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7		Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3		PCB,Total	т	ug/L	8082	<0.0952			*		*		*
	12674-11-2		PCB-1016	т	ug/L	8082	<0.0952			*		*		*
ſ	11104-28-2		PCB-1221	т	ug/L	8082	<0.0952			*		*		*
	11141-16-5		PCB-1232	т	ug/L	8082	<0.0952			*		*		*
ſ	53469-21-9		PCB-1242	т	ug/L	8082	<0.0952			*		*		*
ſ	12672-29-6		PCB-1248	т	ug/L	8082	<0.0952			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				0000-000	0	0000-0000		0000-0000	0	0000-000	0
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	F. BLANK	(T. BLANK 1		T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952			*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952			*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	4.36	*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310	-2.37	*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.415	*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.465	*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	0.39	*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.778	*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0	23.8	*		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0	<0.5			*		*		*
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
S0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	4	Ν					
Facility's Loc	al Well or Spring Number (e.g., M	/₩-1	, MW-2, etc	:.)	386							
Sample Sequenc	e #				2							/
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA							
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		10/16/2018 1	1:43		\backslash				
Duplicate ("Y"	or "N") ²				Y							
Split ("Y" or	"N") ³				Ν							
Facility Sampl	e ID Number (if applicable)		MW386DSG	1-19				/				
Laboratory Sam	ple ID Number (if applicable)		46193400	5								
Date of Analys	is (Month/Day/Year) For <u>Volatile</u>	ysis	10/19/201	8				/				
Gradient with	respect to Monitored Unit (UP, DC) wn	SIDE, UNKN	OWN)	SIDE				\sim			
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.144	J		/	/		\land	
16887-00-6	Chloride(s)	т	mg/L	9056	14.4							
16984-48-8	Fluoride	т	mg/L	9056	0.629							
s0595	Nitrate & Nitrite	т	mg/L	9056	<0.5	*						
14808-79-8	Sulfate	т	mg/L	9056	44							
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.31							$\left \right\rangle$
S0145	Specific Conductance	т	µMH0/cm	Field	606							

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480)4	Ν					/
	Facility's Lo	ocal Well or Spring Number (e.g., M	W-1,	MW-2, BLANK-	F, etc.)	386							
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
ľ	s0906	Static Water Level Elevation	т	Ft. MSL	Field	343.61							
ľ	N238	Dissolved Oxygen	т	mg/L	Field	2.54							
ľ	s0266	Total Dissolved Solids	т	mg/L	160.1	356	*		$\overline{\}$				
ľ	s0296	рн	т	Units	Field	6.64						/	
ľ	NS215	Eh	т	mV	Field	232				\mathbf{N}	/	ŕ	
ſ	s0907	Temperature	т	°C	Field	15.39							
	7429-90-5	Aluminum	т	mg/L	6020	<0.05					\overline{V}		
	7440-36-0	Antimony	т	mg/L	6020	<0.003				$ \land /$	1		
	7440-38-2	Arsenic	т	mg/L	6020	0.00358	J			Х			
ſ	7440-39-3	Barium	т	mg/L	6020	0.244							
	7440-41-7	Beryllium	т	mg/L	6020	<0.0005					\setminus		
	7440-42-8	Boron	т	mg/L	6020	0.00526	J				$\left[\right]$		
ſ	7440-43-9	Cadmium	т	mg/L	6020	<0.001				/			
	7440-70-2	Calcium	т	mg/L	6020	23.3			/			\backslash	
	7440-47-3	Chromium	т	mg/L	6020	<0.01							
	7440-48-4	Cobalt	т	mg/L	6020	0.0147			/				
	7440-50-8	Copper	т	mg/L	6020	0.000737	J						
	7439-89-6	Iron	т	mg/L	6020	0.919							
	7439-92-1	Lead	т	mg/L	6020	<0.002							
	7439-95-4	Magnesium	т	mg/L	6020	9.99							$\left \right\rangle$
	7439-96-5	Manganese	т	mg/L	6020	1.88							
ſ	7439-97-6	Mercury	т	mg/L	7470	<0.0002							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	04	Ν					/
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	386		$\left[\right]$					
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.000728							
7440-02-0	Nickel	т	mg/L	6020	0.00304			\backslash				
7440-09-7	Potassium	т	mg/L	6020	0.299	J						
7440-16-6	Rhodium	т	mg/L	6020	<0.005				N		\vee	
7782-49-2	Selenium	т	mg/L	6020	<0.005				\backslash			
7440-22-4	Silver	т	mg/L	6020	<0.001							
7440-23-5	Sodium	т	mg/L	6020	99.8							
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*						
7440-28-0	Thallium	т	mg/L	6020	<0.002				Χ.			
7440-61-1	Uranium	т	mg/L	6020	<0.0002							
7440-62-2	Vanadium	т	mg/L	6020	<0.01					Λ		
7440-66-6	Zinc	т	mg/L	6020	0.00605	J						
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005							
67-64-1	Acetone	т	mg/L	8260	<0.005						\backslash	
107-02-8	Acrolein	т	mg/L	8260	<0.005							
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005							
71-43-2	Benzene	т	mg/L	8260	<0.001							
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001							
1330-20-7	Xylenes	т	mg/L	8260	<0.003							
100-42-5	Styrene	т	mg/L	8260	<0.001							Λ
108-88-3	Toluene	т	mg/L	8260	<0.001							
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4804	4	Ν					/
Facility's Loc	al Well or Spring Number (e.g., 1	MW-:	1, MW-2, et	.c.)	386							
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001							
75-25-2	Tribromomethane	т	mg/L	8260	<0.001							
74-83-9	Methyl bromide	т	mg/L	8260	<0.001			\square				
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005						/	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005				\backslash	/	ſ	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005							
75-00-3	Chloroethane	т	mg/L	8260	<0.001					\overline{V}		
67-66-3	Chloroform	т	mg/L	8260	<0.001				$ \rangle /$	1		
74-87-3	Methyl chloride	т	mg/L	8260	<0.001				Х			
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001							
74-95-3	Methylene bromide	т	mg/L	8260	<0.001					\backslash		
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001					$ \rangle$		
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001				/			
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001						$\left \right\rangle$	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001							
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001			/				
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001							
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001							
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001	*						
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001							\backslash
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001							$\left[\right]$
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4804	4	\backslash					
	Facility's Loc	cal Well or Spring Number (e.g., M	4₩-1	, MW-2, et	.c.)	386							
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DERECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001							
I	591-78-6	2-Hexanone	т	mg/L	8260	<0.005							
	74-88-4	Iodomethane	т	mg/L	8260	<0.005			\backslash				
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001						/	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001				\backslash	/		
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005							
Ņ,	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005					V		
ġ	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195				$ \rangle /$			
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001				X			
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001					\backslash		
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001					$ \rangle$		
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001							
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001						\backslash	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001							
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001							
	1336-36-3	PCB,Total	т	ug/L	8082	<0.099							
	12674-11-2	PCB-1016	т	ug/L	8082	<0.099							
	11104-28-2	PCB-1221	т	ug/L	8082	<0.099							
	11141-16-5	PCB-1232	т	ug/L	8082	<0.099							\backslash
	53469-21-9	PCB-1242	т	ug/L	8082	<0.099							
	12672-29-6	PCB-1248	т	ug/L	8082	<0.099							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	¹ , Facility Well/Spring Number				8004-4804		\backslash					
Facility's Lo	ocal Well or Spring Number (e.g.	, MW-1	., MW-2, et)	386							
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.099		\backslash					
11096-82-5	PCB-1260	т	ug/L	8082	<0.099			\setminus				
11100-14-4	PCB-1268	т	ug/L	8082	<0.099						/	
12587-46-1	Gross Alpha	т	pCi/L	9310	1.35	*					/	
12587-47-2	Gross Beta	т	pCi/L	9310	-0.413	*			\backslash			
10043-66-0	Iodine-131	т	pCi/L			*						
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.281	*						
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.35	*						
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	3.07	*						
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.0129	*						
10028-17-8	Tritium	Т	pCi/L	906.0	-62.4	*				\backslash		
s0130	Chemical Oxygen Demand	т	mg/L	410.4	23.5							
57-12-5	Cyanide	Т	mg/L	9012	<0.2							
20461-54-5	Iodide	т	mg/L	300.0	0.168	J						
S0268	Total Organic Carbon	т	mg/L	9060	5.89							
S0586	Total Organic Halides	т	mg/L	9020	0.148	В	/					
												Ν

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5201 MW220	MW220SG1-19	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 7. Rad error is 7.
		Gross beta		TPU is 6.56. Rad error is 6.23.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.344. Rad error is 0.344.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.32. Rad error is 2.32.
		Technetium-99		TPU is 12.4. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.911. Rad error is 0.906.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 128. Rad error is 128.
000-5202 MW221	MW221SG1-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.67. Rad error is 3.67.
		Gross beta		TPU is 7.65. Rad error is 7.32.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.299. Rad error is 0.299.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.86. Rad error is 2.83.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.609. Rad error is 0.608.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 140. Rad error is 140.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5242 MW222 M	1W222SG1-19	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.43. Rad error is 5.41.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.19. Rad error is 6.19.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.357. Rad error is 0.357.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.62. Rad error is 1.62.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.62. Rad error is 7.61.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.701. Rad error is 0.7.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 145. Rad error is 145.
000-5243 MW223 N	1W223SG1-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.7. Rad error is 4.7.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.23. Rad error is 7.21.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.425. Rad error is 0.424.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.75. Rad error is 1.75.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11.1. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.361. Rad error is 0.36.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 132. Rad error is 131.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5244 MW224	4 MW224SG1-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.11. Rad error is 6.1.
		Gross beta		TPU is 7.36. Rad error is 7.05.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.398. Rad error is 0.397.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.45. Rad error is 2.45.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 11.3. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.723. Rad error is 0.716.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 129. Rad error is 129.
004-4820 MW369	MW369UG1-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Boron	Ν	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.47. Rad error is 5.47.
		Gross beta		TPU is 8.56. Rad error is 7.68.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.702. Rad error is 0.693.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.35. Rad error is 2.33.
		Technetium-99		TPU is 13.9. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.48. Rad error is 1.45.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 131. Rad error is 130.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

U U	Facility Sample ID	Constituent	Flag	Description
004-4818 MW370 MV	/370UG1-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Boron	Ν	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.64. Rad error is 6.53.
		Gross beta		TPU is 18.2. Rad error is 12.5.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. ⁻ is 0.593. Rad error is 0.589.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.76. Rad error is 1.76.
		Technetium-99		TPU is 18.9. Rad error is 14.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.6. Rad error is 1.57.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 129. Rad error is 129.
004-4808 MW372 MV	/372UG1-19	Beryllium	LN	LCS or LCSD recovery outside of control limits and Sample sp (MS/MSD) recovery not within control limits
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.37. Rad error is 4.37.
		Gross beta		TPU is 24.1. Rad error is 13.9.
	lodine-131		Analysis of constituent not required and not performed.	
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.83. Rad error is 0.432.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.14. Rad error is 4.13.
		Technetium-99		TPU is 23.8. Rad error is 16.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.65. Rad error is 1.63.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 127. Rad error is 127.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4792 MW373 MW373UG1-19		Beryllium	LN	LCS or LCSD recovery outside of control limits and Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 5.65. Rad error is 5.63.
		Gross beta		TPU is 9.81. Rad error is 9.08.
		lodine-131		Analysis of constituent not required and not performed.
	Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 3.41. Rad error is 0.437.	
	Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.71. Rad error is 1.71.	
	Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 13.5. Rad error is 13.3.	
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.719. Rad error is 0.716.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 134. Rad error is 133.
004-4809 MW384	MW384SG1-19	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 5.2. Rad error is 5.16.
		Gross beta		TPU is 23.6. Rad error is 13.9.
		lodine-131		Analysis of constituent not required and not performed.
	Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.478. Rad error is 0.471.	
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 3.02. Rad error is 3.01.
		Technetium-99		TPU is 21.9. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.657. Rad error is 0.656.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 123. Rad error is 123.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

is 5.99. Rad error is 5.98. Gross beta TPU is 12.8. Rad error is 0.54. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.572. Rad error is 0.545. Strontium-90 Is 12.31. Rad error is 2.31. Technetium-99 TPU is 15.1. Rad error is 1.2. Thorium-230 Is 0.5. Rad error is 1.42. Tritium Is 0.5. Rad error is 1.42. Tritium Is 0.5. Rad error is 1.42. Tritium Indicates analyte/nuclide was analyzed for, but not detected. 1 is 15.2. Rad error is 1.42. N004-4804 MW386 MW386SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement Total Dissolved Solids * 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Gross beta U Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.527. Rad error is 0.502. Strontium-90 Indicates analyte/nuclide was analyzed for, but not detected. 1 is 2.68. Rad error is 2.68. Technetium-99 Indicates analyte/nuclide was analyzed for, but not detected. 1 is 2.68. Rad error is 2.68. Technetium-99	Monitoring Point	Facility Sample ID	Constituent	Flag	Description
Tantalum N Sample spike (MS/MSD) recovery outwith control limits 1,1,2.7-Etrachloroethane Y1 MS/MSD recovery outwite acceptance criteria Gross alpha U Indicates analyzed for, but not detected. 1 Is 599. Ref error is 5.98. Gross beta TPU is 128. Ref error is 5.98. Gross beta TPU is 128. Ref error is 0.545. Strontlum-90 U Radium-226 TPU is 15.1. Ref error is 0.449. Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.5. Rad error is 0.499. Tritum U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.5. Rad error is 0.499. 004-4804 MW386 MW386SG1-19 Nitrate & Nitrite H Analysis of constituent not requiree analyzed for, but not detected. 1 is 42. Ref error is 1.42. 004-4804 MW386 MW386SG1-19 Nitrate & Nitrite H Analysis of constituent not requiree analyzed for, but not detected. 1 is 45.4. Ref error is 1.42. 004-4804 MW386 MW386SG1-19 Nitrate & Nitrite H Analysis of constituent not required and not performed. 1,1,1,2.Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Indicates analyse/mucile was analyzed for, but not detected. 1 is 4.61. Rad error is 0.54. Gross beta U Indicates analyse/mucile was analyzed for, but not detected. 1 is 2.88. Red e	004-4810 MW385	MW385SG1-19	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclie was analyzed for, but not detected. Tis 5.98. Gross beta TPU is 128. Rad error is 0.56. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 15.1. Rad error is 0.545. Strontium-90 U Indicates analyte/nuclie was analyzed for, but not detected. Tis 0.5. Rad error is 0.499. Technetium-91 TrU is 10.5. Rad error is 0.499. TPU is 15.1. Rad error is 1.42. Thorium-230 U Indicates analyte/nuclie was analyzed for, but not detected. Tis 142. 004-4804 MW386 MW386SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement Total Dissolved Solids * Duplicate analysis not within control limits. 1,1,1,2-Tetrachloroethane Y1 MS/MSD eroovery outside acceptance criteria Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.527. Rad error is 0.502. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. Tis 4.61. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.527. Ra			Total Dissolved Solids	*	Duplicate analysis not within control limits.
Gross alpha U Indicates analyte/huclide was analyzed for, but not detected. 1 is 5.99. Rad error is 5.08. Gross beta TPU is 128. Rad error is 0.55. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.572. Rad error is 0.54. Strontium-90 U Indicates analyte/huclide was analyzed for, but not detected. 1 is 2.31. Technetium-99 TPU is 15.1. Rad error is 0.454. Thorium-230 U Indicates analyte/huclide was analyzed for, but not detected. 1 is 0.5. Rad error is 0.449. 004-4804 MW386 MW386SG1-19 Nitrate & Nitrite H Tritium U Indicates analyte/huclide was analyzed for, but not detected. 1 is 4.5. Rad error is 0.54. 004-4804 MW386 MW386SG1-19 Nitrate & Nitrite H Total Dissolved Solids * Duplicate analysis not within control limits. 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outide acceptance criteria Gross beta U Indicates analyte/huclide was analyzed for, but not detected. 1 is 2.68. Rad error is 5.40. Iodine-131 Analysis of constituent not require and not performed. Radium-226 TPU is 0.52. Rad error is 0.50. Strontium-90 U Indicates analyte/			Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
is 5.99. Rad error is 0.56. Gross beta TPU is 128. Rad error is 0.56. iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.572. Rad error is 0.545. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 2.31. Rad error is 0.454. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.5. Rad error is 0.499. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 12. Rad error is 0.499. Od4-4804 MW386 MW386SG1-19 Nitrate & Nitrite Total Dissolved Solids * Total Dissolved Solids * Duplicate analysis not within control limits. 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Gross beta U Iodine-131 Analysis of constitue was analyzed for, but not detected. 1 is 4.64. Rad error is 0.502. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 4.64. Rad error is 0.502. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 2.68. Rad eror is 0.502. Strontium-90			1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
Iodine-131 Analysis of constituent to required and not performed. Radium-226 TPU is 0.572. Rad error is 0.545. Strontium-90 Indicates analyterinucide was analyzed for, but not detected. 1 is 0.51. Rad error is 0.498. Technetium-99 TPU is 15.1. Rad error is 0.498. Otd-4804 MW386 MW386SG1-19 Nitrate & Nitrite Nitrate & Nitrite H Analysis of constituent not required and not performed. 1,1,1,2-Tetrachloroethane Y1 Gross alpha U Iodine-131 Indicates analyternucide was analyzed for, but not detected. 1 is 0.48. Rad error is 1.2. Iodine-131 U Indicates analyternucide was analyzed for, but not detected. 1 is 0.54. Rad error is 0.49. Oress alpha U Indicates analyternucide was analyzed for, but not detected. 1 is 5.54. Rad error is 2.65. Gross beta U Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.527. Rad error is 0.502. Strontium-90 U Indicates analyterinucide was analyzed for, but not detected. 1 is 5.64. Rad error is 1.10. O04-4815 MW387 MW387SG1-19 Nitrate & Nitrite H Analysis of constituent not required and not performed. 1 is 0.57. Rad error is 1.10.			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.99. Rad error is 5.98.
Radium-226 TPU is 0.572. Rad error is 0.545. Strontium-90 U Technetium-99 Tribition 1.8 derror is 0.345. Thorium-230 U Indicates analyterinuclie was analyzed for, but not detected. 1 is 0.5.8 derror is 0.49. D04-4804 MW386 MW386SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement Total Dissolved Solids * Duplcate analysis not within control limits. 1,1,1,2-Tetrachloroethane V1 Gross alpha U Indicates analyterhucide was analyzed for, but not detected. 1 is 5.4. Rad error is 5.4. Gross beta U Iodine-131 Kaium-226 Strontium-90 U Indicates analyterhucide was analyzed for, but not detected. 1 is 5.4. Rad error is 1.5.9. Technetium-99 U Indicates analyterhucide was analyzed for, but not detected. 1 is 5.4. Rad error is 1.5.4. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.527. Rad error is 0.502. Strontium-90 U Indicates analyterhucide was analyzed for, but not detected. 1 is 5.4. Rad error is 1.5.9. D04-4815 MW387 MW387SG1-19 Nitrate & Nitrite <			Gross beta		TPU is 12.8. Rad error is 10.5.
Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 2.31. Rad error is 2.32. 004-4804 MW386 MW386SG1-19 Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.5. Rad error is 1.42. 004-4804 MW386 MW386SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement 004-4804 MW386 MW386SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement 004-4804 Total Dissolved Solids * Duplicate analysis not within control limits. 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/inuclide was analyzed for, but not detected. 1 is 5.4. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.527. Rad error is 0.502. Strontium-90 U Indicates analyte/inuclide was analyzed for, but not detected. 1 is 0.708. Rad error is 0.708. 004-4815 MW387 MW387SG1-19 Nitrate & Nitrite H Total Dissolved Solids * Duplicate analyte/inuclide was analyzed for, but not detected. 1 is 0.708. Rad error is 0.706. 004-4815 MW387 MW387SG1-19 Nitrate & Nitrite H <td></td> <td></td> <td>lodine-131</td> <td></td> <td>Analysis of constituent not required and not performed.</td>			lodine-131		Analysis of constituent not required and not performed.
is 2.31. Rad error is 2.31. Technetium-99 TPU is 15.1. Rad error is 11.2. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.5. Rad error is 14.2. 004-4804 MW386 MW386SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement 104-4804 MW386 MW386SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement 11,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance citeria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 5.64. Rad error is 5.64. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 5.64. Rad error is 5.64. Radium-226 TPU is 0.527. Rad error is 0.502. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 2.68. Rad error is 2.68. Totium-230 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 2.7. Rad error is 1.28. 004-4815 MW387 MW387SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement 004-4815 MW387 MW387 MW387SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement. 004-4815 MW387 MW387 MW387 MW387 MW387SG1-19 Nit			Radium-226		TPU is 0.572. Rad error is 0.545.
Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.5. Rad error is 0.499. 004-4804 MW386 MW386SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement Total Dissolved Solids * Duplicate analysis not within control limits. 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 5.54. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 4.51. Rad error is 5.64. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.527. Rad error is 0.502. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.708. Rad error is 0.705. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.708. Rad error is 0.705. 004-4815 MW387 MW387 MW387SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement Total Dissolved Solids Duplicate analysis not within control limits. 1,1,1,2-Tetrachloroethane Y1 004-4815 MW387 MW387 MW387SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement <td></td> <td></td> <td></td> <td>U</td> <td></td>				U	
D04-4804 MW386 MW386SG1-19 Tritium U Indicates analyterhuclide was analyzed for, but not detected. 1 is 142. Rad error is 142. D04-4804 MW386 MW386SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement Total Dissolved Solids * Duplicate analysis not within control limits. 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 5.54. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 4.61. Rad error is 0.502. Normu-206 TPU is 0.527. Rad error is 0.502. Strontium-90 Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.77. Rad error is 0.705. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.79. Rad error is 12.5. Torium-230 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.79. Rad error is 12.5. D04-4815 MW387 MW387SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement Total Dissolved Solids * Duplicate analysis not within control limits. 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance cri					TPU is 15.1. Rad error is 11.2.
004-4804 MW386 MW386SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement 004-4804 MW386 MW386SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement 014-4804 MW386 MW386SG1-19 Total Dissolved Solids * Duplicate analysis not within control limits. 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 5.4. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. T is 4.61. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.527. Rad error is 0.502. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.78. Rad error is 0.702. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.79. Rad error is 0.709. 004-4815 MW387 MW387SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement 004-4815 MW387 MW387SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement 004-4815 MW387 MW387SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirem			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.5. Rad error is 0.499.
Total Dissolved Solids * Duplicate analysis not within control limits. 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 5.54. Rad error is 5.54. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. T is 4.61. Rad error is 4.61. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.527. Rad error is 0.502. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 2.88. Rad error is 2.68. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.709. Rad error is 0.705. Tritum U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.708. Rad error is 11.9. 004-4815 MW387 MW387SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement Total Dissolved Solids Duplicate analyte/nuclide was analyzed for, but not detected. T is 1.7. 004-4815 MW387 MW387SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement Total Dissolved Solids Duplicate analyte/nuclide was analyzed for, but not detected. T is 5.78. Gross alpha			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 142. Rad error is 142.
1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. T Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.527. Rad error is 0.502. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 2.68. Rad error is 2.68. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. T is 12. Rad error is 1.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T 004-4815 MW387 MW387SG1-19 Nitrate & Nitrite H Analysis analyte/nuclide was analyzed for, but not detected. T 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. T is 12. Rad error is 127. Rad error is 127. D04-4815 MW387 MW387SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement Total Dissolved Solids * 1,1,1,2-Tetrachloroethane Y1 MS/	004-4804 MW386	MW386SG1-19	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 5.54. Rad error is 5.54. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 4.61. Rad error is 4.61. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.527. Rad error is 0.502. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 2.68. Rad error is 2.68. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.			Total Dissolved Solids	*	Duplicate analysis not within control limits.
is 5.54. Rad error is 5.54. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 4.61. Rad error is 4.61. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.527. Rad error is 0.502. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 2.68. Rad error is 2.68. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 1.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 1.7. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 1.7. Trotium-230 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 1.2. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.7. Trotal Dissolved Solids * Duplicate analysis not within control limits. 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Gross beta TPU is 0.859. Rad error is 0.717. Iodine-131 Analysis of constituent not requir			1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
is 4.61. Rad error is 4.61. Analysis of constituent not required and not performed.Radium-226TPU is 0.527. Rad error is 0.502.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. 1 is 2.68. Rad error is 2.68.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. 1 			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.54. Rad error is 5.54.
Radium-226 TPU is 0.527. Rad error is 0.502. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 2.68. Rad error is 2.68. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 2.68. Rad error is 11.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705. Total Dissolved Solids * Duplicate analysis not within control limits. 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Gross beta TPU is 6.95. Rad error is 0.71. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.859. Rad error is 0.717.			Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.61. Rad error is 4.61.
Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. ⁻ Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. ⁻ Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. ⁻ Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. ⁻ Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. ⁻ Tritium U Indicates analyte/nuclide was analyzed for, but not detected. ⁻ 004-4815 MW387 MW387SG1-19 Nitrate & Nitrite H Analysis performed outside holding time requirement Total Dissolved Solids * Duplicate analysis not within control limits. 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Gross beta TPU is 6.95. Rad error is 6.73. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.859. Rad error is 0.717. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. ⁻ is 2.05. Rad error is 2.05. Technetium-99 Thorium-230 U Indicates analyte/nuc			lodine-131		Analysis of constituent not required and not performed.
 is 2.68. Rad error is 2.68. Technetium-99 Indicates analyte/nuclide was analyzed for, but not detected. 1 is 12. Rad error is 11.9. Thorium-230 Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705. Tritium Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 127. Rad error is 127. Rad error is 127. Nitrate & Nitrite H Analysis performed outside holding time requirement Total Dissolved Solids 1,1,1,2-Tetrachloroethane Gross alpha TPU is 6.95. Rad error is 6.73. Gross beta Iodiane-131 Radium-226 Ibdime-131 Radium-226 TPU is 0.859. Rad error is 0.717. Strontium-90 Indicates analyte/nuclide was analyzed for, but not detected. 1 is 2.05. Rad error is 16.9. Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.58. Rad error is 0.717. Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.58. Rad error is 0.717. Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.58. Rad error is 0.69. Technetium-99 Thorium-230 Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.58. Rad error is 16.9. Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.58. Rad error is 16.9. 			Radium-226		TPU is 0.527. Rad error is 0.502.
is 12. Rad error is 11.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.709. Rad error is 0.705. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 127. Rad error is 127. Notat E & Nitrite H Analysis performed outside holding time requirement Total Dissolved Solids * Duplicate analysis not within control limits. 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha Gross beta Gross beta Iddine-131 Radium-226 Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 2.05. Rad error is 16.9. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.58. Rad error is 16.9. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.58. Rad error is 0.579. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.58. Rad error is 0.579. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.58. Rad error is 0.579. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. 1 is 0.58. Rad error is 0.579.			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.68. Rad error is 2.68.
 is 0.709. Rad error is 0.705. Tritium Indicates analyte/nuclide was analyzed for, but not detected. T is 127. Rad error is 127. Nitrate & Nitrite H Analysis performed outside holding time requirement Total Dissolved Solids 1,1,1,2-Tetrachloroethane Gross alpha Gross beta Iodine-131 Rad error is 0.717. Strontium-226 Technetium-99 Thorium-230 Indicates analyte/nuclide was analyzed for, but not detected. T is 0.58. Rad error is 16.9. Indicates analyte/nuclide was analyzed for, but not detected. T is 0.58. Rad error is 0.717. 			Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 12. Rad error is 11.9.
is 127. Rad error is 127. 004-4815 MW387 MW387SG1-19 Nitrate & Nitrite Total Dissolved Solids 1,1,1,2-Tetrachloroethane Gross alpha Gross beta Iodine-131 Radium-226 Strontium-90 Thorium-230 Tritium Nitrate & Nitrite H Analysis performed outside holding time requirement Duplicate analysis not within control limits. MS/MSD recovery outside acceptance criteria TPU is 6.95. Rad error is 6.73. TPU is 34.5. Rad error is 16.9. Analysis of constituent not required and not performed. TPU is 0.859. Rad error is 0.717. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.58. Rad error is 16.9. TPU is 2.9.9. Rad error is 16.9. U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.58. Rad error is 0.579. Tritium U U			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.709. Rad error is 0.705.
Total Dissolved Solids*Duplicate analysis not within control limits.1,1,1,2-TetrachloroethaneY1MS/MSD recovery outside acceptance criteriaGross alphaTPU is 6.95. Rad error is 6.73.Gross betaTPU is 34.5. Rad error is 16.9.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.859. Rad error is 0.717.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. Tis 2.05.Technetium-99TPU is 29.9. Rad error is 16.9.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. Tis 0.58. Rad error is 0.579.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. Tis 0.58.			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 127. Rad error is 127.
1,1,1,2-TetrachloroethaneY1MS/MSD recovery outside acceptance criteriaGross alphaTPU is 6.95. Rad error is 6.73.Gross betaTPU is 34.5. Rad error is 16.9.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.859. Rad error is 0.717.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TTechnetium-99TPU is 29.9. Rad error is 16.9.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. Tis 0.58. Rad error is 0.579.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. T	004-4815 MW387	MW387SG1-19	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
Gross alphaTPU is 6.95. Rad error is 6.73.Gross betaTPU is 34.5. Rad error is 16.9.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.859. Rad error is 0.717.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. Tis 2.05. Rad error is 2.05.Technetium-99Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. Tis 0.58. Rad error is 0.579.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. T			Total Dissolved Solids	*	Duplicate analysis not within control limits.
Gross betaTPU is 34.5. Rad error is 16.9.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.859. Rad error is 0.717.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. Tis 2.05. Rad error is 2.05.Technetium-99TPU is 29.9. Rad error is 16.9.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. Tis 0.58. Rad error is 0.579.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. Tis 0.58. Rad error is 0.579.			1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.859. Rad error is 0.717.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. T is 2.05. Rad error is 2.05.Technetium-99TPU is 29.9. Rad error is 16.9.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. T is 0.58. Rad error is 0.579.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. T is 0.58. Rad error is 0.579.			Gross alpha		TPU is 6.95. Rad error is 6.73.
Radium-226TPU is 0.859. Rad error is 0.717.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. T is 2.05. Rad error is 2.05.Technetium-99TPU is 29.9. Rad error is 16.9.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. T is 0.58. Rad error is 0.579.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. T is 0.58. Rad error is 0.579.			Gross beta		TPU is 34.5. Rad error is 16.9.
Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 2.05. Rad error is 2.05. Technetium-99 TPU is 29.9. Rad error is 16.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.58. Rad error is 0.579. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.58.			lodine-131		Analysis of constituent not required and not performed.
is 2.05. Rad error is 2.05. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. Tis 0.58. Rad error is 0.579. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. Tis 0.58. Rad error is 0.579.			Radium-226		TPU is 0.859. Rad error is 0.717.
Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. I is 0.58. Rad error is 0.579. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. I			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.05. Rad error is 2.05.
is 0.58. Rad error is 0.579. Tritium U Indicates analyte/nuclide was analyzed for, but not detected.			Technetium-99		TPU is 29.9. Rad error is 16.9.
			Thorium-230	U	
			Tritium	U	

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4816 MW38	88 MW388SG1-19	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
	Total Dissolved Solids	*	Duplicate analysis not within control limits.	
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.82. Rad error is 5.82.
		Gross beta		TPU is 19.1. Rad error is 13.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.564. Rad error is 0.524.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.76. Rad error is 2.76.
		Technetium-99		TPU is 18.1. Rad error is 12.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.15. Rad error is 1.14.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 149. Rad error is 148.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample was collected.
		Chloride		During sampling, the well was dry; therefore, no sample was collected.
		Fluoride		During sampling, the well was dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample was collected.
		Sulfate		During sampling, the well was dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample was collected.
		рН		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample wa collected.
		Temperature		During sampling, the well was dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well was dry; therefore, no sample wa collected.
		Antimony		During sampling, the well was dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well was dry; therefore, no sample wa collected.
		Barium		During sampling, the well was dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well was dry; therefore, no sample was collected.
		Boron		During sampling, the well was dry; therefore, no sample was collected.
		Cadmium		During sampling, the well was dry; therefore, no sample was collected.
		Calcium		During sampling, the well was dry; therefore, no sample was collected.
		Chromium		During sampling, the well was dry; therefore, no sample was collected.
		Cobalt		During sampling, the well was dry; therefore, no sample was collected.
		Copper		During sampling, the well was dry; therefore, no sample was collected.
		Iron		During sampling, the well was dry; therefore, no sample wa collected.
		Lead		During sampling, the well was dry; therefore, no sample was collected.
		Magnesium		During sampling, the well was dry; therefore, no sample was collected.
		Manganese		During sampling, the well was dry; therefore, no sample was collected.
		Mercury		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample was collected.
		Nickel		During sampling, the well was dry; therefore, no sample was collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample wa collected.
		Selenium		During sampling, the well was dry; therefore, no sample wa collected.
		Silver		During sampling, the well was dry; therefore, no sample wa collected.
		Sodium		During sampling, the well was dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well was dry; therefore, no sample wa collected.
		Thallium		During sampling, the well was dry; therefore, no sample wa collected.
		Uranium		During sampling, the well was dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well was dry; therefore, no sample wa collected.
		Zinc		During sampling, the well was dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample wa collected.
		Acetone		During sampling, the well was dry; therefore, no sample wa collected.
		Acrolein		During sampling, the well was dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample wa collected.
		Benzene		During sampling, the well was dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well was dry; therefore, no sample wa collected.
		Styrene		During sampling, the well was dry; therefore, no sample wa collected.
		Toluene		During sampling, the well was dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample wa collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u>

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Chloroform		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample was collected.
		Gross beta		During sampling, the well was dry; therefore, no sample was collected.
		lodine-131		During sampling, the well was dry; therefore, no sample was collected.
		Radium-226		During sampling, the well was dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample was collected.
		Tritium		During sampling, the well was dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample was collected.
		Cyanide		During sampling, the well was dry; therefore, no sample was collected.
		lodide		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

3004-4811 MW390	MW390SG1-19	T ()		
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 4.63. Rad error is 4.62.
		Gross beta		TPU is 12.4. Rad error is 10.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.528. Rad error is 0.528.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.71. Rad error is 2.71.
		Technetium-99		TPU is 14.2. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.526. Rad error is 0.526.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 157. Rad error is 157.
8004-4805 MW391	MW391SG1-19	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha		TPU is 6.03. Rad error is 5.86.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 7.75. Rad error is 7.67.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.33. Rad error is 0.33.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.31. Rad error is 2.29.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 11.4. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.489. Rad error is 0.488.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 103. Rad error is 103.
004-4806 MW392	MW392SG1-19	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 4.22. Rad error is 4.2.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 6.73. Rad error is 6.69.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.39. Rad error is 0.39.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 1.46. Rad error is 1.46.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 9.48. Rad error is 9.47.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.381. Rad error is 0.38.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 105. Rad error is 104.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Bit State TPU is 7.48. Rad error is 5.6. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analytenuclide was analyzed for, but not detected. Strontium-90 U Indicates analytenuclide was analyzed for, but not detected. Technetium-99 U Indicates analytenuclide was analyzed for, but not detected. Technetium-99 U Indicates analytenuclide was analyzed for, but not detected. Is 0.83. Rad error is 0.395. Thorium-230 U Indicates analytenuclide was analyzed for, but not detected. 8004-4802 MW394 MW394SG1-19 Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analytenuclide was analyzed for, but not detected. Is 70.8. Rad error is 5.8. Gross beta U Indicates analytenuclide was analyzed for, but not detected. Is 70.8. Rad error is 5.8. Gross beta U Indicates analytenuclide was analyzed for, but not detected. Is 70.8. Rad error is 5.8. Gross beta U Indicates analytenuclide was analyzed for, but not detected. Is 70.8. Rad error is 5.8. Gross alpha U Indicates analytenuclide was analyzed for, but not detected. Is 6.8. Rad error is 5.8.	Monitoring Point	Facility Sample ID	Constituent	Flag	Description
Gross beta TPU is 7.48. Rad error is 5.6. Gross beta TPU is 7.48. Rad error is 7.22. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyterinuclide was analyzed for, but not detected. Strontium-90 U Indicates analyterinuclide was analyzed for, but not detected. Technetium-99 U Indicates analyterinuclide was analyzed for, but not detected. Thorium-230 U Indicates analyterinuclide was analyzed for, but not detected. Titium U Indicates analyterinuclide was analyzed for, but not detected. 8004-4802 MW394 MW394SG1-19 Tantalum Cross alpha U Indicates analyterinuclide was analyzed for, but not detected. Gross alpha U Indicates analyterinuclide was analyzed for, but not detected. Gross beta U Indicates analyterinuclide was analyzed for, but not detected. Iodine-131 Cross Beta U Indicates analyterinuclide was analyzed for, but not detected. Iodine-131 Gross beta U Indicates analyterinuclide was analyzed for, but not detected. Iodine-131 Rad error is 1.8.8. Rad error is 1.8.8.8. Rad error is 1.8.8.	8004-4807 MW393 N	1W393SG1-19	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
Iodine-131 Analysis of constituent not required and not performed. Radium-226 U in dicates analyzed for, but not detected. is 0.285. Rad error is 0.285. Strontium-90 U Indicates analyzed for, but not detected. is 2.43. Rad error is 2.43. Technetium-99 U Indicates analyzed for, but not detected. is 0.398. Rad error is 0.285. Thorium-230 U Indicates analyze/nuclide was analyzed for, but not detected. is 0.398. Rad error is 0.385. 8004-4802 MW394 MW394SG1-19 Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha 8004-4802 MW394 MW394SG1-19 Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 6. Rad error is 5.88. Goross beta U Idicates analyte/nuclide was analyzed for, but not detected. is 0.413. Rad error is 0.413. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.413. Rad error is 0.43. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.413. Rad error is 0.413. Strontium-90 U Micicates analyte/nuclide was analyzed for, but not detected. is 0.413. Rad error is 0.413. Stronti			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 5.66. Rad error is 5.6.
Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.286. Rad error is 0.285. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 2.43. Rad error is 1.43. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.896. Rad error is 10.80. 3004-4802 MW394 MW394SG1-19 Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. is 0.898. Rad error is 10.4. 3004-4802 MW394 MW394SG1-19 Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. is 0.488. Rad error is 7.4. Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.413. Rad error is 1.68. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.413. Rad error is 1.68. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.413. Rad error is 1.68. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.413. Rad error is 1.68. Strontium-90 U			Gross beta		TPU is 7.48. Rad error is 7.22.
Strontium-90 U Indicates analyte/nuclde was analyzed for, but not detected. Is 243. Rad error is 2.285. Technetium-99 U Indicates analyte/nuclde was analyzed for, but not detected. Is 2.43. Rad error is 2.43. Thorium-230 U Indicates analyte/nuclde was analyzed for, but not detected. Is 0.388. Rad error is 0.386. Tritium U Indicates analyte/nuclde was analyzed for, but not detected. Is 0.388. Rad error is 0.485. Tritium I Indicates analyte/nuclde was analyzed for, but not detected. Is 0.588. Rad error is 0.485. Gross alpha U Indicates analyte/nuclde was analyzed for, but not detected. Is 7.96. Rad error is 7.4. Iodine-131 Indicates analyte/nuclde was analyzed for, but not detected. Is 7.96. Rad error is 5.88. Gross beta U Indicates analyte/nuclde was analyzed for, but not detected. Is 7.96. Rad error is 7.4. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclde was analyzed for, but not detected. Is 1.88. Rad error is 1.68. Technetium-99 U Indicates analyte/nuclde was analyzed for, but not detected. Is 1.88. Rad error is 0.413. Rad error is 0.413. Rad error is 1.68. Technetium-99 U Indicates analyte/nuclde was analyzed for, but not detected. Is 1.88. Rad error is 0.413. Rad error is 0.413. Rad error is 0.413. Rad error is 0.413. Rad error is 0.413. Gross alpha U Indicates analyte/nuclde was analyzed for, but not detected. Is 1.88. Rad error is 0.506. Rad error is 0.506. Rad error is 0.506. Rad error is 0.506. Rad error is 0.506. Rad error is 0.508. Gross beta U Indicates analyte/nuclde was analyzed for, but not detected. Is 0.506. Rad error is 0.508. Gross beta U Indicates analyte/nuclde was analyzed for, but not detected. Is 0.508. Rad error is 0.508. Gross beta U Indicates analyte/nuclde was analyzed for, but not detected. Is 0.708. Rad error is 0.508. Gross beta U Indicates analyte/nuclde was analyzed for, but not detected. Is 0.709. Rad error is 0.673. Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclde was analyzed			lodine-131		Analysis of constituent not required and not performed.
is 2.43. Rad error is 2.43. Technetium-99 U Indicates analyte/nuclde was analyzed for, but not detected. is 1.5. Rad error is 0.886. Tritium U Indicates analyte/nuclde was analyzed for, but not detected. is 105. Rad error is 10.4. S004-4802 MW394 MW394SG1-19 Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclde was analyzed for, but not detected. is 7.96. Rad error is 5.88. Gross beta U Indicates analyte/nuclde was analyzed for, but not detected. is 7.96. Rad error is 0.41. Strontium-90 U Indicates analyte/nuclde was analyzed for, but not detected. is 7.96. Rad error is 0.41. Strontium-90 U Indicates analyte/nuclde was analyzed for, but not detected. is 1.8. Rad error is 0.413. Brontium-90 U Indicates analyte/nuclde was analyzed for, but not detected. is 1.98. Rad error is 1.68. Gross beta U Indicates analyte/nuclde was analyzed for, but not detected. is 1.98. Rad error is 1.68. Strontium-90 U Indicates analyte/nuclde was analyzed for, but not detected. is 1.98. Rad error is 1.68. Technetium-99 U Indicates analyte/nuclde was analyzed for, but not detected. is 1.98. Rad error is 1.68. Brootham-230 U Indicates analyte/nuclde was analyzed for, but not detected. is 1.98. Rad error is 1.90. Brootham-230 U Indicates analyte/nuclde was analyzed for, but not detected. is 1.98. Rad error is 1.90. Brootham-230 U Indicates analyte/nuclde was analyzed for, but not detected. is 1.98. Rad error is 1.90. Brootham-230 U Indicates analyte/nuclde was analyzed for, but not detected. is 3.48. Rad error is 1.90. Brootham-131 Aradysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclde was analyzed for, but not detected. is 0.780. Rad error is 0.78. Coriss beta U Indicates analyte/nuclde was analyzed for, but not detected. is 0.780. Rad error is 0.78. Strontium-90 U Indicates analyte/nuclde was analyzed for, but not detected. is 0.780. Rad error is 0.78. Constituent not required and not performed. Radium-226 U			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.285. Rad error is 0.285.
is 11.5. Rad error is 11.5. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.898. Rad error is 0.895. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. is 105. Rad error is 0.895. 3004-4802 MW394 MW394SG1-19 Tantatum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. is 7.96. Rad error is 5.88. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 7.96. Rad error is 1.4. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.413. Rad error is 1.68. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.413. Rad error is 1.68. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.506. Rad error is 1.68. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. is 1.1. Rad error is 1.69. 3004-4801 MW395 MW395SG1-19 Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. is 1.5.9. Rad error is 3.46. Gross alpha U Indicates analyte/nuclide was analyzed for, but not de			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.43. Rad error is 2.43.
is 0.898. Rad error is 0.895. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. is 105. Rad error is 10.49. 3004-4802 MW394 MW394SG1-19 Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. is 6. Rad error is 5.48. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 7.96. Rad error is 7.74. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 1.68. Rad error is 1.68. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 1.11. Rad error is 1.68. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 1.98. Rad error is 1.95. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. is 1.98. Rad error is 1.94. 3004-4801 MW395 MW395SG1-19 Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. is 4.6. Rad error is 3.46. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 4.6. Rad error is 3.46. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 4.6. Rad error is 3.46. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 4.6. Rad error is 3.46. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 0.780. Rad error is 0.763. Iddine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.780. Rad error is 0.763. Tritium 90 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.768. Rad error is 0.764. Tad error is 0.768. Trotium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.768. Rad error is 0.768. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.768.			Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 11.5. Rad error is 11.5.
is 105. Rad error is 104. is 105. Rad error is 104. is 0.04-4802 MW394 MW394SG1-19 Tantalum Gross alpha Gross alpha Gross beta Iodiane-131 Radium-226 Strontium-90 Horium-230 Gross beta Indicates analyte/multide was analyzed for, but not detected. is 7.98. Rad error is 7.74. Iodine-131 Radium-226 Junicates analyte/multide was analyzed for, but not detected. is 0.413. Rad error is 0.413. Strontium-90 Junicates analyte/multide was analyzed for, but not detected. is 1.68. Rad error is 0.413. Strontium-90 Junicates analyte/multide was analyzed for, but not detected. is 1.68. Rad error is 0.413. Strontium-90 Junicates analyte/multide was analyzed for, but not detected. is 1.68. Rad error is 0.586. Technetium-99 Junicates analyte/multide was analyzed for, but not detected. is 1.68. Rad error is 0.586. Tritium Junicates analyte/multide was analyzed for, but not detected. is 1.69. Rad error is 1.59. Strontium-90 Junicates analyte/multide was analyzed for, but not detected. is 1.69. Rad error is 0.596. Tritium Junicates analyte/multide was analyzed for, but not detected. is 1.69. Rad error is 0.596. Tritium Junicates analyte/multide was analyzed for, but not detected. is 3.60. Rad error is 0.596. Tritium Junicates analyte/multide was analyzed for, but not detected. is 3.40. Rad error is 0.596. Tritium Junicates analyte/multide was analyzed for, but not detected. is 3.40. Rad error is 0.596. Junicates analyte/multide was analyzed for, but not detected. is 0.769. Rad error is 0.73. Junicates analyte/multide was analyzed for, but not detected. Junicates analyte/multide was analyzed for, but not detecte					
Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. is 6. Rad error is 5.88. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 7.96. Rad error is 7.74. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.413. Rad error is 10.413. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 1.68. Rad error is 1.68. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 1.1. Rad error is 1.58. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 1.59. Rad error is 1.59. S004-4801 MW395 MW395SG1-19 Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. is 3.46. Rad error is 3.46. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 0.596. Rad error is 6.73. Iodine-131 Analysis of constituent not required and not performed. Indicates analyte/nuclide was analyzed for, but not detected. is 0.768. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 0.768. Indicates analyte/nuclide was analyzed for, b					is 105. Rad error is 104.
is 6. Rad error is 5.88. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 7.96. Rad error is 7.74. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.413. Rad error is 0.413. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 1.68. Rad error is 1.68. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 1.11. Rad error is 1.68. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.596. Rad error is 0.595. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. is 0.596. Rad error is 15. 3004-4801 MW395 MW395SG1-19 Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 3.46. Rad error is 3.46. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 0.768. Rad error is 0.768. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.768. Rad error is 0.768.	3004-4802 MW394 N	1W394SG1-19	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
 is 7.96. Rad error is 7.74. Iodine-131 Radium-226 Indicates analyte/nuclide was analyzed for, but not detected. is 0.413. Rad error is 0.413. Strontium-90 Indicates analyte/nuclide was analyzed for, but not detected. is 1.68. Rad error is 1.68. Technetium-99 Indicates analyte/nuclide was analyzed for, but not detected. is 1.68. Rad error is 1.68. Technetium-99 Indicates analyte/nuclide was analyzed for, but not detected. is 1.69. Rad error is 1.95. Tritium Indicates analyte/nuclide was analyzed for, but not detected. is 1.59. Rad error is 1.59. Strontium-230 Indicates analyte/nuclide was analyzed for, but not detected. is 1.59. Rad error is 1.59. Strontium Indicates analyte/nuclide was analyzed for, but not detected. is 1.59. Rad error is 1.59. Strontium Gross alpha Indicates analyte/nuclide was analyzed for, but not detected. is 3.46. Rad error is 3.46. Gross beta Indicates analyte/nuclide was analyzed for, but not detected. is 6.9. Rad error is 6.73. Iodine-131 Analysis of constituent not required and not performed. Radium-226 Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768. Strontium-90 Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768. Strontium-90 Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.764. Technetium-99 Indicates analyte/nuclide was analyzed for, but not detected. is 0.675. Rad error is 0.674. Tritium Indicates analyte/nuclide was analyzed for, but not detected. is 0.675. Rad error is 0.674. 			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 6. Rad error is 5.88.
Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.413. Rad error is 0.413. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 1.68. Rad error is 1.68. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 1.68. Rad error is 1.68. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.596. Rad error is 0.595. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. is 0.596. Rad error is 0.595. 3004-4801 MW395 MW395SG1-19 Tantalum Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. is 3.46. Rad error is 3.46. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 6.9. Rad error is 6.73. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768. Corine-131 Constituent not required and not performed. Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768. Strontium-90 U Indicat			Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. Tf is 7.96. Rad error is 7.74.
Strontium-90 Indicates analyte/nuclide was analyzed for, but not detected. is 1.68. Rad error is 1.68. Technetium-99 Indicates analyte/nuclide was analyzed for, but not detected. Thorium-230 Indicates analyte/nuclide was analyzed for, but not detected. is 1.1. Rad error is 1.8. Thorium-230 Indicates analyte/nuclide was analyzed for, but not detected. is 0.596. Rad error is 0.595. Tritium Indicates analyte/nuclide was analyzed for, but not detected. is 159. Rad error is 159. 8004-4801 MW395 MW395SG1-19 Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha Indicates analyte/nuclide was analyzed for, but not detected. is 3.46. Rad error is 3.46. Iodine-131 Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. Is 0.769. Rad error is 0.768. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. Is 0.769. Rad error is 0.768. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. Is 0.769. Rad error is 0.768. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. Is 0.769. Rad error is 0.768. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. <td></td> <td></td> <td>lodine-131</td> <td></td> <td>Analysis of constituent not required and not performed.</td>			lodine-131		Analysis of constituent not required and not performed.
is 1.68. Rad error is 1.68. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 1.1. Rad error is 1.1 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.596. Rad error is 0.595. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. is 0.596. Rad error is 0.595. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. is 0.596. Rad error is 159. Rad error is 159. Rad error is 159. Rad error is 159. Rad error is 3.46. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. is 3.46. Rad error is 3.46. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 6.9. Rad error is 6.73. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768. Itechnetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.7. Rad error is 0.768. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.75. Rad error is 0.67. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. is 0.75. Rad error is 0.674. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. is 0.675. Rad error is 0.674.			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.413. Rad error is 0.413.
is 11.1. Rad error is 11. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.596. Rad error is 0.595. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. is 159. Rad error is 159. 3004-4801 MW395 MW395SG1-19 Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. is 3.46. Rad error is 3.46. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 6.9. Rad error is 6.73. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 2.61. Rad error is 2.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.775. Rad error is 0.764. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.675. Rad error is 0.674. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. is 0.675. Rad error is 0.674. Tritium U Indicates analyte/nuclide was analyzed for, but not detected.			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 1.68. Rad error is 1.68.
is 0.596. Rad error is 0.595.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. is 159. Rad error is 159.3004-4801 MW395 MW395SG1-19TantalumNSample spike (MS/MSD) recovery not within control limitsGross alphaUIndicates analyte/nuclide was analyzed for, but not detected. is 3.46. Rad error is 3.46.Gross betaUIndicates analyte/nuclide was analyzed for, but not detected. is 6.9. Rad error is 6.73.Iodine-131Analysis of constituent not required and not performed.Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. is 2.61. Rad error is 2.61.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. is 0.768.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. is 0.768.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. is 0.675. Rad error is 0.674.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. is 0.675. Rad error is 0.674.			Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 11.1. Rad error is 11.
is 159. Rad error is 159. 8004-4801 MW395 MW395SG1-19 Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. is 3.46. Rad error is 3.46. Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. is 6.9. Rad error is 6.73. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 2.61. Rad error is 2.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.77. Rad error is 1.0.6. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.675. Rad error is 0.674. Tritium U Indicates analyte/nuclide was analyzed for, but not detected.			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.596. Rad error is 0.595.
Gross alphaUIndicates analyte/nuclide was analyzed for, but not detected. is 3.46. Rad error is 3.46.Gross betaUIndicates analyte/nuclide was analyzed for, but not detected. is 6.9. Rad error is 6.73.Iodine-131Analysis of constituent not required and not performed.Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. is 2.61. Rad error is 2.61.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. is 2.61. Rad error is 10.6.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. is 0.675. Rad error is 0.674.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. is 0.675. Rad error is 0.674.			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 159. Rad error is 159.
is 3.46. Rad error is 3.46. Gross beta Iodine-131 Radium-226 Strontium-90 Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768. Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768. Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768. Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768. Indicates analyte/nuclide was analyzed for, but not detected. is 0.77. Rad error is 10.6. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.675. Rad error is 0.674. Tritium U Indicates analyte/nuclide was analyzed for, but not detected.	3004-4801 MW395 N	1W395SG1-19	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
is 6.9. Rad error is 6.73. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 2.61. Rad error is 2.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 10.7. Rad error is 10.6. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.675. Rad error is 0.674. Tritium U Indicates analyte/nuclide was analyzed for, but not detected.			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 3.46. Rad error is 3.46.
Radium-226UIndicates analyte/nuclide was analyzed for, but not detected. is 0.769. Rad error is 0.768.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. is 2.61. Rad error is 2.61.Technetium-99UIndicates analyte/nuclide was analyzed for, but not detected. is 10.7. Rad error is 10.6.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. is 0.675. Rad error is 0.674.TritiumUIndicates analyte/nuclide was analyzed for, but not detected.			Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 6.9. Rad error is 6.73.
is 0.769. Rad error is 0.768. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. is 2.61. Rad error is 2.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 10.7. Rad error is 10.6. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.675. Rad error is 0.674. Tritium U Indicates analyte/nuclide was analyzed for, but not detected.			lodine-131		Analysis of constituent not required and not performed.
is 2.61. Rad error is 2.61. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected. is 10.7. Rad error is 10.6. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.675. Rad error is 0.674. Tritium U Indicates analyte/nuclide was analyzed for, but not detected.			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.769. Rad error is 0.768.
is 10.7. Rad error is 10.6. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. is 0.675. Rad error is 0.674. Tritium U Indicates analyte/nuclide was analyzed for, but not detected.			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.61. Rad error is 2.61.
is 0.675. Rad error is 0.674.TritiumUIndicates analyte/nuclide was analyzed for, but not detected.			Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 10.7. Rad error is 10.6.
			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. Th is 0.675. Rad error is 0.674.
			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. This 156. Rad error is 156.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4803 MW39	6 MW396SG1-19	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 4.83. Rad error is 4.82.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 6.6. Rad error is 6.55.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.575. Rad error is 0.575.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.76. Rad error is 2.74.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 10.5. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.703. Rad error is 0.699.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 102. Rad error is 102.
004-4817 MW39	7 MW397SG1-19	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 6.08. Rad error is 6.07.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. Th is 5.64. Rad error is 5.58.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. Th is 0.475. Rad error is 0.472.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TI is 3.94. Rad error is 3.93.
		Technetium-99		TPU is 8.44. Rad error is 8.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TI is 0.664. Rad error is 0.662.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. Th is 135. Rad error is 135.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG1-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha		TPU is 6.37. Rad error is 6.12.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.21. Rad error is 5.21.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.3. Rad error is 0.298.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.09. Rad error is 2.09.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 8.81. Rad error is 8.78.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.629. Rad error is 0.627.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 125. Rad error is 125.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG1-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.97. Rad error is 4.91.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.09. Rad error is 4.09.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.472. Rad error is 0.445.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.44. Rad error is 3.44.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.66. Rad error is 7.66.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.998. Rad error is 0.984.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 142. Rad error is 142.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG1-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

C-67

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG1-19	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG1-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG1-19	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG1-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

C-71

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG1-19	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
004-4804 MW386	6 MW386DSG1-19	Nitrate & Nitrite	н	Analysis performed outside holding time requirement
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. This 5.82. Rad error is 5.82.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 4.06. Rad error is 4.06.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. This 0.488. Rad error is 0.483.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.5. Rad error is 3.5.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. This 7.89. Rad error is 7.88.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. This 0.503. Rad error is 0.502.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 122. Rad error is 122.

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT—QUARTERLY, 4th CY 2018 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-980-008-982/1</u> Lab ID: <u>None</u> For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the fourth quarter 2018 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The fourth quarter 2018 data used to conduct the statistical analyses were collected in October 2018. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that exceeded the historical background, using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
MW390 ¹	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

¹**NOTE:** The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient. **BG:** upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this guarter and a groundwater sample could not be collected.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

 $TL = X + (K \times S)$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, fourth quarter 2018. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Parameters
 Acetone
Aluminum
Beta Activity
Boron
Bromide
Calcium
Chemical Oxygen Demand (COD)
Chloride
cis-1,2-Dichloroethene
Cobalt
Conductivity
Copper
Dissolved Oxygen
Dissolved Solids
Iodide
Iron
Magnesium
Manganese
Molybdenum
Nickel
Oxidation-Reduction Potential
pH*
Potassium
Radium-226
Sodium
Sulfate
Technetium-99
Total Organic Carbon (TOC)
Total Organic Halides (TOX)
Trichloroethene
Vanadium
Zinc

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

•

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	2	2	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Boron	4	0	4	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	1	3	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	2	2	Yes
Conductivity	4	0	4	Yes
Copper	4	0	4	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No
Iodide	4	2	2	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	0	4	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	1	3	Yes
Nickel	4	1	3	Yes
Oxidation-Reduction Potential	4	0	4	Yes
PCB, Total	4	4	0	No
PCB-1016	4	4	0	No
PCB-1221	4	4	0	No
PCB-1232	4	4	0	No
PCB-1242	4	4	0	No
PCB-1248	4	4	0	No
PCB-1254	4	4	0	No
PCB-1260	4	4	0	No
PCB-1268	4	4	0	No
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	3	1	Yes
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Vanadium	4	3	1	Yes
Vinyl Acetate	4	4	0	No
Zinc	4	2	2	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	10	1	Yes
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	8	3	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Beta activity	11	4	7	Yes
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	3	8	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	10	1	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	6	5	Yes
Conductivity	11	0	11	Yes
Copper	11	0	11	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Oxygen Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	<u>Yes</u> No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	5	6	Yes
Magnesium	11	0	11	Yes
Manganese	11	1	10	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	5	6	Yes
Nickel	11	0	11	Yes
Oxidation-Reduction Potential	11	0	11	Yes
PCB, Total	11	11	0	No
PCB-1016	11	11	0	No
PCB-1221	11	11	0	No
PCB-1232	11	11	0	No
PCB-1242	11	11	0	No
PCB-1248	11	11	0	No
PCB-1254	11	11	0	No
PCB-1260	11	11	0	No
PCB-1268	11	11	0	No
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	10	1	Yes
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	6	5	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	1	10	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	5	6	Yes
Trichlorofluoromethane	11	11	0	No
Vanadium	11	8	3	Yes
Vinyl Acetate	11	11	0	No
Zinc	11	5	6	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	4	3	Yes
Antimony	7	7	0	No
Beryllium	7	7	0	No
Beta activity	7	3	4	Yes
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	2	5	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	6	1	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromoethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodide	7	7	0	No
	7	2	5	Yes
Iron	D 11	2	3	r es

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Magnesium	7	0	7	Yes
Manganese	7	1	6	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	4	3	Yes
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	7	0	No
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	7	0	No
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	6	1	Yes
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	3	4	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	1	6	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	2	5	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	2	5	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	2	5	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 28, 31, and 30 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

<u>UCRS</u>

This quarter's results identified exceedances of historical background UTL for oxidation-reduction potential and technetium-99.

<u>URGA</u>

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate, and technetium-99.

<u>LRGA</u>

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, chemical oxygen demand (COD), conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: Oxidation-reduction potential	MW370: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW390: Oxidation-reduction potential, technetium-99	MW221: Oxidation-reduction potential	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate
MW393: Oxidation-reduction potential	MW369: Technetium-99	MW385: Oxidation-reduction potential, radium-226, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW372: Beta activity, calcium, dissolved solids, magnesium, sulfate, technetium-99	MW388: Beta activity, oxidation-reduction potential, sulfate, technetium-99
	MW384: Beta activity, oxidation- reduction potential, sulfate, technetium-99	MW392: Oxidation-reduction potential
	MW387: Beta activity, magnesium, oxidation-reduction potential, radium-226, sulfate, technetium-99	MW397: Chemical oxygen demand (COD), oxidation-reduction potential
	MW391: Magnesium, sulfate	

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	1.78	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentrations in MW372, MW384, and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentrations in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372, MW387, and MW391.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220, MW221, MW384, and MW387.
pH	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.59	Current results exceed statistically derived historical background concentration in MW387.
Sodium	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW372, MW384, MW387, and MW391.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW372, MW384, and MW387.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.08	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

CV: coefficient of variation * If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW370 and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	Current results exceed statistically derived historical background concentration in MW397.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, and MW397.
pH	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.74	Current results exceed statistically derived historical background concentration in MW385.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 2, 8, and 10 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

URGA	LRGA
MW369: Technetium-99	MW370: Beta activity, sulfate, technetium-99
MW372: Beta activity, calcium, magnesium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
MW387: Beta activity, magnesium, radium-226, sulfate, technetium-99	MW388: Beta activity, sulfate, technetium-99
MW391: Magnesium, sulfate	

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the technetium-99 concentration in one UCRS well (i.e., MW390) exceeded the current TL this quarter.

<u>URGA</u>

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, magnesium, radium-226, sulfate, and technetium-99.

<u>LRGA</u>

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.24	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	-2.12	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.78	MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.14	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.33	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Magnesium	Tolerance Interval	0.14	MW372, MW387, and MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.14	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level
Radium-226	Tolerance Interval	0.98	MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.35	MW372, MW387, and MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.63	MW369, MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	CV Parameter Performed Test Normal Test*		Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.44	MW370 and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.19	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.47	MW397 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.09	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.17	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.19	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.20	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Radium-226	Tolerance Interval	0.57	MW385 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.06	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.53	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

CV: coefficient of variation * If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.320	S= 0.182	CV(1)= 0.567	K factor**= 3.188	TL(1)= 0.900	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.259	S = 0.503	CV(2) =-0.400	K factor**= 3.188	TL(2)= 0.345	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.393	-0.934
9/16/2002	0.2	-1.609
10/16/2002	0.2	-1.609
1/13/2003	0.501	-0.691
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.668	-0.403

Dry/Partially Dry Wells				
Well No.	Gradient			

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A
MW390	Downgradien	t Yes	0.0967	NO	-2.336	N/A
MW393	Downgradien	t Yes	0.0298	NO	-3.513	N/A
MW396	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.650	S = 0.833	CV(1)= 1.282	K factor**= 3.188	TL(1)= 3.306	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.034	S= 1.066	CV(2) =-1.031	K factor**= 3.188	TL(2)= 2.364	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

Dry/Partially Dry Wells						
Well No.	Gradient					

Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00526	N/A	-5.248	NO
MW390	Downgradien	t Yes	0.00975	N/A	-4.630	NO
MW393	Downgradien	t Yes	0.0188	N/A	-3.974	NO
MW396	Upgradient	Yes	0.00827	N/A	-4.795	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.388	S= 0.327	CV(1)= 0.236	K factor**= 3.188	TL(1)= 2.430	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.301	S = 0.252	CV(2) =0.838	K factor**= 3.188	TL(2)= 1.105	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Partially Dry Wells					
Well No.	Gradient				

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.153	NO	-1.877	N/A	
MW390	Downgradien	t Yes	0.471	NO	-0.753	N/A	
MW393	Downgradien	t Yes	0.131	NO	-2.033	N/A	
MW396	Upgradient	Yes	0.924	NO	-0.079	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 41.825	S = 8.445	CV(1)= 0.202	K factor**= 3.188	TL(1)= 68.748	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.711	S = 0.241	CV(2) =0.065	K factor**= 3.188	TL(2)= 4.479	LL(2)=N/A

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Partially Dry Wells				
Well No.	Gradient			
MW389	Downgradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	23.3	NO	3.148	N/A
MW390	Downgradien	t Yes	29.4	NO	3.381	N/A
MW393	Downgradien	t Yes	11.8	NO	2.468	N/A
MW396	Upgradient	Yes	32.5	NO	3.481	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 0.021	K factor**= 3.188	TL(1)= 37.747	LL(1)= N/A
Statistics-Transformed Background	X = 3.566	S = 0.021	CV(2) =0.006	K factor**= 3,188	TL(2)= 3.632	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

10000

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Partially Dry Wells				
Well No.	Gradient			
MW389	Downgradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	30.3	NO	3.411	N/A
MW390	Downgradien	t Yes	23.3	NO	3.148	N/A
MW393	Downgradien	t No	20	N/A	2.996	N/A
MW396	Upgradient	Yes	11.8	NO	2.468	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=101.725 S= 5.245
 CV(1)=0.052
 K factor**= 3.188
 TL(1)=118.447
 LL(1)=N/A

 Statistics-Transformed Background
 X=4.621
 S= 0.053
 CV(2)=0.011
 K factor**= 3.188
 TL(2)= 4.789
 LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Data

MW396	
Result	LN(Result)
91.6	4.517
98.3	4.588
101.4	4.619
108.3	4.685
100.5	4.610
102.5	4.630
106.8	4.671
104.4	4.648
	Result 91.6 98.3 101.4 108.3 100.5 102.5 106.8

Dry/Partially Dry Wells				
Well No.	Gradient			
MW389	Downgradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	14.4	NO	2.667	N/A
MW390	Downgradient	Yes	55.3	NO	4.013	N/A
MW393	Downgradient	Yes	13.2	NO	2.580	N/A
MW396	Upgradient	Yes	66	NO	4.190	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 1.340	K factor**= 3.188	TL(1)= 0.042	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.645	S= 1.339	CV(2) =-0.237	K factor**= 3.188	TL(2)= -1.377	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0149	N/A	-4.206	NO
MW390	Downgradien	t No	0.001	N/A	-6.908	N/A
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
MW396	Upgradient	Yes	0.00356	6 N/A	-5.638	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 922.500 S= 107.616 CV(1)=0.117
 K factor**= 3.188
 TL(1)= 1265.579
 LL(1)=N/A

Statistics-Transformed Background X=6.822 S= 0.111 CV(2)=0.016 Data

Upgradient Wells with Transformed Result
--

MW396	
Result	LN(Result)
784	6.664
871	6.770
868	6.766
912	6.816
942	6.848
910	6.813
935	6.841
1158	7.054
	Result 784 871 868 912 942 910 935

Dry/Par	tially Dry Wells
Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	606	NO	6.407	N/A
MW390	Downgradien	t Yes	690	NO	6.537	N/A
MW393	Downgradien	t Yes	404	NO	6.001	N/A
MW396	Upgradient	Yes	775	NO	6.653	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.028 S = 0.014 CV(1) = 0.481 K factor**= 3.188 TL(1) = 0.072 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.650 S = 0.414 CV(2) = -0.113 K factor**= 3.188 TL(2) = -2.331 LL(2) = N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells			
Well No.	Gradient		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00068	1 NO	-7.292	N/A
MW390	Downgradien	t Yes	0.00122	NO	-6.709	N/A
MW393	Downgradien	t Yes	0.00126	NO	-6.677	N/A
MW396	Upgradient	Yes	0.00115	NO	-6.768	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 1.202	K factor**= 3.188	TL(1)= 6.743	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.043	S= 0.814	CV(2)= -18.867	K factor**= 3.188	TL(2)= 2.553	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result			
Well Number:	MW396		

wen number.	IVI W 390	
Date Collected	Result	LN(Result)
8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Partially Dry Wells			
Well No.	Gradient		
MW389	Downgradient		

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	2.54	N/A	0.932	NO
MW390	Downgradien	t Yes	5.9	N/A	1.775	NO
MW393	Downgradien	t Yes	4.3	N/A	1.459	NO
MW396	Upgradient	Yes	0.92	N/A	-0.083	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X= 550.375 S= 104.330 CV(1)=0.190 K factor**= 3.188 TL(1)=882.980 LL(1)=N/A

Statistics-Transformed Background X=6.298 S= 0.162 CV(2)=0.026 Data

	Historical Background Data from Upgradient Wells with Transformed Result
--	---

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells			
Well No.	Gradient		
MW389	Downgradient		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 6.815

LL(2)=N/A

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	361	NO	5.889	N/A
MW390	Downgradien	t Yes	359	NO	5.883	N/A
MW393	Downgradien	t Yes	200	NO	5.298	N/A
MW396	Upgradient	Yes	404	NO	6.001	N/A

K factor=** 3.188

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.150	S= 0.283	CV(1)= 0.132	K factor**= 3.188	TL(1)= 3.052	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.759	S = 0.123	CV(2)= 0.162	K factor**= 3.188	TL(2)= 1.150	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	2	0.693
1/13/2003	2	0.693
4/8/2003	2	0.693
7/16/2003	2.7	0.993
10/14/2003	2.5	0.916
1/14/2004	2	0.693

Dry/Partially Dry Wells				
Well No.	Gradient			

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.168	NO	-1.784	N/A
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A
MW396	Upgradient	Yes	0.682	NO	-0.383	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.796	S= 3.723	CV(1)= 0.478	K factor**= 3.188	TL(1)= 19.666	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.880	S = 0.723	CV(2)= 0.384	K factor**= 3.188	TL(2)= 4.184	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.8	0.588
9/16/2002	9.53	2.254
10/16/2002	7.43	2.006
1/13/2003	9.93	2.296
4/8/2003	10.2	2.322
7/16/2003	9.16	2.215
10/14/2003	11.9	2.477
1/14/2004	2.42	0.884

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.938	NO	-0.064	N/A		
MW390	Downgradien	t Yes	0.0989	NO	-2.314	N/A		
MW393	Downgradien	t Yes	1.94	NO	0.663	N/A		
MW396	Upgradient	Yes	2.2	NO	0.788	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			-	K factor**= 3.188		
Statistics-Transformed Background	X= 2.804	S = 0.240	CV(2)= 0.086	K factor**= 3.188	TL(2)= 3.569	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Par	tially Dry Wo	ells
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	9.99	NO	2.302	N/A		
MW390	Downgradien	t Yes	12.4	NO	2.518	N/A		
MW393	Downgradien	t Yes	3.52	NO	1.258	N/A		
MW396	Upgradient	Yes	15	NO	2.708	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			-	K factor**= 3.188		
Statistics-Transformed Background	X= -0.566	S= 1.192	CV(2)= -2.105	K factor**= 3.188	TL(2)= 3.235	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Well No. Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.88	NO	0.631	N/A
MW390	Downgradien	t Yes	0.00156	NO	-6.463	N/A
MW393	Downgradien	t Yes	0.046	NO	-3.079	N/A
MW396	Upgradient	Yes	0.528	NO	-0.639	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)=1.507	K factor**= 3.188	TL(1)= 0.042	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.928	S = 1.420	CV(2) =-0.240	K factor**= 3.188	TL(2)= -1.400	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00128	-6.661
4/8/2003	0.00271	-5.911
7/16/2003	0.00117	-6.751
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Par	tially Dry Wells
Well No.	Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00072	8 N/A	-7.225	NO
MW390	Downgradien	t Yes	0.00087	5 N/A	-7.041	NO
MW393	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW396	Upgradient	Yes	0.00056	N/A	-7.488	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 1.272	K factor**= 3.188	TL(1)= 0.083	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.706	S= 1.057	CV(2) =-0.225	K factor**= 3.188	TL(2)= -1.338	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Par	tially Dry	Wells
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0033	N/A	-5.714	NO
MW390	Downgradien	t Yes	0.00217	N/A	-6.133	NO
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A
MW396	Upgradient	Yes	0.00154	N/A	-6.476	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV** UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=13.000 S= 61.952 CV(1)=4.766 **K factor**=** 3.188 **Statistics-Background Data** TL(1)= 210.502 LL(1)=N/A **Statistics-Transformed Background K factor**=** 3.188 TL(2)= 4.736 LL(2)=N/A

S= 0.333 CV(2)=0.076 **X**= 4.364 Data

Historical Background Data from Upgradient Wells with Transformed Result	Dry/Pa
	Well No

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Partially Dry	Wells
Well No. Gradient	

MW389	Downgradient
-------	--------------

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

٦

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	232	N/A	5.447	YES
MW390	Downgradien	t Yes	413	N/A	6.023	YES
MW393	Downgradien	t Yes	303	N/A	5.714	YES
MW396	Upgradient	Yes	210	N/A	5.347	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Г

Wells with Exceedances MW386 MW390 MW393 MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.460	S = 0.350	CV(1)= 0.054	K factor**= 3.736	TL(1)= 7.766	LL(1)= 5.1541
Statistics-Transformed Background Data	X= 1.864	S= 0.054	CV(2)= 0.029	K factor**= 3.736	TL(2)= 2.067	LL(2)= 1.6621

Historical Background Data from Upgradient Wells with Transformed Result
opgradient wens with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW38	9 E) own	igrad	ient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	6.64	NO	1.893	N/A
MW390	Downgradien	t Yes	6.07	NO	1.803	N/A
MW393	Downgradien	t Yes	6.01	NO	1.793	N/A
MW396	Upgradient	Yes	6.54	NO	1.878	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 0.282	K factor**= 3.188	TL(1)= 2.682	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.311	S = 0.271	CV(2)= 0.870	K factor**= 3.188	TL(2)= 1.175	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result
10

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Partially Dry Wells				
Well No.	Gradient			

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.303	NO	-1.194	N/A
MW390	Downgradien	t Yes	0.312	NO	-1.165	N/A
MW393	Downgradien	t Yes	0.365	NO	-1.008	N/A
MW396	Upgradient	Yes	0.689	NO	-0.373	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.157	S = 0.280	CV(1)=1.782	K factor**= 3.188	TL(1)= 1.050	LL(1)= N/A
Statistics-Transformed Background	X =-1.836	S= 1.229	CV(2) =-0.669	K factor**= 3.188	TL(2)= -0.371	LL(2)=N/A

Data

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
10/16/2002	0.69	-0.371
1/13/2003	-0.00693	#Func!
10/14/2003	-0.0514	#Func!
1/14/2004	0.494	-0.705
4/12/2004	-0.082	#Func!
7/20/2004	0.0879	-2.432
10/12/2004	0.0408	-3.199
1/18/2005	0.0844	-2.472

Dry/Partially Dry Wells			
Well No	Gradient		

MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.6	N/A	-0.511	NO
MW390	Downgradien	t No	0.14	N/A	-1.966	N/A
MW393	Downgradien	t No	0.0636	N/A	-2.755	N/A
MW396	Upgradient	No	0.171	N/A	-1.766	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 106.825 S = 32.041 CV(1) = 0.300 K factor ** = 3.188 TL(1) = 208.973 LL(1) = N/A

 Statistics-Dackground Data
 X = 106.825 S = 32.041 CV(1) = 0.300 K factor ** = 3.188 TL(1) = 208.973 LL(1) = N/A

Statistics-Transformed Background X=4.595 S= 0.492 CV(2)=0.107 Data

K factor**= 3.188	TL(2)= 6.163	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	115	4.745
9/16/2002	116	4.754
10/16/2002	117	4.762
1/13/2003	122	4.804
4/8/2003	106	4.663
7/16/2003	117	4.762
10/14/2003	132	4.883
1/14/2004	29.6	3.388

Dry/Par	tially Dry Wells
Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	99.8	NO	4.603	N/A
MW390	Downgradien	t Yes	91.8	NO	4.520	N/A
MW393	Downgradien	t Yes	71.3	NO	4.267	N/A
MW396	Upgradient	Yes	70.9	NO	4.261	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 22.463
 S=
 8.876
 CV(1)=0.395
 K factor**= 3.188
 TL(1)= 50.759
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.054
 S=
 0.351
 CV(2)=0.115
 K factor**= 3.188
 TL(2)= 4.173
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Par	tially Dry Wells
Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	44.8	NO	3.802	N/A
MW390	Downgradien	t Yes	28.3	NO	3.343	N/A
MW393	Downgradien	t Yes	14.1	NO	2.646	N/A
MW396	Upgradient	Yes	24.5	NO	3.199	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.624	S= 6.558	CV(1)= 0.860	K factor**= 3.188	TL(1)= 28.531	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.498	S = 1.321	CV(2)= 0.882	K factor**= 3.188	TL(2)= 5.710	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells					
Well No.	Gradient				

Well No. Gradient MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	3.84	N/A	1.345	N/A
MW390	Downgradien	t Yes	67.7	YES	4.215	N/A
MW393	Downgradien	t No	2.21	N/A	0.793	N/A
MW396	Upgradient	No	-3.72	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 9.988	S = 4.696	CV(1)= 0.470	K factor**= 3.188	TL(1)= 24.959	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.210	S = 0.454	CV(2) =0.205	K factor**= 3.188	TL(2)= 3.657	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Date CollectedResultLN(Result)8/13/2002192.944
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
9/16/2002 14.6 2.681
10/16/2002 10.4 2.342
1/13/2003 4.4 1.482
4/8/2003 7 1.946
7/16/2003 7.3 1.988
10/14/2003 9.1 2.208
1/14/2004 8.1 2.092

Dry/Partially Dry Wells				
Well No.	Gradient			

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	5.89	NO	1.773	N/A
MW390	Downgradien	t Yes	2.13	NO	0.756	N/A
MW393	Downgradien	t Yes	2.6	NO	0.956	N/A
MW396	Upgradient	Yes	4.96	NO	1.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=142.650 S= 53.533 CV(1)=0.375 **K factor**=** 3.188 **Statistics-Background Data** TL(1)= 313.314 LL(1)=N/A K factor**= 3.188 TL(2) = 6.138LL(2)=N/A

Statistics-Transformed Background X=4.896 S= 0.390 CV(2)=0.080 Data

,	It factor	5.100	11(2)	0.150	
		Racausa (7V(1) is	loss that	n (

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Partially Dry Wells			
Well No.	Gradient		
MW389	Downgradient		

Г

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	148	NO	4.997	N/A
MW390	Downgradien	t Yes	26.9	NO	3.292	N/A
MW393	Downgradien	t Yes	19	NO	2.944	N/A
MW396	Upgradient	Yes	37.1	NO	3.614	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.021	S = 0.002	CV(1)= 0.109	K factor**= 3.188	TL(1)= 0.029	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.856	S = 0.103	CV(2) =-0.027	K factor**= 3.188	TL(2)= -3.527	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result			
Well Number:	MW396		

Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells			
Well No.	Gradient		

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.01	N/A	-4.605	N/A
MW390	Downgradien	t No	0.01	N/A	-4.605	N/A
MW393	Downgradien	t Yes	0.00881	NO	-4.732	N/A
MW396	Upgradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data		-	-	K factor**= 3.188	TL(1)= 0.156	LL(1)=N/A	-
Statistics-Transformed Background	X= -3.342	S = 0.682	CV(2)=-0.204	K factor**= 3.188	TL(2)= -1.168	LL(2)=N/A	

Historical Background Data from Upgradient Wells with Transformed Result			
Well Number:	MW396		

Data

wen rumber.	101 10 5 7 0	
Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/8/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells		
Well No.	Gradient	
MW389	Downgradient	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00605	NO	-5.108	N/A
MW390	Downgradien	t No	0.01	N/A	-4.605	N/A
MW393	Downgradien	t No	0.01	N/A	-4.605	N/A
MW396	Upgradient	Yes	0.00428	NO	-5.454	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Acetone UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.250	S= 1.000	CV(1)= 0.098	K factor**= 2.523	TL(1)= 12.773	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.324	S= 0.084	CV(2)= 0.036	K factor**= 2.523	TL(2)= 2.536	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	ells with Transformed Result
Well Number:	MW220

Date Collected	Result	LN(Result)
10/14/2002	10	2.303
1/15/2003	10	2.303
4/10/2003	10	2.303
7/14/2003	10	2.303
10/13/2003	10	2.303
4/13/2004	10	2.303
7/21/2004	10	2.303
10/11/2004	10	2.303
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.303
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 10	2.303
Date Collected 8/13/2002 9/30/2002	Result 10 10	2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 10 10 10	2.303 2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 10 10 10 10	2.303 2.303 2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 10 10 10 10 10	2.303 2.303 2.303 2.303 2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 10 10 10 10 10 10	2.303 2.303 2.303 2.303 2.303 2.303 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	5	N/A	1.609	N/A
MW221	Sidegradient	No	5	N/A	1.609	N/A
MW222	Sidegradient	No	5	N/A	1.609	N/A
MW223	Sidegradient	No	5	N/A	1.609	N/A
MW224	Sidegradient	No	5	N/A	1.609	N/A
MW369	Downgradien	t Yes	2.47	NO	0.904	N/A
MW372	Downgradien	t No	5	N/A	1.609	N/A
MW384	Sidegradient	No	5	N/A	1.609	N/A
MW387	Downgradien	t No	5	N/A	1.609	N/A
MW391	Downgradien	t No	5	N/A	1.609	N/A
MW394	Upgradient	No	5	N/A	1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.221	S = 0.061	CV(1)= 0.277	K factor**= 2.523	TL(1)= 0.376	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.534	S = 0.212	CV(2)= -0.138	K factor**= 2.523	TL(2)= -0.999	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.427	-0.851
1/13/2004	0.309	-1.174
4/13/2004	0.2	-1.609
7/21/2004	0.202	-1.599
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 0.2	-1.609
Date Collected 8/13/2002 9/16/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609 -1.609 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.05	N/A	-2.996	N/A
MW221	Sidegradient	No	0.05	N/A	-2.996	N/A
MW222	Sidegradient	Yes	0.0461	NO	-3.077	N/A
MW223	Sidegradient	No	0.05	N/A	-2.996	N/A
MW224	Sidegradient	No	0.05	N/A	-2.996	N/A
MW369	Downgradien	t Yes	0.0812	NO	-2.511	N/A
MW372	Downgradien	t No	0.05	N/A	-2.996	N/A
MW384	Sidegradient	No	0.05	N/A	-2.996	N/A
MW387	Downgradien	t No	0.05	N/A	-2.996	N/A
MW391	Downgradien	t No	0.05	N/A	-2.996	N/A
MW394	Upgradient	Yes	0.025	NO	-3.689	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 14.273	S= 13.883	CV(1)= 0.973	K factor**= 2.523	TL(1)= 49.300	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.213	S = 1.033	CV(2)= 0.467	K factor**= 2.523	TL(2)= 4.819	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MUNDO

Wall Manuels and

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	15.2	2.721
1/15/2003	42.5	3.750
4/10/2003	45.4	3.816
7/14/2003	8.53	2.144
10/13/2003	11.7	2.460
1/13/2004	13.5	2.603
4/13/2004	33.5	3.512
7/21/2004	13.7	2.617
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.615
Date Collected	Result	· · · ·
Date Collected 8/13/2002	Result 5.03	1.615
Date Collected 8/13/2002 9/16/2002	Result 5.03 5.57	1.615 1.717
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 5.03 5.57 12.8	1.615 1.717 2.549
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 5.03 5.57 12.8 4.3	1.615 1.717 2.549 1.459
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.03 5.57 12.8 4.3 9.52	1.615 1.717 2.549 1.459 2.253
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5.03 5.57 12.8 4.3 9.52 3.92	1.615 1.717 2.549 1.459 2.253 1.366

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	12.2	N/A	2.501	N/A
MW221	Sidegradient	Yes	13.6	N/A	2.610	N/A
MW222	Sidegradient	No	-1.66	N/A	#Error	N/A
MW223	Sidegradient	No	3.85	N/A	1.348	N/A
MW224	Sidegradient	Yes	13	N/A	2.565	N/A
MW369	Downgradien	t Yes	23.2	N/A	3.144	N/A
MW372	Downgradien	t Yes	123	YES	4.812	N/A
MW384	Sidegradient	Yes	116	YES	4.754	N/A
MW387	Downgradien	t Yes	185	YES	5.220	N/A
MW391	Downgradien	t No	6.71	N/A	1.904	N/A
MW394	Upgradient	No	11.1	N/A	2.407	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

```
Wells with Exceedances
MW372
MW384
MW387
```

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.425	S= 0.615	CV(1)= 1.447	K factor**= 2.523	TL(1)= 1.976	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.322	S= 0.786	CV(2) =-0.595	K factor**= 2.523	TL(2)= 0.663	LL(2)=N/A

Historical Background Data from	
Upgradient Wells with Transformed Result	t

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.2	-1.609
1/13/2004	0.2	-1.609
4/13/2004	0.2	-1.609
7/21/2004	0.2	-1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	· /
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 2. 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.0101	N/A	-4.595	NO	
MW221	Sidegradient	Yes	0.0168	N/A	-4.086	NO	
MW222	Sidegradient	Yes	0.00995	N/A	-4.610	NO	
MW223	Sidegradient	Yes	0.00787	N/A	-4.845	NO	
MW224	Sidegradient	Yes	0.0153	N/A	-4.180	NO	
MW369	Downgradien	t Yes	0.0175	N/A	-4.046	NO	
MW372	Downgradien	t Yes	0.899	N/A	-0.106	NO	
MW384	Sidegradient	Yes	0.0223	N/A	-3.803	NO	
MW387	Downgradien	t Yes	0.0364	N/A	-3.313	NO	
MW391	Downgradien	t Yes	0.255	N/A	-1.366	NO	
MW394	Upgradient	Yes	0.022	N/A	-3.817	NO	
	10			oratory analysis or			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S= 0.000	CV(1)=0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.000	S= 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)=N/A

Upgradient Wells with Transformed Result	Historical Background Data from
10	Upgradient Wells with Transformed Result

1 111000

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.205	NO	-1.585	N/A
MW221	Sidegradient	Yes	0.418	NO	-0.872	N/A
MW222	Sidegradient	Yes	0.416	NO	-0.877	N/A
MW223	Sidegradient	Yes	0.416	NO	-0.877	N/A
MW224	Sidegradient	Yes	0.396	NO	-0.926	N/A
MW369	Downgradien	t Yes	0.391	NO	-0.939	N/A
MW372	Downgradien	t Yes	0.573	NO	-0.557	N/A
MW384	Sidegradient	Yes	0.31	NO	-1.171	N/A
MW387	Downgradien	t Yes	0.437	NO	-0.828	N/A
MW391	Downgradien	t Yes	0.496	NO	-0.701	N/A
MW394	Upgradient	Yes	0.588	NO	-0.531	N/A
N/A - Resu	lts identified as N	Jon-Detects	luring lah	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 27.638	S= 4.743	CV(1)= 0.172	K factor**= 2.523	TL(1)= 39.604	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.304	S = 0.183	CV(2) =0.055	K factor**= 2.523	TL(2)= 3.765	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	23.6	3.161			
1/15/2003	25.9	3.254			
4/10/2003	30.4	3.414			

33.9

21.3

20.3

23.8

MW394

Result

29.5

29.9

31.2

30.7

34.4

29.6

30.3

28.4

19

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	20.6	NO	3.025	N/A
MW221	Sidegradient	Yes	21.4	NO	3.063	N/A
MW222	Sidegradient	Yes	17.6	NO	2.868	N/A
MW223	Sidegradient	Yes	21.6	NO	3.073	N/A
MW224	Sidegradient	Yes	20.7	NO	3.030	N/A
MW369	Downgradien	t Yes	16.3	NO	2.791	N/A
MW372	Downgradien	t Yes	49.7	YES	3.906	N/A
MW384	Sidegradient	Yes	25.7	NO	3.246	N/A
MW387	Downgradien	t Yes	35.5	NO	3.570	N/A
MW391	Downgradien	t Yes	36.1	NO	3.586	N/A
MW394	Upgradient	Yes	25.4	NO	3.235	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.523

3.059

3.011

3.170

2.944

3.384

3.398

3.440

3.424

3.538

3.388

3.411

3.346

LN(Result)

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 35.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 35.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.555	S = 0.000	CV(2)= 0.000	K factor**= 2.523	TL(2)= 3.555	LL(2)=N/A

	kground Data from fells with Transformed Result
Well Number:	MW220

Date Collected	Result	LN(Result)
10/14/2002	35	3.555
1/15/2003	35	3.555
4/10/2003	35	3.555
7/14/2003	35	3.555
10/13/2003	35	3.555
1/13/2004	35	3.555
4/13/2004	35	3.555
7/21/2004	35	3.555
XX7 11 X 7 1		
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.555
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 35	3.555
Date Collected 8/13/2002 9/16/2002	Result 35 35	3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 35 35 35	3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 35 35 35 35 35	3.555 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 35 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 35 35 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	20	N/A	2.996	N/A
MW221	Sidegradient	Yes	11.7	NO	2.460	N/A
MW222	Sidegradient	Yes	15.1	NO	2.715	N/A
MW223	Sidegradient	Yes	13.4	NO	2.595	N/A
MW224	Sidegradient	Yes	9.97	NO	2.300	N/A
MW369	Downgradien	t Yes	21.4	NO	3.063	N/A
MW372	Downgradien	t No	16.4	N/A	2.797	N/A
MW384	Sidegradient	Yes	20.1	NO	3.001	N/A
MW387	Downgradien	t Yes	25.2	NO	3.227	N/A
MW391	Downgradien	t No	20	N/A	2.996	N/A
MW394	Upgradient	Yes	11.8	NO	2.468	N/A
N/A Dagu	10	Ion Dataata	dumin a lab	aratarri analizia ar	J_4	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 49.044	S= 11.278	CV(1)= 0.230	K factor**= 2.523	TL(1)= 77.499	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.866	S= 0.244	CV(2) =0.063	K factor**= 2.523	TL(2)= 4.482	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				

wen runiber.	101 10 220	
Date Collected	Result	LN(Result)
10/14/2002	44.6	3.798
1/15/2003	43.2	3.766
4/10/2003	31.5	3.450
7/14/2003	30.8	3.428
10/13/2003	40.9	3.711
1/13/2004	40.8	3.709
4/13/2004	37.5	3.624
7/21/2004	40.8	3.709
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.101
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 60.4	4.101
Date Collected 8/13/2002 9/16/2002	Result 60.4 60.3	4.101 4.099
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 60.4 60.3 58	4.101 4.099 4.060
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 60.4 60.3 58 60.7	4.101 4.099 4.060 4.106
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 60.4 60.3 58 60.7 62.9	4.101 4.099 4.060 4.106 4.142
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 60.4 60.3 58 60.7 62.9 58.1	4.101 4.099 4.060 4.106 4.142 4.062

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	20.6	NO	3.025	N/A
MW221	Sidegradient	Yes	31.1	NO	3.437	N/A
MW222	Sidegradient	Yes	30.1	NO	3.405	N/A
MW223	Sidegradient	Yes	28	NO	3.332	N/A
MW224	Sidegradient	Yes	29.9	NO	3.398	N/A
MW369	Downgradien	t Yes	33.6	NO	3.515	N/A
MW372	Downgradien	t Yes	47.9	NO	3.869	N/A
MW384	Sidegradient	Yes	37.3	NO	3.619	N/A
MW387	Downgradien	t Yes	39.7	NO	3.681	N/A
MW391	Downgradien	t Yes	41.2	NO	3.718	N/A
MW394	Upgradient	Yes	46.1	NO	3.831	N/A
	Upgradient	Yes		NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

1	,		0			
Statistics-Background Data	X= 5.000	S = 0.000	CV(1)=0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.609	S = 0.000	CV(2)= 0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1 111000

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	5	1.609
1/15/2003	5	1.609
4/10/2003	5	1.609
7/14/2003	5	1.609
10/13/2003	5	1.609
1/13/2004	5	1.609
4/13/2004	5	1.609
7/21/2004	5	1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t No	1	N/A	0.000	N/A
MW372	Downgradien	t No	1	N/A	0.000	N/A
MW384	Sidegradient	No	1	N/A	0.000	N/A
MW387	Downgradien	t No	1	N/A	0.000	N/A
MW391	Downgradien	t Yes	0.43	NO	-0.844	N/A
MW394	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.016	S= 0.040	CV(1)= 2.440	K factor**= 2.523	TL(1)= 0.116	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.582	S= 1.573	CV(2) =-0.282	K factor**= 2.523	TL(2)= -1.613	LL(2)=N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0041	-5.497
1/15/2003	0.00496	-5.306
4/10/2003	0.00289	-5.846
7/14/2003	0.161	-1.826
10/13/2003	0.0226	-3.790
1/13/2004	0.00464	-5.373
4/13/2004	0.001	-6.908
7/21/2004	0.00264	-5.937
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.001	N/A	-6.908	N/A
MW221	Sidegradient	No	0.001	N/A	-6.908	N/A
MW222	Sidegradient	Yes	0.00059	1 N/A	-7.434	NO
MW223	Sidegradient	Yes	0.00054	3 N/A	-7.518	NO
MW224	Sidegradient	Yes	0.00035	8 N/A	-7.935	NO
MW369	Downgradien	t Yes	0.00626	N/A	-5.074	NO
MW372	Downgradien	t Yes	0.00116	N/A	-6.759	NO
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A
MW394	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =382.132 S = 107.134 CV(1) =0.280	K factor**= 2.523 TL(1)= 652.432 LL(1)= N/A
Statistics-Transformed Background Data	X = 5.716 S = 1.164 CV(2) =0.204	K factor**= 2.523 TL(2)= 8.652 LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Data Colloctad	Dogult	I N(P agult)					

Date Collected	Result	LN(Result)
10/14/2002	368	5.908
1/15/2003	433.2	6.071
4/10/2003	489	6.192
7/14/2003	430	6.064
10/13/2003	346	5.846
1/13/2004	365	5.900
4/13/2004	416	6.031
7/21/2004	353	5.866
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 6.006
Date Collected	Result	· /
Date Collected 8/13/2002	Result 406	6.006
Date Collected 8/13/2002 9/16/2002	Result 406 418	6.006 6.035
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 406 418 411	6.006 6.035 6.019
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 406 418 411 422	6.006 6.035 6.019 6.045
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 406 418 411 422 420	6.006 6.035 6.019 6.045 6.040

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	342	NO	5.835	N/A	
MW221	Sidegradient	Yes	338	NO	5.823	N/A	
MW222	Sidegradient	Yes	360	NO	5.886	N/A	
MW223	Sidegradient	Yes	334	NO	5.811	N/A	
MW224	Sidegradient	Yes	412	NO	6.021	N/A	
MW369	Downgradien	t Yes	374	NO	5.924	N/A	
MW372	Downgradien	t Yes	618	NO	6.426	N/A	
MW384	Sidegradient	Yes	451	NO	6.111	N/A	
MW387	Downgradien	t Yes	536	NO	6.284	N/A	
MW391	Downgradien	t Yes	525	NO	6.263	N/A	
MW394	Upgradient	Yes	410	NO	6.016	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.010	CV(1)= 0.429	K factor**= 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.794	S= 0.312	CV(2) =-0.082	K factor**= 2.523	TL(2)= -3.007	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	0.0211	-3.858				
1/15/2003	0.02	-3.912				
4/10/2003	0.02	-3.912				
7/14/2003	0.02	-3.912				
10/13/2003	0.02	-3.912				
1/13/2004	0.02	-3.912				
4/13/2004	0.02	-3.912				
7/21/2004	0.02	-3.912				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
8/13/2002	0.05	-2.996				
9/16/2002	0.05	-2.996				
10/16/2002	0.02	-3.912				
1/13/2003	0.02	-3.912				
4/10/2003	0.02	-3.912				
7/16/2003	0.02	-3.912				
10/14/2003	0.02	-3.912				

0.02

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00101	NO	-6.898	N/A
MW221	Sidegradient	Yes	0.00068	3 NO	-7.289	N/A
MW222	Sidegradient	Yes	0.00037	2 NO	-7.897	N/A
MW223	Sidegradient	Yes	0.00035	7 NO	-7.938	N/A
MW224	Sidegradient	Yes	0.00073	1 NO	-7.221	N/A
MW369	Downgradien	t Yes	0.00123	NO	-6.701	N/A
MW372	Downgradien	t Yes	0.00078	7 NO	-7.147	N/A
MW384	Sidegradient	Yes	0.00037	NO	-7.902	N/A
MW387	Downgradien	t Yes	0.00050	9 NO	-7.583	N/A
MW391	Downgradien	t Yes	0.00060	1 NO	-7.417	N/A
MW394	Upgradient	Yes	0.00079	4 NO	-7.138	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.784	S= 1.887	CV(1)= 0.499	K factor**= 2.523	TL(1)= 8.545	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.182	S = 0.612	CV(2)= 0.518	K factor**= 2.523	TL(2)= 2.727	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW220			
Date Collected	Result	LN(Result)		

6.79

7.25

3.6

0.94

1.65

3.48

1.05

4.46

MW394

Result

6.09

3.85

5.11

3.83

4.15

1.83

3.33

3.14

10/14/2002

1/15/2003

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

1.915

1.981

1.281

-0.062

0.501

1.247

0.049

1.495

1.807

1.348

1.631

1.343

1.423

0.604

1.203

1.144

LN(Result)

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	6.37	NO	1.852	N/A
MW221	Sidegradient	Yes	3.95	NO	1.374	N/A
MW222	Sidegradient	Yes	4.4	NO	1.482	N/A
MW223	Sidegradient	Yes	3.48	NO	1.247	N/A
MW224	Sidegradient	Yes	2.54	NO	0.932	N/A
MW369	Downgradien	t Yes	1.36	NO	0.307	N/A
MW372	Downgradien	t Yes	0.79	NO	-0.236	N/A
MW384	Sidegradient	Yes	3.3	NO	1.194	N/A
MW387	Downgradien	t Yes	3.56	NO	1.270	N/A
MW391	Downgradien	t Yes	3.46	NO	1.241	N/A
MW394	Upgradient	Yes	4.1	NO	1.411	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 232.68	8 S= 27.490	CV(1)= 0.118	K factor**= 2.523	TL(1)= 302.045	LL(1)=N/A
Statistics-Transformed Background Data	X= 5.443	S= 0.118	CV(2) =0.022	K factor**= 2.523	TL(2)= 5.740	LL(2)=N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 247 259 201 228 249 240	5.509 5.557 5.303 5.429 5.517 5.481

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	226	NO	5.421	N/A
MW221	Sidegradient	Yes	180	NO	5.193	N/A
MW222	Sidegradient	Yes	234	NO	5.455	N/A
MW223	Sidegradient	Yes	181	NO	5.198	N/A
MW224	Sidegradient	Yes	204	NO	5.318	N/A
MW369	Downgradien	t Yes	196	NO	5.278	N/A
MW372	Downgradien	t Yes	336	YES	5.817	N/A
MW384	Sidegradient	Yes	254	NO	5.537	N/A
MW387	Downgradien	t Yes	297	NO	5.694	N/A
MW391	Downgradien	t Yes	254	NO	5.537	N/A
MW394	Upgradient	Yes	206	NO	5.328	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.897	S= 1.050	CV(1)= 1.170	K factor**= 2.523	TL(1)= 3.545	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.565	S = 0.951	CV(2) =-1.683	K factor**= 2.523	TL(2)= 1.834	LL(2)=N/A

Historical Background Data from	
Upgradient Wells with Transformed Result	;

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.429	-0.846
7/14/2003	4.33	1.466
10/13/2003	1.81	0.593
1/13/2004	0.793	-0.232
4/13/2004	0.13	-2.040
7/21/2004	0.382	-0.962
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.293
Date Collected	Result	
Date Collected 8/13/2002	Result 1.34	0.293
Date Collected 8/13/2002 9/16/2002	Result 1.34 0.328	0.293 -1.115
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.34 0.328 1.38	0.293 -1.115 0.322
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.34 0.328 1.38 1.3	0.293 -1.115 0.322 0.262
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.34 0.328 1.38 1.3 0.494	0.293 -1.115 0.322 0.262 -0.705
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.34 0.328 1.38 1.3 0.494 0.62	0.293 -1.115 0.322 0.262 -0.705 -0.478

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0373	N/A	-3.289	NO
MW221	Sidegradient	No	0.1	N/A	-2.303	N/A
MW222	Sidegradient	Yes	0.0586	N/A	-2.837	NO
MW223	Sidegradient	No	0.1	N/A	-2.303	N/A
MW224	Sidegradient	No	0.1	N/A	-2.303	N/A
MW369	Downgradien	t Yes	0.16	N/A	-1.833	NO
MW372	Downgradien	t Yes	0.0592	N/A	-2.827	NO
MW384	Sidegradient	Yes	0.0397	N/A	-3.226	NO
MW387	Downgradien	t No	0.1	N/A	-2.303	N/A
MW391	Downgradien	t No	0.1	N/A	-2.303	N/A
MW394	Upgradient	Yes	0.12	N/A	-2.120	NO
	Its identified as N	Ion Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.796 S = 1.703	CV(1)= 0.158	K factor**= 2.523	TL(1)= 15.092	LL(1)=N/A
Statistics-Transformed Background Data	X =2.368 S = 0.158	CV(2)= 0.067	K factor**= 2.523	TL(2)= 2.766	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW220			

Date Collected	Result	LN(Result)
10/14/2002	9.16	2.215
1/15/2003	10	2.303
4/10/2003	10.8	2.380
7/14/2003	14.7	2.688
10/13/2003	9.03	2.201
1/13/2004	8.49	2.139
4/13/2004	9.7	2.272
7/21/2004	8.06	2.087
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.468
Date Collected	Result	()
Date Collected 8/13/2002	Result 11.8	2.468
Date Collected 8/13/2002 9/16/2002	Result 11.8 12.1	2.468 2.493
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.8 12.1 11.3	2.468 2.493 2.425
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.8 12.1 11.3 10.3	2.468 2.493 2.425 2.332
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.8 12.1 11.3 10.3 11.7	2.468 2.493 2.425 2.332 2.460
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 11.8 12.1 11.3 10.3 11.7 12	2.468 2.493 2.425 2.332 2.460 2.485

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Gradient Upgradient	Detected?	Result	D 1(> TT (1))		
Upgradient			Result $\geq TL(1)$?	LN(Result)	LN(Result) >TL(2)
-ro-maione	Yes	8.8	NO	2.175	N/A
Sidegradient	Yes	9.89	NO	2.292	N/A
Sidegradient	Yes	8.32	NO	2.119	N/A
Sidegradient	Yes	9.64	NO	2.266	N/A
Sidegradient	Yes	9.66	NO	2.268	N/A
Downgradient	t Yes	7.02	NO	1.949	N/A
Downgradient	t Yes	19.1	YES	2.950	N/A
Sidegradient	Yes	11	NO	2.398	N/A
Downgradient	t Yes	15.5	YES	2.741	N/A
Downgradient	t Yes	15.6	YES	2.747	N/A
Upgradient	Yes	11.3	NO	2.425	N/A
	Sidegradient Sidegradient Sidegradient Downgradient Downgradient Downgradient Downgradient Downgradient Upgradient	SidegradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesUpgradientYes	SidegradientYes9.89SidegradientYes8.32SidegradientYes9.64SidegradientYes9.66DowngradientYes7.02DowngradientYes19.1SidegradientYes11DowngradientYes15.5DowngradientYes15.6UpgradientYes11.3	SidegradientYes9.89NOSidegradientYes9.89NOSidegradientYes9.64NOSidegradientYes9.66NODowngradientYes7.02NODowngradientYes19.1YESSidegradientYes11NODowngradientYes15.5YESDowngradientYes15.6YESUpgradientYes11.3NO	SidegradientYes9.89NO2.292SidegradientYes8.32NO2.119SidegradientYes9.64NO2.266SidegradientYes9.66NO2.268DowngradientYes7.02NO1.949DowngradientYes19.1YES2.950SidegradientYes11NO2.398DowngradientYes15.5YES2.741DowngradientYes15.6YES2.747

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW372	
MW387	
MW391	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.287	S= 0.619	CV(1)= 2.156	K factor**= 2.523	TL(1)= 1.848	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.455	S= 1.619	CV(2) =-0.659	K factor**= 2.523	TL(2)= 1.630	LL(2)=N/A

Historical Bac Upgradient W	kground Da ells with Tr	ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0306	-3.487

0.0291

0.0137

2.54

0.378

0.159

0.00707

0.0841

MW394

Result

0.542

0.155

0.103

0.128

0.005

0.272

0.0795

0.0658

-3.537

-4.290

0.932

-0.973

-1.839

-4.952

-2.476

-0.612

-1.864

-2.056

-5.298

-1.302

-2.532

-2.721

LN(Result)

1/15/2003

4/10/2003 7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00215	N/A	-6.142	NO
MW221	Sidegradient	No	0.005	N/A	-5.298	N/A
MW222	Sidegradient	Yes	0.00551	N/A	-5.201	NO
MW223	Sidegradient	Yes	0.00603	N/A	-5.111	NO
MW224	Sidegradient	Yes	0.00335	N/A	-5.699	NO
MW369	Downgradien	t Yes	0.0166	N/A	-4.098	NO
MW372	Downgradien	t Yes	0.00402	N/A	-5.516	NO
MW384	Sidegradient	Yes	0.00795	N/A	-4.835	NO
MW387	Downgradien	t Yes	0.00397	N/A	-5.529	NO
MW391	Downgradien	t Yes	0.00109	N/A	-6.822	NO
MW394	Upgradient	Yes	0.005	N/A	-5.298	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.006	S = 0.008	CV(1)= 1.261	K factor**= 2.523	TL(1)= 0.026	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.747	S= 1.205	CV(2) =-0.210	K factor**= 2.523	TL(2)= -2.708	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.00558	-5.189
1/15/2003	0.00983	-4.622
4/10/2003	0.0109	-4.519
7/14/2003	0.00245	-6.012
10/13/2003	0.00566	-5.174
1/13/2004	0.00572	-5.164
4/13/2004	0.001	-6.908
7/21/2004	0.00392	-5.542
Well Number:	MW394	
Date Collected	Result	LN(Result)

0.025

0.025

0.001

0.001

0.001

0.001

0.001

0.001

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00075	2 N/A	-7.193	NO
MW221	Sidegradient	Yes	0.00149	N/A	-6.509	NO
MW222	Sidegradient	Yes	0.00039	3 N/A	-7.842	NO
MW223	Sidegradient	Yes	0.00469	N/A	-5.362	NO
MW224	Sidegradient	Yes	0.00034	6 N/A	-7.969	NO
MW369	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW372	Downgradien	t Yes	0.00025	5 N/A	-8.274	NO
MW384	Sidegradient	No	0.0005	N/A	-7.601	N/A
MW387	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW391	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW394	Upgradient	No	0.0005	N/A	-7.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.689

-3.689

-6.908

-6.908

-6.908

-6.908

-6.908

-6.908

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.127	S= 0.228	CV(1)= 1.790	K factor**= 2.523	TL(1)= 0.701	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.617	S= 1.837	CV(2) =-0.508	K factor**= 2.523	TL(2)= 1.019	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MUM

Wall Manham

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.418	-0.872
1/15/2003	0.738	-0.304
4/10/2003	0.544	-0.609
7/14/2003	0.106	-2.244
10/13/2003	0.0529	-2.939
1/13/2004	0.0209	-3.868
4/13/2004	0.005	-5.298
7/21/2004	0.0192	-3.953
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.05 0.05 0.005 0.005	-2.996 -2.996 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -5.298 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.05 0.05 0.005 0.005 0.005 0.005	-2.996 -2.996 -5.298 -5.298 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0132	N/A	-4.328	NO
MW221	Sidegradient	Yes	0.0139	N/A	-4.276	NO
MW222	Sidegradient	Yes	0.0292	N/A	-3.534	NO
MW223	Sidegradient	Yes	0.132	N/A	-2.025	NO
MW224	Sidegradient	Yes	0.0131	N/A	-4.335	NO
MW369	Downgradien	t Yes	0.00681	N/A	-4.989	NO
MW372	Downgradien	t Yes	0.00158	N/A	-6.450	NO
MW384	Sidegradient	Yes	0.00071	8 N/A	-7.239	NO
MW387	Downgradien	t Yes	0.00068	3 N/A	-7.289	NO
MW391	Downgradien	t Yes	0.0007	N/A	-7.264	NO
MW394	Upgradient	Yes	0.0047	N/A	-5.360	NO
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 179.87	2 S= 86.318	CV(1)= 0.480	K factor**= 2.523	TL(1)= 397.652	LL(1)=N/A
Statistics-Transformed Background Data	X= 4.861	S = 1.252	CV(2)= 0.258	K factor**= 2.523	TL(2)= 8.021	LL(2)=N/A

Historical Background	Data from	
Upgradient Wells with	Transformed	Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	205	5.323
1/15/2003	1.95	0.668
4/10/2003	203	5.313
7/14/2003	30	3.401
10/13/2003	107	4.673
1/13/2004	295	5.687
4/13/2004	190	5.247
7/21/2004	319	5.765
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 90	4.500
Date Collected 8/13/2002 9/16/2002	Result 90 240	4.500 5.481
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 90 240 185	4.500 5.481 5.220
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 90 240 185 220	4.500 5.481 5.220 5.394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 90 240 185 220 196	4.500 5.481 5.220 5.394 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	413	YES	6.023	N/A
MW221	Sidegradient	Yes	410	YES	6.016	N/A
MW222	Sidegradient	Yes	352	NO	5.864	N/A
MW223	Sidegradient	Yes	357	NO	5.878	N/A
MW224	Sidegradient	Yes	364	NO	5.897	N/A
MW369	Downgradien	t Yes	341	NO	5.832	N/A
MW372	Downgradien	t Yes	295	NO	5.687	N/A
MW384	Sidegradient	Yes	418	YES	6.035	N/A
MW387	Downgradien	t Yes	438	YES	6.082	N/A
MW391	Downgradien	t Yes	309	NO	5.733	N/A
MW394	Upgradient	Yes	386	NO	5.956	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW220	
MW221	
MW384	
MW387	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.138	S= 0.282	CV(1)= 0.046	K factor**= 2.904	TL(1)= 6.957	LL(1)=5.3179
Statistics-Transformed Background Data	X= 1.813	S= 0.047	CV(2)= 0.026	K factor**= 2.904	TL(2)= 1.950	LL(2)=1.6765

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	6.04	1.798			
1/15/2003	6.31	1.842			
4/10/2003	6.5	1.872			
7/14/2003	6.3	1.841			
10/13/2003	6.34	1.847			
1/13/2004	6.33	1.845			
4/13/2004	6.3	1.841			
7/21/2004	5.9	1.775			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	5.8	1.758			
9/30/2002	5.93	1.780			
10/16/2002	5.42	1.690			
1/13/2003	6	1.792			
4/10/2003	6.04	1.798			
7/16/2003	6.2	1.825			
10/14/2003	6.4	1.856			
1/13/2004	6.39	1.855			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	5.87	NO	1.770	N/A
MW221	Sidegradient	Yes	6.07	NO	1.803	N/A
MW222	Sidegradient	Yes	6.23	NO	1.829	N/A
MW223	Sidegradient	Yes	6.12	NO	1.812	N/A
MW224	Sidegradient	Yes	6.1	NO	1.808	N/A
MW369	Downgradien	t Yes	6.05	NO	1.800	N/A
MW372	Downgradien	t Yes	6.14	NO	1.815	N/A
MW384	Sidegradient	Yes	6.21	NO	1.826	N/A
MW387	Downgradien	t Yes	6.05	NO	1.800	N/A
MW391	Downgradien	t Yes	5.86	NO	1.768	N/A
MW394	Upgradient	Yes	6.36	NO	1.850	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 6.654	S = 9.310	CV(1)= 1.399	K factor**= 2.523	TL(1)= 30.144	LL(1)=N/A	-
Statistics-Transformed Background Data	X= 1.130	S= 1.208	CV(2)= 1.069	K factor**= 2.523	TL(2)= 4.178	LL(2)=N/A	

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW220			
Date Collected	Result	LN(Result)		
10/14/2002	6.7	1.902		

3.391

3.215

0.122

1.233

1.904

2.960

1.379

0.693

0.693

0.030

0.095

0.215

0.131

0.049

0.068

LN(Result)

29.7

24.9

1.13

3.43

6.71

19.3

3.97

MW394

Result

2

2

1.03

1.1

1.24

1.14

1.05

1.07

1/15/2003

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	2.21	N/A	0.793	NO
MW221	Sidegradient	Yes	1.35	N/A	0.300	NO
MW222	Sidegradient	Yes	0.664	N/A	-0.409	NO
MW223	Sidegradient	Yes	1.82	N/A	0.599	NO
MW224	Sidegradient	Yes	0.902	N/A	-0.103	NO
MW369	Downgradien	t Yes	0.551	N/A	-0.596	NO
MW372	Downgradien	t Yes	2.15	N/A	0.765	NO
MW384	Sidegradient	Yes	1.47	N/A	0.385	NO
MW387	Downgradien	t Yes	1.9	N/A	0.642	NO
MW391	Downgradien	t Yes	1.63	N/A	0.489	NO
MW394	Upgradient	Yes	1.19	N/A	0.174	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.036	S = 0.382	CV(1)= 10.588	K factor**= 2.523	TL(1)= 1.001	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.873	S = 1.110	CV(2) =-0.592	K factor**= 2.523	TL(2)= -0.538	LL(2)=N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	-0.804	#Func!
1/15/2003	0	#Func!
10/13/2003	0.389	-0.944
1/13/2004	-0.12	#Func!
4/13/2004	0.159	-1.839
7/21/2004	0.382	-0.962
10/11/2004	0.211	-1.556
1/20/2005	0.229	-1.474
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -0.538
Date Collected	Result	
Date Collected 10/16/2002	Result 0.584	-0.538
Date Collected 10/16/2002 1/13/2003	Result 0.584 -0.839	-0.538 #Func!
Date Collected 10/16/2002 1/13/2003 10/14/2003	Result 0.584 -0.839 0.0325	-0.538 #Func! -3.427
Date Collected 10/16/2002 1/13/2003 10/14/2003 1/13/2004	Result 0.584 -0.839 0.0325 -0.00402	-0.538 #Func! -3.427 #Func!
Date Collected 10/16/2002 1/13/2003 10/14/2003 1/13/2004 4/12/2004	Result 0.584 -0.839 0.0325 -0.00402 -0.000337	-0.538 #Func! -3.427 #Func! #Func!
Date Collected 10/16/2002 1/13/2003 10/14/2003 1/13/2004 4/12/2004 7/20/2004	Result 0.584 -0.839 0.0325 -0.00402 -0.000337 0.29	-0.538 #Func! -3.427 #Func! #Func! -1.238

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.0489	N/A	-3.018	N/A
MW221	Sidegradient	No	0.152	N/A	-1.884	N/A
MW222	Sidegradient	No	0.0716	N/A	-2.637	N/A
MW223	Sidegradient	No	0.282	N/A	-1.266	N/A
MW224	Sidegradient	No	0.224	N/A	-1.496	N/A
MW369	Downgradien	t No	0.475	N/A	-0.744	N/A
MW372	Downgradien	t No	0.219	N/A	-1.519	N/A
MW384	Sidegradient	No	0.535	N/A	-0.625	N/A
MW387	Downgradien	t Yes	1.55	N/A	0.438	YES
MW391	Downgradien	t No	0.261	N/A	-1.343	N/A
MW394	Upgradient	No	0.442	N/A	-0.816	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 36.363	S= 8.666	CV(1)= 0.238	K factor**= 2.523	TL(1)= 58.227	LL(1)= N/A
Statistics-Transformed Background Data	X =3.570	S= 0.222	CV(2)= 0.062	K factor**= 2.523	TL(2)= 4.129	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW220				

Date Collected	Result	LN(Result)
10/14/2002	35.4	3.567
1/15/2003	40.6	3.704
4/10/2003	51	3.932
7/14/2003	58.2	4.064
10/13/2003	38.1	3.640
1/13/2004	37	3.611
4/13/2004	43.2	3.766
7/21/2004	33.8	3.520
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.493
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 32.9	3.493
Date Collected 8/13/2002 9/16/2002	Result 32.9 29.9	3.493 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 32.9 29.9 29	3.493 3.398 3.367
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 32.9 29.9 29 27.1	3.493 3.398 3.367 3.300
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 32.9 29.9 29 27.1 24.8	3.493 3.398 3.367 3.300 3.211
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 32.9 29.9 27.1 24.8 35.6	3.493 3.398 3.367 3.300 3.211 3.572

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	39	NO	3.664	N/A
MW221	Sidegradient	Yes	44.9	NO	3.804	N/A
MW222	Sidegradient	Yes	48.3	NO	3.877	N/A
MW223	Sidegradient	Yes	47.6	NO	3.863	N/A
MW224	Sidegradient	Yes	50.3	NO	3.918	N/A
MW369	Downgradien	t Yes	49.3	NO	3.898	N/A
MW372	Downgradien	t Yes	49.8	NO	3.908	N/A
MW384	Sidegradient	Yes	50.6	NO	3.924	N/A
MW387	Downgradien	t Yes	57	NO	4.043	N/A
MW391	Downgradien	t Yes	36	NO	3.584	N/A
MW394	Upgradient	Yes	33.4	NO	3.509	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.481 S = 2.	648 CV(1)=	K factor**= 2.523	TL(1)= 17.161	LL(1)=N/A
Statistics-Transformed Background Data	X =2.322 S = 0.	239 CV(2)=	K factor**= 2.523	TL(2)= 2.925	LL(2)=N/A

	kground Data from fells with Transformed Result
Well Number:	MW220

well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	10.4	2.342
1/15/2003	9.8	2.282
4/10/2003	15.4	2.734
7/14/2003	14.9	2.701
10/13/2003	13.5	2.603
1/13/2004	10.3	2.332
4/13/2004	14.3	2.660
7/21/2004	10.5	2.351
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.416
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 11.2	2.416
Date Collected 8/13/2002 9/16/2002	Result 11.2 8.3	2.416 2.116
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.2 8.3 8	2.416 2.116 2.079
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.2 8.3 8.5	2.416 2.116 2.079 2.140
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.2 8.3 8.5 7.9	2.416 2.116 2.079 2.140 2.067
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 11.2 8.3 8 8.5 7.9 8.4	2.416 2.116 2.079 2.140 2.067 2.128

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	16.9	NO	2.827	N/A
MW221	Sidegradient	Yes	15	NO	2.708	N/A
MW222	Sidegradient	Yes	12.9	NO	2.557	N/A
MW223	Sidegradient	Yes	16	NO	2.773	N/A
MW224	Sidegradient	Yes	12.1	NO	2.493	N/A
MW369	Downgradien	t Yes	9.41	NO	2.242	N/A
MW372	Downgradien	t Yes	66.9	YES	4.203	N/A
MW384	Sidegradient	Yes	21.4	YES	3.063	N/A
MW387	Downgradien	t Yes	28.5	YES	3.350	N/A
MW391	Downgradien	t Yes	64.2	YES	4.162	N/A
MW394	Upgradient	Yes	10.6	NO	2.361	N/A
N/A Dam	Its identified as N	Ion Dotoota	luring lab	anatam, analyzia an	data validatio	n and wara not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW372	
MW384	
MW387	
MW391	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.354	S= 9.280	CV(1)= 0.992	K factor**= 2.523	TL(1)= 32.768	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.270	S= 0.849	CV(2)= 0.374	K factor**= 2.523	TL(2)= 3.262	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	19.7	2.981				
1/15/2003	26.1	3.262				
4/10/2003	3.56	1.270				

0

21

3

6.32

14.6

MW394

Result

14

5.45

2.49

18.3

-1.45

-1.71

18.3

0

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	20.8	NO	3.035	N/A
MW221	Sidegradient	No	7.17	N/A	1.970	N/A
MW222	Sidegradient	No	3.63	N/A	1.289	N/A
MW223	Sidegradient	No	3.91	N/A	1.364	N/A
MW224	Sidegradient	No	3.72	N/A	1.314	N/A
MW369	Downgradien	t Yes	55	YES	4.007	N/A
MW372	Downgradien	t Yes	158	YES	5.063	N/A
MW384	Sidegradient	Yes	168	YES	5.124	N/A
MW387	Downgradien	t Yes	223	YES	5.407	N/A
MW391	Downgradien	t No	12.5	N/A	2.526	N/A
MW394	Upgradient	No	13.4	N/A	2.595	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

#Func!

3.045

1.844

1.099

2.681

2.639

1.696 0.912

2.907

#Func!

#Func!

2.907

#Func!

LN(Result)

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW369	
MW372	
MW384	
MW387	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 1.494	S = 0.737	CV(1)= 0.493	K factor**= 2.523	TL(1) = 3.353	LL(1)= N/A
0					11(1) 5.555	
Statistics-Transformed Background	X =0.315	S= 0.402	CV(2)=1.279	K factor**= 2.523	TL(2)= 1.330	LL(2)=N/A
Data						

Historical Background Data from	
Upgradient Wells with Transformed Result	

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1.1	0.095
4/10/2003	1	0.000
7/14/2003	3.3	1.194
10/13/2003	1.8	0.588
1/13/2004	1	0.000
4/13/2004	2	0.693
7/21/2004	3.1	1.131
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.262
Date Collected	Result	
Date Collected 8/13/2002	Result 1.3	0.262
Date Collected 8/13/2002 9/16/2002	Result 1.3 1	0.262 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.3 1 1	0.262 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.3 1 1.6	0.262 0.000 0.000 0.470
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.3 1 1.6 1	0.262 0.000 0.000 0.470 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.3 1 1.6 1 1.4	0.262 0.000 0.000 0.470 0.000 0.336

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.855	NO	-0.157	N/A	
MW221	Sidegradient	Yes	0.845	NO	-0.168	N/A	
MW222	Sidegradient	Yes	0.829	NO	-0.188	N/A	
MW223	Sidegradient	Yes	0.953	NO	-0.048	N/A	
MW224	Sidegradient	Yes	0.796	NO	-0.228	N/A	
MW369	Downgradien	t Yes	1.2	NO	0.182	N/A	
MW372	Downgradien	t Yes	1	NO	0.000	N/A	
MW384	Sidegradient	Yes	1.13	NO	0.122	N/A	
MW387	Downgradien	t Yes	1.26	NO	0.231	N/A	
MW391	Downgradien	t Yes	0.953	NO	-0.048	N/A	
MW394	Upgradient	Yes	0.897	NO	-0.109	N/A	
N/A Dogu	Its identified as N	Ion Dotoota	Juring Joh	oratory analysis or	data validatio	n and wars not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 63.475	S= 163.13	35 CV(1)=2.570	K factor**= 2.523	TL(1)= 475.063	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.103	S= 1.145	CV(2)= 0.369	K factor**= 2.523	TL(2)= 5.992	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW220							

Date Collected	Result	LN(Result)
10/14/2002	50	3.912
1/15/2003	10	2.303
4/10/2003	10	2.303
7/14/2003	10	2.303
10/13/2003	10	2.303
1/13/2004	10	2.303
4/13/2004	10	2.303
7/21/2004	10	2.303
X7 11 X7 1		
Well Number:	MW394	
Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 672	3.912 6.510
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 50 672 50	3.912 6.510 3.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 50 672 50 36.1	3.912 6.510 3.912 3.586
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 50 672 50 36.1 10	3.912 6.510 3.912 3.586 2.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 50 672 50 36.1 10 42.7	3.912 6.510 3.912 3.586 2.303 3.754

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
Upgradient	Yes	10.9	N/A	2.389	NO		
Sidegradient	Yes	6.02	N/A	1.795	NO		
Sidegradient	Yes	5.54	N/A	1.712	NO		
Sidegradient	Yes	9.02	N/A	2.199	NO		
Sidegradient	Yes	15.3	N/A	2.728	NO		
Downgradien	t Yes	15.7	N/A	2.754	NO		
Downgradien	t Yes	14.3	N/A	2.660	NO		
Sidegradient	No	4.4	N/A	1.482	N/A		
Downgradien	t Yes	13.9	N/A	2.632	NO		
Downgradien	t Yes	12.6	N/A	2.534	NO		
Upgradient	Yes	6.26	N/A	1.834	NO		
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradien Downgradien Downgradien Downgradien	GradientDetected?UpgradientYesSidegradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientNoDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYes	GradientDetected?ResultUpgradientYes10.9SidegradientYes6.02SidegradientYes5.54SidegradientYes9.02SidegradientYes15.3DowngradientYes15.7DowngradientYes14.3SidegradientNo4.4DowngradientYes13.9DowngradientYes12.6	GradientDetected?ResultResult >TL(1)?UpgradientYes10.9N/ASidegradientYes6.02N/ASidegradientYes5.54N/ASidegradientYes9.02N/ASidegradientYes15.3N/ADowngradientYes15.7N/ADowngradientYes14.3N/ASidegradientYes13.9N/A	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 10.9 N/A 2.389 Sidegradient Yes 6.02 N/A 1.795 Sidegradient Yes 5.54 N/A 1.712 Sidegradient Yes 9.02 N/A 2.199 Sidegradient Yes 15.3 N/A 2.728 Downgradient Yes 15.7 N/A 2.754 Downgradient Yes 14.3 N/A 2.660 Sidegradient No 4.4 N/A 1.482 Downgradient Yes 13.9 N/A 2.632 Downgradient Yes 12.6 N/A 2.534		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 8.813	S= 8.376	CV(1)= 0.951	K factor**= 2.523	TL(1)= 29.946	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.395	S= 1.449	CV(2)= 1.039	K factor**= 2.523	TL(2)= 5.052	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.773
Date Collected	Result	
Date Collected 8/13/2002	Result 16	2.773
Date Collected 8/13/2002 9/30/2002	Result 16 20	2.773 2.996
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 16 20 17	2.773 2.996 2.833
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 16 20 17 15	2.773 2.996 2.833 2.708
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 16 20 17 15 10	2.773 2.996 2.833 2.708 2.303
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 16 20 17 15 10 19	2.773 2.996 2.833 2.708 2.303 2.944

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
Upgradient	No	1	N/A	0.000	N/A		
Sidegradient	No	1	N/A	0.000	N/A		
Sidegradient	No	1	N/A	0.000	N/A		
Sidegradient	No	1	N/A	0.000	N/A		
Sidegradient	No	1	N/A	0.000	N/A		
Downgradien	t Yes	1.03	N/A	0.030	N/A		
Downgradien	t Yes	5.72	NO	1.744	N/A		
Sidegradient	Yes	0.41	N/A	-0.892	N/A		
Downgradien	t Yes	0.7	N/A	-0.357	N/A		
Downgradien	t Yes	8.87	NO	2.183	N/A		
Upgradient	Yes	4.85	N/A	1.579	N/A		
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradien Downgradient Downgradien Downgradien	GradientDetected?UpgradientNoSidegradientNoSidegradientNoSidegradientNoSidegradientNoDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYes	GradientDetected?ResultUpgradientNo1SidegradientNo1SidegradientNo1SidegradientNo1SidegradientNo1DowngradientYes1.03DowngradientYes5.72SidegradientYes0.41DowngradientYes8.87	GradientDetected?ResultResult >TL(1)?UpgradientNo1N/ASidegradientNo1N/ASidegradientNo1N/ASidegradientNo1N/ASidegradientNo1N/ADowngradientYes1.03N/ADowngradientYes5.72NOSidegradientYes0.41N/ADowngradientYes0.7N/ADowngradientYes8.87NO	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient No 1 N/A 0.000 Sidegradient No 1 N/A 0.000 Downgradient Yes 1.03 N/A 0.030 Downgradient Yes 5.72 NO 1.744 Sidegradient Yes 0.41 N/A -0.892 Downgradient Yes 0.7 N/A -0.357 Downgradient Yes 8.87 NO 2.183		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.021	S = 0.002	CV(1)= 0.083	K factor**= 2.523	TL(1)= 0.025	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.884	S= 0.076	CV(2) =-0.020	K factor**= 2.523	TL(2)= -3.692	LL(2)=N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.02	-3.912
1/15/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/14/2003	0.02	-3.912
10/13/2003	0.02	-3.912
1/13/2004	0.02	-3.912
4/13/2004	0.02	-3.912
7/21/2004	0.02	-3.912
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.01	N/A	-4.605	N/A
MW221	Sidegradient	No	0.01	N/A	-4.605	N/A
MW222	Sidegradient	Yes	0.00474	NO	-5.352	N/A
MW223	Sidegradient	No	0.01	N/A	-4.605	N/A
MW224	Sidegradient	No	0.01	N/A	-4.605	N/A
MW369	Downgradien	t Yes	0.0039	NO	-5.547	N/A
MW372	Downgradien	t No	0.01	N/A	-4.605	N/A
MW384	Sidegradient	Yes	0.00382	NO	-5.568	N/A
MW387	Downgradien	t No	0.01	N/A	-4.605	N/A
MW391	Downgradien	t No	0.01	N/A	-4.605	N/A
MW394	Upgradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.036	S= 0.026	CV(1)= 0.722	K factor**= 2.523	TL(1)= 0.101	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.485	S = 0.525	CV(2)=- 0.151	K factor**= 2.523	TL(2)= -2.162	LL(2)=N/A

Historical Bac Upgradient W	kground Da ells with Tr	ata from ransformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)

-3.689

-3.352

-3.352

-3.247

-3.650

-3.912

-3.912

-3.912

-2.303

-2.303

-3.689

-3.352

-3.352 -3.912

-3.912

-3.912

LN(Result)

0.025

0.035

0.035

0.0389

0.026

0.02

0.02

0.02

MW394

Result

0.1

0.1

0.025

0.035

0.035

0.02

0.02

0.02

10/14/2002

1/15/2003

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00409	NO	-5.499	N/A
MW221	Sidegradient	Yes	0.00341	NO	-5.681	N/A
MW222	Sidegradient	Yes	0.00359	NO	-5.630	N/A
MW223	Sidegradient	No	0.01	N/A	-4.605	N/A
MW224	Sidegradient	No	0.01	N/A	-4.605	N/A
MW369	Downgradien	t Yes	0.00497	NO	-5.304	N/A
MW372	Downgradien	t No	0.01	N/A	-4.605	N/A
MW384	Sidegradient	Yes	0.0045	NO	-5.404	N/A
MW387	Downgradien	t Yes	0.00435	NO	-5.438	N/A
MW391	Downgradien	t No	0.01	N/A	-4.605	N/A
MW394	Upgradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.258	S = 0.221	CV(1)= 0.856	K factor**= 2.523	TL(1)= 0.815	LL(1)=N/A
Statistics-Transformed Background Data	X= -2.266	S= 2.485	CV(2) =-1.097	K factor**= 2.523	TL(2)= 4.003	LL(2)= N/A

	kground Data from fells with Transformed Result
Well Number:	MW395

Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) -0.194
Date Collected	Result	
Date Collected 8/13/2002	Result 0.824	-0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	-0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	-0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	-0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	-0.194 -1.609 -8.517 -1.013 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.824 0.2 0.0002 0.363 0.2 0.2	-0.194 -1.609 -8.517 -1.013 -1.609 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	0.05	N/A	-2.996	N/A
MW373	Downgradient	t No	0.05	N/A	-2.996	N/A
MW385	Sidegradient	No	0.05	N/A	-2.996	N/A
MW388	Downgradient	t Yes	0.14	NO	-1.966	N/A
MW392	Downgradient	t No	0.05	N/A	-2.996	N/A
MW395	Upgradient	Yes	0.199	NO	-1.614	N/A
MW397	Upgradient	Yes	0.0301	NO	-3.503	N/A
N/A - Resul	lts identified as N	Ion-Detects	luring lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.183	S= 2.612	CV(1)= 0.364	K factor**= 2.523	TL(1)= 13.773	LL(1)=N/A
Statistics-Transformed Background Data	X =1.870	S = 0.552	CV(2)= 0.295	K factor**= 2.523	TL(2)= 3.261	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW395

	111 11 5 7 5	
Date Collected	Result	LN(Result)
8/13/2002	1.09	0.086
9/16/2002	5.79	1.756
10/16/2002	6.82	1.920
1/13/2003	5.01	1.611
4/10/2003	6.1	1.808
7/16/2003	8.51	2.141
10/14/2003	4.99	1.607
1/13/2004	6.58	1.884
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.259
Date Collected	Result	
Date Collected 8/13/2002	Result 9.57	2.259
Date Collected 8/13/2002 9/16/2002	Result 9.57 11	2.259 2.398
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 9.57 11 9.3	2.259 2.398 2.230
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 9.57 11 9.3 8.63	2.259 2.398 2.230 2.155
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 9.57 11 9.3 8.63 10	2.259 2.398 2.230 2.155 2.303
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 9.57 11 9.3 8.63 10 6.89	2.259 2.398 2.230 2.155 2.303 1.930

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	81.7	YES	4.403	N/A
MW373	Downgradien	Yes	22.8	N/A	3.127	N/A
MW385	Sidegradient	Yes	45.9	N/A	3.826	N/A
MW388	Downgradien	Yes	83.1	YES	4.420	N/A
MW392	Downgradien	t No	4.52	N/A	1.509	N/A
MW395	Upgradient	No	9.41	N/A	2.242	N/A
MW397	Upgradient	No	5.14	N/A	1.637	N/A
			0	oratory analysis or		

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Wells with Exceedances MW370 MW388

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.650	S= 0.805	CV(1)= 1.238	K factor**= 2.523	TL(1)= 2.681	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.034	S = 1.030	CV(2) =-0.996	K factor**= 2.523	TL(2)= 1.564	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW395

Well Number:

wen number.	IVI W 393	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2 2. 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2 2. 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 2 0.2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.0326	N/A	-3.423	NO
MW373	Downgradien	t Yes	1.24	N/A	0.215	NO
MW385	Sidegradient	Yes	0.0155	N/A	-4.167	NO
MW388	Downgradien	t Yes	0.0301	N/A	-3.503	NO
MW392	Downgradien	t Yes	0.026	N/A	-3.650	NO
MW395	Upgradient	Yes	0.0228	N/A	-3.781	NO
MW397	Upgradient	Yes	0.00936	N/A	-4.671	NO
N/A - Resul	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

We	Well Number:		MW	V395	
-			_		

Date Collected	Result	LN(Result)
8/13/2002	1	0.000
9/16/2002	1	0.000
10/16/2002	1	0.000
1/13/2003	1	0.000
4/10/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1	0.000
1/13/2004	1	0.000
N7 11 N7 1		
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.419	NO	-0.870	N/A
MW373	Downgradien	t Yes	0.572	NO	-0.559	N/A
MW385	Sidegradient	Yes	0.228	NO	-1.478	N/A
MW388	Downgradien	t Yes	0.35	NO	-1.050	N/A
MW392	Downgradien	t Yes	0.526	NO	-0.642	N/A
MW395	Upgradient	Yes	0.451	NO	-0.796	N/A
MW397	Upgradient	Yes	0.422	NO	-0.863	N/A
			0	oratory analysis or		n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 23.103	S= 11.538	CV(1)= 0.499	K factor**= 2.523	TL(1)= 52.213	LL(1)=N/A
Statistics-Transformed Background	X= 2.357	S= 2.411	CV(2)=1.023	K factor**= 2.523	TL(2)= 8.439	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW395			

	11211090	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.965
Date Collected	Result	()
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 19.4 19 0.0179 17.8 20.3 19.4	2.965 2.944 -4.023 2.879 3.011 2.965

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	26.1	NO	3.262	N/A
MW373	Downgradient	t Yes	57.4	YES	4.050	N/A
MW385	Sidegradient	Yes	42.9	NO	3.759	N/A
MW388	Downgradient	t Yes	28.1	NO	3.336	N/A
MW392	Downgradient	t Yes	27.1	NO	3.300	N/A
MW395	Upgradient	Yes	24.4	NO	3.195	N/A
MW397	Upgradient	Yes	19.3	NO	2.960	N/A
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 35.313	S= 1.250	CV(1)= 0.035	K factor**= 2.523	TL(1)= 38.466	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.564	S= 0.033	CV(2)= 0.009	K factor**= 2.523	TL(2)= 3.648	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	3.555
4/10/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/13/2004	35	3.555
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.689
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 40	3.689
Date Collected 8/13/2002 9/16/2002	Result 40 35	3.689 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 40 35 35	3.689 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 40 35 35 35	3.689 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 40 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	31.4	NO	3.447	N/A
MW373	Downgradien	t No	14.7	N/A	2.688	N/A
MW385	Sidegradient	Yes	18.4	NO	2.912	N/A
MW388	Downgradien	t Yes	13.4	NO	2.595	N/A
MW392	Downgradien	t No	20	N/A	2.996	N/A
MW395	Upgradient	Yes	9.87	NO	2.289	N/A
MW397	Upgradient	Yes	60.8	YES	4.108	N/A
			U	oratory analysis or		n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW397

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 51.844	S= 11.652	CV(1)= 0.225	K factor**= 2.523	TL(1)= 81.242	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.924	S= 0.229	CV(2)= 0.058	K factor**= 2.523	TL(2)= 4.501	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	62.2	4.130
9/16/2002	64.7	4.170

4.130

4.151

4.160

4.159

4.146

4.104

3.661

3.684

3.671

3.701

3.740

3.738

3.709

3.728

LN(Result)

62.2

63.5

64.1

64

63.2

60.6

MW397

Result

38.9

39.8

39.3

40.5

42.1

42

40.8

41.6

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	35.8	NO	3.578	N/A
MW373	Downgradient	Yes	44.8	NO	3.802	N/A
MW385	Sidegradient	Yes	24	NO	3.178	N/A
MW388	Downgradient	Yes	30.9	NO	3.431	N/A
MW392	Downgradient	Yes	45.7	NO	3.822	N/A
MW395	Upgradient	Yes	39.9	NO	3.686	N/A
MW397	Upgradient	Yes	36.1	NO	3.586	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.609	S = 0.000	CV(2)= 0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MW305

Well Number

Well Number:	MW 395	
Date Collected	Result	LN(Result)
8/13/2002	5	1.609
9/30/2002	5	1.609
10/16/2002	5	1.609
1/13/2003	5	1.609
4/10/2003	5	1.609
7/16/2003	5	1.609
10/14/2003	5	1.609
1/13/2004	5	1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	()
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	1	N/A	0.000	N/A
MW373	Downgradient	No	1	N/A	0.000	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradient	No	1	N/A	0.000	N/A
MW392	Downgradient	Yes	1.13	NO	0.122	N/A
MW395	Upgradient	No	1	N/A	0.000	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A
N/A - Resu	lts identified as N	on-Detects of	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.007	S= 0.011	CV(1)= 1.515	K factor**= 2.523	TL(1)= 0.034	LL(1)= N/A
Statistics-Transformed Background Data	X= -6.053	S= 1.416	CV(2) =-0.234	K factor**= 2.523	TL(2)= -2.480	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	· · · ·
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	0.001	N/A	-6.908	N/A
MW373	Downgradient	Yes	0.00119	N/A	-6.734	NO
MW385	Sidegradient	No	0.001	N/A	-6.908	N/A
MW388	Downgradient	No	0.001	N/A	-6.908	N/A
MW392	Downgradient	No	0.001	N/A	-6.908	N/A
MW395	Upgradient	No	0.001	N/A	-6.908	N/A
MW397	Upgradient	No	0.001	N/A	-6.908	N/A
N/A - Resu	lts identified as N	on-Detects of	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Conductivity **UNITS: umho/cm LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 377.875 S = 52.101	CV(1)= 0.138	K factor**= 2.523	TL(1)= 509.326	LL(1)=N/A
Statistics-Transformed Background Data	X =5.926 S = 0.136	CV(2)= 0.023	K factor**= 2.523	TL(2)= 6.270	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.775
Date Collected	Result	
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	442	NO	6.091	N/A
MW373	Downgradient	Yes	725	YES	6.586	N/A
MW385	Sidegradient	Yes	436	NO	6.078	N/A
MW388	Downgradient	Yes	454	NO	6.118	N/A
MW392	Downgradient	Yes	425	NO	6.052	N/A
MW395	Upgradient	Yes	375	NO	5.927	N/A
MW397	Upgradient	Yes	321	NO	5.771	N/A
			U	oratory analysis or		n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.028	S= 0.013	CV(1)= 0.474	K factor**= 2.523	TL(1)= 0.061	LL(1)=N/A
Statistics-Transformed Background	X= -3.662	S= 0.406	CV(2)=- 0.111	K factor**= 2.523	TL(2)= -2.638	LL(2)= N/A

Historical Bac Upgradient W	kgr ells	ound Da with Tr	ata from ansformed	l Result
Well Number:	М	W395		
D : G 11 : 1	n	4.	T 3 1 (D	1.5

Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.0281	-3.572
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	· · · ·
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.02	-2.996 -2.996 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.02 0.02	-2.996 -2.996 -3.912 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.02 0.02 0.02	-2.996 -2.996 -3.912 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradien	t Yes	0.00065	3 NO	-7.334	N/A		
MW373	Downgradien	t Yes	0.00037	3 NO	-7.894	N/A		
MW385	Sidegradient	Yes	0.00032	1 NO	-8.044	N/A		
MW388	Downgradien	t Yes	0.00125	NO	-6.685	N/A		
MW392	Downgradien	t Yes	0.00571	NO	-5.166	N/A		
MW395	Upgradient	Yes	0.00177	NO	-6.337	N/A		
MW397	Upgradient	Yes	0.00069	2 NO	-7.276	N/A		
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.								

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 4.678	S= 2.431	CV(1)= 0.520	K factor**= 2.523	TL(1)= 10.812	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.414	S = 0.550	CV(2)= 0.389	K factor**= 2.523	TL(2)= 2.802	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW395							
Date Collected	Result	LN(Result)						
8/13/2002	7.29	1.987						
9/30/2002	4.03	1.394						

3.85

2.36

1.14

1.76

4.05

4.26

MW397

Result

11.56

5.86

5.94

4.66

3.77

3.47

5.34

5.51

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	3.31	NO	1.197	N/A	
MW373	Downgradient	Yes	1.79	NO	0.582	N/A	
MW385	Sidegradient	Yes	1.27	NO	0.239	N/A	
MW388	Downgradient	Yes	3.53	NO	1.261	N/A	
MW392	Downgradient	Yes	1.71	NO	0.536	N/A	
MW395	Upgradient	Yes	4.29	NO	1.456	N/A	
MW397	Upgradient	Yes	5.46	NO	1.697	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.348

0.859

0.131

0.565

1.399

1.449

2.448

1.768

1.782

1.539

1.327

1.244

1.675

1.707

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 219.25	0 S= 34.107	CV(1)= 0.156	K factor**= 2.523	TL(1)= 305.301	LL(1)=N/A
Statistics-Transformed Background Data	X= 5.379	S= 0.152	CV(2)= 0.028	K factor**= 2.523	TL(2)= 5.762	LL(2)=N/A

Historical Background	Data from	
Upgradient Wells with	Transformed	Result

MW305

Well Number

well Number:	M W 395	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.231
Date Collected	Result	()
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 187 197 183 182 217 196	5.231 5.283 5.209 5.204 5.380 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradien	t Yes	223	NO	5.407	N/A		
MW373	Downgradien	t Yes	393	YES	5.974	N/A		
MW385	Sidegradient	Yes	277	NO	5.624	N/A		
MW388	Downgradien	t Yes	279	NO	5.631	N/A		
MW392	Downgradien	t Yes	197	NO	5.283	N/A		
MW395	Upgradient	Yes	176	NO	5.170	N/A		
MW397	Upgradient	Yes	184	NO	5.215	N/A		
				oratory analysis or		n and were not		

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.400	S= 0.514	CV(1)= 1.286	K factor**= 2.523	TL(1)= 1.698	LL(1)=N/A
Statistics-Transformed Background Data	X= -2.197	S= 2.634	CV(2) =-1.199	K factor**= 2.523	TL(2)= 4.449	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
8/12/2002	0.204	1 224					

8/13/2002 0.294-1.2249/16/2002 0.2 -1.60910/16/2002 0.0002 -8.517 1/13/2003 1.33 0.285 4/10/2003 1.31 0.270 7/16/2003 0.2 -1.60910/14/2003 0.1 -2.303 1/13/2004 0.1 -2.303Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 1.58 0.457 9/16/2002 0.232 -1.461 0.0002 10/17/2002 -8.517 1/13/2003 0.453 -0.792 4/8/2003 0.2 -1.609 7/16/2003 0.2 -1.60910/14/2003 -2.3030.1 1/13/2004 0.1 -2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t No	0.1	N/A	-2.303	N/A	
MW373	Downgradien	t Yes	0.0428	N/A	-3.151	NO	
MW385	Sidegradient	No	0.1	N/A	-2.303	N/A	
MW388	Downgradien	t Yes	0.483	N/A	-0.728	NO	
MW392	Downgradien	t Yes	0.0992	N/A	-2.311	NO	
MW395	Upgradient	Yes	0.63	N/A	-0.462	NO	
MW397	Upgradient	Yes	0.0442	N/A	-3.119	NO	
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.102	S= 4.685	CV(1)= 0.515	K factor**= 2.523	TL(1)= 20.922	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.423	S= 2.408	CV(2)= 1.692	K factor**= 2.523	TL(2)= 7.500	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			

8/13/2002 12.5 2.526 9/16/2002 13 2.565 10/16/2002 0.0127 -4.366 1/13/2003 11.2 2.416 4/10/2003 17.5 2.862 7/16/2003 12.9 2.557 10/14/2003 13.4 2.595 1/13/2004 12.4 2.518 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 7.83 2.058 9/16/2002 7.64 2.033 0.00658 10/17/2002 -5.0241/13/2003 6.69 1.901 4/8/2003 7.28 1.985 7/16/2003 7.82 2.057 10/14/2003 7.94 2.072 1/13/2004 7.51 2.016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	11.5	NO	2.442	N/A
MW373	Downgradien	t Yes	23.2	YES	3.144	N/A
MW385	Sidegradient	Yes	17	NO	2.833	N/A
MW388	Downgradien	t Yes	13	NO	2.565	N/A
MW392	Downgradien	t Yes	9.79	NO	2.281	N/A
MW395	Upgradient	Yes	10.7	NO	2.370	N/A
MW397	Upgradient	Yes	8.48	NO	2.138	N/A
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.131	S= 0.195	CV(1)= 1.487	K factor**= 2.523	TL(1)= 0.624	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.104	S = 1.529	CV(2) =-0.493	K factor**= 2.523	TL(2)= 0.755	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	М	W395			
D (0 11) 1	р	1.	I NI/D	1.0	

Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.764
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 0.466	-0.764
Date Collected 8/13/2002 9/16/2002	Result 0.466 0.077	-0.764 -2.564
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.466 0.077 0.028	-0.764 -2.564 -3.576
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.466 0.077 0.028 0.0164	-0.764 -2.564 -3.576 -4.110
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.466 0.077 0.028 0.0164 0.0407	-0.764 -2.564 -3.576 -4.110 -3.202

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	0.005	N/A	-5.298	N/A
MW373	Downgradient	t Yes	0.0258	N/A	-3.657	NO
MW385	Sidegradient	Yes	0.00976	N/A	-4.629	NO
MW388	Downgradient	t Yes	0.00393	N/A	-5.539	NO
MW392	Downgradient	t Yes	0.0132	N/A	-4.328	NO
MW395	Upgradient	Yes	0.0123	N/A	-4.398	NO
MW397	Upgradient	Yes	0.00171	N/A	-6.371	NO
N/A - Resul	lts identified as N	Ion-Detects of	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.007	S= 0.011	CV(1)= 1.451	K factor**= 2.523	TL(1)= 0.034	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.990	S = 1.443	CV(2) =-0.241	K factor**= 2.523	TL(2)= -2.349	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW305

Well Number

Well Number:	MW 395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00609	-5.101
4/10/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW373	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW385	Sidegradient	Yes	0.00082	9 N/A	-7.095	NO
MW388	Downgradien	t Yes	0.00027	9 N/A	-8.184	NO
MW392	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW395	Upgradient	Yes	0.00034	7 N/A	-7.966	NO
MW397	Upgradient	No	0.0005	N/A	-7.601	N/A
				oratory analysis or		n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis **Historical Background Comparison** Nickel UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.018	S= 0.020	CV(1)= 1.089	K factor**= 2.523	TL(1)= 0.068	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.540	S = 1.020	CV(2) =-0.225	K factor**= 2.523	TL(2)= -1.965	LL(2)=N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.005 0.00502	-2.996 -2.996 -5.298 -5.294
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.005 0.00502 0.00502	-2.996 -2.996 -5.298 -5.294 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	0.00070	6 N/A	-7.256	NO
MW373	Downgradient	Yes	0.00176	N/A	-6.342	NO
MW385	Sidegradient	Yes	0.00136	N/A	-6.600	NO
MW388	Downgradient	Yes	0.00146	N/A	-6.529	NO
MW392	Downgradient	Yes	0.00617	N/A	-5.088	NO
MW395	Upgradient	Yes	0.00147	N/A	-6.522	NO
MW397	Upgradient	Yes	0.00071	1 N/A	-7.249	NO
			0	oratory analysis or		n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =157.250) S = 52.376	CV(1)= 0.333	K factor**= 2.523	TL(1)= 289.395	LL(1)=N/A
Statistics-Transformed Background Data	X= 5.003	S= 0.348	CV(2) =0.069	K factor**= 2.523	TL(2)= 5.880	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu						
Well Number:	MW395					

wen number.	IVI W 393	
Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.745
Date Collected	Result	
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 115 140 185 230 155 188	4.745 4.942 5.220 5.438 5.043 5.236

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	346	YES	5.846	N/A
MW373	Downgradien	t Yes	438	YES	6.082	N/A
MW385	Sidegradient	Yes	405	YES	6.004	N/A
MW388	Downgradien	t Yes	421	YES	6.043	N/A
MW392	Downgradien	t Yes	375	YES	5.927	N/A
MW395	Upgradient	Yes	237	NO	5.468	N/A
MW397	Upgradient	Yes	407	YES	6.009	N/A
			0	oratory analysis or		n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW370
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW373
concentration with respect to historical background data.	MW385
	MW388
	MW392
	MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.048	S= 0.248	CV(1)= 0.041	K factor**= 2.904	TL(1)= 6.767	LL(1)=5.3289
Statistics-Transformed Background Data	X= 1.799	S = 0.042	CV(2)= 0.023	K factor**= 2.904	TL(2)= 1.920	LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	5.8	1.758				
9/16/2002	6	1.792				
10/16/2002	5.47	1.699				
1/13/2003	6	1.792				
4/10/2003	6.18	1.821				
7/16/2003	6	1.792				
10/14/2003	6.31	1.842				
1/13/2004	6.24	1.831				

Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	5.84	1.765
9/30/2002	6	1.792
10/17/2002	5.75	1.749
1/13/2003	6	1.792
4/8/2003	6.3	1.841
7/16/2003	6.2	1.825
10/14/2003	6.36	1.850
1/13/2004	6.32	1.844

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
MW370	Downgradient	t Yes	6.01	NO	1.793	N/A	
MW373	Downgradient	t Yes	6.19	NO	1.823	N/A	
MW385	Sidegradient	Yes	6.45	NO	1.864	N/A	
MW388	Downgradient	t Yes	6.11	NO	1.810	N/A	
MW392	Downgradient	t Yes	5.88	NO	1.772	N/A	
MW395	Upgradient	Yes	6.21	NO	1.826	N/A	
MW397	Upgradient	Yes	5.98	NO	1.788	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.590	S= 0.642	CV(1)= 0.404	K factor**= 2.523	TL(1)= 3.208	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.306	S= 2.457	CV(2) =-8.028	K factor**= 2.523	TL(2)= 5.892	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	2	0.693				
9/16/2002	2	0.693				
10/16/2002	0.00129	-6.653				
1/13/2003	1.51	0.412				
4/10/2003	1.67	0.513				
7/16/2003	1.73	0.548				
10/14/2003	1.7	0.531				
1/13/2004	1.58	0.457				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	2.03	0.708				
9/16/2002	2	0.693				
10/17/2002	0.00145	-6.536				
1/13/2003	1.69	0.525				

1.73

1.92

1.87

2

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Downgradient	t Yes	2.24	NO	0.806	N/A
Downgradient	t Yes	2.5	NO	0.916	N/A
Sidegradient	Yes	2.1	NO	0.742	N/A
Downgradient	t Yes	2.3	NO	0.833	N/A
Downgradient	t Yes	1.64	NO	0.495	N/A
Upgradient	Yes	1.44	NO	0.365	N/A
Upgradient	Yes	1.95	NO	0.668	N/A
	Gradient Downgradient Downgradient Sidegradient Downgradient Upgradient	GradientDetected?DowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesUpgradientYes	GradientDetected?ResultDowngradientYes2.24DowngradientYes2.5SidegradientYes2.1DowngradientYes2.3DowngradientYes1.64UpgradientYes1.44	GradientDetected?ResultResult >TL(1)?DowngradientYes2.24NODowngradientYes2.5NOSidegradientYes2.1NODowngradientYes2.3NODowngradientYes1.64NOUpgradientYes1.44NO	GradientDetected?ResultResult >TL(1)?LN(Result)DowngradientYes2.24NO0.806DowngradientYes2.5NO0.916SidegradientYes2.1NO0.742DowngradientYes2.3NO0.833DowngradientYes1.64NO0.495UpgradientYes1.44NO0.365

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.548

0.693

0.652

0.626

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.039	S = 0.419	CV(1)= 10.740	K factor**= 2.523	TL(1)= 1.096	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.695	S= 1.043	CV(2) =-0.615	K factor**= 2.523	TL(2)= -0.414	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/16/2002	0.661	-0.414
1/13/2003	-0.839	#Func!
10/14/2003	0.0266	-3.627
1/13/2004	-0.0777	#Func!
4/12/2004	-0.115	#Func!
7/20/2004	0.105	-2.254
10/12/2004	0.408	-0.896
1/18/2005	0.0564	-2.875
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.552
Date Collected	Result	()
Date Collected 10/17/2002	Result 0.576	-0.552
Date Collected 10/17/2002 1/13/2003	Result 0.576 -0.841	-0.552 #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003	Result 0.576 -0.841 -0.179	-0.552 #Func! #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003 1/13/2004	Result 0.576 -0.841 -0.179 -0.0564	-0.552 #Func! #Func! #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003 1/13/2004 4/12/2004	Result 0.576 -0.841 -0.179 -0.0564 0.174	-0.552 #Func! #Func! #Func! -1.749
Date Collected 10/17/2002 1/13/2003 10/14/2003 1/13/2004 4/12/2004 7/21/2004	Result 0.576 -0.841 -0.179 -0.0564 0.174 0.227	-0.552 #Func! #Func! #Func! -1.749 -1.483

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	0.24	N/A	-1.427	N/A
MW373	Downgradient	No	0.416	N/A	-0.877	N/A
MW385	Sidegradient	Yes	0.905	N/A	-0.100	YES
MW388	Downgradient	No	0.616	N/A	-0.485	N/A
MW392	Downgradient	No	0.383	N/A	-0.960	N/A
MW395	Upgradient	No	0.612	N/A	-0.491	N/A
MW397	Upgradient	No	0.415	N/A	-0.879	N/A
N/A Pasu	lts identified as N	on Detects (Juring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW385

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 29.560	S= 13.894	CV(1)= 0.470	K factor**= 2.523	TL(1)= 64.616	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.615	S = 2.411	CV(2)= 0.922	K factor**= 2.523	TL(2)= 8.699	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number:	MW305					

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.561
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 35.2 34.3 0.0336 31.3 46.1 38.4	3.561 3.535 -3.393 3.444 3.831 3.648

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	40.4	NO	3.699	N/A
MW373	Downgradien	t Yes	50.2	NO	3.916	N/A
MW385	Sidegradient	Yes	33.3	NO	3.506	N/A
MW388	Downgradien	t Yes	49.9	NO	3.910	N/A
MW392	Downgradien	t Yes	34.6	NO	3.544	N/A
MW395	Upgradient	Yes	28.5	NO	3.350	N/A
MW397	Upgradient	Yes	33.2	NO	3.503	N/A
N/A - Resul	ts identified as N	Ion-Detects	during lah	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.756	S= 2.147	CV(1)= 0.200	K factor**= 2.523	TL(1)= 16.173	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.356	S= 0.203	CV(2)= 0.086	K factor**= 2.523	TL(2)= 2.869	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	10.3	2.332			
9/16/2002	9.1	2.208			
10/16/2002	8.8	2.175			

9

8.3

8.2

8.3

8.2

MW397

Result

14

12.8

12.3

12.7

12.8

13.1

12.1

12.1

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	21.7	YES	3.077	N/A
MW373	Downgradien	t Yes	113	YES	4.727	N/A
MW385	Sidegradient	Yes	18.8	YES	2.934	N/A
MW388	Downgradien	t Yes	24.9	YES	3.215	N/A
MW392	Downgradien	t Yes	8.68	NO	2.161	N/A
MW395	Upgradient	Yes	10.2	NO	2.322	N/A
MW397	Upgradient	Yes	10.4	NO	2.342	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.197

2.116

2.104

2.116

2.104

2.639

2.549

2.510

2.542

2.549

2.573

2.493

2.493

LN(Result)

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW370 MW373 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 11.359	S= 9.138	CV(1)= 0.805	K factor**= 2.523	TL(1)= 34.414	LL(1)= N/A
Statistics-Transformed Background	X= 2.398	S= 0.859	CV(2)= 0.358	K factor**= 2.523	TL(2)= 3.246	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	20.8	3.035			
9/16/2002	16.2	2.785			
10/16/2002	8.28	2.114			
1/13/2003	13	2.565			
4/10/2003	-9.37	#Func!			
7/16/2003	0.826	-0.191			
10/14/2003	14.1	2.646			
1/13/2004	0	#Func!			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	6.06	1.802			
9/16/2002	17.3	2.851			
10/17/2002	25.7	3.246			
1/13/2003	20.9	3.040			
4/8/2003	20.1	3.001			
7/16/2003	9.2	2.219			
10/14/2003	10.1	2.313			

8.54

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	114	YES	4.736	N/A
MW373	Downgradient	No	20.3	N/A	3.011	N/A
MW385	Sidegradient	Yes	91.9	YES	4.521	N/A
MW388	Downgradient	Yes	117	YES	4.762	N/A
MW392	Downgradient	No	5.15	N/A	1.639	N/A
MW395	Upgradient	No	13.2	N/A	2.580	N/A
MW397	Upgradient	Yes	18.3	NO	2.907	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.145

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

```
Wells with Exceedances
MW370
MW385
MW388
```

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

1	,	2	0			
Statistics-Background Data	X= 1.544	S= 0.856	CV(1)= 0.554	K factor**= 2.523	TL(1)= 3.702	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.325	S= 0.452	CV(2)= 1.393	K factor**= 2.523	TL(2)= 1.465	LL(2)=N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

MW305

Well Number

Well Number:	MW 395	
Date Collected	Result	LN(Result)
8/13/2002	1.6	0.470
9/16/2002	1.1	0.095
10/16/2002	1	0.000
1/13/2003	2	0.693
4/10/2003	3.4	1.224
7/16/2003	2	0.693
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 3.6	0.000 0.000 0.000 1.281
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 3.6 1.9	0.000 0.000 0.000 1.281 0.642
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 1 1 3.6 1.9 1.1	0.000 0.000 0.000 1.281 0.642 0.095

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	1.02	NO	0.020	N/A
MW373	Downgradient	Yes	1.2	NO	0.182	N/A
MW385	Sidegradient	Yes	1.01	NO	0.010	N/A
MW388	Downgradient	Yes	1.18	NO	0.166	N/A
MW392	Downgradient	Yes	1.1	NO	0.095	N/A
MW395	Upgradient	Yes	0.921	NO	-0.082	N/A
MW397	Upgradient	Yes	0.778	NO	-0.251	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 31.513	S= 18.609	CV(1)= 0.591	K factor**= 2.523	TL(1)= 78.462	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.240	S= 0.707	CV(2)= 0.218	K factor**= 2.523	TL(2)= 5.024	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	50	3 912			

Date Collected	Result	LN(Result)
8/13/2002	50	3.912
9/16/2002	50	3.912
10/16/2002	50	3.912
1/13/2003	18.3	2.907
4/10/2003	51.2	3.936
7/16/2003	42.6	3.752
10/14/2003	12.3	2.510
1/13/2004	10	2.303
XX7 11 X 7 1	10000	
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.912
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 50	3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 50 50 50	3.912 3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 50 50 50 12	3.912 3.912 3.912 2.485
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 50 50 50 12 19.9	3.912 3.912 3.912 2.485 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	6.16	NO	1.818	N/A	
MW373	Downgradien	t Yes	11.6	NO	2.451	N/A	
MW385	Sidegradient	No	8.78	N/A	2.172	N/A	
MW388	Downgradien	t Yes	11.5	NO	2.442	N/A	
MW392	Downgradien	t Yes	23.6	NO	3.161	N/A	
MW395	Upgradient	Yes	44.4	NO	3.793	N/A	
MW397	Upgradient	Yes	5.42	NO	1.690	N/A	
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =7.313	S = 5.701	CV(1)= 0.780	K factor**= 2.523	TL(1)= 21.695	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.467	S= 1.213	CV(2)= 0.827	K factor**= 2.523	TL(2)= 4.528	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MW305

Well Number

Well Number:	MW 395	
Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	14	2.639
10/16/2002	12	2.485
1/13/2003	14	2.639
4/10/2003	14	2.639
7/16/2003	13	2.565
10/14/2003	12	2.485
1/13/2004	11	2.398
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1	1.609 1.609 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1	1.609 1.609 0.000 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5 5 1 1 1 1 1	1.609 1.609 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	0.67	N/A	-0.400	N/A
MW373	Downgradient	Yes	7.91	NO	2.068	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradient	Yes	0.65	N/A	-0.431	N/A
MW392	Downgradient	Yes	14.1	NO	2.646	N/A
MW395	Upgradient	Yes	2.91	N/A	1.068	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.021	S = 0.002	CV(1)= 0.105	K factor**= 2.523	TL(1)= 0.027	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.856	S = 0.100	CV(2) =-0.026	K factor**= 2.523	TL(2)= -3.604	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
8/13/2002	0.025	-3.689					
9/16/2002	0.025	-3.689					
10/16/2002	0.02	-3.912					
1/13/2003	0.02	-3.912					
7/16/2003	0.02	-3.912					
10/14/2003	0.02	-3.912					
1/13/2004	0.02	-3.912					
4/12/2004	0.02	-3.912					
Well Number:	MW397						
Date Collected	Result	LN(Result)					
8/13/2002	0.025	-3.689					
9/16/2002	0.025	-3.689					
10/17/2002	0.02	-3.912					
1/13/2003	0.02	-3.912					
4/8/2003	0.02	-3.912					
7/16/2003	0.02	-3.912					

0.02

0.02

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW370	Downgradien	t Yes	0.00376	NO	-5.583	N/A			
MW373	Downgradien	t No	0.01	N/A	-4.605	N/A			
MW385	Sidegradient	Yes	0.00417	NO	-5.480	N/A			
MW388	Downgradien	t Yes	0.00343	NO	-5.675	N/A			
MW392	Downgradien	t No	0.01	N/A	-4.605	N/A			
MW395	Upgradient	Yes	0.00352	NO	-5.649	N/A			
MW397	Upgradient	Yes	0.00464	NO	-5.373	N/A			
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.									

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.044	S= 0.034	CV(1)= 0.760	K factor**= 2.523	TL(1)= 0.129	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.342	S = 0.659	CV(2) =-0.197	K factor**= 2.523	TL(2)= -1.679	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number: MW395							

Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/10/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.303
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 0.1	-2.303
Date Collected 8/13/2002 9/16/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.1 0.1 0.025	-2.303 -2.303 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.1 0.1 0.025 0.035	-2.303 -2.303 -3.689 -3.352
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.1 0.025 0.035 0.035	-2.303 -2.303 -3.689 -3.352 -3.352
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.1 0.025 0.035 0.035 0.02	-2.303 -2.303 -3.689 -3.352 -3.352 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW370	Downgradient	Yes	0.00576	NO	-5.157	N/A			
MW373	Downgradient	No	0.01	N/A	-4.605	N/A			
MW385	Sidegradient	Yes	0.00448	NO	-5.408	N/A			
MW388	Downgradient	Yes	0.00519	NO	-5.261	N/A			
MW392	Downgradient	No	0.01	N/A	-4.605	N/A			
MW395	Upgradient	Yes	0.00398	NO	-5.526	N/A			
MW397	Upgradient	Yes	0.00519	NO	-5.261	N/A			
	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not								

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T Fourth Quarter 2018 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =242.625 S = 59.020	CV(1)= 0.243	K factor**= 3.188	TL(1)= 430.782	LL(1)=N/A
Statistics-Transformed Background Data	X =5.467 S = 0.232	CV(2)= 0.043	K factor**= 3.188	TL(2)= 6.208	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW396	
Date Collected	Result	LN(Result)
10/12/2016	221	5.398
1/17/2017	209	5.342
4/20/2017	172	5.147
7/19/2017	291	5.673
10/9/2017	217	5.380
1/23/2018	203	5.313
4/19/2018	275	5.617
7/19/2018	353	5.866

Current Background Data from Upgradient

Wells with Transformed Result

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	232	NO	5.447	N/A		
MW390	Downgradient	Yes	413	NO	6.023	N/A		
MW393	Downgradient	Yes	303	NO	5.714	N/A		
MW396	Upgradient	Yes	210	NO	5.347	N/A		

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Backg	ground Dat	a	X=-3 .418	S= 7.244	CV(1)=- 2.1	20 K	K factor**= 3.188 TL(1)= 19.678 LL(1)= N			
Statistics-Trans Data	sformed Ba	ckground	X =0.966	S= 0.711	CV(2)= 0.73	36 K	K factor**= 3.188 TL(2)= 1.766 LL(2)			LL(2)= N/A
Current Back Wells with Tr Well Number:	8	10	adient				1 c	Because CV(, assume no ontinue with tilizing TL(rmal distri 1 statistical	
Date Collected 10/12/2016 1/17/2017 4/20/2017	Result -10.9 3.72 -7.44	LN(Resul #Func! 1.314 #Func!	lt)				р Т	Because the ossbile for a 'L was const naximum ba	ill backgrou idered equa	ind values, the ll to the
7/19/2017 10/9/2017	1.19 -11.3	0.174 #Func!		Current	Quarter Data					
1/23/2018 4/19/2018	5.85 -10.3	1.766 #Func!		Well No.			Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(2)
7/19/2018	1.84	0.610		MW390	Downgradient	Yes	67.7	YES	4.215	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.842	S= 7.654	CV(1)= 0.778	K factor**= 2.523	TL(1)= 29.152	LL(1)=N/A
Statistics-Transformed Background Data	X =2.257	S = 0.686	CV(2)= 0.304	K factor**= 2.523	TL(2)= 3.114	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected Result LN(Result) 10/10/2016 21.7 3.077 1/11/2017 13.6 2.610 4/19/2017 20.1 3.001 22.5 7/19/2017 3.114 10/9/2017 13.1 2.573 1/23/2018 12.8 2.549 4/17/2018 14.4 2.667 7/19/2018 2.156 8.64 Well Number: MW394 Date Collected Result LN(Result) 10/12/2016 2.51 0.920 1/17/2017 5.57 1.717 4/20/2017 9.09 2.207 7/19/2017 6.29 1.839 10/9/2017 -0.603 #Func! 1/23/2018 -3.27 #Func! 2.092 4/19/2018 8.1 7/19/2018 2.94 1.078

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW372	Downgradient	Yes	123	YES	4.812	N/A				
MW384	Sidegradient	Yes	116	YES	4.754	N/A				
MW387	Downgradient	Yes	185	YES	5.220	N/A				

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-5

Wells with Exceedances MW372 MW384 MW387

C-746-S/T Fourth Quarter 2018 Statistical Analysis Current Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =24.044 S = 3.304	CV(1)= 0.137	K factor**= 2.523	TL(1)= 32.379	LL(1)=N/A
Statistics-Transformed Background Data	X =3.171 S = 0.141	CV(2)= 0.045	K factor**= 2.523	TL(2)= 3.527	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Date Collected	Result	LN(Result)
10/10/2016	20.5	3.020
1/11/2017	19.6	2.976
4/19/2017	20.8	3.035
7/19/2017	22.7	3.122
10/9/2017	19.9	2.991
1/23/2018	18.8	2.934
4/17/2018	22.6	3.118
7/19/2018	25.5	3.239
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.353
Date Collected	Result	. ,
Date Collected 10/12/2016	Result 28.6	3.353
Date Collected 10/12/2016 1/17/2017	Result 28.6 26.7	3.353 3.285
Date Collected 10/12/2016 1/17/2017 4/20/2017	Result 28.6 26.7 27.9	3.353 3.285 3.329
Date Collected 10/12/2016 1/17/2017 4/20/2017 7/19/2017	Result 28.6 26.7 27.9 26.1	3.353 3.285 3.329 3.262
Date Collected 10/12/2016 1/17/2017 4/20/2017 7/19/2017 10/9/2017	Result 28.6 26.7 27.9 26.1 25.7	3.353 3.285 3.329 3.262 3.246

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW220

utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	49.7	YES	3.906	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 212.62	5 S = 69.215	CV(1)= 0.326	K factor**= 2.523	TL(1)= 387.253	LL(1)= N/A
Statistics-Transformed Background	X = 5.325	S = 0.250	CV(2)= 0.047	K factor**= 2.523	TL(2)= 5.956	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/10/2016	187	5.231
1/11/2017	201	5.303
4/19/2017	193	5.263
7/19/2017	451	6.111
10/9/2017	147	4.990
1/23/2018	163	5.094
4/17/2018	183	5.209
7/19/2018	207	5.333
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.389
Date Collected	Result	
Date Collected 10/12/2016	Result 219	5.389
Date Collected 10/12/2016 1/17/2017	Result 219 213	5.389 5.361
Date Collected 10/12/2016 1/17/2017 4/20/2017	Result 219 213 203	5.389 5.361 5.313
Date Collected 10/12/2016 1/17/2017 4/20/2017 7/19/2017	Result 219 213 203 203	5.389 5.361 5.313 5.313
Date Collected 10/12/2016 1/17/2017 4/20/2017 7/19/2017 10/9/2017	Result 219 213 203 203 170	5.389 5.361 5.313 5.313 5.136

Current Background Data from Upgradient

Wells with Transformed Result

Data

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW372	Downgradien	t Yes	336	NO	5.817	N/A				

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Current Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.406 S = 1.471	CV(1)= 0.141	K factor**= 2.523	TL(1)= 14.116	LL(1)=N/A
Statistics-Transformed Background Data	X =2.333 S = 0.146	CV(2) =0.063	K factor**= 2.523	TL(2)= 2.701	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected Result LN(Result) 10/10/2016 8.7 2.163 1/11/2017 8.48 2.138 2.209 4/19/2017 9.11 7/19/2017 9.36 2.236 10/9/2017 8.67 2.160 1/23/2018 8.04 2.084 4/17/2018 9.63 2.265 7/19/2018 2.407 11.1 Well Number: MW394 Date Collected Result LN(Result) 10/12/2016 12.1 2.493 1/17/2017 11.7 2.460 4/20/2017 11.6 2.451 7/19/2017 11.4 2.434 10/9/2017 11.4 2.434 1/23/2018 11.5 2.442 4/19/2018 11.7 2.460 7/19/2018 12 2.485

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Wells with Exceedances

MW372

MW387

MW391

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW372	Downgradient	Yes	19.1	YES	2.950	N/A			
MW387	Downgradient	Yes	15.5	YES	2.741	N/A			
MW391	Downgradient	t Yes	15.6	YES	2.747	N/A			

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =353.313 S = 50.665	CV(1)= 0.143	K factor**= 2.523	TL(1)= 481.139	LL(1)=N/A
Statistics-Transformed Background Data	X =5.857 S = 0.147	CV(2)= 0.025	K factor**= 2.523	TL(2)= 6.227	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected Result LN(Result) 10/10/2016 414 6.026 1/11/2017 6.033 417 4/19/2017 283 5.645 7/19/2017 350 5.858 10/9/2017 436 6.078 1/23/2018 362 5.892 4/17/2018 305 5.720 7/19/2018 5.966 390 Well Number: MW394 Date Collected Result LN(Result) 10/12/2016 369 5.911 1/17/2017 397 5.984 4/20/2017 306 5.724 7/19/2017 338 5.823 10/9/2017 337 5.820 1/23/2018 5.576 264 4/19/2018 310 5.737 7/19/2018 375 5.927

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW220	Upgradient	Yes	413	NO	6.023	N/A				
MW221	Sidegradient	Yes	410	NO	6.016	N/A				
MW384	Sidegradient	Yes	418	NO	6.035	N/A				
MW387	Downgradient	t Yes	438	NO	6.082	N/A				

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Current Background Comparison Radium-226 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.305	S = 0.300	CV(1)= 0.984	K factor**= 2.523	TL(1)= 1.061	LL(1)=N/A
Statistics-Transformed Background	X= -1.221	S= 0.716	CV(2) =-0.586	K factor**= 2.523	TL(2)= 0.140	LL(2)=N/A

Current Backg Wells with Tra		a from Upgradi Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/10/2016	1.15	0.140
1/11/2017	0.308	-1.178
4/19/2017	0.178	-1.726
7/19/2017	0.476	-0.742
10/9/2017	0.212	-1.551
1/23/2018	-0.246	#Func!
4/17/2018	0	#Func!
7/19/2018	0.15	-1.897
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/12/2016	0.419	-0.870
1/17/2017	0.518	-0.658
4/20/2017	0.0524	-2.949
7/19/2017	0.462	-0.772
10/9/2017	0.271	-1.306
1/23/2018	0.232	-1.461
4/19/2018	0.379	-0.970
7/19/2018	0.314	-1.158

Data

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW387	Downgradient	t Yes	1.55	YES	0.438	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW387

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 15.200	S= 5.246	CV(1)= 0.345	K factor**= 2.523	TL(1)= 28.436	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.666	S = 0.342	CV(2)= 0.128	K factor**= 2.523	TL(2)= 3.529	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected Result LN(Result) 10/10/2016 18.7 2.929 1/11/2017 2.912 18.4 19.9 2.991 4/19/2017 7/19/2017 22.7 3.122 10/9/2017 17.6 2.868 1/23/2018 16.4 2.797 4/17/2018 21.13.049 7/19/2018 3.207 24.7 Well Number: MW394 Date Collected Result LN(Result) 10/12/2016 10.4 2.342 1/17/2017 10.8 2.380 4/20/2017 10.5 2.351 7/19/2017 10.2 2.322 10/9/2017 10.5 2.351 1/23/2018 10.4 2.342 4/19/2018 10.4 2.342 7/19/2018 10.5 2.351

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	66.9	YES	4.203	N/A
MW384	Sidegradient	Yes	21.4	NO	3.063	N/A
MW387	Downgradient	Yes	28.5	YES	3.350	N/A
MW391	Downgradient	Yes	64.2	YES	4.162	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW372 MW387 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 13.031	S= 8.216	CV(1)= 0.630	K factor**= 2.523	TL(1)= 33.760	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.167	S= 1.278	CV(2)= 0.590	K factor**= 2.523	TL(2)= 5.390	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected Result LN(Result) 10/10/2016 12.3 2.510 1/11/2017 23.2 3.144 4/19/2017 20.7 3.030 22.7 3.122 7/19/2017 10/9/2017 18.3 2.907 1/23/2018 27.4 3.311 4/17/2018 19.9 2.991 7/19/2018 14 2.639 Well Number: MW394 Date Collected Result LN(Result) 10/12/2016 4.39 1.479 1/17/2017 7.79 2.053 4/20/2017 7.82 2.057 7/19/2017 11.1 2.407 10/9/2017 1.99 0.688 1/23/2018 1.816 6.15 -1.845 4/19/2018 0.158 7/19/2018 10.6 2.361

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradient	Yes	55	YES	4.007	N/A
MW372	Downgradient	Yes	158	YES	5.063	N/A
MW384	Sidegradient	Yes	168	YES	5.124	N/A
MW387	Downgradient	Yes	223	YES	5.407	N/A

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW369 MW372 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis **Current Background Comparison** LRGA Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =7.277	S= 3.199	CV(1)= 0.440	K factor**= 2.523	TL(1)= 15.349	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.892	S = 0.451	CV(2) =0.238	K factor**= 2.523	TL(2)= 3.031	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	81.7	YES	4.403	N/A
MW388	Downgradient	Yes	83.1	YES	4.420	N/A

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

1.286

1.670 2.029

1.641

2.100

2.027

1.686

2.066

1.746

1.486

2.493

2.251

2.477

0.978

1.717

2.625

LN(Result)

MW395

Result

3.62

5.31

7.61

5.16

8.17

7.59

5.4

7.89

MW397

Result

5.73

4.42

12.1

9.5

11.9

2.66

5.57

13.8

Wells with Transformed Result

Well Number:

Date Collected

10/12/2016

1/17/2017

4/20/2017

7/19/2017

10/9/2017

1/23/2018

4/19/2018

7/19/2018

Well Number:

Date Collected

10/11/2016

1/11/2017

4/20/2017

7/19/2017

10/9/2017

1/23/2018

4/17/2018

7/19/2018

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-13

Wells with Exceedances MW370 MW388

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	81.7	YES	4.403	N/A
MW388	Downgradient	Yes	83.1	YES	4.420	N/A

C-746-S/T Fourth Quarter 2018 Statistical Analysis Current Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =22.181 S = 4.234	CV(1)= 0.191	K factor**= 2.523	TL(1)= 32.864	LL(1)=N/A
Statistics-Transformed Background Data	X =3.082 S = 0.193	CV(2) =0.063	K factor**= 2.523	TL(2)= 3.570	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Date Collected	Result	LN(Result)
		· · · · · ·
10/12/2016	27.2	3.303
1/17/2017	25.9	3.254
4/20/2017	28.2	3.339
7/19/2017	26.2	3.266
10/9/2017	25.3	3.231
1/23/2018	24.5	3.199
4/19/2018	24.5	3.199
7/19/2018	27.1	3.300
Well Number:	MW397	
wen number.	IVI W 397	
Date Collected	Result	LN(Result)
		LN(Result) 2.960
Date Collected	Result	. ,
Date Collected 10/11/2016	Result 19.3	2.960
Date Collected 10/11/2016 1/11/2017	Result 19.3 19.5	2.960 2.970
Date Collected 10/11/2016 1/11/2017 4/20/2017	Result 19.3 19.5 18.2	2.960 2.970 2.901
Date Collected 10/11/2016 1/11/2017 4/20/2017 7/19/2017	Result 19.3 19.5 18.2 17.2	2.960 2.970 2.901 2.845
Date Collected 10/11/2016 1/11/2017 4/20/2017 7/19/2017 10/9/2017	Result 19.3 19.5 18.2 17.2 18.7	2.960 2.970 2.901 2.845 2.929
Date Collected 10/11/2016 1/11/2017 4/20/2017 7/19/2017 10/9/2017 1/23/2018	Result 19.3 19.5 18.2 17.2 18.7 19.4	2.960 2.970 2.901 2.845 2.929 2.965

Current Background Data from Upgradient

MW395

Wells with Transformed Result

Well Number:

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	57.4	YES	4.050	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Current Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =19.148 S = 8.977	CV(1)= 0.469	K factor**= 2.523	TL(1)= 41.797	LL(1)=N/A
Statistics-Transformed Background Data	X =2.869 S = 0.402	CV(2)= 0.140	K factor**= 2.523	TL(2)= 3.884	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Date Collected	Result	LN(Result)
10/12/2016	11.7	2.460
1/17/2017	20	2.996
4/20/2017	12.6	2.534
7/19/2017	12.7	2.542
10/9/2017	14.2	2.653
1/23/2018	18.9	2.939
4/19/2018	42.2	3.742
7/19/2018	24.3	3.190
W7 . 11 NT 1	100207	
Well Number:	MW397	
Date Collected		LN(Result)
		LN(Result) 2.815
Date Collected	Result	()
Date Collected 10/11/2016	Result 16.7	2.815
Date Collected 10/11/2016 1/11/2017	Result 16.7 18.9	2.815 2.939
Date Collected 10/11/2016 1/11/2017 4/20/2017	Result 16.7 18.9 9.17	2.815 2.939 2.216
Date Collected 10/11/2016 1/11/2017 4/20/2017 7/19/2017	Result 16.7 18.9 9.17 20	2.815 2.939 2.216 2.996
Date Collected 10/11/2016 1/11/2017 4/20/2017 7/19/2017 10/9/2017	Result 16.7 18.9 9.17 20 14.2	2.815 2.939 2.216 2.996 2.653
Date Collected 10/11/2016 1/11/2017 4/20/2017 7/19/2017 10/9/2017 1/23/2018	Result 16.7 18.9 9.17 20 14.2 18.9	2.815 2.939 2.216 2.996 2.653 2.939

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW395

Current	Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW397	Upgradient	Yes	60.8	YES	4.108	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW397

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Current Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =354.688 S = 32.230	CV(1)= 0.091	K factor**= 2.523	TL(1)= 436.003	LL(1)=N/A
Statistics-Transformed Background Data	X =5.867 S = 0.091	CV(2)= 0.016	K factor**= 2.523	TL(2)= 6.098	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/12/2016	377	5.932
1/17/2017	386	5.956
4/20/2017	392	5.971
7/19/2017	392	5.971
10/9/2017	378	5.935
1/23/2018	384	5.951
4/19/2018	372	5.919
7/19/2018	396	5.981
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.811
Date Collected	Result	
Date Collected 10/11/2016	Result 334	5.811
Date Collected 10/11/2016 1/11/2017	Result 334 337	5.811 5.820
Date Collected 10/11/2016 1/11/2017 4/20/2017	Result 334 337 320	5.811 5.820 5.768
Date Collected 10/11/2016 1/11/2017 4/20/2017 7/19/2017	Result 334 337 320 315	5.811 5.820 5.768 5.753
Date Collected 10/11/2016 1/11/2017 4/20/2017 7/19/2017 10/9/2017	Result 334 337 320 315 333	5.811 5.820 5.768 5.753 5.808

Current Background Data from Upgradient

Wells with Transformed Result

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	Yes	725	YES	6.586	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =185.813 S = 31.773	CV(1)=0.171	K factor**= 2.523	TL(1)= 265.975	LL(1)=N/A
Statistics-Transformed Background	X = 5211 $S = 0.172$	CV(2) = 0.033	K factor**= 2,523	TL(2) = 5.646	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/12/2016	214	5.366
1/17/2017	223	5.407
4/20/2017	204	5.318
7/19/2017	210	5.347
10/9/2017	163	5.094
1/23/2018	176	5.170
4/19/2018	257	5.549
7/19/2018	203	5.313
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.112
Date Collected	Result	. ,
Date Collected 10/11/2016	Result 166	5.112
Date Collected 10/11/2016 1/11/2017	Result 166 187	5.112 5.231
Date Collected 10/11/2016 1/11/2017 4/20/2017	Result 166 187 180	5.112 5.231 5.193
Date Collected 10/11/2016 1/11/2017 4/20/2017 7/19/2017	Result 166 187 180 171	5.112 5.231 5.193 5.142
Date Collected 10/11/2016 1/11/2017 4/20/2017 7/19/2017 10/9/2017	Result 166 187 180 171 156	5.112 5.231 5.193 5.142 5.050

Current Background Data from Upgradient

Wells with Transformed Result

Data

Current	Quarter Data	L				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	393	YES	5.974	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Current Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.656	S= 1.874	CV(1)= 0.194	K factor**= 2.523	TL(1)= 14.383	LL(1)=N/A
Statistics-Transformed Background Data	X =2.249	S = 0.200	CV(2) =0.089	K factor**= 2.523	TL(2)= 2.753	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Date Collected	Result	LN(Result)
10/12/2016	12	2.485
1/17/2017	11.4	2.434
4/20/2017	11.6	2.451
7/19/2017	10.9	2.389
10/9/2017	11.4	2.434
1/23/2018	10.8	2.380
4/19/2018	11.4	2.434
7/19/2018	11.7	2.460
Well Number:	MW397	
		LN(Result)
		LN(Result) 2.111
Date Collected	Result	. ,
Date Collected 10/11/2016	Result 8.26	2.111
Date Collected 10/11/2016 1/11/2017	Result 8.26 8.54	2.111 2.145
Date Collected 10/11/2016 1/11/2017 4/20/2017	Result 8.26 8.54 7.83	2.111 2.145 2.058
Date Collected 10/11/2016 1/11/2017 4/20/2017 7/19/2017	Result 8.26 8.54 7.83 7.37	2.111 2.145 2.058 1.997
Date Collected 10/11/2016 1/11/2017 4/20/2017 7/19/2017 10/9/2017	Result 8.26 8.54 7.83 7.37 8.41	2.111 2.145 2.058 1.997 2.129

Current Background Data from Upgradient

Wells with Transformed Result

Well Number:

MW395

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	23.2	YES	3.144	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =337.188 S = 66.849	CV(1)= 0.198	K factor**= 2.523	TL(1)= 505.848	LL(1)=N/A
Statistics-Transformed Background Data	X =5.798 S = 0.234	CV(2)= 0.040	K factor**= 2.523	TL(2)= 6.388	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW395 Date Collected Result LN(Result) 10/12/2016 357 5.878 1/17/2017 299 5.700 190 4/20/2017 5.247 7/19/2017 392 5.971 10/9/2017 385 5.953 1/23/2018 195 5.273 4/19/2018 367 5.905 7/19/2018 336 5.817 Well Number: MW397 Date Collected Result LN(Result) 10/11/2016 378 5.935 1/11/2017 416 6.031 4/20/2017 282 5.642 7/19/2017 352 5.864 10/9/2017 362 5.892 1/23/2018 5.889 361 4/17/2018 319 5.765 8/21/2018 404 6.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	t Yes	346	NO	5.846	N/A		
MW373	Downgradient	Yes	438	NO	6.082	N/A		
MW385	Sidegradient	Yes	405	NO	6.004	N/A		
MW388	Downgradient	Yes	421	NO	6.043	N/A		
MW392	Downgradient	t Yes	375	NO	5.927	N/A		
MW397	Upgradient	Yes	407	NO	6.009	N/A		

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Current Background Comparison Radium-226 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.347	S = 0.198	CV(1)= 0.569	K factor**= 2.523	TL(1)= 0.846	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.280	S= 1.132	CV(2) =-0.885	K factor**= 2.523	TL(2)= 1.625	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Date Collected	Result	LN(Result)
10/12/2016	0.669	-0.402
1/17/2017	0.347	-1.058
4/20/2017	0.198	-1.619
7/19/2017	0.437	-0.828
10/9/2017	0.345	-1.064
1/23/2018	0.592	-0.524
4/19/2018	0.316	-1.152
7/19/2018	0.307	-1.181
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.553
Date Collected	Result	()
Date Collected 10/11/2016	Result 0.575	-0.553
Date Collected 10/11/2016 1/11/2017	Result 0.575 0.374	-0.553 -0.983
Date Collected 10/11/2016 1/11/2017 4/20/2017	Result 0.575 0.374 0.41	-0.553 -0.983 -0.892
Date Collected 10/11/2016 1/11/2017 4/20/2017 7/19/2017	Result 0.575 0.374 0.41 0.555	-0.553 -0.983 -0.892 -0.589
Date Collected 10/11/2016 1/11/2017 4/20/2017 7/19/2017 10/9/2017	Result 0.575 0.374 0.41 0.555 0.123	-0.553 -0.983 -0.892 -0.589 -2.096

Current Background Data from Upgradient

Wells with Transformed Result

MW395

Well Number:

Current Quarter Data			

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW385	Sidegradient	Yes	0.905	YES	-0.100	N/A	

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW385

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.382 S = 0.663	CV(1)= 0.064	K factor**= 2.523	TL(1)= 12.053	LL(1)=N/A
Statistics-Transformed Background Data	X =2.338 S = 0.063	CV(2) =0.027	K factor**= 2.523	TL(2)= 2.498	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW395 Date Collected Result LN(Result) 10/12/2016 9.86 2.288 1/17/2017 10.1 2.313 10.4 2.342 4/20/2017 10 7/19/2017 2.303 10/9/2017 10.1 2.313 1/23/2018 10.4 2.342 4/19/2018 10.5 2.351 7/19/2018 10.4 2.342 Well Number: MW397 Date Collected Result LN(Result) 10/11/2016 11.3 2.425 1/11/2017 11.6 2.451 4/20/2017 9.7 2.272 7/19/2017 10.1 2.313 10/9/2017 11.1 2.407 1/23/2018 11.4 2.434 4/17/2018 9.21 2.220 7/19/2018 9.94 2.297

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	21.7	YES	3.077	N/A		
MW373	Downgradient	Yes	113	YES	4.727	N/A		
MW385	Sidegradient	Yes	18.8	YES	2.934	N/A		
MW388	Downgradient	Yes	24.9	YES	3.215	N/A		

Conclusion	of Statistical	Analysis on	Current Data
Conclusion	or seathered		Current Dutu

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW370 MW373 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2018 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 13.163	S= 6.928	CV(1)= 0.526	K factor**= 2.523	TL(1)= 30.642	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.416	S= 0.651	CV(2)= 0.270	K factor**= 2.523	TL(2)= 4.058	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW395 Date Collected Result LN(Result) 10/12/2016 2.15 0.765 1/17/2017 11.4 2.434 9.95 2.298 4/20/2017 7/19/2017 19.2 2.955 10/9/2017 3.67 1.300 1/23/2018 15.7 2.754 4/19/2018 9.83 2.285 7/19/2018 9.05 2.203 Well Number: MW397 Date Collected Result LN(Result) 10/11/2016 9.1 2.208 1/11/2017 8.85 2.180 4/20/2017 14.9 2.701 7/19/2017 29.8 3.395 10/9/2017 13 2.565 1/23/2018 13.2 2.580 2.939 4/17/2018 18.9 7/19/2018 21.9 3.086

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	114	YES	4.736	N/A	
MW385	Sidegradient	Yes	91.9	YES	4.521	N/A	
MW388	Downgradient	t Yes	117	YES	4.762	N/A	

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-22

Wells with Exceedances MW370 MW385 MW388

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

Four Rivers Nuclear Partnership, LLC

5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

January 7, 2019

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an Environmental Scientist, with a bachelor's degree in science, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the fourth quarter 2018 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Nan

Jennifer R. Watson

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

GROUNDWATER FLOW RATE AND DIRECTION

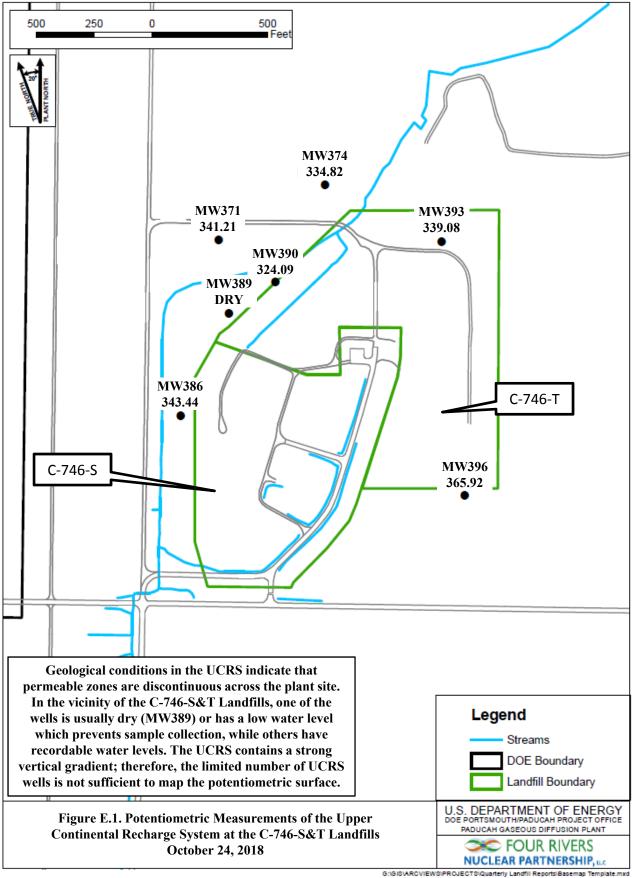
THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT—QUARTERLY, 4th CY 2018 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u> LAB ID: <u>None</u> For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

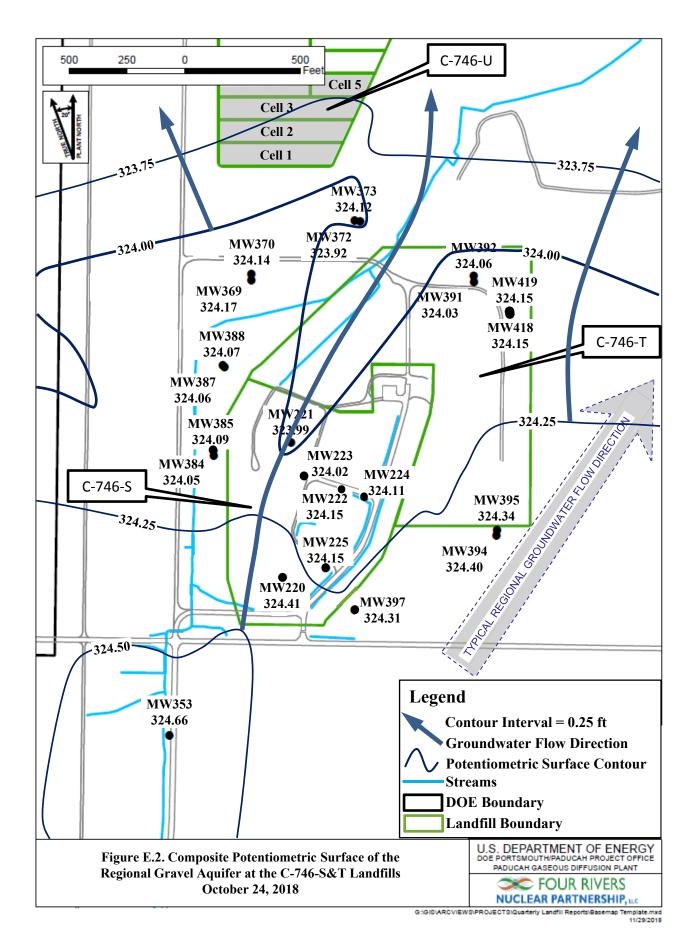
Whenever monitoring wells (MWs) are sampled, 401 *KAR* 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the fourth quarter 2018 and to determine the groundwater flow rate and direction.

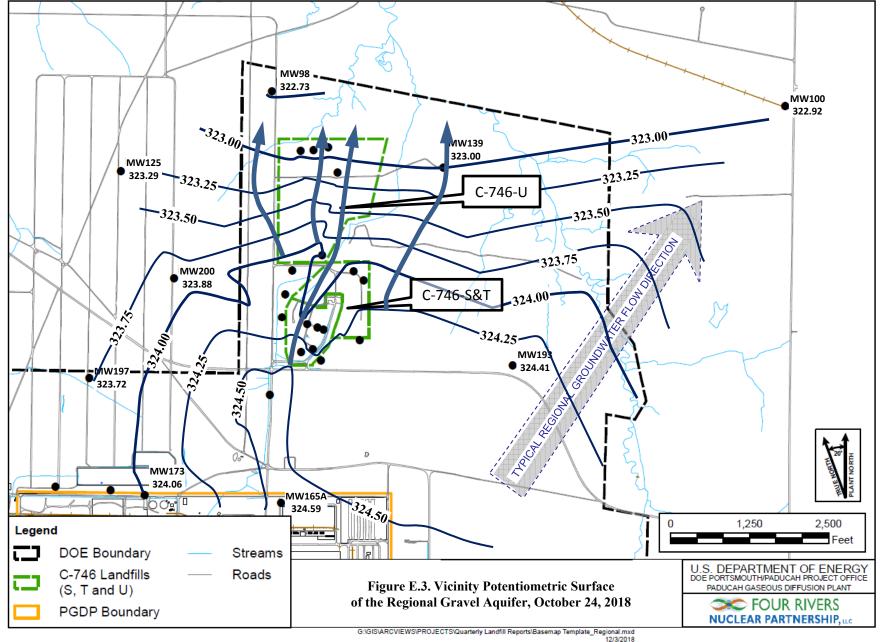

Water levels during this reporting period were measured on October 24, 2018. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters.¹ Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 5.01×10^4 ft/ft. Additional water level measurements in October (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 5.58×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the administrative application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for October 2018, the groundwater flow direction in the immediate area of the landfill was oriented north to northeastward.


¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.



11/29/2018

			C-740-5	&T Landfills (10) Water I		D (+0	(10)
-								w Data		ected Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
10/24/2018	9:27	MW220	URGA	382.27	30.33	-0.02	57.88	324.39	57.86	324.41
10/24/2018	9:33	MW221	URGA	391.51	30.33	-0.02	67.54	323.97	67.52	323.99
10/24/2018	15:09	MW222	URGA	395.39	30.25	0.07	71.17	324.22	71.24	324.15
10/24/2018	9:36	MW223	URGA	394.49	30.33	-0.02	70.49	324.00	70.47	324.02
10/24/2018	9:40	MW224	URGA	395.82	30.33	-0.02	71.73	324.09	71.71	324.11
10/24/2018	9:30	MW225	URGA	385.88	30.33	-0.02	61.75	324.13	61.73	324.15
10/24/2018	7:17	MW353	LRGA	375.12	30.31	0.00	50.46	324.66	50.46	324.66
10/24/2018	15:14	MW384	URGA	365.42	30.25	0.07	41.30	324.12	41.37	324.05
10/24/2018	15:16	MW385	LRGA	365.86	30.25	0.07	41.70	324.16	41.77	324.09
10/24/2018	9:22	MW386	UCRS	365.47	30.33	-0.02	22.05	343.42	22.03	343.44
10/24/2018	9:17	MW387	URGA	363.65	30.33	-0.02	39.61	324.04	39.59	324.06
10/24/2018	9:18	MW388	LRGA	363.64	30.33	-0.02	39.59	324.05	39.57	324.07
10/24/2018		MW389	UCRS	364.26			DRY		DRY	
10/24/2018	9:12	MW390	UCRS	360.60	30.33	-0.02	36.53	324.07	36.51	324.09
10/24/2018	8:53	MW391	URGA	366.83	30.33	-0.02	42.82	324.01	42.80	324.03
10/24/2018	8:55	MW392	LRGA	366.07	30.33	-0.02	42.03	324.04	42.01	324.06
10/24/2018	8:54	MW393	UCRS	366.81	30.33	-0.02	27.75	339.06	27.73	339.08
10/24/2018	9:01	MW394	URGA	378.64	30.33	-0.02	54.26	324.38	54.24	324.40
10/24/2018	9:02	MW395	LRGA	379.34	30.33	-0.02	55.02	324.32	55.00	324.34
10/24/2018	9:03	MW396	UCRS	378.84	30.33	-0.02	12.94	365.90	12.92	365.92
10/24/2018	9:07	MW397	LRGA	387.12	30.33	-0.02	62.83	324.29	62.81	324.31
10/24/2018	8:57	MW418	URGA	367.37	30.33	-0.02	43.24	324.13	43.22	324.15
10/24/2018	8:58	MW419	LRGA	367.22	30.33	-0.02	43.09	324.13	43.07	324.15
Initial Baron	netric Pr	essure	30.31							
Elev = eleva										
amsl = above	e mean s	ea level								
BP = baromodeleter BP	etric pres	sure								
DTW = dept	1		low datum							
URGA = Up										
$LRGA = Lo^{2}$	· ·		1							
	-		harge System							
*Assumes a	•		• •							

Table E.1. C-746-S&T Landfills Fourth Quarter 2018 (October) Water Levels

E-7

	ft/ft
Beneath Landfill Mound	5.01×10^{-4}
Vicinity	5.58×10^{-4}

Table E.2. C-746-S&T Landfills Hydraulic Gradients

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific	Discharge (q)	Average	e Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Beneath Landfill	Seneath Landfill Mound 725 0.256 425 0.150				
725	0.256	0.363	1.28×10^{-4}	1.45	5.13×10^{-4}
425	0.150	0.213	7.51×10^{-5}	0.851	3.00×10^{-4}
<u>Vicinity</u>					
725	0.256	0.405	1.43×10^{-4}	1.62	$5.72 imes 10^{-4}$
425	0.150	0.237	8.37×10^{-5}	0.949	$3.35 imes 10^{-4}$

APPENDIX F

NOTIFICATIONS

THIS PAGE INTENTIONALLY LEFT BLANK

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the fourth quarter 2018 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	Parameter	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Technetium-99	MW369, MW372, MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW370, MW385, MW388
NOTE: Although technotium 00 is not cited	in 10 CER 8 302 1	Appendix A this radionuclide is being

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

11/26/2018

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4818	MW370	Beta activity	9310	81.7	pCi/L	50
8004-4808	MW372	Beta activity Trichloroethene	9310 8260B	123 5.72	pCi/L ug/L	50 5
8004-4792	MW373	Trichloroethene	8260B	7.91	ug/L	5
8004-4809	MW384	Beta activity	9310	116	pCi/L	50
8004-4815	MW387	Beta activity	9310	185	pCi/L	50
8004-4816	MW388	Beta activity	9310	83.1	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	8.87	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	14.1	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

THIS PAGE INTENTIONALLY LEFT BLANK

			UCRS	5						1	URGA	1								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
ACETONE																							
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
ALPHA ACTIVITY																							
Quarter 4, 2002																							-
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									-
Quarter 2, 2003			*				*					-	*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003							*	*			*		-1-	*									
Quarter 1, 2003			*				*	*			*												
Quarter 2, 2004			Ŧ				*	Ŧ			*			*									
							*							*									
Quarter 3, 2004			*				*							*	<u> </u>	<u> </u>				<u> </u>		<u> </u>	┣
Quarter 4, 2004										<u> </u>	ļ		ļ		ļ	ļ			<u> </u>	<u> </u>		ļ	
Quarter 1, 2005			*				-																\vdash
Quarter 2, 2005			*				*																
Quarter 3, 2005			*				*			*											*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
							*										*						
Quarter 1, 2007																							
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												
Quarter 1, 2009			*				*				*												
Quarter 2, 2010			*								*												
														J.			÷			J.			
Quarter 3, 2010			*								*			*			*			*			
Quarter 1, 2011							*				*												
Quarter 2, 2011			*								*												
Quarter 2, 2012			*																				
Quarter 3, 2012							*																
Quarter 1, 2013							*				*				1	1				1		1	
Quarter 3, 2013			*																				<u> </u>
Quarter 1, 2014							*												-				<u> </u>
Quarter 2, 2014							-				*												┝──
			*																	<u> </u>			
Quarter 4, 2014		<u> </u>	*				*	<u> </u>	<u> </u>	<u> </u>	ļ		ļ	<u> </u>	ļ	ļ		<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	
Quarter 1, 2016							*							يىر						<u> </u>			┝──
Quarter 2, 2016							<u>ب</u>							*						<u> </u>			┝──
Quarter 1, 2017							*													L			–
Quarter 4, 2017																				L			*
Quarter 1, 2018	_					_	*										_						
BARIUM							_	_															
Quarter 3, 2003																							L
Quarter 4, 2003																							
BETA ACTIVITY																							
Quarter 4, 2002																							
Quarter 1, 2003															1	1						1	
Quarter 2, 2003																							
Quarter 3, 2003																							
					-	-						-					-			•	•	•	

Groundwater Flow System			UCR	5						l	URGA	ł								LRG/	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																				_			
Quarter 2, 2005										_													
Quarter 3, 2005												_					_						
Quarter 4, 2005	_																		_	_			
Quarter 1, 2006			_																				
Quarter 2, 2006	_											_											
Quarter 3, 2006			_																				
Quarter 4, 2006																	_						
Quarter 1, 2007	_																						
Quarter 2, 2007	_																						
Quarter 3, 2007	_		-																-			\square	
Quarter 4, 2007	_	-			-													-			-	\vdash	
Quarter 1, 2008	_										-											\square	
Quarter 2, 2008	_	<u> </u>				I	<u> </u>	<u> </u>						1	<u> </u>							\square	
Quarter 3, 2008	_	<u> </u>	<u> </u>			I	<u> </u>	<u> </u>				-		1	<u> </u>							\square	
Quarter 4, 2008	_	<u> </u>	-			I	<u> </u>	<u> </u>				-		1	<u> </u>					<u> </u>		\square	
Quarter 1, 2009																							
Quarter 2, 2009	_																			_			
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010			_							_							_						
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011			_																				
Quarter 2, 2011																				_			
Quarter 3, 2011																							
Quarter 4, 2011			_																	_			
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																			_	_			
Quarter 4, 2012																							
Quarter 1, 2013																	_						
Quarter 2, 2013												_							_				
Quarter 3, 2013																							
Quarter 4, 2013			_																				
Quarter 1, 2014																				_			
Quarter 2, 2014																							
Quarter 3, 2014												_											
Quarter 4, 2014	_																						
Quarter 1, 2015	_																						
Quarter 2, 2015																							
Quarter 3, 2015	_											_											
Quarter 4, 2015	_		_																				
Quarter 1, 2016				L		I			L		L			<u> </u>									
Quarter 2, 2016				L		I			L		L			<u> </u>				-					
Quarter 3, 2016		ļ				I					_			<u> </u>								\square	L
Quarter 4, 2016	_	<u> </u>	<u> </u>			I	<u> </u>	<u> </u>						1	<u> </u>				<u> </u>			\square	
Quarter 1, 2017				L		I			L		L			<u> </u>				-					
Quarter 2, 2017	_													 					L			\square	<u> </u>
Quarter 3, 2017	_											_										\square	
Quarter 4, 2017			-	L		I			L		L			<u> </u>									
Quarter 1, 2018						I					_			 								\square	
Quarter 2, 2018														 				_				\square	
Quarter 3, 2018												_		<u> </u>								\square	L
Quarter 4, 2018												-								-			
BROMIDE																							
Quarter 1, 2003			*			I								ļ								\square	
Quarter 4, 2003			*			I								ļ								\square	
Quarter 1, 2004			*																				

Groundwater Flow System			UCRS	3						I	URG	A								LRG/	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BROMIDE																							
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				<u> </u>
Quarter 4, 2004			*																				L
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM	_		.																				
Quarter 1, 2003	_		*									*											
Quarter 2, 2003	_		*									*											
Quarter 3, 2003 Quarter 4, 2003	-		*									*							*				
Quarter 1, 2003	-		*									*		*					*				
Quarter 2, 2004	-		*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005	1											*							*				<u> </u>
Quarter 4, 2005												*							*				1
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007	-											*							*				
Quarter 2, 2007	-											*							*				
Quarter 3, 2007	-											*							*				
Quarter 4, 2007	-											*							*				
Quarter 1, 2008	-											*							*				
Quarter 2, 2008	-											*							*				
Quarter 3, 2008	-											*							*				
Quarter 4, 2008	-											*							*				-
Quarter 1, 2009	-											*							*				-
Quarter 2, 2009	-											*							*				
Quarter 3, 2009	-											*							*				
Quarter 4, 2009	-											*							*				
Quarter 1, 2009	-											*							*				
Quarter 2, 2010	-											*							*				
Quarter 3, 2010	-											*							*				
Quarter 4, 2010	-											*							*				
Quarter 1, 2010	-											*							*				
Quarter 2, 2011	-											*	*						*				
Quarter 3, 2011	-											*	Ŧ						*				
Quarter 4, 2011	-											*							*				
Quarter 1, 2012	-											*							*				
Quarter 1, 2012 Quarter 2, 2012	_											*							*				┼──
Quarter 3, 2012 Quarter 3, 2012	_											*							*				
												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013 Quarter 2, 2013	+											*							*				──
	+											*							*				──
Quarter 3, 2013 Quarter 4, 2013												*							*				
Quarter 4, 2013 Quarter 1, 2014	+											*						*	*				──
	_	<u> </u>										*	<u> </u>			<u> </u>		*	*	<u> </u>			<u> </u>
Quarter 2, 2014	_	<u> </u>										*	<u> </u>			<u> </u>		*	* *	<u> </u>			<u> </u>
Quarter 3, 2014	_											*						*	*				
Quarter 4, 2014			<u> </u>		<u> </u>			<u> </u>	<u> </u>		<u> </u>		بدر	<u> </u>	<u> </u>			<u> </u>			<u> </u>	<u> </u>	
Quarter 1, 2015			<u> </u>		<u> </u>			<u> </u>	<u> </u>		<u> </u>	*	*	<u> </u>	<u> </u>			<u> </u>	*		<u> </u>	<u> </u>	
Quarter 2, 2015												*							*				⊢
Quarter 3, 2015												* *							* *				⊢
Quarter 4, 2015		1	l						l			*			l				*	1	l		1

Chart of MCL and Historical UT	Exceedances for the C-746-S&T	Landfills (Continued)
--------------------------------	-------------------------------	-----------------------

Groundwater Flow System	-	-	UCRS		× -	-	~	6	c		URG/		r	-	x -	× -	-	Ŧ		LRG/	-		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	39
CALCIUM																							
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				
Quarter 2, 2017												*							*				
Quarter 3, 2017												*							*				T
Quarter 4, 2017												*							*				ŀ
Quarter 1, 2018	-											*							*				-
Quarter 2, 2018	-											*							*				-
Quarter 4, 2018	-											*							*				-
CARBON DISULFIDE	-											Ť							Ŧ				_
	-					-					*						_						-
Quarter 4, 2010	_										Ť	*									*		-
Quarter 1, 2011	_											*	<u>ч</u>								*		-
Quarter 2, 2017													*										
CHEMICAL OXYGEN DEMA	ND			44																			
Quarter 1, 2003	_			*			<u> </u>													<u> </u>	<u> </u>		L
Quarter 2, 2003	_			*		I	444			<u>ب</u> ر													L
Quarter 3, 2003	_			* *		<u> </u>	*			*										<u> </u>	<u> </u>		L
Quarter 4, 2003		L	L	*		I		L				L		L	L								L
Quarter 1, 2004	*			*		I																L	L
Quarter 4, 2004	*					I																	L
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*									*		*									*		
Quarter 4, 2005	*									*													
Quarter 1, 2006	*																						1
Quarter 2, 2006	*																						1
Quarter 3, 2006	*																						ŀ
Quarter 4, 2006	-																*						1
Quarter 1, 2000	*									*							-						1
Quarter 2, 2007	*																						-
	*																						-
Quarter 3, 2007																							_
Quarter 4, 2007	*																						_
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						Γ
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*																						t
Quarter 4, 2009	*	1	1			1		1				1		1	1								t
Quarter 1, 2010	*																						t
Quarter 2, 2010	*			-	-		-		-	-	-							-	-	-	-		┢
Quarter 3, 2010	*																						┢
Quarter 4, 2010	*																						┢
Quarter 3, 2011	*																						┝
	*																<u> </u>						╞
Quarter 4, 2011						I																ļ	L
Quarter 1, 2012	*					I																	L
Quarter 1, 2013	*																						L
Quarter 3, 2013	*																						L
Quarter 3, 2014	*					L			*				*					*					
Quarter 4, 2014	T						*																Γ
Quarter 2, 2015																*							Γ
Quarter 3, 2015		1	1			1		1				1		1	*								t
Quarter 3, 2016			*								*												t
Quarter 4, 2016	+			-	-	<u> </u>	-		-	-	-						*	-	-	-	-	-	┢
Quarter 2, 2017						-	*										-						┢
	*														*					<u> </u>	<u> </u>	-	┝
Quarter 3, 2017	~						1						1		*								L

Chart of MCL and Historical UTI	L Exceedances for the C-746-S&T Landfills (Continued)
--	---	------------

Groundwater Flow System			UCRS								JRGA								-	LRGA			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	391
CHEMICAL OXYGEN DEMANI	D																						
Quarter 4, 2017						*																	
Quarter 2, 2018														*								*	
Quarter 3, 2018												*											
Quarter 4, 2018																							*
CHLORIDE																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																	<u> </u>			
Quarter 1, 2004			* *																				
Quarter 2, 2004			* *																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			* *																				
Quarter 2, 2005																				 			L
Quarter 3, 2005			*																	<u> </u>			
Quarter 4, 2005			*															ىلو		┣			⊢
Quarter 1, 2006																		*		┣			⊢
Quarter 2, 2006			*																	┣			⊢
Quarter 3, 2006			*	<u> </u>	<u> </u>															L			L
Quarter 4, 2006			*																				L
Quarter 1, 2007			*																				
Quarter 2, 2007			*																				
Quarter 3, 2007			*																				
Quarter 4, 2007			*																				
Quarter 1, 2008			*																				
Quarter 2, 2008			*																				
Quarter 3, 2008			*																				
Quarter 4, 2008			*																				
Quarter 1, 2009			*																				
Quarter 2, 2009			*																				
Quarter 3, 2009			*																				
Quarter 4, 2009			*																				
Quarter 1, 2010			*																				
Quarter 2, 2010			*																				
Quarter 3, 2010			*																				
Quarter 4, 2010			*																				
Quarter 2, 2011			*																				
Quarter 3, 2011			*																				
Quarter 4, 2011			*																				
Quarter 3, 2012			*																	<u> </u>			1
Quarter 3, 2013			*				-	-					-						-			-	┢
Quarter 4, 2013			*	-	-																		1
Quarter 4, 2014			*				-	-											-			-	┢
CHROMIUM																							
Quarter 4, 2002																							
Quarter 1, 2002 Quarter 1, 2003																				<u> </u>			1
Quarter 2, 2003																							1
Quarter 3, 2009																							<u> </u>
COBALT																							
Quarter 3, 2003							*																
CONDUCTIVITY																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*					*		*									*				
Quarter 4, 2003			*							*									*				
Quarter 1, 2004				L	L														*	<u> </u>			L
Quarter 2, 2004										*									* *	⊢			⊢
					1					*									*	I	1		1
Quarter 3, 2004			. ال							.									مالو				-
Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005			*							* *		*							* *				

Groundwater Flow System		1	UCRS	5						ι	URGA	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	39
CONDUCTIVITY		-							-		-												
Quarter 2, 2005												*							*				
Quarter 3, 2005										*		*							*				
Quarter 4, 2005 Quarter 1, 2006	_									*		*							*				
Quarter 2, 2006												*							*				-
Quarter 3, 2006												*							*				-
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007												*					*		*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010	_							<u> </u>				*							*	<u> </u>	<u> </u>	<u> </u>	
Quarter 2, 2010	_					<u> </u>						*	<u> </u>						*				⊢
Quarter 3, 2010 Quarter 4, 2010	_					<u> </u>						*							*				<u> </u>
Quarter 4, 2010 Quarter 1, 2011	_									*		*							*				\vdash
Quarter 2, 2011										Ŧ		*							*				-
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*							*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*							*				
Quarter 1, 2015	_											*							*				-
Quarter 2, 2015												*							*				
Quarter 3, 2015 Quarter 4, 2015												*							*				-
Quarter 4, 2015 Quarter 1, 2016												*	-						*				⊢
Quarter 2, 2016												F.							*	-	-		┢
Quarter 3, 2016							-					*						-	*				
Quarter 4, 2016																			*				\vdash
Quarter 1, 2017	1																		*				ſ
Quarter 2, 2017																			*				
Quarter 3, 2017	1																		*				1
Quarter 4, 2017																			*				L
Quarter 1, 2018																			*				
Quarter 2, 2018																			*				
Quarter 3, 2018																			*				
Quarter 4, 2018																			*				L
DISSOLVED OXYGEN			ىلو			_		ملو															
Quarter 3, 2006			*					*									_						
DISSOLVED SOLIDS										*									*				
Quarter 4, 2002	_		*			<u> </u>				* *									*				<u> </u>
Quarter 1, 2003	_		*							*									*				
Quarter 2, 2003	_		*				*	*		*		*							*				┡
Quarter 3, 2003 Quarter 4, 2003	_		*			<u> </u>	* *	<u> </u>	*	*		*	-						*				⊢
Quarter 4, 2003 Quarter 1, 2004	_		*				*		*	*		*							*				-
Quarter 2, 2004			-1+							*		*							*	-	-		⊢
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1							1					1										1

Groundwater Flow System		1	UCRS	3						1	URGA	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS																							
Quarter 3, 2004										*		*							*				
Quarter 4, 2004										*		*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007										-		-					-		*				
Quarter 2, 2007	_									*		*							*				
	_									*		*							*				
Quarter 3, 2007										*		*							*				
Quarter 4, 2007																							
Quarter 1, 2008	+						<u> </u>				<u> </u>	* *							* *				
Quarter 2, 2008	1											*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008										*		*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*	*						*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010										*		*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												* *	*						* *				
Quarter 3, 2011												*							* *				
Quarter 4, 2011											J.	* *	÷						* *				
Quarter 1, 2012	_										*	*	*						* *				
Quarter 2, 2012	_									*		*	*						*				
Quarter 3, 2012 Quarter 4, 2012										Ŧ		*	* *						*				
Quarter 1, 2012 Quarter 1, 2013	_									*		*	Ť						*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013	_											*							*				
Quarter 1, 2013												*	*						*				
Quarter 2, 2014												*							*				
Quarter 3, 2014	1	-						-	*	-		*	*		-	-			*	-	-		
Quarter 4, 2014												*	*						*				
Quarter 1, 2015												*							*				
Quarter 2, 2015	1											*							*				
Quarter 3, 2015	1											*							*				
Quarter 4, 2015	1								*			*						*	*				
Quarter 1, 2016	1											*							*				
Quarter 2, 2016	L											*	*	*					*				
Quarter 3, 2016	L											*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				
Quarter 2, 2017												*							*				
Quarter 3, 2017												*		*	*				*				
Quarter 4, 2017	_											*							*				
Quarter 1, 2018	_											*							*				
Quarter 2, 2018	1	<u> </u>					L	<u> </u>			L	*		L		ļ			*		ļ		L
Quarter 3, 2018	1	<u> </u>					L	<u> </u>			L	*		*		ļ			*		ļ		L
Quarter 4, 2018												*							*				
IODIDE																							
Quarter 4, 2002	1	<u> </u>				<u> </u>	L	<u> </u>			L					ļ					*		L
		1				*	1	1			1					1				1	1		l I
Quarter 2, 2003 Quarter 3, 2003								L					*										

Groundwater Flow System			UCRS							1	URGA	4							1	LRGA	\ \	-	
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	s	D	D	D	D	U	U
Monitoring Well	386		390	393	396	221	222	223	224	384	369	372				394	385	370	373	388	392	395	397
IODIDE								-															
Quarter 1, 2004				*																			
Quarter 3, 2010																					*		
Quarter 2, 2013										*													
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007	Ι										*	*											
Quarter 2, 2007											*												
Quarter 2, 2008												*											
Quarter 3, 2008												*											
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				_
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008							-			-		*		-					*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009	_											*							*				
Quarter 1, 2009												*		<u> </u>					*		-		
Quarter 1, 2010 Quarter 2, 2010	_											*	*						*				
	_											*	Ť						*				
Quarter 3, 2010	_											*		-					*				
Quarter 4, 2010	_													-					*				
Quarter 1, 2011	_	<u> </u>			<u> </u>						<u> </u>	* *	4		<u> </u>								
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*	*						*				
Quarter 4, 2012												*	*						*				
	-					-		·	•				·	·		•	-						_

I

Groundwater Flow System		1	UCRS	5						l	URG/	4								LRG/	4		
Gradient	S	D	D	, D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D D	D	U	U
Monitoring Well	386		390	393	396	221	222	223	3 224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
MAGNESIUM	500	507	570	575	570	221	222	225	221	501	507	572	507	571	220	571	505	570	515	500	572	575	377
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2013																		*	*				
Quarter 2, 2014												*	*					Ŧ	*				
Quarter 3, 2014 Quarter 3, 2014												*	Ŧ						*				
												*	*						*				
Quarter 4, 2014 Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*	Ŧ						*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*		*					*				
Quarter 1, 2017												*		*					*				
Quarter 2, 2017												*											
Quarter 3, 2017		1	1				1	1			1	*	1	*					1	1	1		
Quarter 4, 2017												*							*				
Quarter 1, 2018												*	*						*				
Quarter 2, 2018												*											
Quarter 3, 2018												*											
Quarter 4, 2018												*	*	*					*				
MANGANESE																							
Quarter 4, 2002							<u> </u>	<u> </u>													*		ļ
Quarter 3, 2003							*	*															
Quarter 4, 2003							*	*					L						L				
Quarter 1, 2004							*																
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															<u> </u>
Quarter 1, 2005							*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
OXIDATION-REDUCTION POT	FENT	TIAL																					
Quarter 4, 2003			*																				<u> </u>
Quarter 2, 2004			*				L						L						L				ļ
Quarter 3, 2004			*				L						L					*	L				
Quarter 4, 2004			*			*												. ال					
Quarter 1, 2005		<u> </u>	*								<u> </u>							*		<u> </u>			┝───
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*				<u> </u>	<u> </u>				<u> </u>	<u> </u>						<u> </u>		<u> </u>		┣───
Quarter 4, 2005			*																				
Quarter 2, 2006			*															*					
Quarter 3, 2006 Quarter 4, 2006			*															*				-	
Quarter 4, 2006 Quarter 1, 2007			*																			$\vdash$	
Quarter 1, 2007 Quarter 2, 2007			*				*															$\vdash$	
Quarter 3, 2007 Quarter 3, 2007			*				*															-	
Quarter 4, 2007 Quarter 4, 2007		-	*								-									-		-	
Quarter 1, 2007 Quarter 1, 2008			*			*			*													$\vdash$	
Quarter 2, 2008	*		*	*		*			-				*				*		*	*		$\vdash$	
Quarter 3, 2008			*	*		*							*				*		*	*			
Quarter 4, 2008			*	*		*	*	*	*	-			*				*	*		*			
Quarter 1, 2009			*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*											*	*	*	*			
Quarter 4, 2009		-	*			*			*		-							*		*			
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*											*	*	*	*			
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*	L		*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		_
Quarter 3, 2011	*		*	*			*	*		*			*		*		*	*	*	*			
							_																

Chart of MCL and Historical UTI	L Exceedances for the C-746-S&T Land	s (Continued)
---------------------------------	--------------------------------------	---------------

Groundwater Flow System	I		UCR	5						I	URGA	A								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	391
OXIDATION-REDUCTION PO?	TENT	TAL																					
Quarter 4, 2011	*	1	*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2012				*		*		*	*		*		*	*				*		*	*		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*	-			*	*	*	*	*		
Quarter 3, 2014	*		*	*		*											*	*	*	*			
Quarter 4, 2014	*		*	*							*		*				*	*	*	*	*		
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*		*	*	*	*	*	-	-		*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*	-	*	*	*	*	*	*	*	*			*	-	*	*	*	*	*	*	*	*	*
Quarter 1, 2015	*	-	*	*	*	*	*	*	*	*	*		*		*		*	*	<u> </u>	*	*	*	*
Quarter 2, 2016	*		*	*	*	*		*	*	*			*	*	*	*	*	*		*	*	*	*
Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 4, 2016	*		*	*	*	-	*	* *		*			*	-	*		*	*	*	*	*	*	*
Quarter 4, 2016 Quarter 1, 2017	*		*	*	*		<b>T</b>	*	*	*	-		- *	-	*		*	*	*	*	*	*	*
Quarter 1, 2017 Quarter 2, 2017	*	-	*	*	*			т —	т —	-					T		*	*		*	*	*	*
Quarter 2, 2017 Quarter 3, 2017	*	-	*	*	*					-							*	*	*	*	*	*	*
Quarter 3, 2017 Quarter 4, 2017	*		*	*	*	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*	*
	*		*	*	*	*	Ť	Ť	Ť	Ť	Ť		Ť	Ť	Ť		Ť	*	*	*	*	Ť	*
Quarter 1, 2018	*		*	*	*	*											*	*	*	*	*	*	*
Quarter 2, 2018	*		*	*	*	*	*	*	*								*	*	*	*	*	* *	*
Quarter 3, 2018	*		*	*	*	*	*	*	*	*			*		*		*	*	*	*	*	*	*
Quarter 4, 2018	*		*	*	*	*				*			*		*		*	*	*	*	*		*
PCB-1016							*	*	*		*						_	*					-
Quarter 4, 2003							*	*	*									*					
Quarter 3, 2004							J.				*												
Quarter 3, 2005							*				*												
Quarter 1, 2006											*												
Quarter 2, 2006											*												
Quarter 4, 2006											*	-14											
Quarter 1, 2007											*	*											
Quarter 2, 2007												*											
Quarter 3, 2007											*												
Quarter 2, 2008											*	*											
Quarter 3, 2008											*												
Quarter 4, 2008											*												
Quarter 1, 2009											*												
Quarter 2, 2009	1			1	1	1				1	*	1	1					1	1	1			1
Quarter 3, 2009	1	1	1								*										1		1
Quarter 4, 2009	1	-	-								*									-	-		1
Quarter 1, 2009	1	-	-	-	<u> </u>						*					-			-	-	-	-	┢
Quarter 2, 2010					-						*												-
< ,	1	<u> </u>	<u> </u>	<u> </u>	-		<u> </u>	<u> </u>	<u> </u>	<u> </u>	*			<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>		
Quarter 3, 2010				-	-					-								-	-	<u> </u>			
Quarter 4, 2010											*												
PCB-1232																							
Quarter 1, 2011											*												
PCB-1248																							
Quarter 2, 2008												*											
PCB-1260																							
Quarter 2, 2006	1																	*					1
рН																							
Quarter 4, 2002																	*						
Quarter 2, 2003	1	-	-	-	1	1				-		1	1				*	-	-		-	-	1
Quarter 3, 2003	1				1												*						$\vdash$
Quarter 4, 2003	1				1		*										*					-	1
Quarter 1, 2003	1			-			*			-							*	-	-	-			-
Quarter 2, 2004	1						-										*						
																							1
Quarter 3, 2004																	*						

Groundwater Flow System	1	1	UCRS	5						I	URGA	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
pH																							
Quarter 4, 2004																	*						
Quarter 3, 2005										*							*				*		
Quarter 4, 2005										*							*						
Quarter 1, 2006	1																*						
Quarter 2, 2006																	*						
Quarter 3, 2006	1																*						
Quarter 3, 2007	1																*						
Quarter 4, 2007																	*						
Quarter 4, 2008	1																*						
Quarter 1, 2009																	*						
Quarter 1, 2011																	*						
Quarter 2, 2011											*												
Quarter 3, 2011											*												
Quarter 1, 2012														*									
Quarter 1, 2013										*			*				*						
Quarter 4, 2014																					*		
Quarter 2, 2016	1																	*	*				
POTASSIUM	1																						
Quarter 4, 2002																		*	*				
Quarter 3, 2004	1																		*				
Quarter 2, 2005	T																		*				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				
Quarter 3, 2013																			*				
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004																			*				
Quarter 2, 2005									*														
Quarter 1, 2009											*												
Quarter 3, 2014									*			*											
Quarter 4, 2014			*								*							*					
Quarter 1, 2015			*				*			*		*						*					
Quarter 2, 2015			*				*			*		*						*					
Quarter 3, 2015			*																				
Quarter 4, 2015					*	*									*		*				*	*	
Quarter 2, 2016			*						*		*	*	*	*	*	*		*					
Quarter 3, 2016																		*					
Quarter 4, 2016	*		*			*			*				*		*					*		*	
Quarter 1, 2017			*							*	*							*					
Quarter 2, 2017											-						*	*		*	*		
Quarter 3, 2017					*				*	*	*									*			
Quarter 4, 2017												-						* *		* 3			
Quarter 1, 2018												*	÷				4	*		*			
Quarter 4, 2018						_							*				*						
RADIUM-228						_	-				-												
Quarter 2, 2005	1																						
Quarter 3, 2005	1						-																$\vdash$
Quarter 4, 2005	1					l																	
Quarter 1, 2006						_											_						
SELENIUM			-		-																		
Quarter 4, 2002	1																					_	
Quarter 1, 2003	1																						
Quarter 2, 2003	1				_																		
Quarter 3, 2003	1																						
Quarter 4, 2003	1																						

Chart of MCL and Historical UTI	Exceedances for the C-746-S&T Landfills	(Continued)
---------------------------------	-----------------------------------------	-------------

Groundwater Flow System			UCRS	5						1	URG	4								LRG/	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	393
SODIUM																							
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*												
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*	- 14	*													
Quarter 4, 2003	_						*		*	*				÷									
Quarter 1, 2004									*	* *				*								<u> </u>	
Quarter 2, 2004										*												<u> </u>	
Quarter 3, 2004									*	* *												<u> </u>	-
Quarter 4, 2004									Ť	*									*			<u> </u>	
Quarter 1, 2005																						<u> </u>	
Quarter 2, 2005	_								J.	*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006									*														
Quarter 3, 2006									*	*		*							*				
Quarter 4, 2006									*	*							*						
Quarter 1, 2007									*			*											
Quarter 2, 2007						L			*	*													L
Quarter 3, 2007									*														
Quarter 4, 2007									*														
Quarter 1, 2008									*														
Quarter 3, 2008												*											
Quarter 4, 2008									*	*													
Quarter 1, 2009									*			*							*				
Quarter 3, 2009												*											
Quarter 4, 2009									*			*											
Quarter 1, 2010												*											-
Quarter 2, 2010										*		*											
Quarter 3, 2010										*													-
Quarter 4, 2010									*	*													-
Quarter 1, 2010										*													-
Quarter 2, 2011	_								*													<u> </u>	
Quarter 4, 2011									-1-										*			<u> </u>	-
											*								Ŧ				-
Quarter 1, 2012 Quarter 3, 2012											Ŧ	*							*				-
												*							*			<u> </u>	-
Quarter 4, 2012										J.		*							J.			<u> </u>	
Quarter 1, 2013	_									*									*				
Quarter 2, 2013	_											*							÷				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014									L.			*											
Quarter 2, 2014									*		*	*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014									*	*		*	*										
Quarter 1, 2015		L	L	L			L					L	*			L				L			
Quarter 2, 2015		L	L	L			L		L			*	L	L		L				L	L		<u> </u>
Quarter 3, 2015									484	*		* *											⊢
Quarter 4, 2015	_	<u> </u>	<u> </u>	<u> </u>			<u> </u>		*	*	4	*	<u> </u>	<u> </u>		<u> </u>				<u> </u>	<u> </u>		⊢
Quarter 2, 2016					-						*				-							<u> </u>	<u>ч</u>
Quarter 3, 2016	_									*	* *		*					*					*
Quarter 1, 2017	_								*	* *	* *		*					*				<u> </u>	├
Quarter 2, 2017 Quarter 2, 2018	_				-				<u> </u>	*	*		*		-							$\vdash$	–
Quarter 2, 2018 Quarter 3, 2018	_				-								- <b>*</b>	*	-							$\vdash$	–
STRONTIUM-90														Ŧ									
Quarter 2, 2003																							-
Quarter 1, 2003																						$\vdash$	├
SULFATE																							
Quarter 4, 2002																	-		*				1
Quarter 1, 2002												*	*				*		*				<u> </u>
Quarter 2, 2003										*		*	*					*	*				<u> </u>
· · ·		·	·	·		•																<u> </u>	

<b>Chart of MCL and Historical UTI</b>	L Exceedances for the C-746-S&T Landfills (	Continued)
----------------------------------------	---------------------------------------------	------------

a	~	r	UCRS		TT	C	C	C	C		URG	r	F	P	тı	1.1	C	P	-	LRG/		7.7	Τ.
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U 204	S	D	D	D	D	U 205	1
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	3
SULFATE																							_
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*					*	*				
Quarter 3, 2005										*		*	*				*	*	*				Ť
Quarter 4, 2005										*		*	*					*	*	*			t
Quarter 1, 2006										*		*	*				*	*	*	*			t
Quarter 2, 2006									*	*		*	*				*	*	*	*			╈
	_								*	*		*	*				*	Ť	*	*			+
Quarter 3, 2006																				*			_
Quarter 4, 2006									*	*		*	*				*		*	41-			L
Quarter 1, 2007									*	*		*	*				*		*	*			L
Quarter 2, 2007									*	*		*	*				*		*	*			L
Quarter 3, 2007	T								*	*		*	*				*		*	*			Γ
Quarter 4, 2007										*		*	*				*	*	*	*			T
Quarter 1, 2008			1							*		*	*		1		*	*	*	*	1		t
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			t
Quarter 3, 2008										*		*	*				*	*	*	*			┢
Quarter 4, 2008	-									*		*	*				*	<u> </u>	*	<u> </u>			┢
		<u> </u>	<u> </u>				<u> </u>	<u> </u>		*	<u> </u>	*	*		<u> </u>		*	*	*	<u> </u>	<u> </u>	<u> </u>	┞
Quarter 1, 2009	_					l			يىر											يەر.			┞
Quarter 2, 2009									*	*		*	*				*	*	*	*			L
Quarter 3, 2009	_								*	*		*	*				*	*	*	*			
Quarter 4, 2009	*									*		*	*				*	*	*				L
Quarter 1, 2010	*								*	*		*	*				*		*				
Quarter 2, 2010									*	*		*	*				*	*	*	*			Τ
Quarter 3, 2010										*		*	*				*	*	*	*			T
Quarter 4, 2010	*									*		*	*				*	*	*				t
Quarter 1, 2011	*									*		*	*				*	*	*				t
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			╈
	*									*		*	*	*			*	*	*	*			+
Quarter 3, 2011														*									_
Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012										*		*	*				*	*	*	*			T
Quarter 1, 2013										*		*	*				*	*	*	*			T
Quarter 2, 2013										*		*	*	*			*	*	*	*			t
Quarter 3, 2013				-	-					*		*	*	*			*	*	*	*			┢
Quarter 4, 2013	-									*		*	*				*	*	*	*			+
Quarter 1, 2013	_	<u> </u>				—	<u> </u>	*		*		*	*				*	*	*	*			+
	_							<u>۴</u>		*	<u> </u>	*		<u>.</u>			*	*	*	*			+
Quarter 2, 2014									<u> </u>		<u> </u>		*	*								<u> </u>	L
Quarter 3, 2014										*		*	*	*			*	*	*	*			
Quarter 4, 2014										*		*	*				*	*	*	*			L
Quarter 1, 2015										*		*	*				*	*	*	*			L
Quarter 2, 2015										*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2015								*		*		*	*	*	*		*	*	*	*			Ĺ
Quarter 4, 2015										*		*	*	*			*		*	*			L
Quarter 1, 2016								*		*		*	*	*			*	*	*	*			Ĺ
Quarter 2, 2016								*		*		*	*	*	*		*	*	*	*			Ĺ
Quarter 3, 2016								*		*		*	*	*	*		*	*	*	*			Γ
Quarter 4, 2016										*		*	*	*	*		*	*	*	*			Γ
Quarter 1, 2017										*		*	*	*	*		*	*	*	*			Γ
Quarter 2, 2017								*		*		*	*	*	*		*	*	*	*			T
Quarter 3, 2017								*	I	*		*	*	*	*		*	*	*	*			T
Quarter 4, 2017										*		*	*	*	*		*	*	*	*			t
Quarter 1, 2018		1					1	1	l	*		*	*	*			*	*	*	*		1	t
Quarter 2, 2018	1							*		*	*	*	*	*	*		*	*	*	*			t
Quarter 3, 2018			1					*		*		*		*	*		*	*	*	*	1		t
										*		*	*	*		-	*	*	*	*			+

Groundwater Flow System			UCR	S							URG									LRG/			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	ι
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	39
TECHNETIUM-99	1																						
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				1
Quarter 2, 2003	*		*							*			*				*						1
Quarter 3, 2003			*										*				*			*			1
Quarter 4, 2003			*							*		*	*				*		*	*			1
Quarter 1, 2004			*									*	*				*		*				1
Quarter 2, 2004			*									*	*				*		*	*			1
Quarter 3, 2004			*									*					*		*				1
Quarter 4, 2004			*							*		*	*				*	*	*				1
Quarter 1, 2005			*							*		*	*				*			*			┢
Quarter 2, 2005	_		*							*		-	*				*	*	*	*			┢
Quarter 3, 2005			*							*			*				*	*	*	*			+
												J.						÷	*				_
Quarter 4, 2005			*							*		*	*				*			*			_
Quarter 1, 2006										*		*	*						*	*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006			*							*			*				*	*	*	*			Γ
Quarter 4, 2006	*									*		*	*						*	*			Г
Quarter 1, 2007			*	1				1		*		1	*		1		*		*	*			t
Quarter 2, 2007			*							*		*	*				*	*		*			┢
Quarter 3, 2007		-	*				-			*	*	*	*			-	*		*	*	-	-	┢
Quarter 4, 2007			*							*	-	*	*				*		*	*			┢
		<u> </u>	*	<u> </u>			<u> </u>	<u> </u>		*	<u> </u>	*	*		<u> </u>	<u> </u>	*	*	*	*	<u> </u>	<u> </u>	┢
Quarter 1, 2008											*	*					*	*					┡
Quarter 2, 2008			*							*	*		*						*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			Γ
Quarter 3, 2009			*							*	*	*	*				*			*			t
Quarter 4, 2009			*							*		*	*				*						t
Quarter 1, 2010			*							*		*	*				*						┢
Quarter 2, 2010			*							*			*				*	*		*			+
			*							*	*	÷					*	Ŧ		Ŧ			-
Quarter 3, 2010											*	*	*										_
Quarter 4, 2010			*							*		*	*				*						
Quarter 1, 2011										*			*				*						
Quarter 2, 2011			*							*			*				*			*			
Quarter 3, 2011			*							*			*				*			*			Γ
Quarter 4, 2011			*							*	*	*	*				*						T
Quarter 1, 2012			*							*			*				*			*			T
Quarter 2, 2012			*							*			*				*		*	*			┢
Quarter 3, 2012			*							*		*	*				*						+
		<u> </u>		<u> </u>			<u> </u>	<u> </u>		*	<u> </u>	*	*		<u> </u>	<u> </u>	*		*	*	<u> </u>	<u> </u>	┢
Quarter 4, 2012												*											_
Quarter 1, 2013				L				L		*		484	*		L		*		*	*			L
Quarter 2, 2013			L .							*		*	*				*		*	*			L
Quarter 3, 2013			*							*		*	*				*		*	*			L
Quarter 4, 2013			*							*		*	*				*		*	*			Γ
Quarter 1, 2014			*							*	*		*				*		*	*			Г
Quarter 2, 2014	1	1	*				1			*	*		*	*		1	*		*	*	1	1	t
Quarter 3, 2014	1		*				-			*			*				*			*			+
Quarter 4, 2014		-	*		-		-		-	*	*	*	*				*	-	*	*			┢
Quarter 1, 2015			*							*	*	*	*				*		<u> </u>	*			┢
												Ť											┢
Quarter 2, 2015		-	*				<u> </u>			* *	*	ų.	* *			-	*	ų.	*	*	-	-	┡
Quarter 3, 2015			*							*	*	*	*				*	*	*	*			L
Quarter 4, 2015			*							*	*	*	*				*	*		*			L
Quarter 1, 2016			*							*	*		*				*		*	*			1
Quarter 2, 2016			*			*				*			*	ſ			*	*		*			Γ
Quarter 3, 2016	1	1	*	1				1		*		*	*		1		*	*		*			Г
Quarter 4, 2016			*							*	*		*	1			*			*			t
Quarter 1, 2017			*		-					*			*				*	*	-	*			┢
Quarter 2, 2017			*		-		<u> </u>			*			*				*	*	-	*			┢
			*				-			*	*		*			-	*	*		*	-	-	⊢
Quarter 3, 2017											*												┡
Quarter 4, 2017			*	i i			1	1		*	1	*	*	1	i i		*	*		*			1

Groundwater Flow System	<u> </u>	1	UCRS		1		-	1			URG/			1	1		Ļ			LRG/		1	<u> </u>
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	39'
TECHNETIUM-99																							
Quarter 1, 2018			*							*	*		*				*	*		*			
Quarter 2, 2018			*							*	*	*	*				*	*		*			
Quarter 3, 2018			*							*		*	*				*	*		*			
Quarter 4, 2018			*							*	*	*	*				*	*		*			$\vdash$
THORIUM-230																							
Quarter 1, 2012	*								*					*									
Quarter 4, 2012	*		*																				+
Quarter 3, 2015	*								*	*			*		*								+
Quarter 1, 2017			*							*							*						+
THORIUM-234						_				-1-							4.						
Quarter 2, 2003						*			*					*									
Quarter 4, 2007						-			*														-
TOLUENE									Ŧ														-
Quarter 2, 2014										*	*		*										-
						_				*	Ť		Ŧ										_
TOTAL ORGANIC CARBON																					*		
Quarter 4, 2002				*						*	*							*	*		*		<u> </u>
Quarter 1, 2003	I			*						*	*		*					Ŧ	*		*		
Quarter 2, 2003	<u> </u>	<u> </u>					<del>بد</del>	*	*		*	<del>بد</del>	*								*		–
Quarter 3, 2003	<u> </u>	<u> </u>					* *	*	*	*	ボ	*		<u> </u>									⊢
Quarter 4, 2003	<u> </u>	<u> </u>					ボ		*					<u> </u>									⊢
Quarter 1, 2004		-		-	-					*	ų.									-			
Quarter 2, 2004	<b> </b>	-								*	*												
Quarter 3, 2004										*													╞
Quarter 4, 2004										*													
Quarter 1, 2005										*													
Quarter 2, 2005										*											*		
Quarter 3, 2005										*		*									*		
Quarter 4, 2005										*											*		
Quarter 1, 2006										*													t
Quarter 2, 2006										*		*											1
Quarter 4, 2006																	*						$\vdash$
Quarter 1, 2007	*									*							-						+
	*					*	*	*	*	*			*	*			*						-
Quarter 3, 2007	*					*	÷	*	*	*	J.		Ŧ	*			*						╞
Quarter 2, 2011											*												
Quarter 3, 2012	*																						
Quarter 3, 2016																			*				
TOTAL ORGANIC HALIDES																							
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*														*			*		
Quarter 3, 2003				*																	*		
Quarter 2, 2004																					*		
Quarter 3, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*																						
Quarter 4, 2005	*																						
Quarter 1, 2006	*	1						1			1	1			1						1	1	
Quarter 2, 2006	*	1	l	1	1					1										1			T
Quarter 3, 2006	*	1	1	1	1					1										1			T
Quarter 4, 2006	1	1															*						t
Quarter 1, 2007	*	1												1									$\vdash$
Quarter 2, 2007	*	1	1																				1
Quarter 3, 2007	*	1																					$\vdash$
Quarter 4, 2007	*	1																			*		$\vdash$
Quarter 1, 2007	*	1																					+
Quarter 4, 2008	*	1					-		-				-	-					-				$\vdash$
Quarter 4, 2008	*	1					-		-				-						-				$\vdash$
Quarter 1, 2009	*	1		-	-					-										-			$\vdash$
Quarter 2, 2009	*	-		-	-					-				-						-	*		┢
Quarter 3, 2009	*																						
Quarter 3, 2009 Quarter 4, 2009	*			-	-			-		-	-	-			-					-	-	-	─
Vual tot 4, 2009		<u> </u>												-						-			┢
	*																						1
Quarter 1, 2010	*																						-
	* * *																						L

Groundwater Flow System			UCRS	3						1	URGA	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TOTAL ORGANIC HALIDES																							
Quarter 4, 2010	*																						
Quarter 1, 2011	*																						
Quarter 3, 2013																					*		
TRICHLOROETHENE																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004												_						_	_				
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																	<u> </u>						
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																		-					
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																					_	-	
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009											-												
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011 Quarter 2, 2011																						-	
Quarter 3, 2011																							
Quarter 4, 2011 Quarter 1, 2012																							
																-						-	
Quarter 2, 2012 Quarter 3, 2012																							
Quarter 4, 2012 Quarter 4, 2012																							
											-												
Quarter 1, 2013 Quarter 2, 2013																_							
Quarter 3, 2013												_		-					-				
Quarter 4, 2013																							
Quarter 1, 2013																							
Quarter 1, 2014 Quarter 2, 2014		-					-	-					-						-			-	-
Quarter 3, 2014 Quarter 3, 2014											-												
Quarter 3, 2014 Quarter 4, 2014													<u> </u>				-			<u> </u>		<u> </u>	-
Quarter 4, 2014 Quarter 1, 2015											-												
Quarter 2, 2015																							
Quarter 3, 2015		-					-	-					-			$\vdash$						-	-
Quarter 3, 2015 Ouarter 4, 2015																				-			-
Quarter 1, 2015													<u> </u>				-			<u> </u>		<u> </u>	-
Quarter 1, 2016 Quarter 2, 2016																							
Quarter 2, 2016 Quarter 3, 2016		-					-	-					-									-	-
Quarter 3, 2016 Quarter 4, 2016																							
Quarter 4, 2016 Quarter 1, 2017													-							-		-	-
Quarter 2, 2017		<u> </u>					<u> </u>	<u> </u>					<u> </u>							<u> </u>		<u> </u>	-
Quarter 3, 2017																	<u> </u>						
Quarter 4, 2017															1					1			

Groundwater Flow System			UCRS	5						1	URGA	4								LRG/	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	39
TRICHLOROETHENE																							
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																							
Quarter 4, 2018																							
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														
* Statistical test results indicate	e an elev	ated c	once	ntratio	on (i.e	e., a s	tatisti	cally :	signif	icant	incre	ase)											
<ul> <li>MCL Exceedance</li> </ul>																							
Previously reported as an I			nce; ł	nowev	/er, re	esult v	vas ec	qual to	o MCI	L													
UCRS Upper Continental Recha		em																					
URGA Upper Regional Gravel A																							
LRGA Lower Regional Gravel A	1																						
S Sidegradient; D Downgradient	; U Upg	radieı	nt																				

THIS PAGE INTENTIONALLY LEFT BLANK

**APPENDIX H** 

METHANE MONITORING DATA

THIS PAGE INTENTIONALLY LEFT BLANK

#### CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	11/	/14/2	018			T	ime:		0	8008	m			Mon	itor	:		F	Rober	t Kirb	у
Weather Condition Mostly cloudy at 3		grees	5																		
Monitoring Equipment: RAE Systems, Multi-RAE, Serial# 7970																					
,						torin	g Lo	ocati	on											Read (% LE	
Ogden Landing Road Entrance	Ch	ecked	d at g	round	l leve	el														0	
North Landfill Gate	Ch	ecked	d at g	rounc	leve	el														0	
West Side of Landfill: North 37° 07.652 West 88° 48.029		ecked	h at n	round	leve	7														0	
East Side of Landfill: North 37° 07.628 West 88° 47.798		ecked																		0	
Cell 1 Gas Vent (17)	1	2 0	3 0	4 0	5 0	6 0	7 0	8 0	9 0	10 0	11 0	12 0	13 0	14 0	15 0			17 0		0	
Cell 2 Gas Vent (3)	1 0	2 0	3 0																	0	
Cell 3 Gas Vent (7)	1 0	2 0	3 0	4 0	5 0	6 0	7 0													0	
Landfill Office Suspect or Problem		ecked	d at fl	oor le	evel															0	
Areas Remarks	No	area	s not	ed																N/A	٩
Areas       No areas noted       N/A         Remarks:       ALL VENTS CHECKED 1" FROM. THE MOUTH OF VENT       Image: Checker of the second																					
Performed by:				Si		mu ture	1.0	) . Mit	Ĺ								1.	//	114	Date	8

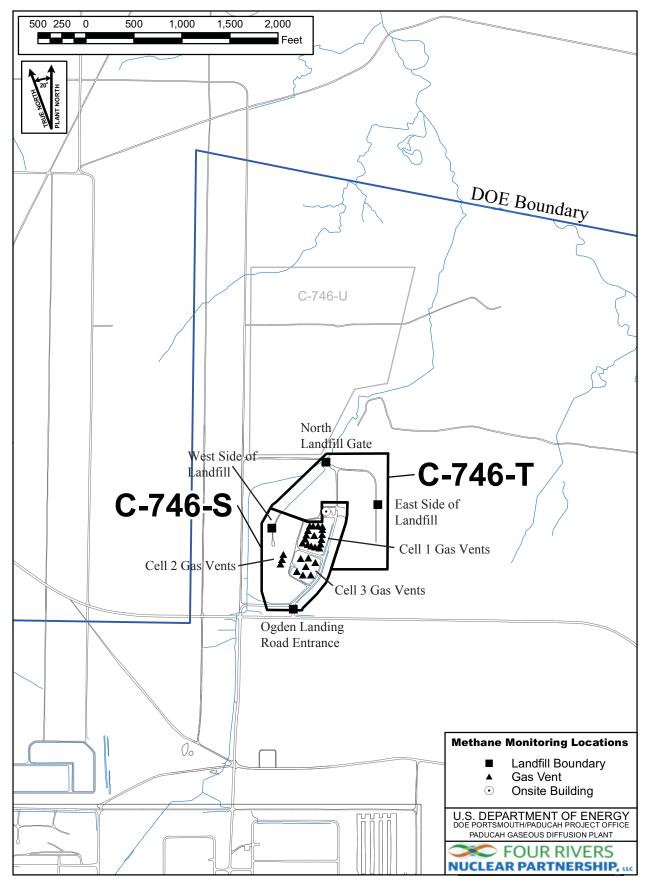



Figure H.1. C-746-S&T Methane Monitoring Locations

**APPENDIX I** 

SURFACE WATER ANALYSES AND WRITTEN COMMENTS

THIS PAGE INTENTIONALLY LEFT BLANK

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

14 Reilly Road

### Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number:sw07300014, sw07300015, sw07300045

Frankfort, KY 40601 (502) 564-6716

## SURFACE WATER SAMPLE ANALYSIS (s)

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: <u>None</u> For Official Use Only

Monitoring Po	int	: (KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L135 UPSTREA	٩M	L154 DOWNSTR	EAM	L136 AT SIT	E	F. BLAN	к
Sample Sequer	nce	#				1		1		1		1	
If sample is a	a B	lank, specify Type: (F)ield, (	T)r:	ip, (M)ethod	, or (E)quipment	NA		NA		NA		F	
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		10/31/2018 14:	48	10/31/2018 14:	22	10/31/2018 14	:34	10/31/2018 1	14:50
Duplicate ("Y	<u>(</u> " (	or "N") ¹				Ν		N		Ν		N	
Split ('Y' o	: "I	N") ²				Ν		N		Ν		N	
Facility Sam	le	ID Number (if applicable)		L135SS1-19		L154US1-19	)	L136SS1-1	9	FB1SS1-1	19		
Laboratory Sa	mp	le ID Number (if applicable)		463250002		463254003		463250003	5	46325000	)4		
Date of Analy	ysi	s (Month/Day/Year)		11/17/2018		11/17/2018		11/17/2018	}	11/17/201	18		
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷						
A200-00-0	0	Flow	т	MGD	Field		*		*		*		*
16887-00-6	2	Chloride(s)	т	mg/L	300.0	5.94		6.98		2.42		<0.2	
14808-79-8	0	Sulfate	т	mg/L	300.0	7.21		10		7.73		<0.4	
7439-89-6	0	Iron	т	mg/L	200.8	0.412		1.03		0.2		<0.1	
7440-23-5	0	Sodium	т	mg/L	200.8	1.94		3.55		0.844		<0.25	
S0268	0	Organic Carbon ⁶	т	mg/L	9060	17.3		19.5		16.6			*
S0097	0	BOD ⁶	т	mg/L	not applicable		*		*		*		*
S0130	0	Chemical Oxygen Demand	т	mg/L	410.4	67	В	70.2	В	62.2	В		*

 1 Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by <u>separate</u> laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

Ξ

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page. STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID

Page 2 of 4

#### SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: sw07300014, sw07300015, sw07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

### SURFACE WATER SAMPLE ANALYSIS - (Cont.)

For Official Use Only

Monitoring Po	oint	: (KPDES Discharge Number, or	c "T	JPSTREAM" or	"DOWNSTREAM")	L135 UPSTRE	EAM	L154 DOWNST	REAM	L136 AT SI	TE	F. BLANK	
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S
S0145	1	Specific Conductance	т	µhmo/cm	Field	113		133		128			*
s0270	0	Total Suspended Solids	т	mg/L	160.2	26.8		44.8		6	J		*
S0266	0	Total Dissolved Solids	т	mg/L	160.1	110		97.1		103			*
S0269	0	Total Solids	т	mg/L	SM-2540B	144		157		109			*
s0296	0	рН	т	Units	Field	7.17		7.02		6.89			*
7440-61-1		Uranium	т	mg/L	200.8	0.0017		0.000327		0.000217		<0.0002	
12587-46-1		Gross Alpha $(\alpha)$	т	pCi/L	9310	7.92	*	2.45	*	4.32	*	0.589	*
12587-47-2		Gross Beta $(\beta)$	т	pCi/L	9310	16.7	*	15	*	3.5	*	1.53	*

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant

**Permit Number:**SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1

## SURFACE WATER SAMPLE ANALYSIS (S)

LAB ID: None For Official Use Only

1								Ν				7
Monitoring Po:	int	(KPDES Discharge Number, or "U	JPST	REAM", or "DO	OWNSTREAM")	L135 UPSTRE	AM	$\backslash$				
Sample Sequen	ce	#				2						
If sample is a	a Bl	ank, specify Type: (F)ield, (	T)r:	ip, (M)ethod	, or (E)quipment	NA						
Sample Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		10/31/2018 14	:48					
Duplicate ("Y	" c	or "N") ¹				Y						
Split ('Y' or	· ''1	I") ²				Ν						
Facility Samp	le	ID Number (if applicable)				L135DSS1-1	19					
Laboratory Sa	mp]	e ID Number (if applicable)				463250001			$\mathbf{N}$	7		
Date of Analy	sis	(Month/Day/Year)				11/17/2018	}			/		
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED E VALUE I OR A PQL ⁵ G S	VALUX OK FQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷
A200-00-0	0	Flow	т	MGD	Field		*			$\backslash$		
16887-00-6	2	Chloride(s)	т	MG/L	300.0	5.95			Χ		Ν	
14808-79-8	0	Sulfate	т	MG/L	300.0	7.29						
7439-89-6	0	Iron	т	MG/L	200.8	0.342						
7440-23-5	0	Sodium	т	MG/L	200.8	2.04						
S0268	0	Organic Carbon ⁶	т	MG/L	9060	14						
S0097	0	BOD ⁶	т	MG/L	not applicable		*					$\square$
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	76.7	В					$\left[ \right]$

 1 Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by <u>separate</u> laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

Ŀ

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page. STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID

Page 4 of 4

#### SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: sw07300014, sw07300015, sw07300045

FINDS/UNIT: KY8-890-008-982 / 1

### SURFACE WATER SAMPLE ANALYSIS - (Cont.)

LAB ID: None

For Official Use Only

Monitoring 1	Poin	t (KPDES Discharge Number, o	r "T	JPSTREAM" or	"DOWNSTREAM")	L135 UPSTR	EAM	$\square$					$_$
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQD ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷
S0145	1	Specific Conductance	т	µmho/cm	Field	113							
s0270	0	Total Suspended Solids	т	mg/L	160.2	23.2							
s0266	0	Total Dissolved Solids	т	mg/L	160.1	157							
S0269	0	Total Solids	т	mg/L	SM-2540B	154				N			
s0296	0	рН	т	Units	Field	7.17				$\backslash$			
7440-61-1		Uranium	т	mg/L	200.8	0.00174							
12587-46-1		Gross Alpha $(\alpha)$	т	pCi/L	900.0	3.18	*				Į –		
12587-47-2		Gross Beta $(\beta)$	т	pCi/L	900.0	22.4	*						
											$\backslash$		
												$\backslash$	
								/					
								$\mathbf{V}$					_ \

### RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID: <u>None</u> For Official Use Only

# SURFACE WATER WRITTEN COMMENTS

Monitori Point	ng Facility Sample ID	Constituent	Flag	Description
L135	L135SS1-19	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 5.87. Rad error is 5.71.
		Beta activity		TPU is 8.42. Rad error is 7.94.
L154	L154US1-19	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.17. Rad error is 4.15.
		Beta activity		TPU is 8.27. Rad error is 7.87.
L136	L136SS1-19	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.53. Rad error is 4.46.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.01. Rad error is 6.99.
QC	FB1SS1-19	Flow Rate		Analysis of constituent not required and not performed.
		Total Organic Carbon (TOC)		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)		Analysis of constituent not required and not performed.
		Conductivity		Analysis of constituent not required and not performed.
		Suspended Solids		Analysis of constituent not required and not performed.
		Dissolved Solids		Analysis of constituent not required and not performed.
		Total Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.39. Rad error is 3.39.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.47. Rad error is 7.47.
L135	L135DSS1-19	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.79. Rad error is 3.75.
		Beta activity		TPU is 9.63. Rad error is 8.88.

THIS PAGE INTENTIONALLY LEFT BLANK