FRNP-RPT-0028/V3

C-746-S&T Landfills Third Quarter Calendar Year 2018 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

11-15-18

Date

FRNP Classification Support

FRNP-RPT-0028/V3

C-746-S&T Landfills Third Quarter Calendar Year 2018 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—November 2018

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FOUR RIVERS NUCLEAR PARTNERSHIP, LLC, managing the Deactivation and Remediation Project at the Paducah Gaseous Diffusion Plant under Contract DE-EM0004895

FIC	GURES.			v
TA	BLES			v
AC	CRONY	MS		vii
1.	1.1 H 1.2 M 1 1	BACK MONIT 1.2.1 1.2.2 1.2.3	FION GROUND FORING PERIOD ACTIVITIES Groundwater Monitoring Methane Monitoring Surface Water Monitoring	
	1.3 F	KEY R	ESULTS	4
2.	2.1 S	STATIS 2.1.1 2.1.2 2.1.3	LUATION/STATISTICAL SYNOPSIS STICAL ANALYSIS OF GROUNDWATER DATA Upper Continental Recharge System Upper Regional Gravel Aquifer Lower Regional Gravel Aquifer VERIFICATION AND VALIDATION	10 10 10 11
3			NAL GEOLOGIST AUTHORIZATION	
2.			ES	
	PPENDE		GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	
AP	PENDE	X B:	FACILITY INFORMATION SHEET	B-1
AP	PENDE	X C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
AP	PENDE	X D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
AP	PENDE	X E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
AP	PENDE	X F:	NOTIFICATIONS	F-1
AP	PENDE	X G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
AP	PENDE	X H:	METHANE MONITORING DATA	H-1
AP	PENDE	X I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1

CONTENTS

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	2
	C-746-S&T Landfills Surface Water Monitoring Locations	

TABLES

1.	Summary of MCL Exceedances	
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells	6
4.	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	
6.	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR	Code of Federal Regulations
CY	calendar year
KAR	Kentucky Administrative Regulations
KDWM	Kentucky Division of Waste Management
KRS	Kentucky Revised Statutes
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
LTL	lower tolerance limit
MCL	maximum contaminant level
MW	monitoring well
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer
UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills Third Quarter Calendar Year 2018 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 *KAR* 47:030 § 6 and for all permit required parameters listed in 40 *CFR* § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090 § 5. Surface water results are provided in Appendix I.

1.1 BACKGROUND

The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a final cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a final cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a water level measurement or sample; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan) (LATA Kentucky 2014) UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the third quarter 2018 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on July 24, 2018, in MWs of the C-746-S&T Landfills (see Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During July, RGA groundwater flow in the area of the landfill was oriented primarily north to northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in July was 5.93×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 4.96×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.844 to 1.72 ft/day (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the Solid Waste Landfill Permit. Landfill operations staff monitored for the occurrence of methane in 1 on-site building location, 4 locations along the landfill boundary, and 27 passive-gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on August 20, 2018. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application

Attachment 24, of the Solid Waste Landfill Permit. Sampling was performed at the three locations (see Figure 2) monitored for the C-746-S&T Landfills. The landfills have an upstream location, L135; a downstream location, L154; and a location capturing runoff from the landfill surface, L136. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014) which is Technical Application, Attachment 25, of the Solid Waste Landfill Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were further evaluated against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the third quarter 2018, as well as parameters that exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW372, MW373, MW391, and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedances for beta activity in MW370, MW387, and MW388 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances because the source(s) of these exceedances is not determined. To evaluate these preliminary Type 2 exceedances further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. MW387 and MW388 had no increasing Mann-Kendall trend for beta activity and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills. MW370 had an increasing trend that is discussed in detail later in this section.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as upgradient, to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

¹ The UTL comparison for pH uses a two-sided test, both UTL and LTL. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

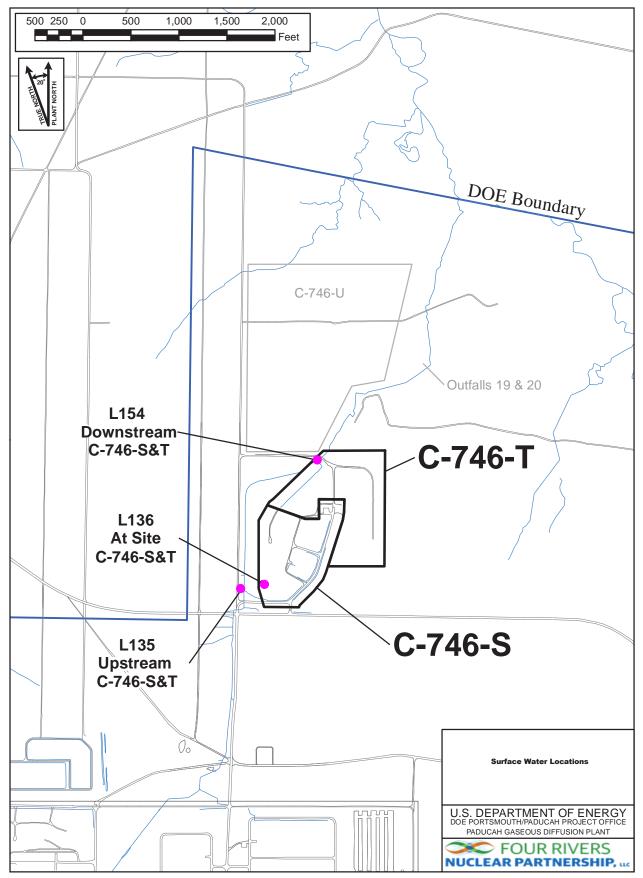


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
MW390: Beta activity	MW372: Trichloroethene	MW370: Beta activity
	MW384: Beta activity	MW373: Trichloroethene
	MW387: Beta activity	MW385: Beta activity
	MW391: Trichloroethene	MW388: Beta activity
		MW392: Trichloroethene

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Oxidation-reduction	MW220: Sulfate	MW370: Beta activity, oxidation-
potential		reduction potential, sulfate,
		technetium-99
MW390: Beta activity, oxidation-	MW221: Oxidation-reduction	MW373: Conductivity, dissolved
reduction potential, technetium-99	potential	solids, oxidation-reduction potential,
		sulfate
MW393: Oxidation-reduction	MW222: Oxidation-reduction	MW385: Beta activity, oxidation-
potential	potential	reduction potential, sulfate,
		technetium-99
MW396: Oxidation-reduction	MW223: Oxidation-reduction	MW388: Beta activity,
potential	potential, sulfate	oxidation-reduction potential,
		sulfate, technetium-99
	MW224: Oxidation-reduction	MW392: Oxidation-reduction
	potential	potential
	MW372: Chemical oxygen demand	MW395: Oxidation-reduction
	(COD), dissolved solids,	potential
	magnesium, sulfate, technetium-99	
	MW384: Beta activity, sulfate,	MW397: Oxidation-reduction
	technetium-99	potential
	MW387: Beta activity,	
	technetium-99	
	MW391: Dissolved solids, sodium,	
	sulfate	

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386 Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393 Upgradient wells: MW220, MW394, MW395, MW396, MW397

Table 3. Exceedances of Current Background UTL in **Downgradient Wells**

URGA	LRGA
MW372: Magnesium, sulfate, technetium-99	MW370: Beta activity, sulfate, technetium-99
MW387: Beta activity, technetium-99	MW373: Conductivity, dissolved solids, sulfate
MW391: Sodium, sulfate	MW388: Beta activity, sulfate, technetium-99

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S ³	Decision ⁴
		Beta activity	8	0.05	0.032	16	Positive Trend
	MW370	Sulfate	8	0.05	0.087	12	No Trend
		Technetium-99	8	0.05	0.193	8	No Trend
		Magnesium	8	0.05	0.133	-10	No Trend
	MW372	Sulfate	8	0.05	0.193	8	No Trend
		Technetium-99	8	0.05	0.054	14	No Trend
	MW373	Conductivity	8	0.05	0.018	-18	Negative Trend
C-746-S&T		Dissolved Solids	8	0.05	0.018	-18	Negative Trend
Landfill		Sulfate	8	0.05	0.005	-22	Negative Trend
	MW387	Beta activity	8	0.05	0.355	4	No Trend
		Technetium-99	8	0.05	0.268	-6	No Trend
		Beta activity	8	0.05	0.548	0	No Trend
	MW388	Sulfate	8	0.05	0.268	6	No Trend
		Technetium-99	8	0.05	0.193	-8	No Trend
	MW391	Sodium	8	0.05	0.193	8	No Trend
	101 00 391	Sulfate	8	0.05	0.355	4	No Trend

Table 4. C-746-S&T Landfills Downgradient Wells Trend SummaryUtilizing the Previous Eight Quarters

Footnotes:

¹ An alpha of 0.05 represents a 95% confidence interval.

² The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

 3 The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 4 The Mann-Kendall decision operates on two hypotheses, the H₀ and H_a. H₀ assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

Note: Statistics generated using ProUCL.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan. To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All but one of these preliminary Type 2 exceedances in downgradient wells—beta activity in MW370—did not have an increasing trend and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The Mann-Kendall statistical test indicates that there is an increasing trend in beta activity in MW370 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, it is considered a Type 2 exceedance (source unknown). The source of the trend is believed to be unrelated to the C-746-S&T Landfills for the following reasons.

• There is a known upgradient regional source of beta activity associated with the technetium-99 Northwest Plume (see the Groundwater Monitoring Plan); and

• Although the deeper (LRGA) MW370 shows an increasing trend, the shallower, collocated (URGA) well, MW369, has significantly lower beta activity, which does not exceed the MCL (refer to Table 1).

In accordance with Permit Condition GSTR0003, Special Condition 2, of the Solid Waste Landfill Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS well MW390 with beta activity and technetium-99 values that exceed both the historical and current backgrounds (Table 5). Because this well is not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T sources and is considered to be a Type 1 exceedance.

 Table 5. Exceedances of Current Background

 UTL in Downgradient UCRS Wells*

UCRS
MW390: Beta activity, technetium-99
*In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances, except for beta activity in MW370, reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills. The increasing trend for beta activity in MW370 does not appear to be landfill-related. Beta activity in MW370 will continue to be evaluated in the context of this observation.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the third quarter 2018 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance—an exceedance not exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both the upper and LTL to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

UCRS	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389**	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396***	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	
	MW387	
	MW391	
	MW394 (upgradient)	

Table 6. Monitoring Wells Included in Statistical Analysis*

*A map showing the MW locations is shown on Figure 1.

**MW389 had insufficient water to permit a water sample for laboratory analysis.

***In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the UCRS. During the third quarter, beta activity, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity and technetium-99 exceeded the current background UTL and are included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 32 parameters, including those with MCLs, required statistical analysis in the URGA. During the third quarter, beta activity, chemical oxygen demand, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 30 parameters, including those with MCLs, required statistical analysis in the LRGA. During the third quarter, beta activity, conductivity, dissolved solids, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, conductivity, dissolved solids, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices, and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills

Third Quarter Calendar Year 2018 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FRNP-RPT-0028/V3)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

Davis

Kenneth R. Davis

PG113927

November 14, 2018 Date

4. REFERENCES

- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:		Gaseous Diffusion Plant on DWM Permit Face)	Activity:	C-746-S&T Landfills
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	3rd Qtr. CY 2018
Please check the	following as applicable	:		
Characte	rization <u>X</u> Qua	rterly Semiannual	Annual	Assessment
Please check app	olicable submittal(s):	X Groundwater	X St	urface Water
		Leachate	X M	lethane Monitoring

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Myrna E Redfield, Deputy Program Manager Four Rivers Nuclear Partnership, LLC

Jennifer Woodard, Paducah Site Lead V.S. Department of Energy

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY	INFORMATION	SHEET
----------	--------------------	-------

Sampling Date:	Groundwater: July/August 2018 Surface water: September 2018 Methane: August 2018	County: McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045
Facility Name:	U.S. DOE—Paducah Gaseous Di	ffusion Plant		
(As officially shown on DWM Permit Face)				
Site Address:	5600 Hobbs Road	Kevil, Kentucky		42053
	Street	City/State		Zip
Phone No:	(270) 441-6800 Latitud	e: <u>N 37° 07' 37.70"</u>	Longitude:	W 88° 47' 55.41"
OWNER INFORMATION				
Facility Owner:	U.S. DOE, Robert E. Edwards III	, Manager	Phone No:	(859) 227-5020
Contact Person: James Miller			Phone No:	(270) 441-5068
Contact Person Title: Director, Waste, Materials, and Environmental Services Project, Four Rivers Nuclear Partnership, LLC				
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053
	Street	City/State		Zip
SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY) Company: GEO Consultants, LLC				
Contact Person:	Sam Martin		Phone No:	(270) 441-6755
Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky		42053
	Street	City/State		Zip
LABORATORY RECORD #1				
Laboratory:	GEL Laboratories, LLC	Lab ID No: I	XY90129	
Contact Person:	Valerie Davis		Phone No:	(843) 769-7391
Mailing Address:	2040 Savage Road	Charleston, South Carolina	-	29407
	Street	City/State		Zip
LABORATORY RECORD #2				
Laboratory:	N/A	Lab ID No:	N/A	
Contact Person:	N/A		Phone No:	N/A
Mailing Address:	N/A		<u>-</u>	
	Street	City/State		Zip
LABORATORY RECORD #3				
Laboratory:	N/A	Lab ID No:	N/A	
Contact Person:	N/A		Phone No:	N/A
Mailing Address:	N/A		1 11010 110.	
	Street	City/State		Zip

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-52	202	8000-52	242	8000-524	13
Facility's Loo	cal Well or Spring Number (e.g., M	1W-1	., MW-2, etc	:.)	220		221		222		223	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/19/2018 10	0:49	7/19/2018	07:59	7/19/2018	09:30	7/19/2018 0)8:45
Duplicate ("Y	" or "N") ²				Ν		Ν		N		N	
Split ("Y" or	"N") ³				Ν		Ν		N		N	
Facility Samp	le ID Number (if applicable)				MW220SG4	-18	MW221S0	G4-18	MW222S0	G4-18	MW223SG	4-18
Laboratory Sar	mple ID Number (if applicable)		45503500	3	455035	005	455035	007	4550350	09		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						7/26/20)18	7/26/20	18	7/26/201	8
Gradient with	respect to Monitored Unit (UP, DC) WN ,	SIDE, UNKN	IOWN)	UP		SIDE	=	SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.196	J	0.421		0.413		0.405	
16887-00-6	Chloride(s)	т	mg/L	9056	18.9	*	31.2		31.1	*	28.6	
16984-48-8	Fluoride	т	mg/L	9056	0.216		0.189		0.256		0.364	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.11		1.04		0.85		0.979	
14808-79-8	Sulfate	т	mg/L	9056	24.7		15.8		13.7		18.6	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.95		29.97		29.96		29.97	
S0145	Specific Conductance	т	µMH0/cm	Field	412		414		379		400	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

0 4

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	<u>)</u>	8000-5243	
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	327.14		326.99		327.35		327.23	
N238	Dissolved Oxygen	т	mg/L	Field	5.18		3.48		4.01		1.31	
S0266	Total Dissolved Solids	т	mg/L	160.1	207		197		190		194	
S0296	рн	т	Units	Field	5.75		6.08		6.14		6.09	
NS215	Eh	т	mV	Field	390		540		464		483	
S0907	Temperature	т	°c	Field	19.56		18.28		20.61		19	
7429-90-5	Aluminum	т	mg/L	6020	0.0816		<0.05		0.0391	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.226	*	0.222	*	0.318	*	0.261	*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005	*	<0.0005	*	<0.0005	*	<0.0005	*
7440-42-8	Boron	т	mg/L	6020	0.00759	J	0.013	J	0.00971	J	0.0062	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	25.5	*	23.2	*	22.1	*	23.6	*
7440-47-3	Chromium	т	mg/L	6020	0.00866	J	0.00832	J	0.00308	J	0.0234	
7440-48-4	Cobalt	т	mg/L	6020	0.000377	J	0.00112		0.000443	J	0.00118	
7440-50-8	Copper	т	mg/L	6020	0.000901	J	0.0012		0.000673	J	0.000672	J
7439-89-6	Iron	т	mg/L	6020	0.138		0.0491	J	0.0596	J	0.0408	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.1	*	10.2	*	10.1	*	10.2	*
7439-96-5	Manganese	т	mg/L	6020	0.00318	J	0.00301	J	0.0089		0.0185	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-520	01	8000-52	02	8000-52	42	8000-52	.43
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.0017		0.00779		0.000522		0.007	
7440-02-0	Nickel	т	mg/L	6020	0.0265		0.105		0.0963		0.316	
7440-09-7	Potassium	т	mg/L	6020	1.75		2.21		0.797		2.36	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	49.6		49.5		44.3		45.7	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		0.00398	J	0.00364	J
7440-66-6	Zinc	т	mg/L	6020	0.00397	J	0.0042	J	0.00365	J	0.00379	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520)2	8000-52	242	8000-5	243
Facility's Lo	ocal Well or Spring Number (e.g.,)	MW-:	1, MW-2, et)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	0.00059	J	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00191		0.00036	J	<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-7

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	42	8000-524	43
Facility's Lo	cal Well or Spring Number (e.g., M	MW-:	1, MW-2, et)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000195		<0.0000198		<0.0000194	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-8

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5201		8000-5202	2	8000-524	2	8000-524	13
Facility's Loc	cal Well or Spring Number (e.g.,	, MW -1	L, MW-2, et)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.959	*	3.07	*	-4.76	*	5.38	*
12587-47-2	Gross Beta	т	pCi/L	9310	8.64	*	9.66	*	-0.043	*	3.12	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.15	*	0.283	*	-0.231	*	0.0335	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.95	*	-0.454	*	-1.78	*	-0.247	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	14	*	22.8	*	10.2	*	0.758	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.348	*	0.0933	*	-0.0889	*	0.25	*
10028-17-8	Tritium	т	pCi/L	906.0	47.7	*	24	*	19.3	*	32.7	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	29.3	В	17.8	BJ	21.1	В	26	В
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		0.00181	J
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
S0268	Total Organic Carbon	т	mg/L	9060	0.895	J	0.834	J	0.69	J	0.795	J
S0586	Total Organic Halides	Т	mg/L	9020	0.0119		0.00998	J	0.00468	J	0.00596	J
								<u> </u>				

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	318	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g., M	4W-1	., MW-2, etc	:.)	224		369		370		372	
Sample Sequen	ce #				1		1		1		1	
If sample is a :	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		7/19/2018 10	0:15	7/18/2018	12:39	7/18/2018	14:09	7/18/2018 0	9:07
Duplicate ("Y	" or "N") ²				Ν		Ν		N		N	
Split ("Y" or	"N") ³				Ν		N		N		N	
Facility Samp	le ID Number (if applicable)				MW224SG4	-18	MW369U0	G4-18	MW370U0	G4-18	MW372UG	4-18
Laboratory Sa	mple ID Number (if applicable)		45503501	3	454896	005	454896	007	4548960	11		
Date of Analy:	ce of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					3	7/25/20)18	7/25/20	18	7/25/201	8
Gradient with	respect to Monitored Unit (UP, DO	, MWC	SIDE, UNKN	IOWN)	SIDE		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.511	*J	0.397		0.371		0.614	
16887-00-6	Chloride (s)	т	mg/L	9056	36		36.1	*	36	*	46.6	*
16984-48-8	Fluoride	т	mg/L	9056	0.284		0.221		0.172		0.125	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.02		0.59		1.1		0.336	
14808-79-8	Sulfate	т	mg/L	9056	14.3	*	6.71		21.5		81.5	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.95		30.03		30.02		30.05	
S0145	Specific Conductance	т	µMH0/cm	Field	433		372		427		597	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., M	7-1 <i>,</i> 1	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	327.34		327.38		327.35		327.37	
N238	Dissolved Oxygen	т	mg/L	Field	2.9		2.46		3.36		0.88	
S0266	Total Dissolved Solids	т	mg/L	160.1	237		197		179		323	
S0296	рн	т	Units	Field	6.18		6.19		6.09		6.13	
NS215	Eh	т	mV	Field	458		338		369		371	
S0907	Temperature	т	°c	Field	19.83		21.44		20.83		20.28	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0345	J	<0.05		0.0361	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.219	*	0.373		0.209		0.101	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005	*	<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0174		0.0133	J	0.031		0.474	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	22.9	*	15.6		26.2		38.4	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00422		0.00501		0.000325	J	<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000498	J	0.00165		0.00091	J	0.00136	
7439-89-6	Iron	т	mg/L	6020	<0.1		0.0807	J	<0.1		0.22	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.2	*	6.5		11.1		16.2	
7439-96-5	Manganese	т	mg/L	6020	0.0366		0.00736		0.00167	J	0.00372	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-524	14	8004-48	20	8004-48	18	8004-48	08
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.0007		<0.0005		<0.0005		<0.0005	1
7440-02-0	Nickel	т	mg/L	6020	0.231		0.0091		<0.002		<0.002	
7440-09-7	Potassium	т	mg/L	6020	0.872		0.509		2.37		1.76	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	51.8		48.8		38.1		39	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		0.00393	J	0.0042	J	0.00541	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		0.00423	J	0.00725	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244	4	8004-482	20	8004-48	318	8004-48	308
Facility's Lo	ocal Well or Spring Number (e.g., M	MW-1	1, MW-2, et)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00076	J	0.00079	J	0.00532	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	4	8004-4820	0	8004-481	18	8004-480	38
Facility's Loc	cal Well or Spring Number (e.g., M	4 W-1	L, MW-2, et)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000197		<0.0000197		<0.0000195	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	0.0402	J	<0.0962		<0.0952	
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0962	*	<0.0962	*	<0.0952	*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0962		<0.0962		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0962		<0.0962		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082		*	0.0402	J	<0.0962		<0.0952	
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.0962		<0.0962		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244		8004-4820		8004-481	8	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.0962		<0.0962		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0962		<0.0962		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0962		<0.0962		<0.0952	
12587-46-1	Gross Alpha	т	pCi/L	9310	1.93	*	-1.52	*	8.3	*	10.5	*
12587-47-2	Gross Beta	т	pCi/L	9310	2.57	*	14.9	*	102	*	27.7	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.0808	*	-0.0135	*	0.484	*	0.527	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.163	*	-0.265	*	1.63	*	0.975	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	7.24	*	31.4	*	96.2	*	70.9	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.306	*	0.213	*	0.22	*	-0.212	*
10028-17-8	Tritium	Т	pCi/L	906.0	48.6	*	157	*	193	*	85.4	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	12.9	BJ	14.5	*J	19.4	*J	39.1	*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	<0.5		<0.5		0.169	J
s0268	Total Organic Carbon	Т	mg/L	9060	0.811	J	1.47	BJ	1.3	BJ	1.2	BJ
S0586	Total Organic Halides	т	mg/L	9020	0.00394	J	0.0133		0.0125		0.00954	J

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792	2	8004-48	309	8004-48	10	8004-480)4
Facility's Loo	cal Well or Spring Number (e.g., M	w−1	, MW-2, etc	:.)	373		384		385		386	
Sample Sequend	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		7/18/2018 1 ⁻	1:53	7/18/2018	09:53	7/18/2018	10:51	7/18/2018 1	0:15
Duplicate ("Y	" or "N") ²				Ν		Ν		N		Ν	
Split ("Y" or	"N") ³				Ν		N		N		Ν	
Facility Samp	le ID Number (if applicable)		MW373UG4	-18	MW384S0	G4-18	MW385S0	64-18	MW386SG4	4-18		
Laboratory Sa	mple ID Number (if applicable)		45489601	3	454900	003	4549000	005	4549000	07		
Date of Analy:	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					3	7/25/20	18	7/25/20	18	7/25/201	8
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	OWN)	DOWN		SIDE	-	SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.573		0.312		0.248		0.167	J
16887-00-6	Chloride(s)	т	mg/L	9056	45	*	37.5	*	31.5	*	15.8	*
16984-48-8	Fluoride	т	mg/L	9056	0.178		0.244		0.141		0.641	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.2		1.19		0.918		<0.4	
14808-79-8	Sulfate	т	mg/L	9056	81.3		24.3		21.1		48.2	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.03		30.05		30.05		30.05	
S0145	Specific Conductance	т	µMH0/cm	Field	622		453		433		584	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Loc	cal Well or Spring Number (e.g., MW-	-1, 1	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	327.32		327		326.55		344.23	
N238	Dissolved Oxygen	т	mg/L	Field	2.52		3.06		3.3		2.5	
S0266	Total Dissolved Solids	т	mg/L	160.1	340		247	*	227	*	329	*
S0296	рн	т	Units	Field	6.14		5.81		6.21		6.56	
NS215	Eh	т	mV	Field	318		352		330		331	
S0907	Temperature	т	°c	Field	21.17		19.44		20		20.22	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0215	J	<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.0308		0.125		0.223		0.154	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	1.62		0.0167		0.0217		0.00775	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	49.3		25.5		28.1		21.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.00503	J	<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		<0.001		0.000433	J
7440-50-8	Copper	т	mg/L	6020	0.000523	J	0.00102		0.000503	J	0.00304	
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.305		<0.1		0.144	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	18		9.67		10.1		8.64	
7439-96-5	Manganese	т	mg/L	6020	0.00263	J	0.0281		<0.005		0.0535	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	92	8004-48	809	8004-48	10	8004-48	04
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005		0.000201	J	0.000243	J
7440-02-0	Nickel	т	mg/L	6020	<0.002		0.00122	J	0.000953	J	<0.002	
7440-09-7	Potassium	т	mg/L	6020	2.19		1.1		1.73		0.291	J
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	40.9		47.2		37.8		83.2	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	т	mg/L	6020	0.00413	J	0.0049	J	0.00388	J	0.00484	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		0.00488	J	<0.005		0.00738	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003	*	<0.003	*	<0.003	*
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4792	2	8004-480)9	8004-48	310	8004-48	804
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-1	1, MW-2, et)	373		384		385		386	1
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00553		0.00036	J	0.00042	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809	9	8004-481	10	8004-48	04
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000198		<0.0000195	*	<0.0000197	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
1336-36-3	PCB,Total	т	ug/L	8082	<0.0943			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0943	*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0943			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0943			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0943			*		*		*
12672-29-6	PCB-1248	т	ug/L	8082	<0.0943			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-4809)	8004-481	0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g.	, MW -1	L, MW-2, et	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Τ D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0943			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.0943			*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0943			*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	6.23	*	-0.233	*	0.826	*	4.36	*
12587-47-2	Gross Beta	т	pCi/L	9310	30.6	*	100	*	79.3	*	6.19	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.108	*	-0.145	*	0.0821	*	0.105	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.994	*	-1.15	*	-1.31	*	-0.792	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-15.9	*	126	*	161	*	-1.66	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.306	*	0.85	*	0.634	*	0.449	*
10028-17-8	Tritium	т	pCi/L	906.0	190	*	-34.6	*	-77.2	*	-51.9	*
S0130	Chemical Oxygen Demand	т	mg/L	410.4	30.9	*	26	*	<20	*	26	*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.14	BJ	1.33	BJ	1.3	BJ	4.24	В
s0586	Total Organic Halides	т	mg/L	9020	0.0199		0.0097	J	0.00554	J	0.112	
												<u> </u>
												<u> </u>
												<u> </u>

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (5)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	5	8004-48	316	8004-481	12	8004-481	1
Facility's Loc	cal Well or Spring Number (e.g., M	ſ₩-1	, MW-2, etc	.)	387		388		389		390	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		7/18/2018 08	3:32	7/18/2018	09:17	NA		7/18/2018 07	7:56
Duplicate ("Y'	' or "N") ²				Ν		Ν		N		Ν	
Split ("Y" or	"N") ³				N		Ν		N		Ν	
Facility Samp	cility Sample ID Number (if applicable)					-18	MW388S0	G4-18	NA		MW390SG4	-18
Laboratory Sam	mple ID Number (if applicable)		45490000	1	454900	009	NA		45490001	1		
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ganics Anal	ysis	7/25/2018	3	7/25/20	18	NA		7/25/2018	8	
Gradient with	respect to Monitored Unit (UP, DC) WN	SIDE, UNKN	OWN)	DOWN		DOW	N	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.439		0.294			*	0.47	
16887-00-6	Chloride(s)	т	mg/L	9056	20.5	*	35.3	*		*	48.5	*
16984-48-8	Fluoride	т	mg/L	9056	0.5		0.242			*	0.298	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.24		1.12			*	2.39	
14808-79-8	Sulfate	т	mg/L	9056	13		25.9			*	42.9	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.03		30.05			*	30.03	
S0145	Specific Conductance	т	µMH0/cm	Field	491		423			*	675	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 'Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, M	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	327.07		326.99			*	327.18	
N238	Dissolved Oxygen	т	mg/L	Field	3.75		3.69			*	5.3	
S0266	Total Dissolved Solids	т	mg/L	160.1	243	*	221	*		*	359	*
S0296	на	т	Units	Field	5.81		5.77			*	5.97	
NS215	Eh	т	mV	Field	354		350			*	360	
S0907	Temperature	т	°c	Field	19.33		19.61			*	17.83	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0559			*	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00218	J	<0.005			*	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.127		0.162			*	0.0528	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.03		0.021			*	1.34	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	29.1		23			*	48.8	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001			*	0.000655	J
7440-50-8	Copper	т	mg/L	6020	0.00201		0.00143			*	0.000541	J
7439-89-6	Iron	т	mg/L	6020	0.0853	J	0.19			*	0.0511	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.7		9.43			*	17.9	
7439-96-5	Manganese	т	mg/L	6020	0.00876		0.00118	J		*	0.00693	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-48	15	8004-48	16	8004-4812	2	8004-48	11
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-02-0	Nickel	т	mg/L	6020	<0.002		0.00122	J		*	0.00106	J
7440-09-7	Potassium	т	mg/L	6020	1.46		1.66			*	2.15	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	т	mg/L	6020	45.9		40.4			*	42.6	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002			*	<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-66-6	Zinc	т	mg/L	6020	0.00468	J	0.00515	J		*	0.00444	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005			*	0.00682	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003	*	<0.003	*		*	<0.003	*
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	5	8004-481	16	8004-481	2	8004-481	1
Facility's Loc	al Well or Spring Number (e.g., 1	MW-:	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00065	J	0.00058	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	5	8004-4816	6	8004-481	2	8004-481	1
Facility's Loc	al Well or Spring Number (e.g., M	4 W-1	1, MW-2, et)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198		<0.0000195	*		*	<0.0000196	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*		*	<0.001	*
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	5	8004-4816	6	8004-481	2	8004-481	1
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et		387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	3.59	*	2.88	*		*	6.12	*
12587-47-2	Gross Beta	т	pCi/L	9310	147	*	112	*		*	50.5	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.333	*	0	*		*	0.254	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-2.13	*	-1.04	*		*	-0.901	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	205	*	135	*		*	57	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.413	*	0.481	*		*	-0.0328	*
10028-17-8	Tritium	т	pCi/L	906.0	79	*	-17.3	*		*	-24.7	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	30.9	*	17.8	*J		*	9.59	*J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.2	BJ	1.13	BJ		*	2.52	В
S0586	Total Organic Halides	т	mg/L	9020	0.0212		0.0183			*	0.0197	

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-48	306	8004-48	807	8004-480)2
Facility's Loo	cal Well or Spring Number (e.g., M	w−1	, MW-2, etc	.)	391		392		393		394	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)c	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes))		7/18/2018 12	2:53	7/18/2018	12:18	7/19/2018	09:23	7/19/2018 0	07:34
Duplicate ("Y	" or "N") ²				Ν		Ν		Ν		Ν	
Split ("Y" or	"N") ³				N		Ν		Ν		Ν	
Facility Samp	le ID Number (if applicable)				MW391SG4	-18	MW392S0	G4-18	MW393S0	G4-18	MW394SG	4-18
Laboratory Sar	mple ID Number (if applicable)		45490001	3	454900	015	4550350	001	4550350	15		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						7/25/20	18	7/26/20	18	7/26/201	8
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	OWN)	DOWN		DOW	N	DOW	Ν	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.513		0.602		0.156	J	0.596	
16887-00-6	Chloride(s)	т	mg/L	9056	38.5	*	50	*	13.7	*	48.6	
16984-48-8	Fluoride	т	mg/L	9056	0.149		0.214		0.185		0.132	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.945	J	0.422	J	0.149	J	1.66	
14808-79-8	Sulfate	т	mg/L	9056	87.2		7.21		19		10.5	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.03		30.03		29.96		29.96	
S0145	Specific Conductance	т	µMH0/cm	Field	541		430		420		392	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807	7	8004-4802	
Facility's Lo	ocal Well or Spring Number (e.g., M	w-1 , 1	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.03		326.97		339.95		327.23	
N238	Dissolved Oxygen	т	mg/L	Field	3.79		4		3.25		5.3	
S0266	Total Dissolved Solids	т	mg/L	160.1	319		221		244		204	
S0296	рн	т	Units	Field	5.99		5.69		5.99		5.75	
NS215	Eh	т	mV	Field	301		330		358		375	
S0907	Temperature	т	°c	Field	20.94		20.94		18.89		18.11	
7429-90-5	Aluminum	т	mg/L	6020	0.114		<0.05		0.0339	J	0.0348	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00279	J	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.233		0.194		0.115	*	0.265	*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005	*	<0.0005	*
7440-42-8	Boron	т	mg/L	6020	0.0199		0.0307		0.0216		0.0227	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	29.2		28.3		14.8	*	27.9	*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00146		0.00196		0.000677	J	0.0016	
7439-89-6	Iron	т	mg/L	6020	0.12		0.552		0.673		0.133	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.9		9.56		4.48	*	12	*
7439-96-5	Manganese	т	mg/L	6020	0.00307	J	0.142		0.0176		0.00354	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480)5	8004-48	806	8004-48)7	8004-48	02
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.0012		<0.0005		0.000292	J	<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.00166	J	0.00114	J	<0.002		0.00283	
7440-09-7	Potassium	т	mg/L	6020	0.375		1.75		0.484		1.44	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	85.8		35.1		84.4		30.2	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	0.000148	J	<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		0.00452	J	<0.01	
7440-66-6	Zinc	т	mg/L	6020	0.00515	J	0.00743	J	0.00371	J	0.00619	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003	*	<0.003	*	<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-480	06	8004-48	307	8004-4	802
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		0.00146		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00804		0.0126		<0.001		0.00495	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	6	8004-480)7	8004-480	02
Facility's Loc	cal Well or Spring Number (e.g., M	4w-:	1, MW-2, et	.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000194	*	<0.0000198	*	<0.0000198		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	Facility Well/Spring Number				8004-4805	5	8004-4806	6	8004-480	7	8004-480)2
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.733	*	3.7	*	1.46	*	6.4	*
12587-47-2	Gross Beta	т	pCi/L	9310	7.05	*	5	*	6.18	*	2.94	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.228	*	-0.0622	*	0.24	*	0.314	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.457	*	2.89	*	-1.62	*	0.805	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-2.39	*	-2.24	*	2.31	*	10.6	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.547	*	0.716	*	0.295	*	0.63	*
10028-17-8	Tritium	т	pCi/L	906.0	27.9	*	45.8	*	-9.9	*	-18.9	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	16.1	*J	29.3	*	26	В	27.6	В
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5	*	<0.5	*
s0268	Total Organic Carbon	т	mg/L	9060	1.2	BJ	1.39	BJ	2.1		0.687	J
s0586	Total Organic Halides	т	mg/L	9020	0.0157		0.0329		0.0156		0.00806	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (5)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4802	1	8004-48	303	8004-48	317	0000-000	00
	cal Well or Spring Number (e.g., M	/w−1	L, MW-2, etc	.)	395		396		397		E. BLAN	К
Sample Sequend	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		E	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/19/2018 08	3:45	7/19/2018	80:80	7/19/2018	10:09	7/19/2018 0	6:55
- Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	cility Sample ID Number (if applicable)					-18	MW396S0	G4-18	MW397S0	G4-18	RI1SG4-	18
Laboratory Sar	boratory Sample ID Number (if applicable)					7	455035	019	455038	001	45503800	04
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analys					3	7/26/20	18	NA		7/26/201	8
Gradient with	respect to Monitored Unit (UP, DO) wn	, SIDE, UNKN	OWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.581		0.968		0.415	*		*
16887-00-6	Chloride(s)	т	mg/L	9056	47.5		64.9		33.5			*
16984-48-8	Fluoride	т	mg/L	9056	0.116		0.646		0.167			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.72		0.181	J	1.34			*
14808-79-8	Sulfate	т	mg/L	9056	10.4		27.6		9.94	*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.97		29.97		29.95			*
S0145	Specific Conductance	т	µMH0/cm	Field	396		725		307			*

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 'Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	7	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	327.59		368.28		327.26			*
N238	Dissolved Oxygen	т	mg/L	Field	3.39		3.2		5.44			*
S0266	Total Dissolved Solids	т	mg/L	160.1	203		397		160			*
S0296	рН	т	Units	Field	6.7		6.44		6.03			*
NS215	Eh	т	mV	Field	336		353		358			*
S0907	Temperature	т	°C	Field	18.67		18.56		20			*
7429-90-5	Aluminum	т	mg/L	6020	0.0541		0.0476	J	0.103		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.259	*	0.381	*	0.136		<0.002	1
7440-41-7	Beryllium	т	mg/L	6020	<0.0005	*	<0.0005	*	<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0241		0.00828	J	0.00755	J	<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	27.1	*	33.8	*	16.9		<0.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	1
7440-50-8	Copper	т	mg/L	6020	0.000819	J	0.00124		0.000608	J	0.000514	J
7439-89-6	Iron	т	mg/L	6020	0.0865	J	0.154		0.192		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.7	*	14.6	*	7.38		<0.03	
7439-96-5	Manganese	т	mg/L	6020	0.00188	J	0.132		0.00499	J	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	395		396		397		E. BLAN	١K
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.000241	J	0.000501		<0.0005		<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.001	J	0.00105	J	0.000612	J	<0.002	
7440-09-7	Potassium	т	mg/L	6020	1.62		0.92		1.58		<0.3	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	30.7		99.9		32.4		<0.25	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		0.00008	J	<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		0.00347	J	0.00643	J
7440-66-6	Zinc	т	mg/L	6020	0.00479	J	0.00688	J	0.00515	J	<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-480	1	8004-480	03	8004-481	7	0000-0000)
Facility's Lo	cal Well or Spring Number (e.g.,)	MW-:	1, MW-2, et)	395		396		397		E. BLANI	<
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00416		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-000	00
Facility's Loo	cal Well or Spring Number (e.g., M	4 W-1	L, MW-2, et		395		396		397		E. BLAN	IK
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198		<0.0000197		<0.0000198		<0.0000199	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	<u> </u>
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	<u> </u>
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	<u> </u>
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	<u> </u>
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	<u> </u>
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	<u> </u>
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	<u> </u>
1336-36-3	PCB, Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4801		8004-4803	;	8004-481	7	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	395		396		397		E. BLAN	IK
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	3.83	*	-1.17	*	3.39	*	0.427	*
12587-47-2	Gross Beta	Т	pCi/L	9310	7.89	*	0.696	*	13.8	*	-2.28	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.307	*	0.295	*	0.00638	*	0.00289	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	3.09	*	-0.119	*	3.51	*	-0.313	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	9.05	*	1.84	*	21.9	*	-0.049	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	1.41	*	0.286	*	0.404	*	0.14	*
10028-17-8	Tritium	Т	pCi/L	906.0	64.3	*	17.2	*	116	*	90.9	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	24.3	В	32.5	В	14.5	BJ		*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	0.394	*J	<0.5	*	<0.5	*
s0268	Total Organic Carbon	Т	mg/L	9060	0.705	J	4.66		0.561	J		*
s0586	Total Organic Halides	т	mg/L	9020	0.0062	J	0.0593		0.00638	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (5)

							1					
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	000-000	00	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	:.)	F. BLAN	к	T. BLAN	K 1	T. BLAN	٢2	T. BLANK	3
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	F		Т		т		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/19/2018 1	0:20	7/18/2018	06:30	7/19/2018 (6:40	7/19/2018 0	6:50
Duplicate ("Y"	' or "N") ²				Ν		N		N		N	
Split ("Y" or	"N") ³				Ν		N		N		N	
Facility Sampl	acility Sample ID Number (if applicable)					18	TB1SG4	-18	TB2SG4-	T 7/19/2018 06:40 N		18
Laboratory Sam	aboratory Sample ID Number (if applicable)					03	4549000	17	4550380	05	45503800	06
Date of Analys	Date of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					8	7/25/20	18	455038005 7/26/2018 NA DETECTED F		7/26/201	8
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN				NA		NA		NA		NA	
CAS RN ⁴			Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	VALUE OR	L A G	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	0145 Specific Conductance T µMH0/cm Fiel			Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 'Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	KGWA NUMBER ¹ , Facility Well/Spring Number Acility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.)						000-000	00	0000-0000	0	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., Mw	1-1, 1	MW-2, BLANK-	F, etc.)	F. BLAN	<	T. BLANK	(1	T. BLANK	2	T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
S0907	Temperature	т	°c	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	т	mg/L	6020	<0.002			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	т	mg/L	6020	<0.001			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	KGWA NUMBER ¹ , Facility Well/Spring Number 'acility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						0000-00	00	0000-00	00	0000-000	00
Facility's 1	local Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	F. BLAN	K	T. BLAN	K 1	T. BLAN	K 2	T. BLAN	К 3
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	т	mg/L	6020	0.00679	J		*		*		*
7440-66-6	Zinc	т	mg/L	6020	<0.01			*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		0.0031	J	<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003	*	<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	Facility Well/Spring Number		0000-0000)	0000-000	00	0000-00	000	0000-0	000		
Facility's Lo	cal Well or Spring Number (e.g., M)	F. BLANK	(T. BLAN	٢1	T. BLAN	NK 2	T. BLAN	IK 3		
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	VALUE OR PQL ⁶ I PQL ⁶ <0.001 * <0.005 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005		0000-000	00	0000-00	00
Facility's Loc	cal Well or Spring Number (e.g., M	1 W-1	L, MW-2, et		F. BLANK	(T. BLANK	1	T. BLAN	< 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	VALUE OR	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000191		<0.0000196	*	<0.0000195		<0.00002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-0000		0000-000	D	0000-000	0
Facility's Lo	cal Well or Spring Number (e.g.	, MW-1	1, MW-2, et)	F. BLANK	<	T. BLANK 1		T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-2.32	*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310	5.97	*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.159	*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.211	*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-2.87	*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.421	*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0	42	*		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*		*		*		*
s0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
S0586	Total Organic Halides	т	mg/L	9020		*		*		*		*
												<u> </u>
												<u> </u>
												\square

Division of Waste Management	RESIDENTIAL/INERT-QUARTERLY	
Solid Waste Branch	Facility: US DOE - Paducah Gaseous	Diffusion Plant
14 Reilly Road	Permit Number:073-00014 & 073-00015	5 FINDS/UNIT: <u>KY8-890-008-982 / 1</u>
Frankfort, KY 40601 (502)564-6	5716	LAB ID: None
		For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				000-000	0	8000-524	4	\backslash			/
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	, MW-2, etc	.)	T. BLANK	4	224		$\left \right\rangle$			
Sample Sequenc	e #				1		2					/
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	Т		NA					/
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		8/21/2018 0	7:20	7/19/2018 1	0:15			/	
Duplicate ("Y"	' or "N") ²				N		Y					
Split ("Y" or	"N") ³				Ν		N			\backslash		
Facility Sampl	e ID Number (if applicable)				TB10SG4-	-18	MW224DSG	4-18		\backslash		
Laboratory Sam	poratory Sample ID Number (if applicable))2	45503501	11				
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis				8/23/201	8	7/26/201	8				
Gradient with	radient with respect to Monitored Unit (UP, 1			OWN)	NA		SIDE			```	X	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	FLAGS	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056		*	0.529	*J	/	ľ		
16887-00-6	Chloride(s)	т	mg/L	9056		*	35.6		/			
16984-48-8	Fluoride	т	mg/L	9056		*	0.283					
s0595	Nitrate & Nitrite	т	mg/L	9056		*	1.01					
14808-79-8	Sulfate	т	mg/L	9056		*	14.3	*				$\left \right\rangle$
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*	29.95					
S0145	Specific Conductance	т	µMH0/cm	Field		*	433					

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

		(00110								
AKGWA NUMBER ¹ ,	GWA NUMBER ¹ , Facility Well/Spring Number cility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.)					0	8000-524	4	\mathbb{N}	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	4	224		$\left[\right]$	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED F VALUE L OR A POL ⁶ G S	VALUE L OR A PQL ⁶ G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*	327.34			
N238	Dissolved Oxygen	т	mg/L	Field		*	2.9			
s0266	Total Dissolved Solids	т	mg/L	160.1		*	210			
s0296	рН	т	Units	Field		*	6.18			
NS215	Eh	т	mV	Field		*	458			
s0907	Temperature	т	°c	Field		*	19.83			
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05			
7440-36-0	Antimony	т	mg/L	6020		*	<0.003			\mathbb{N}/\mathbb{N}
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005			X
7440-39-3	Barium	т	mg/L	6020		*	0.216	*		
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005	*		
7440-42-8	Boron	т	mg/L	6020		*	0.0173			
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001			
7440-70-2	Calcium	т	mg/L	6020		*	22.7	*		
7440-47-3	Chromium	т	mg/L	6020		*	<0.01			
7440-48-4	Cobalt	т	mg/L	6020		*	0.00414			
7440-50-8	Copper	т	mg/L	6020		*	0.000539	J		
7439-89-6	Iron	т	mg/L	6020		*	<0.1			
7439-92-1	Lead	т	mg/L	6020		*	<0.002			
7439-95-4	Magnesium	т	mg/L	6020		*	10.1	*		
7439-96-5	Manganese	т	mg/L	6020		*	0.0356			
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹		0000-000	00	8000-52	44				/			
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLAN	Κ4	224					
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR EQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020		*	0.000754				/	
7440-02-0	Nickel	т	mg/L	6020		*	0.227					
7440-09-7	Potassium	т	mg/L	6020		*	0.884					
7440-16-6	Rhodium	т	mg/L	6020		*	<0.005					
7782-49-2	Selenium	т	mg/L	6020		*	<0.005			\mathbf{v}		
7440-22-4	Silver	т	mg/L	6020		*	<0.001			\setminus		
7440-23-5	Sodium	т	mg/L	6020		*	55.6					
7440-25-7	Tantalum	т	mg/L	6020		*	<0.005				/	
7440-28-0	Thallium	т	mg/L	6020		*	<0.002			X		
7440-61-1	Uranium	т	mg/L	6020		*	<0.0002				\setminus	
7440-62-2	Vanadium	т	mg/L	6020		*	<0.01				\setminus	
7440-66-6	Zinc	т	mg/L	6020		*	<0.01			/	\setminus	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005			/		
67-64-1	Acetone	т	mg/L	8260	0.00543		<0.005		/			
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005					
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005					
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001				\backslash	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001					
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003					\setminus
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001					\setminus
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001					
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		0000-000	0	8000-524	44	\setminus		/		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	T. BLANK	4	224				
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE PR PDL ⁶	F L G S	DETECTED VALUE OR PQL ⁶ S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001				
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		\setminus		
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001				
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005				
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			\backslash	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005				
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001				
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001				
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001				X
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			/	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001				
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			/	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			/	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		/		
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		/		
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001				
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001				
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001				
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001				
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001				
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001				
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		/		

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-000	0	8000-5244	4	Ν			7		
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et		T. BLANK	4	224		$\left \right\rangle$			\square
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR ROL ⁶	F L G S	DETECTED VALUE OR PQL ⁶ S	- -
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001					
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005					
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005					
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001					
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			Ν		
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			$ \rangle$		
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			$ \rangle$		
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0000198					
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001				K I	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001					
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001					
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			/		
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			/		
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001					
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001					
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001					
1336-36-3	PCB,Total	т	ug/L	8082		*		*				
12674-11-2	PCB-1016	т	ug/L	8082		*		*				
11104-28-2	PCB-1221	т	ug/L	8082		*		*				
11141-16-5	PCB-1232	т	ug/L	8082		*		*				
53469-21-9	PCB-1242	т	ug/L	8082		*		*				\setminus
12672-29-6	PCB-1248	т	ug/L	8082		*		*				

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1,	, Facility Well/Spring Number				0000-000	0	8000-5244		\backslash		/
Facility's Lo	cal Well or Spring Number (e.g.	, MW -1	L, MW-2, et	.c.)	T. BLANK	4	224		$\left \right\rangle$		/
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DRTECTED VALUE PR PDL ⁶	F L G S	DETECTED VALUE OR PQL ⁶ S
11097-69-1	PCB-1254	Т	ug/L	8082		*		*			/
11096-82-5	PCB-1260	т	ug/L	8082		*		*			
11100-14-4	PCB-1268	т	ug/L	8082		*		*			
12587-46-1	Gross Alpha	т	pCi/L	9310		*	-1.24	*		\ \	
12587-47-2	Gross Beta	т	pCi/L	9310		*	7.21	*		$\overline{)}$	
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*			
13982-63-3	Radium-226	т	pCi/L	RL-7129		*	0.162	*			
10098-97-2	Strontium-90	т	pCi/L	RL-7140		*	-1.06	*		1	\checkmark
14133-76-7	Technetium-99	т	pCi/L	RL-7100		*	6.9	*			\land
14269-63-7	Thorium-230	т	pCi/L	RL-7128		*	0.00134	*			
10028-17-8	Tritium	т	pCi/L	704R6		*	-8.41	*		/	
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*	21.1	В		/	
57-12-5	Cyanide	т	mg/L	9010		*	<0.2				
20461-54-5	Iodide	т	mg/L	345.1		*	<0.5	*			
s0268	Total Organic Carbon	т	mg/L	9060		*	0.785	J			
s0586	Total Organic Halides	т	mg/L	9020		*	0.0049	J			
											N
											Ň
									/		

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5201 MW220	MW220SG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Barium	Е	Result estimated due to matrix interferences.
		Beryllium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Calcium	E	Result estimated due to matrix interferences.
		Magnesium	E	Result estimated due to matrix interferences.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.79. Rad error is 3.79.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.16. Rad error is 5.99.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.331. Rad error is 0.331.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.16. Rad error is 2.13.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 9.88. Rad error is 9.76.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.813. Rad error is 0.807.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 128. Rad error is 128.
		lodide	W	Post-digestion spike recovery out of control limits.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5202 MW221	MW221SG4-18	Barium	Е	Result estimated due to matrix interferences.
		Beryllium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Calcium	E	Result estimated due to matrix interferences.
		Magnesium	E	Result estimated due to matrix interferences.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.45. Rad error is 5.42.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.71. Rad error is 6.52.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.374. Rad error is 0.372.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.91. Rad error is 1.91.
		Technetium-99		TPU is 10.2. Rad error is 9.88.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.795. Rad error is 0.794.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 125. Rad error is 125.
		lodide	W	Post-digestion spike recovery out of control limits.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-5242 MW22	22 MW222SG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Barium	Е	Result estimated due to matrix interferences.
		Beryllium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Calcium	Е	Result estimated due to matrix interferences.
		Magnesium	E	Result estimated due to matrix interferences.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.47. Rad error is 4.47.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.43. Rad error is 5.43.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.208. Rad error is 0.208.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.79. Rad error is 1.78.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 9.62. Rad error is 9.56.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.837. Rad error is 0.836.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 128. Rad error is 128.
		lodide	W	Post-digestion spike recovery out of control limits.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5243 MW22	23 MW223SG4-18	Barium	E	Result estimated due to matrix interferences.
		Beryllium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Calcium	E	Result estimated due to matrix interferences.
		Magnesium	E	Result estimated due to matrix interferences.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 is 4.88. Rad error is 4.8.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 is 4.15. Rad error is 4.11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 is 0.591. Rad error is 0.59.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.32. Rad error is 2.31.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 9.31. Rad error is 9.31.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.819. Rad error is 0.816.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 131. Rad error is 131.
		lodide	W	Post-digestion spike recovery out of control limits.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Ū	cility mple ID	Constituent	Flag	Description
3000-5244 MW224 MW2	24SG4-18	Bromide	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Barium	Е	Result estimated due to matrix interferences.
		Beryllium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Calcium	Е	Result estimated due to matrix interferences.
		Magnesium	Е	Result estimated due to matrix interferences.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.43. Rad error is 4.41.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.71. Rad error is 4.69.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. This 0.313. Rad error is 0.312.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 1.43. Rad error is 1.43.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. This 9.77. Rad error is 9.73.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.86. Rad error is 0.859.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. This 133. Rad error is 133.
		lodide	W	Post-digestion spike recovery out of control limits.
004-4820 MW369 MW3	69UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB-1016	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.43. Rad error is 4.43.
		Gross beta		TPU is 7.35. Rad error is 6.94.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.486. Rad error is 0.486.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.38. Rad error is 2.38.
		Technetium-99		TPU is 18.4. Rad error is 18.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.666. Rad error is 0.663.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 124. Rad error is 121.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4818 MW37	0 MW370UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB-1016	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 7.13. Rad error is 6.99.
		Gross beta		TPU is 21.1. Rad error is 13.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.709. Rad error is 0.707.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.72. Rad error is 1.7.
		Technetium-99		TPU is 21.7. Rad error is 18.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.864. Rad error is 0.862.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 126. Rad error is 121.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
3004-4808 MW372	2 MW372UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB-1016	L	LCS or LCSD recovery outside of control limits
		Gross alpha		TPU is 7.63. Rad error is 7.44.
		Gross beta		TPU is 8.9. Rad error is 7.64.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.857. Rad error is 0.852.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 1.41. Rad error is 1.4.
		Technetium-99		TPU is 34.4. Rad error is 33.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.448. Rad error is 0.446.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 109. Rad error is 108.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
3004-4792 MW373	3 MW373UG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		PCB-1016	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 8.31. Rad error is 8.25.
		Gross beta		TPU is 10.6. Rad error is 9.24.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.417. Rad error is 0.417.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 1.66. Rad error is 1.65.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 18.2. Rad error is 18.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.833. Rad error is 0.829.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 126. Rad error is 120.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4809 MW384	4 MW384SG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.23. Rad error is 6.23.
		Gross beta		TPU is 21.4. Rad error is 13.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.184. Rad error is 0.182.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.74. Rad error is 1.74.
		Technetium-99		TPU is 19.5. Rad error is 13.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.884. Rad error is 0.868.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 143. Rad error is 143.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-4810 MW385 MW385SG4-18		Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dibromo-3-chloropropane	Н	Analysis performed outside holding time requirement
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.24. Rad error is 5.24.
		Gross beta		TPU is 17.8. Rad error is 12.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.282. Rad error is 0.281.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.33. Rad error is 1.33.
		Technetium-99		TPU is 23.2. Rad error is 15.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.948. Rad error is 0.936.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 137. Rad error is 137.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4804 MW386 MW386SG4-18		Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dibromo-3-chloropropane	Н	Analysis performed outside holding time requirement
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.56. Rad error is 5.51.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.64. Rad error is 6.56.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.364. Rad error is 0.362.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.48. Rad error is 1.48.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 8.39. Rad error is 8.39.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.779. Rad error is 0.772.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 137. Rad error is 137.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4815 MW3	87 MW387SG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.26. Rad error is 5.23.
		Gross beta		TPU is 28.9. Rad error is 16.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.399. Rad error is 0.39.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.62. Rad error is 1.62.
		Technetium-99		TPU is 27.2. Rad error is 15.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.916. Rad error is 0.909.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 149. Rad error is 148.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4816 MW388 MW388SG4-18		Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dibromo-3-chloropropane	Н	Analysis performed outside holding time requirement
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.02. Rad error is 3.99.
		Gross beta		TPU is 21.7. Rad error is 12.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.152. Rad error is 0.149.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.03. Rad error is 2.03.
		Technetium-99		TPU is 20.2. Rad error is 13.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.958. Rad error is 0.95.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 139. Rad error is 139.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample was collected.
		Chloride		During sampling, the well was dry; therefore, no sample was collected.
		Fluoride		During sampling, the well was dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample was collected.
		Sulfate		During sampling, the well was dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample was collected.
		рН		During sampling, the well was dry; therefore, no sample wa collected.
		Eh		During sampling, the well was dry; therefore, no sample wa collected.
		Temperature		During sampling, the well was dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well was dry; therefore, no sample wa collected.
		Antimony		During sampling, the well was dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well was dry; therefore, no sample wa collected.
		Barium		During sampling, the well was dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well was dry; therefore, no sample wa collected.
		Boron		During sampling, the well was dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well was dry; therefore, no sample wa collected.
		Calcium		During sampling, the well was dry; therefore, no sample wa collected.
		Chromium		During sampling, the well was dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well was dry; therefore, no sample wa collected.
		Copper		During sampling, the well was dry; therefore, no sample wa collected.
		Iron		During sampling, the well was dry; therefore, no sample wa collected.
		Lead		During sampling, the well was dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well was dry; therefore, no sample was collected.
		Manganese		During sampling, the well was dry; therefore, no sample was collected.
		Mercury		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample wa collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample wa collected.
		Selenium		During sampling, the well was dry; therefore, no sample wa collected.
		Silver		During sampling, the well was dry; therefore, no sample wa collected.
		Sodium		During sampling, the well was dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well was dry; therefore, no sample wa collected.
		Thallium		During sampling, the well was dry; therefore, no sample wa collected.
		Uranium		During sampling, the well was dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well was dry; therefore, no sample wa collected.
		Zinc		During sampling, the well was dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample wa collected.
		Acetone		During sampling, the well was dry; therefore, no sample wa collected.
		Acrolein		During sampling, the well was dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample wa collected.
		Benzene		During sampling, the well was dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well was dry; therefore, no sample wa collected.
		Styrene		During sampling, the well was dry; therefore, no sample wa collected.
		Toluene		During sampling, the well was dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample wa collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Chloroform		During sampling, the well was dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample was collected.
		Gross beta		During sampling, the well was dry; therefore, no sample was collected.
		lodine-131		During sampling, the well was dry; therefore, no sample was collected.
		Radium-226		During sampling, the well was dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample was collected.
		Tritium		During sampling, the well was dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample was collected.
		Cyanide		During sampling, the well was dry; therefore, no sample was collected.
		lodide		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4811 MW390 M	90 MW390SG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dibromo-3-chloropropane	Н	Analysis performed outside holding time requirement
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.83. Rad error is 7.77.
		Gross beta		TPU is 12.1. Rad error is 8.91.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.38. Rad error is 0.366.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.3. Rad error is 1.3.
		Technetium-99		TPU is 13.9. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.708. Rad error is 0.706.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 136. Rad error is 136.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4805 MW391	MW391SG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dibromo-3-chloropropane	Н	Analysis performed outside holding time requirement
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.32. Rad error is 5.32.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.63. Rad error is 6.53.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.381. Rad error is 0.368.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.52. Rad error is 1.52.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.71. Rad error is 7.71.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.975. Rad error is 0.966.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 134. Rad error is 134.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4806 MW392 MW392SG4-18		Chloride	W	Post-digestion spike recovery out of control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dibromo-3-chloropropane	Н	Analysis performed outside holding time requirement
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.72. Rad error is 4.68.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.44. Rad error is 6.38.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.192. Rad error is 0.188.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.65. Rad error is 2.61.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 8.95. Rad error is 8.95.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.08. Rad error is 1.07.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 143. Rad error is 143.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4807 MW393	3 MW393SG4-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Barium	E	Result estimated due to matrix interferences.
		Beryllium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Calcium	E	Result estimated due to matrix interferences.
		Magnesium	E	Result estimated due to matrix interferences.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.02. Rad error is 5.01.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.23. Rad error is 5.13.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.361. Rad error is 0.361.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4. Rad error is 4.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 9.73. Rad error is 9.72.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.808. Rad error is 0.804.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 128. Rad error is 128.
		lodide	W	Post-digestion spike recovery out of control limits.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4802 MW394	MW394SG4-18	Barium	Е	Result estimated due to matrix interferences.
		Beryllium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Calcium	E	Result estimated due to matrix interferences.
		Magnesium	E	Result estimated due to matrix interferences.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 7.43. Rad error is 7.35.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.13. Rad error is 6.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.585. Rad error is 0.577.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.88. Rad error is 1.87.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 12.8. Rad error is 12.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.862. Rad error is 0.851.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 125. Rad error is 125.
		lodide	W	Post-digestion spike recovery out of control limits.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4801 MW39	95 MW395SG4-18	Barium	Е	Result estimated due to matrix interferences.
		Beryllium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Calcium	E	Result estimated due to matrix interferences.
		Magnesium	E	Result estimated due to matrix interferences.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.48. Rad error is 5.44.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 7.25. Rad error is 7.12.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.444. Rad error is 0.432.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.6. Rad error is 2.54.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 9.69. Rad error is 9.63.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.38. Rad error is 1.35.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 136. Rad error is 135.
		lodide	W	Post-digestion spike recovery out of control limits.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4803 MW396 MW396SG4-18		Barium	E	Result estimated due to matrix interferences.
		Beryllium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Calcium	Е	Result estimated due to matrix interferences.
		Magnesium	Е	Result estimated due to matrix interferences.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.5. Rad error is 4.49.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.36. Rad error is 5.36.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.429. Rad error is 0.414.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.22. Rad error is 1.22.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 9.22. Rad error is 9.22.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.614. Rad error is 0.61.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 131. Rad error is 131.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4817 MW39	7 MW397SG4-18	Bromide	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Vinyl acetate		A resample was collected due to headspace.
		Acetone		A resample was collected due to headspace.
		Acrolein		A resample was collected due to headspace.
		Acrylonitrile		A resample was collected due to headspace.
		Benzene		A resample was collected due to headspace.
		Chlorobenzene		A resample was collected due to headspace.
		Xylenes		A resample was collected due to headspace.
		Styrene		A resample was collected due to headspace.
		Toluene		A resample was collected due to headspace.
		Chlorobromomethane		A resample was collected due to headspace.
		Bromodichloromethane		A resample was collected due to headspace.
		Tribromomethane		A resample was collected due to headspace.
		Methyl bromide		A resample was collected due to headspace.
		Methyl Ethyl Ketone		A resample was collected due to headspace.
		trans-1,4-Dichloro-2-butene		A resample was collected due to headspace.
		Carbon disulfide		A resample was collected due to headspace.
		Chloroethane		A resample was collected due to headspace.
		Chloroform		A resample was collected due to headspace.
		Methyl chloride		A resample was collected due to headspace.
		cis-1,2-Dichloroethene		A resample was collected due to headspace.
		Methylene bromide		A resample was collected due to headspace.
		1,1-Dichloroethane		A resample was collected due to headspace.
		1,2-Dichloroethane		A resample was collected due to headspace.
		1,1-Dichloroethylene		A resample was collected due to headspace.
		1,2-Dibromoethane		A resample was collected due to headspace.
		1,1,2,2-Tetrachloroethane		A resample was collected due to headspace.
		1,1,1-Trichloroethane		A resample was collected due to headspace.
		1,1,2-Trichloroethane		A resample was collected due to headspace.
		1,1,1,2-Tetrachloroethane		A resample was collected due to headspace.
		Vinyl chloride		A resample was collected due to headspace.
		Tetrachloroethene		A resample was collected due to headspace.
		Trichloroethene		A resample was collected due to headspace.
		Ethylbenzene		A resample was collected due to headspace.
		2-Hexanone		A resample was collected due to headspace.
		lodomethane		A resample was collected due to headspace.
		Dibromochloromethane		A resample was collected due to headspace.
		Carbon tetrachloride		A resample was collected due to headspace.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4817 MW397 MW397SG4-18		Dichloromethane		A resample was collected due to headspace.
		Methyl Isobutyl Ketone		A resample was collected due to headspace.
		1,2-Dichloropropane		A resample was collected due to headspace.
		trans-1,3-Dichloropropene		A resample was collected due to headspace.
		cis-1,3-Dichloropropene		A resample was collected due to headspace.
		trans-1,2-Dichloroethene		A resample was collected due to headspace.
		Trichlorofluoromethane		A resample was collected due to headspace.
		1,2,3-Trichloropropane		A resample was collected due to headspace.
		1,2-Dichlorobenzene		A resample was collected due to headspace.
		1,4-Dichlorobenzene		A resample was collected due to headspace.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.71. Rad error is 4.68.
		Gross beta		TPU is 6.69. Rad error is 6.28.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.736. Rad error is 0.733.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.93. Rad error is 2.87.
		Technetium-99		TPU is 10.1. Rad error is 9.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.842. Rad error is 0.836.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 139. Rad error is 137.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG4-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рH		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.43. Rad error is 4.43.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.88. Rad error is 3.88.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.217. Rad error is 0.214.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.7. Rad error is 1.7.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 9.49. Rad error is 9.49.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.692. Rad error is 0.69.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 134. Rad error is 133.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide	W	Post-digestion spike recovery out of control limits.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1SG4-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рH		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.46. Rad error is 3.46.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.72. Rad error is 6.64.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.359. Rad error is 0.351.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.07. Rad error is 2.07.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.3. Rad error is 10.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.647. Rad error is 0.64.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 133. Rad error is 132.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide	W	Post-digestion spike recovery out of control limits.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG4-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG4-18	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dibromo-3-chloropropane	Н	Analysis performed outside holding time requirement
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG4-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG4-18	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG4-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG4-18	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB10SG4-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB10SG4-18	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-5244 MW22	24 MW224DSG4-18	Bromide	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Barium	Е	Result estimated due to matrix interferences.
		Beryllium	N	Sample spike (MS/MSD) recovery not within control limits
		Calcium	E	Result estimated due to matrix interferences.
		Magnesium	E	Result estimated due to matrix interferences.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.2. Rad error is 5.2.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.69. Rad error is 5.56.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.36. Rad error is 0.358.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.67. Rad error is 2.67.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 9.88. Rad error is 9.85.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.606. Rad error is 0.605.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 128. Rad error is 128.
		lodide	W	Post-digestion spike recovery out of control limits.

Division of Waste Management	RESIDENTIAL/INERT-QUARTERLY
Solid Waste Branch	Facility: US DOE - Paducah Gaseous Diffusion Plant
14 Reilly Road	Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1
Frankfort, KY 40601 (502)564-6	716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

1						_	N					
AKGWA NUMBER',	, Facility Well/Spring Number				8004-481	1						
Facility's Lo	cal Well or Spring Number (e.g., M	₩-1	, MW-2, etc	.)	397							
Sample Sequen	ce #				2							/
If sample is a	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment				NA		$ \setminus$					
Sample Date a	Sample Date and Time (Month/Day/Year hour: minutes)				8/21/2018	3 09:27		$\overline{)}$				
Duplicate ("Y" or "N") ²			N			$\overline{\}$						
Split ("Y" or "N") ³					N							
Facility Sample ID Number (if applicable)					MW397SG4-	-18R			\backslash	/		
Laboratory Sam	mple ID Number (if applicable)				45789700)1						
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	8/23/2018	3				/		
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	OWN)	UP							
CAS RN ⁴	CONSTITUENT	Ч Д 5	Unit OF MEASURE	METHOD	DETE CTED VALUE OR PQL ⁶	F L A G S ⁷	DETE CTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	FLAGS	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*/		*	\land	*
16887-00-6	Chloride(s)	т	mg/L	9056		*		/*		*		*
16984-48-8	Fluoride	т	mg/L	9214		*		*		*		*
S0595 Nitrate & Nitrite T mg/L 9056			9056		*		*		*		*	
14808-79-8 Sulfate T mg/L 9056		9056		*		*		*		*		
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.91			*		*		*
s0145	Specific Conductance	т	μ MH0/cm	Field	326		\bigvee	*		*		Ň

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4817	,	\square					/
Facility's Loc	cal Well or Spring Number (e.g., MW	V-1, 1	W-2, BLANK-	F, etc.)	397							
CAS RN ⁴	CONSTITUENT	Τ D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.15			*		*		*
N238	Dissolved Oxygen	т	mg/L	Field	6.59			\ *		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		×		*		*
s0296	рН	т	Units	Field	6.03			* \		*	/	*
NS215	Eh	т	mV	Field	404			*	\backslash	* /	ſ	*
s0907	Temperature	т	°c	Field	18.11			*		*/		*
7429-90-5	Aluminum	т	mg/L	6020		*		*		/*		*
7440-36-0	Antimony	т	mg/L	6020		*		*	$ \rangle /$	*		*
7440-38-2	Arsenic	т	mg/L	6020		*		*	X	*		*
7440-39-3	Barium	т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	т	mg/L	6020		*		*		\setminus^*		*
7440-42-8	Boron	т	mg/L	6020		*		*		*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*		* \		*
7440-70-2	Calcium	т	mg/L	6020		*		* /		*		*
7440-47-3	Chromium	т	mg/L	6020		*		*/		*		*
7440-48-4	Cobalt	т	mg/L	6020		*		/*		*		*
7440-50-8	Copper	т	mg/L	6020		*		*		*		*
7439-89-6	Iron	т	mg/L	6020		*		*		*		*
7439-92-1	Lead	т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	т	mg/L	6020		*		*		*		<u>*</u>
7439-96-5	Manganese	т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*	/	*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-48	17	\backslash					
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	397							
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020		*		*		*		*
7440-02-0	Nickel	т	mg/L	6020		*		*		*		*
7440-09-7	Potassium	т	mg/L	6020		*		*		*	/	*
7440-16-6	Rhodium	т	mg/L	6020		*		*	Ν	*	/	*
7782-49-2	Selenium	т	mg/L	6020		*		*	$\left \right\rangle$	* /		*
7440-22-4	Silver	т	mg/L	6020		*		*		*		*
7440-23-5	Sodium	т	mg/L	6020		*		*		*		*
7440-25-7	Tantalum	т	mg/L	6020		*		*	$ \rangle /$	*		*
7440-28-0	Thallium	т	mg/L	6020		*		*		*		*
7440-61-1	Uranium	т	mg/L	6020		*		*		*		*
7440-62-2	Vanadium	т	mg/L	6020		*		*		*		*
7440-66-6	Zinc	т	mg/L	6020		*		*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005			*		* \		*
67-64-1	Acetone	т	mg/L	8260	<0.005			*	ł –	*	\backslash	*
107-02-8	Acrolein	т	mg/L	8260	<0.005			*		*		*
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005			*		*		*
71-43-2	Benzene	т	mg/L	8260	<0.001			*		*		*
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001			*		*		*
1330-20-7	Xylenes	т	mg/L	8260	<0.003			*		*		*
100-42-5	Styrene	т	mg/L	8260	<0.001			*		*		\ *
108-88-3	Toluene	т	mg/L	8260	<0.001			*		*		*
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		/	*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	7	\setminus				/
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	397		\backslash				/
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L A G S	DETEC TED VALUE OR PQL ⁶	F L G S	DETECTED F VALUE L OR A PQL ⁶ G S
75-27-4	Bromodichloromethane	т	mg/L	82 60	<0.001			*		*	
75-25-2	Tribromomethane	т	mg/L	82 60	<0.001			\setminus^*		*	*
74-83-9	Methyl bromide	т	mg/L	82 60	<0.001			ľ,		*	*
78-93-3	Methyl ethyl ketone	т	mg/L	82 60	<0.005			* \		*	*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	82 60	<0.005			*	\backslash	*/	*
75-15-0	Carbon disulfide	т	mg/L	82 60	<0.005			*		/	*
75-00-3	Chloroethane	т	mg/L	82 60	<0.001			*		/*	*
67-66-3	Chloroform	т	mg/L	82 60	<0.001			*	$ \rangle /$	*	*
74-87-3	Methyl chloride	т	mg/L	82 60	<0.001			*	Х	*	*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	82 60	<0.001			*		*	*
74-95-3	Methylene bromide	т	mg/L	82 60	<0.001			*		\setminus^*	*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001			*		×	*
107-06-2	1,2-Dichloroethane	т	mg/L	82 60	<0.001			*		* \	*
75-35-4	1,1-Dichloroethylene	т	mg/L	82 60	<0.001			*/		*	*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	82 60	<0.001			*		*	*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	82 60	<0.001			/*		*	*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	82 60	<0.001			*		*	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	82 60	<0.001			*		*	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	82 60	<0.001			*		*	*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001			*		*	\sim
127-18-4	Ethene, Tetrachloro-	т	mg/L	82 60	<0.001			*		*	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00042	J		*		*	* \

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	7	\backslash					/
Facility's Loca	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	397							/
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001			*		*		*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005			×		*		*
74-88-4	Iodomethane	т	mg/L	8260	<0.005			×_		*		*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001			* \		*		*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001			*	\backslash	*/	1	*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005			*		1		*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005			*		*		*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*		*	$ \setminus /$	*		*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001			*	X	*		*
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001			*	$ / \rangle$	*		*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001			*		\setminus^*		*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001			*		×		*
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001			*		* \		*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001			*/		*		*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001			1		*		*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001			*		*		*
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		<u>*</u>
53469-21-9	PCB-1242	т	ug/L	8082		*	/	*		*		
12672-29-6	PCB-1248	т	ug/L	8082		*	/	*		*		* \

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4817 MW39	7 MW397SG4-18R	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony	Analysis of constituent not required ar	Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
	Chromium		Analysis of constituent not required and not performed	
	Cobalt		Analysis of constituent not required and not performed	
	Copper		Analysis of constituent not required and not performe	
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe
		Vanadium		Analysis of constituent not required and not performe
		Zinc		Analysis of constituent not required and not performe
		1,2-Dibromo-3-chloropropane		Analysis of constituent not required and not performe
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4817 MW397	7 MW397SG4-18R	PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT—QUARTERLY, 3rd CY 2018 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the third quarter 2018 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The third quarter 2018 data used to conduct the statistical analyses were collected in July/August 2018. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that exceeded the historical background, using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
MW390 ¹	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

¹**NOTE:** The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient. **BG:** upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

 $TL = X + (K \times S)$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, third quarter 2018. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Parameters
Acetone
Aluminum
Beta Activity
Boron
Bromide
Calcium
Chemical Oxygen Demand (COD)
Chloride
cis-1,2-Dichloroethene
Cobalt
Conductivity
Copper
Cyanide
Dissolved Oxygen
Dissolved Solids
Iodide
Iron
Magnesium
Manganese
Molybdenum
Nickel
Oxidation-Reduction Potential
pH*
Potassium
Sodium
Sulfate
Technetium-99
Total Organic Carbon (TOC)
Total Organic Halides (TOX)
Trichloroethene
Vanadium
Zinc

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

•

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	2	2	Yes
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	2	2	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Beta activity	4	3	1	Yes
Boron	4	2	2	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	0	4	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4		0	
,		4 4		No
cis-1,3-Dichloropropene	4		0	No
Cobalt	4	2	2	Yes
Conductivity	4	0	4	Yes
Copper	4	0	4	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	4	3	1	Yes
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	0	4	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	2	2	Yes
Nickel	4	2	2	Yes
Oxidation-Reduction Potential	4	0	4	Yes
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Vanadium	4	3	1	Yes
Vinyl Acetate	4	4	0	No
Zinc Rold donotes personators with at least one upoor	4	0	4	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	9	2	Yes
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	4	7	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Beta activity	11	7	4	Yes
Boron	11	1	10	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	1	10	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	10	1	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	5	6	Yes
Conductivity	11	0	11	Yes
Copper	11	0	11	Yes
Cyanide	11	10	1	Yes
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	11	10	1	Yes
Iodomethane	11	11	0	No
Iron	11	1	10	Yes
Magnesium	11	0	11	Yes
Manganese	11	0	11	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	5	6	Yes
Nickel	11	2	9	Yes
Oxidation-Reduction Potential	11	0	11	Yes
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	6	5	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	5	6	Yes
Total Organic Halides (TOX)	11	0	11	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	4	7	Yes
Trichlorofluoromethane	11	11	0	No
Vanadium	11	9	2	Yes
Vinyl Acetate	11	11	0	No
Zinc	11	1	10	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1.2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	6	1	Yes
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	4	3	Yes
Antimony	7	7	0	No
Beryllium	7	7	0	No
Beta activity	7	2	5	Yes
Boron	7	1	6	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	2	5	Yes
Chloride	7	0		Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	6	1	Yes
Conductivity		0	_	
	7	0	7 7	Yes Yes
Copper Cyanide	7	0 7	0	No Yes
Dibromochloromethane	7	7	0	No
	7	7		
Dibromomethane	7	7	0	No
Dimethylbenzene, Total			0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	<u> </u>	3	4	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Magnesium	7	0	7	Yes
Manganese	7	1	6	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	5	2	Yes
Nickel	7	2	5	Yes
Oxidation-Reduction Potential	7	0	7	Yes
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	3	4	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	5	2	Yes
Total Organic Halides (TOX)	7	0	7	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	1	6	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	6	1	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	0	7	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 29, 32, and 30 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

<u>UCRS</u>

This quarter's results identified exceedances of historical background UTL for beta activity, oxidation-reduction potential, and technetium-99.

<u>URGA</u>

This quarter's results identified exceedances of historical background UTL for beta activity, chemical oxygen demand (COD), dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

<u>LRGA</u>

This quarter's results identified exceedances of historical background UTL for beta activity, conductivity, dissolved solids, oxidation-reduction potential, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: Sulfate	MW370: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW390: Beta activity, oxidation-reduction potential, technetium-99	MW221: Oxidation-reduction potential	MW373: Conductivity, dissolved solids, oxidation-reduction potential, sulfate
MW393: Oxidation-reduction potential	MW222: Oxidation-reduction potential	MW385: Beta activity, oxidation- reduction potential, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW223: Oxidation-reduction potential, sulfate	MW388: Beta activity, oxidation-reduction potential, sulfate, technetium-99
	MW224: Oxidation-reduction potential	MW392: Oxidation-reduction potential
	MW372: Chemical oxygen demand (COD), dissolved solids, magnesium, sulfate, technetium-99	MW395: Oxidation-reduction potential
	MW384: Beta activity, sulfate, technetium-99	MW397: Oxidation-reduction potential
	MW387: Beta activity, technetium-99	
	MW391: Dissolved solids, sodium, sulfate	

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	1.73	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	1.17	Current results exceed statistically derived historical background concentration in MW390.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentrations in MW384 and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentration in MW372.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Cyanide	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372 and MW391.
Iodide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW221, MW222, MW223, and MW224.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW391.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW220, MW223, MW372, MW384, and MW391.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW372, MW384, and MW387.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.08	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

CV: coefficient of variation * If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, MW395, and MW397.
pH	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 8, and 6 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

URGA	LRGA		
MW372: Magnesium, sulfate, technetium-99	MW370: Beta activity, sulfate, technetium-99		
MW387: Beta activity, technetium-99	MW373: Conductivity, dissolved solids, sulfate		
MW391: Sodium, sulfate	MW388: Beta activity, sulfate, technetium-99		

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

<u>UCRS</u>

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the beta activity and technetium-99 concentration in one UCRS well (i.e., MW390) was higher than the current TL this quarter.

<u>URGA</u>

This quarter's results identified current background exceedances in downgradient wells for beta activity, magnesium, sodium, sulfate, and technetium-99.

<u>LRGA</u>

This quarter's results identified current background exceedances in downgradient wells for beta activity, conductivity, dissolved solids, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	2.04	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.23	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	-2.37	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.78	MW384 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.50	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Solids	Tolerance Interval	0.32	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Magnesium	Tolerance Interval	0.15	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.15	MW221 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sodium	Tolerance Interval	0.13	MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.32	MW372 and MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.68	MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	CV Performed Test Normality Test*		Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.55	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.09	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.17	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.21	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.07	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.50	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

CV: coefficient of variation * If CV > 1.0, used log-transformed data.

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Acetone UNITS: UG/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 28.375
 S= 49.188
 CV(1)=1.733
 K factor**= 3.188
 TL(1)= 185.185
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.712
 S= 0.943
 CV(2)=0.348
 K factor**= 3.188
 TL(2)= 5.718
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

MW396	
Result	LN(Result)
150	5.011
16	2.773
10	2.303
10	2.303
10	2.303
10	2.303
11	2.398
10	2.303
	Result 150 16 10 10 10 10 10 11

Dry/Partially Dry Wells				
Well No.	Gradient			
MW389	Downgradient			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	7.38	N/A	1.999	NO
MW390	Downgradien	t Yes	6.82	N/A	1.920	NO
MW393	Downgradien	t No	5	N/A	1.609	N/A
MW396	Upgradient	No	5	N/A	1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.320	S = 0.182	CV(1)= 0.567	K factor**= 3.188	TL(1)= 0.900	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.259	S= 0.503	CV(2) =-0.400	K factor**= 3.188	TL(2)= 0.345	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.393	-0.934
9/16/2002	0.2	-1.609
10/16/2002	0.2	-1.609
1/13/2003	0.501	-0.691
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.668	-0.403

Dry/Par	tially Dry Wells
Well No.	Gradient

WW 389 Downgrautent	MW389	Downgradient
---------------------	-------	--------------

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A
MW390	Downgradien	t No	0.05	N/A	-2.996	N/A
MW393	Downgradien	t Yes	0.0339	NO	-3.384	N/A
MW396	Upgradient	Yes	0.0476	NO	-3.045	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 4.298	S = 5.012	CV(1)= 1.166	K factor**= 3.188	TL(1)= 20.277	LL(1)=N/A
Statistics-Transformed Background	X= 1.294	S = 0.988	CV(2)= 0.764	K factor**= 3.188	TL(2)= 2.632	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW396

Data

Date Collected	Result	LN(Result)
8/13/2002	2.2	0.788
9/16/2002	0.727	-0.319
10/16/2002	7.28	1.985
1/13/2003	6.97	1.942
4/8/2003	13.9	2.632
7/16/2003	2.08	0.732
10/14/2003	-2.42	#Func!
1/14/2004	3.65	1.295

Dry/Partially Dry Wells

wen no.	Gladielit
MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	6.19	N/A	1.823	N/A
MW390	Downgradien	t Yes	50.5	N/A	3.922	YES
MW393	Downgradien	t No	6.18	N/A	1.821	N/A
MW396	Upgradient	No	0.696	N/A	-0.362	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.650	S = 0.833	CV(1)= 1.282	K factor**= 3.188	TL(1)= 3.306	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.034	S= 1.066	CV(2) =-1.031	K factor**= 3.188	TL(2)= 2.364	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

Dry/Partially Dry Wells					
Well No.	Gradient				

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.00775	N/A	-4.860	N/A
MW390	Downgradien	t Yes	1.34	N/A	0.293	NO
MW393	Downgradien	t Yes	0.0216	N/A	-3.835	NO
MW396	Upgradient	No	0.00828	N/A	-4.794	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.388	S= 0.327	CV(1)= 0.236	K factor**= 3.188	TL(1)= 2.430	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.301	S = 0.252	CV(2) =0.838	K factor**= 3.188	TL(2)= 1.105	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MW396	
Result	LN(Result)
1.5	0.405
1.6	0.470
1.6	0.470
1	0.000
1	0.000
1	0.000
1.7	0.531
1.7	0.531
	Result 1.5 1.6 1.6 1 1 1 1.7

Dry/Partially Dry Wells					
Well No.	Gradient				

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.167	NO	-1.790	N/A
MW390	Downgradien	t Yes	0.47	NO	-0.755	N/A
MW393	Downgradien	t Yes	0.156	NO	-1.858	N/A
MW396	Upgradient	Yes	0.968	NO	-0.033	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=41.825
 S=
 8.445
 CV(1)=0.202
 K factor**= 3.188
 TL(1)= 68.748
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.711
 S=
 0.241
 CV(2)=0.065
 K factor**= 3.188
 TL(2)= 4.479
 LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Partially Dry Wells				
Well No.	Gradient			
MW389	Downgradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	21.2	NO	3.054	N/A
MW390	Downgradien	t Yes	48.8	NO	3.888	N/A
MW393	Downgradien	t Yes	14.8	NO	2.695	N/A
MW396	Upgradient	Yes	33.8	NO	3.520	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =35.375 S = (-	-	K factor**= 3.188	TL(1)= 37.747	LL(1)=N/A
Statistics-Transformed Background	X = 3566 S= (0.021	CV(2)= 0.006	K factor**= 3 188	TL(2)= 3 632	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

10000

Data

117 11 NT

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	26	NO	3.258	N/A
MW390	Downgradien	t Yes	9.59	NO	2.261	N/A
MW393	Downgradien	t Yes	26	NO	3.258	N/A
MW396	Upgradient	Yes	32.5	NO	3.481	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 101.725 S= 5.245
 CV(1)=0.052
 K factor**= 3.188
 TL(1)= 118.447
 LL(1)=N/A

 Statistics-Transformed Background
 X= 4.621
 S= 0.053
 CV(2)=0.011
 K factor**= 3.188
 TL(2)= 4.789
 LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	15.8	NO	2.760	N/A
MW390	Downgradien	t Yes	48.5	NO	3.882	N/A
MW393	Downgradien	t Yes	13.7	NO	2.617	N/A
MW396	Upgradient	Yes	64.9	NO	4.173	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.008	S = 0.011	CV(1)= 1.340	K factor**= 3.188	TL(1)= 0.042	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.645	S = 1.339	CV(2) =-0.237	K factor**= 3.188	TL(2)= -1.377	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Par	tially Dry Wel	ls
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.00043	33 N/A	-7.745	NO	
MW390	Downgradien	t Yes	0.00065	55 N/A	-7.331	NO	
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW396	Upgradient	No	0.001	N/A	-6.908	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=922.500 S= 107.616 CV(1)=0.117
 K factor**= 3.188
 TL(1)= 1265.579
 LL(1)=N/A

Statistics-Transformed Background X=6.822 S= 0.111 CV(2)=0.016 Data **K factor**=** 3.188 **TL(2)=** 7.175 **LL(2)=**N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	784	6.664
9/30/2002	871	6.770
10/16/2002	868	6.766
1/13/2003	912	6.816
4/8/2003	942	6.848
7/16/2003	910	6.813
10/14/2003	935	6.841
1/14/2004	1158	7.054

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	584	NO	6.370	N/A
MW390	Downgradien	t Yes	675	NO	6.515	N/A
MW393	Downgradien	t Yes	420	NO	6.040	N/A
MW396	Upgradient	Yes	725	NO	6.586	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.028 S = 0.014 CV(1) = 0.481 K factor**= 3.188 TL(1) = 0.072 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.650 S = 0.414 CV(2) = -0.113 K factor**= 3.188 TL(2) = -2.331 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result
19

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Par	tially Dry	Wells
Well No.	Gradient	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00304	NO	-5.796	N/A
MW390	Downgradien	t Yes	0.00054	1 NO	-7.522	N/A
MW393	Downgradien	t Yes	0.00067	7 NO	-7.298	N/A
MW396	Upgradient	Yes	0.00124	NO	-6.693	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.395	S= 1.677	CV(1)=1.202	K factor**= 3.188	TL(1)= 6.743	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.043	S = 0.814	CV(2) =-18.867	K factor**= 3.188	TL(2)= 2.553	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW396			

Date Collected	Result	LN(Result)
8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Partially Dry Wells				
Well No.	Gradient			
MW389	Downgradient			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	2.5	N/A	0.916	NO
MW390	Downgradien	t Yes	5.3	N/A	1.668	NO
MW393	Downgradien	t Yes	3.25	N/A	1.179	NO
MW396	Upgradient	Yes	3.2	N/A	1.163	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X= 550.375 S= 104.330 CV(1)=0.190 K factor**= 3.188 TL(1)=882.980 LL(1)=N/A

Statistics-Transformed Background X=6.298 S= 0.162 CV(2)=0.026 Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells			
Well No.	Gradient		
MW389	Downgradient		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 6.815

LL(2)=N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	329	NO	5.796	N/A
MW390	Downgradien	t Yes	359	NO	5.883	N/A
MW393	Downgradien	t Yes	244	NO	5.497	N/A
MW396	Upgradient	Yes	397	NO	5.984	N/A

K factor=** 3.188

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.150	S= 0.283	CV(1)= 0.132	K factor**= 3.188	TL(1)= 3.052	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.759	S= 0.123	CV(2)= 0.162	K factor**= 3.188	TL(2)= 1.150	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	2	0.693
1/13/2003	2	0.693
4/8/2003	2	0.693
7/16/2003	2.7	0.993
10/14/2003	2.5	0.916
1/14/2004	2	0.693

Dry/Partially Dry Wells			
Well No.	Gradient		

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A
MW396	Upgradient	Yes	0.394	NO	-0.931	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.796	S= 3.723	CV(1)= 0.478	K factor**= 3.188	TL(1)= 19.666	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.880	S = 0.723	CV(2)= 0.384	K factor**= 3.188	TL(2)= 4.184	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.8	0.588
9/16/2002	9.53	2.254
10/16/2002	7.43	2.006
1/13/2003	9.93	2.296
4/8/2003	10.2	2.322
7/16/2003	9.16	2.215
10/14/2003	11.9	2.477
1/14/2004	2.42	0.884

Dry/Par	tially Dry Wells	5
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.144	NO	-1.938	N/A
MW390	Downgradien	t Yes	0.0511	NO	-2.974	N/A
MW393	Downgradien	t Yes	0.673	NO	-0.396	N/A
MW396	Upgradient	Yes	0.154	NO	-1.871	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =16.876	S = 3.313	CV(1)= 0.196	K factor**= 3.188	TL(1)= 27.438	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.804	S= 0.240	CV(2)= 0.086	K factor**= 3.188	TL(2)= 3.569	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Well No. Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	8.64	NO	2.156	N/A	
MW390	Downgradien	t Yes	17.9	NO	2.885	N/A	
MW393	Downgradien	t Yes	4.48	NO	1.500	N/A	
MW396	Upgradient	Yes	14.6	NO	2.681	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.774	S = 0.353	CV(1)= 0.456	K factor**= 3.188	TL(1)= 1.900	LL(1)=N/A
Statistics-Transformed Background	X =-0.566	S= 1.192	CV(2)= -2.105	K factor**= 3.188	TL(2)= 3.235	LL(2)=N/A

	Historical Background Data fro Upgradient Wells with Transfor	m rmed Result
--	--	------------------

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Partially Dry Wells						
Well No.	Gradient					

 Well No.
 Gradient

 MW389
 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.0535	NO	-2.928	N/A	
MW390	Downgradien	t Yes	0.00693	NO	-4.972	N/A	
MW393	Downgradien	t Yes	0.0176	NO	-4.040	N/A	
MW396	Upgradient	Yes	0.132	NO	-2.025	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.007	S= 0.011	CV(1)= 1.507	K factor**= 3.188	TL(1)= 0.042	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.928	S = 1.420	CV(2) =-0.240	K factor**= 3.188	TL(2)= -1.400	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00128	-6.661
4/8/2003	0.00271	-5.911
7/16/2003	0.00117	-6.751
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Par	tially Dry Wel	ls
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00024	-3 N/A	-8.322	NO
MW390	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW393	Downgradien	t No	0.00029	2 N/A	-8.139	N/A
MW396	Upgradient	Yes	0.00050	1 N/A	-7.599	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 1.272	K factor**= 3.188	TL(1)= 0.083	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.706	S= 1.057	CV(2) =-0.225	K factor**= 3.188	TL(2)= -1.338	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells				
Well No.	Gradient			

owngradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.002	N/A	-6.215	N/A
MW390	Downgradien	t Yes	0.00106	N/A	-6.849	NO
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A
MW396	Upgradient	Yes	0.00105	N/A	-6.859	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 13.000
 S= 61.952
 CV(1)=4.766
 K factor**= 3.188
 TL(1)= 210.502
 LL(1)=N/A

 Statistics-Transformed Background
 X= 4.364
 S= 0.333
 CV(2)=0.076
 K factor**= 3.188
 TL(2)= 4.736
 LL(2)=N/A

Statistics-Transformed Background X=4.364 S= 0.333 CV(2)=0.076 K fa Data

Historical Background Data from Upgradient Wells with Transformed Result			
Well Number:	MW396	-	

wen number.	IVI W 390	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Par	tially Dry Wells
Well No.	Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	331	N/A	5.802	YES
MW390	Downgradien	t Yes	360	N/A	5.886	YES
MW393	Downgradien	t Yes	358	N/A	5.881	YES
MW396	Upgradient	Yes	353	N/A	5.866	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW386 MW390 MW393 MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.460	S = 0.350	CV(1)= 0.054	K factor**= 3.736	TL(1)= 7.766	LL(1)= 5.1541
Statistics-Transformed Background Data	X= 1.864	S= 0.054	CV(2)= 0.029	K factor**= 3.736	TL(2)= 2.067	LL(2)= 1.6621

	Historical Background Data from Upgradient Wells with Transformed Result
--	---

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Par	tially Dry	Wells
Well No	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	6.56	NO	1.881	N/A
MW390	Downgradien	t Yes	5.97	NO	1.787	N/A
MW393	Downgradien	t Yes	5.99	NO	1.790	N/A
MW396	Upgradient	Yes	6.44	NO	1.863	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 0.282	K factor**= 3.188	TL(1)= 2.682	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.311	S = 0.271	CV(2)= 0.870	K factor**= 3.188	TL(2)= 1.175	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Partially Dry Wells				
Well No.	Gradient			
MW389	Downgradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.291	NO	-1.234	N/A
MW390	Downgradien	t Yes	2.15	NO	0.765	N/A
MW393	Downgradien	t Yes	0.484	NO	-0.726	N/A
MW396	Upgradient	Yes	0.92	NO	-0.083	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 106.825 S= 32.041 CV(1)=0.300
 K factor**= 3.188 TL(1)= 208.973 LL(1)=N/A

Statistics-Transformed Background X=4.595 S= 0.492 CV(2)=0.107 Data

LN(Result)

4.745

4.754 4.762

4.804

4.663

4.762

4.883

3.388

Historical Background Data from

Well Number:

Date Collected

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/14/2004

Upgradient Wells with Transformed Result

MW396

Result

115

116

117 122

106

117

132

29.6

i		ı
	Dry/Partially Dry Wells	

Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 6.163

LL(2)=N/A

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	83.2	NO	4.421	N/A
MW390	Downgradien	t Yes	42.6	NO	3.752	N/A
MW393	Downgradien	t Yes	84.4	NO	4.436	N/A
MW396	Upgradient	Yes	99.9	NO	4.604	N/A

K factor**= 3.188

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 22.463
 S=
 8.876
 CV(1)=0.395
 K factor**= 3.188
 TL(1)= 50.759
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.054
 S=
 0.351
 CV(2)=0.115
 K factor**= 3.188
 TL(2)= 4.173
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Par	tially Dry Wells
Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	48.2	NO	3.875	N/A
MW390	Downgradien	t Yes	42.9	NO	3.759	N/A
MW393	Downgradien	t Yes	19	NO	2.944	N/A
MW396	Upgradient	Yes	27.6	NO	3.318	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.624	S= 6.558	CV(1)= 0.860	K factor**= 3.188	TL(1)= 28.531	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.498	S = 1.321	CV(2)= 0.882	K factor**= 3.188	TL(2)= 5.710	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells	
Well No. Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	-1.66	N/A	#Error	N/A
MW390	Downgradien	t Yes	57	YES	4.043	N/A
MW393	Downgradien	t No	2.31	N/A	0.837	N/A
MW396	Upgradient	No	1.84	N/A	0.610	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =9.988	S= 4.696	CV(1)= 0.470	K factor**= 3.188	TL(1)= 24.959	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.210	S = 0.454	CV(2) =0.205	K factor**= 3.188	TL(2)= 3.657	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	19	2.944
9/16/2002	14.6	2.681
10/16/2002	10.4	2.342
1/13/2003	4.4	1.482
4/8/2003	7	1.946
7/16/2003	7.3	1.988
10/14/2003	9.1	2.208
1/14/2004	8.1	2.092

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	4.24	NO	1.445	N/A		
MW390	Downgradien	t Yes	2.52	NO	0.924	N/A		
MW393	Downgradien	t Yes	2.1	NO	0.742	N/A		
MW396	Upgradient	Yes	4.66	NO	1.539	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=142.650 S= 53.533 CV(1)=0.375 **K factor**=** 3.188 **Statistics-Background Data** TL(1)= 313.314 LL(1)=N/A **K factor**=** 3.188 TL(2)= 6.138 LL(2)=N/A

Statistics-Transformed Background X=4.896 S = 0.390 CV(2) = 0.080Data

Historical Background Data from Upgradient Wells with Transformed Result
10

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	112	NO	4.718	N/A
MW390	Downgradien	t Yes	19.7	NO	2.981	N/A
MW393	Downgradien	t Yes	15.6	NO	2.747	N/A
MW396	Upgradient	Yes	59.3	NO	4.083	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.021	S = 0.002	CV(1)= 0.109	K factor**= 3.188	TL(1)= 0.029	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.856	S = 0.103	CV(2) =-0.027	K factor**= 3.188	TL(2)= -3.527	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	М	W396				
D . Q 11 . 1	_	4.	T 3 1 (D	1.5		

Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells				
Well No.	Gradient			

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.01	N/A	-4.605	N/A
MW390	Downgradien	t No	0.01	N/A	-4.605	N/A
MW393	Downgradien	t Yes	0.00452	NO	-5.399	N/A
MW396	Upgradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.044	S = 0.035	CV(1)= 0.786	K factor**= 3.188	TL(1)= 0.156	LL(1)= N/A
Statistics-Transformed Background	X =-3.342	S = 0.682	CV(2) =-0.204	K factor**= 3.188	TL(2)= -1.168	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number	MW396				

Data

wen runiber.	11110570	
Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/8/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Par	tially Dry Wells
Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00484	NO	-5.331	N/A
MW390	Downgradien	t Yes	0.00444	NO	-5.417	N/A
MW393	Downgradien	t Yes	0.00371	NO	-5.597	N/A
MW396	Upgradient	Yes	0.00688	NO	-4.979	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Acetone UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.250	S= 1.000	CV(1)= 0.098	K factor**= 2.523	TL(1)= 12.773	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.324	S= 0.084	CV(2)= 0.036	K factor**= 2.523	TL(2)= 2.536	LL(2)=N/A

	kground Data from ells with Transformed Result
Well Number:	MW220

Date Collected	Result	LN(Result)
10/14/2002	10	2.303
1/15/2003	10	2.303
4/10/2003	10	2.303
7/14/2003	10	2.303
10/13/2003	10	2.303
4/13/2004	10	2.303
7/21/2004	10	2.303
10/11/2004	10	2.303
*** 11 * 1		
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.303
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 10	2.303
Date Collected 8/13/2002 9/30/2002	Result 10 10	2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 10 10 10	2.303 2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 10 10 10 10	2.303 2.303 2.303 2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 10 10 10 10 10	2.303 2.303 2.303 2.303 2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 10 10 10 10 10 10	2.303 2.303 2.303 2.303 2.303 2.303 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	No	5	N/A	1.609	N/A
Sidegradient	No	5	N/A	1.609	N/A
Sidegradient	No	5	N/A	1.609	N/A
Sidegradient	No	5	N/A	1.609	N/A
Sidegradient	No	5	N/A	1.609	N/A
Downgradien	t No	5	N/A	1.609	N/A
Downgradien	t Yes	7.25	NO	1.981	N/A
Sidegradient	Yes	4.88	NO	1.585	N/A
Downgradien	t No	5	N/A	1.609	N/A
Downgradien	t No	5	N/A	1.609	N/A
Upgradient	No	5	N/A	1.609	N/A
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradien Downgradient Downgradient Downgradien	GradientDetected?UpgradientNoSidegradientNoSidegradientNoSidegradientNoDowngradientNoDowngradientYesSidegradientYesDowngradientNoDowngradientNoDowngradientNoDowngradientNoDowngradientNoDowngradientNoDowngradientNo	GradientDetected?ResultUpgradientNo5SidegradientNo5SidegradientNo5SidegradientNo5SidegradientNo5DowngradientNo5DowngradientYes7.25SidegradientNo5DowngradientNo5DowngradientYes4.88DowngradientNo5DowngradientNo5	GradientDetected?ResultResult >TL(1)?UpgradientNo5N/ASidegradientNo5N/ASidegradientNo5N/ASidegradientNo5N/ASidegradientNo5N/ADowngradientNo5N/ADowngradientYes7.25NOSidegradientYes4.88NODowngradientNo5N/A	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient No 5 N/A 1.609 Sidegradient No 5 N/A 1.609 Downgradient No 5 N/A 1.609 Downgradient Yes 7.25 NO 1.981 Sidegradient Yes 4.88 NO 1.585 Downgradient No 5 N/A 1.609 Downgradient No 5 N/A 1.609 Downgradient No 5 N/A 1.609

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.221	S= 0.061	CV(1)= 0.277	K factor**= 2.523	TL(1)= 0.376	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.534	S = 0.212	CV(2) =-0.138	K factor**= 2.523	TL(2)= -0.999	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.427	-0.851
1/13/2004	0.309	-1.174
4/13/2004	0.2	-1.609
7/21/2004	0.202	-1.599
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 0.2	-1.609
Date Collected 8/13/2002 9/16/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609 -1.609 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	0.0816	NO	-2.506	N/A
Sidegradient	No	0.05	N/A	-2.996	N/A
Sidegradient	Yes	0.0391	NO	-3.242	N/A
Sidegradient	No	0.05	N/A	-2.996	N/A
Sidegradient	No	0.05	N/A	-2.996	N/A
Downgradien	t Yes	0.0345	NO	-3.367	N/A
Downgradien	t Yes	0.0361	NO	-3.321	N/A
Sidegradient	Yes	0.0215	NO	-3.840	N/A
Downgradien	t No	0.05	N/A	-2.996	N/A
Downgradien	t Yes	0.114	NO	-2.172	N/A
Upgradient	Yes	0.0348	NO	-3.358	N/A
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradient Downgradient Downgradient Downgradient Upgradient	GradientDetected?UpgradientYesSidegradientNoSidegradientYesSidegradientNoSidegradientNoDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesUpgradientYes	GradientDetected?ResultUpgradientYes0.0816SidegradientNo0.05SidegradientYes0.0391SidegradientNo0.05SidegradientNo0.05DowngradientYes0.0345DowngradientYes0.0361SidegradientYes0.0215DowngradientYes0.0215DowngradientYes0.114UpgradientYes0.0348	GradientDetected?ResultResult >TL(1)?UpgradientYes0.0816NOSidegradientNo0.05N/ASidegradientYes0.0391NOSidegradientNo0.05N/ASidegradientNo0.05N/ASidegradientNo0.05N/ADowngradientYes0.0345NODowngradientYes0.0361NOSidegradientYes0.0215NODowngradientYes0.114NOUpgradientYes0.0348NO	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 0.0816 NO -2.506 Sidegradient No 0.05 N/A -2.996 Sidegradient Yes 0.0391 NO -3.242 Sidegradient No 0.05 N/A -2.996 Downgradient Yes 0.0345 NO -3.367 Downgradient Yes 0.0361 NO -3.321 Sidegradient Yes 0.0215 NO -3.840 Downgradient No 0.05 N/A -2.996 Downgradient No 0.05 N/A -2.996 Downgradient No 0.05 N/A -2.996

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =14.273	S = 13.883	CV(1)= 0.973	K factor**= 2.523	TL(1)= 49.300	LL(1)=N/A	
Statistics-Transformed Background	X= 2.213	S = 1.033	CV(2)= 0.467	K factor**= 2.523	TL(2)= 4.819	LL(2)=N/A	

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	15.2	2.721
1/15/2003	42.5	3.750
4/10/2003	45.4	3.816
7/14/2003	8.53	2.144
10/13/2003	11.7	2.460
1/13/2004	13.5	2.603
4/13/2004	33.5	3.512
7/21/2004	13.7	2.617
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.615
Date Collected	Result	()
Date Collected 8/13/2002	Result 5.03	1.615
Date Collected 8/13/2002 9/16/2002	Result 5.03 5.57	1.615 1.717
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 5.03 5.57 12.8	1.615 1.717 2.549
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 5.03 5.57 12.8 4.3	1.615 1.717 2.549 1.459
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.03 5.57 12.8 4.3 9.52	1.615 1.717 2.549 1.459 2.253
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5.03 5.57 12.8 4.3 9.52 3.92	1.615 1.717 2.549 1.459 2.253 1.366

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	8.64	N/A	2.156	N/A
MW221	Sidegradient	No	9.66	N/A	2.268	N/A
MW222	Sidegradient	No	-0.043	N/A	#Error	N/A
MW223	Sidegradient	No	3.12	N/A	1.138	N/A
MW224	Sidegradient	No	7.21	N/A	1.975	N/A
MW369	Downgradien	t Yes	14.9	N/A	2.701	N/A
MW372	Downgradien	t Yes	27.7	N/A	3.321	N/A
MW384	Sidegradient	Yes	100	YES	4.605	N/A
MW387	Downgradien	t Yes	147	YES	4.990	N/A
MW391	Downgradien	t No	7.05	N/A	1.953	N/A
MW394	Upgradient	No	2.94	N/A	1.078	N/A
N/A Dagu	Its identified as N	Ion Dotoota	dumin a lab	oratory analyzia ar	data validatio	n and wara not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.425	S= 0.615	CV(1)= 1.447	K factor**= 2.523	TL(1)= 1.976	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.322	S= 0.786	CV(2) =-0.595	K factor**= 2.523	TL(2)= 0.663	LL(2)=N/A

Historical Background Data from	
Upgradient Wells with Transformed Resul	t

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.2	-1.609
1/13/2004	0.2	-1.609
4/13/2004	0.2	-1.609
7/21/2004	0.2	-1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 2. 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 2 2. 0.2 0.2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00759	N/A	-4.881	NO
MW221	Sidegradient	Yes	0.013	N/A	-4.343	NO
MW222	Sidegradient	Yes	0.00971	N/A	-4.635	NO
MW223	Sidegradient	Yes	0.0062	N/A	-5.083	NO
MW224	Sidegradient	Yes	0.0174	N/A	-4.051	NO
MW369	Downgradien	t No	0.0133	N/A	-4.320	N/A
MW372	Downgradien	t Yes	0.474	N/A	-0.747	NO
MW384	Sidegradient	Yes	0.0167	N/A	-4.092	NO
MW387	Downgradien	t Yes	0.03	N/A	-3.507	NO
MW391	Downgradien	t Yes	0.0199	N/A	-3.917	NO
MW394	Upgradient	Yes	0.0227	N/A	-3.785	NO
N/A - Resu	lts identified as N	Jon-Detects	turing lah	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.000	S = 0.000	CV(2) =#Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.196	NO	-1.630	N/A
MW221	Sidegradient	Yes	0.421	NO	-0.865	N/A
MW222	Sidegradient	Yes	0.413	NO	-0.884	N/A
MW223	Sidegradient	Yes	0.405	NO	-0.904	N/A
MW224	Sidegradient	Yes	0.529	NO	-0.637	N/A
MW369	Downgradien	t Yes	0.397	NO	-0.924	N/A
MW372	Downgradien	t Yes	0.614	NO	-0.488	N/A
MW384	Sidegradient	Yes	0.312	NO	-1.165	N/A
MW387	Downgradien	t Yes	0.439	NO	-0.823	N/A
MW391	Downgradien	t Yes	0.513	NO	-0.667	N/A
MW394	Upgradient	Yes	0.596	NO	-0.518	N/A
N/A - Resu	lts identified as N	Ion-Detects	luring lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 27.638	S= 4.743	CV(1)= 0.172	K factor**= 2.523	TL(1)= 39.604	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.304	S= 0.183	CV(2)= 0.055	K factor**= 2.523	TL(2)= 3.765	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	23.6	3.161			
1/15/2003	25.9	3.254			
4/10/2003	30.4	3.414			
7/14/2003	33.9	3.523			
10/13/2003	21.3	3.059			

20.3

23.8

MW394

Result

29.5

29.9

31.2

30.7

34.4

29.6

30.3

28.4

19

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	25.5	NO	3.239	N/A
MW221	Sidegradient	Yes	23.2	NO	3.144	N/A
MW222	Sidegradient	Yes	22.1	NO	3.096	N/A
MW223	Sidegradient	Yes	23.6	NO	3.161	N/A
MW224	Sidegradient	Yes	22.9	NO	3.131	N/A
MW369	Downgradien	t Yes	15.6	NO	2.747	N/A
MW372	Downgradien	t Yes	38.4	NO	3.648	N/A
MW384	Sidegradient	Yes	25.5	NO	3.239	N/A
MW387	Downgradien	t Yes	29.1	NO	3.371	N/A
MW391	Downgradien	t Yes	29.2	NO	3.374	N/A
MW394	Upgradient	Yes	27.9	NO	3.329	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.011

3.170

2.944

3.384

3.398

3.440

3.424

3.538

3.388

3.411

3.346

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 35.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 35.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.555	S= 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 3.555	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW220

wen rumber.	101 00 220	
Date Collected	Result	LN(Result)
10/14/2002	35	3.555
1/15/2003	35	3.555
4/10/2003	35	3.555
7/14/2003	35	3.555
10/13/2003	35	3.555
1/13/2004	35	3.555
4/13/2004	35	3.555
7/21/2004	35	3.555
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.555
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 35	3.555
Date Collected 8/13/2002 9/16/2002	Result 35 35	3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 35 35 35	3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 35 35 35 35 35	3.555 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 35 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 35 35 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	29.3	NO	3.378	N/A
MW221	Sidegradient	No	17.8	N/A	2.879	N/A
MW222	Sidegradient	Yes	21.1	NO	3.049	N/A
MW223	Sidegradient	Yes	26	NO	3.258	N/A
MW224	Sidegradient	Yes	21.1	NO	3.049	N/A
MW369	Downgradien	t Yes	14.5	NO	2.674	N/A
MW372	Downgradien	t Yes	39.1	YES	3.666	N/A
MW384	Sidegradient	Yes	26	NO	3.258	N/A
MW387	Downgradien	t Yes	30.9	NO	3.431	N/A
MW391	Downgradien	t Yes	16.1	NO	2.779	N/A
MW394	Upgradient	Yes	27.6	NO	3.318	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 49.044	S= 11.278	CV(1)= 0.230	K factor**= 2.523	TL(1)= 77.499	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.866	S = 0.244	CV(2)= 0.063	K factor**= 2.523	TL(2)= 4.482	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW220

wen rumber.	101 00 220	
Date Collected	Result	LN(Result)
10/14/2002	44.6	3.798
1/15/2003	43.2	3.766
4/10/2003	31.5	3.450
7/14/2003	30.8	3.428
10/13/2003	40.9	3.711
1/13/2004	40.8	3.709
4/13/2004	37.5	3.624
7/21/2004	40.8	3.709
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.101
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 60.4	4.101
Date Collected 8/13/2002 9/16/2002	Result 60.4 60.3	4.101 4.099
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 60.4 60.3 58	4.101 4.099 4.060
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 60.4 60.3 58 60.7	4.101 4.099 4.060 4.106
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 60.4 60.3 58 60.7 62.9	4.101 4.099 4.060 4.106 4.142
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 60.4 60.3 58 60.7 62.9 58.1	4.101 4.099 4.060 4.106 4.142 4.062

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	18.9	NO	2.939	N/A
MW221	Sidegradient	Yes	31.2	NO	3.440	N/A
MW222	Sidegradient	Yes	31.1	NO	3.437	N/A
MW223	Sidegradient	Yes	28.6	NO	3.353	N/A
MW224	Sidegradient	Yes	36	NO	3.584	N/A
MW369	Downgradien	t Yes	36.1	NO	3.586	N/A
MW372	Downgradien	t Yes	46.6	NO	3.842	N/A
MW384	Sidegradient	Yes	37.5	NO	3.624	N/A
MW387	Downgradien	t Yes	20.5	NO	3.020	N/A
MW391	Downgradien	t Yes	38.5	NO	3.651	N/A
MW394	Upgradient	Yes	48.6	NO	3.884	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.609	S = 0.000	CV(2)= 0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	5	1.609
1/15/2003	5	1.609
4/10/2003	5	1.609
7/14/2003	5	1.609
10/13/2003	5	1.609
1/13/2004	5	1.609
4/13/2004	5	1.609
7/21/2004	5	1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.59	NO	-0.528	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t No	1	N/A	0.000	N/A
MW372	Downgradien	t No	1	N/A	0.000	N/A
MW384	Sidegradient	No	1	N/A	0.000	N/A
MW387	Downgradien	t No	1	N/A	0.000	N/A
MW391	Downgradien	t No	1	N/A	0.000	N/A
MW394	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.016	S= 0.040	CV(1)= 2.440	K factor**= 2.523	TL(1)= 0.116	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.582	S= 1.573	CV(2) =-0.282	K factor**= 2.523	TL(2)= -1.613	LL(2)=N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0041	-5.497
1/15/2003	0.00496	-5.306
4/10/2003	0.00289	-5.846
7/14/2003	0.161	-1.826
10/13/2003	0.0226	-3.790
1/13/2004	0.00464	-5.373
4/13/2004	0.001	-6.908
7/21/2004	0.00264	-5.937
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00037	7 N/A	-7.883	NO
MW221	Sidegradient	Yes	0.00112	N/A	-6.794	NO
MW222	Sidegradient	Yes	0.00044	3 N/A	-7.722	NO
MW223	Sidegradient	Yes	0.00118	N/A	-6.742	NO
MW224	Sidegradient	Yes	0.00422	N/A	-5.468	NO
MW369	Downgradien	t Yes	0.00501	N/A	-5.296	NO
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A
MW394	Upgradient	No	0.001	N/A	-6.908	N/A
N/A - Resu	lts identified as N	Ion-Detects	during labo	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 382.132 S = 107.134 CV(1) =0.2	80 K factor**= 2.523	TL(1)= 652.432 LL(1)=N/A
Statistics-Transformed Background Data	X = 5.716 S = 1.164 CV(2) =0.2	04 K factor**= 2.523	TL(2)= 8.652 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Date Collected	Result	LN(Result)					

Date Collected	Result	LN(Result)
10/14/2002	368	5.908
1/15/2003	433.2	6.071
4/10/2003	489	6.192
7/14/2003	430	6.064
10/13/2003	346	5.846
1/13/2004	365	5.900
4/13/2004	416	6.031
7/21/2004	353	5.866
Well Number:	MW394	
······································	101 (0 5) 1	
Date Collected		LN(Result)
		LN(Result) 6.006
Date Collected	Result	
Date Collected 8/13/2002	Result 406	6.006
Date Collected 8/13/2002 9/16/2002	Result 406 418	6.006 6.035
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 406 418 411	6.006 6.035 6.019
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 406 418 411 422	6.006 6.035 6.019 6.045
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 406 418 411 422 420	6.006 6.035 6.019 6.045 6.040

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	412	NO	6.021	N/A
MW221	Sidegradient	Yes	414	NO	6.026	N/A
MW222	Sidegradient	Yes	379	NO	5.938	N/A
MW223	Sidegradient	Yes	400	NO	5.991	N/A
MW224	Sidegradient	Yes	433	NO	6.071	N/A
MW369	Downgradien	t Yes	372	NO	5.919	N/A
MW372	Downgradien	t Yes	597	NO	6.392	N/A
MW384	Sidegradient	Yes	453	NO	6.116	N/A
MW387	Downgradien	t Yes	491	NO	6.196	N/A
MW391	Downgradien	t Yes	541	NO	6.293	N/A
MW394	Upgradient	Yes	392	NO	5.971	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.010	CV(1)= 0.429	K factor**= 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.794	S= 0.312	CV(2) =-0.082	K factor**= 2.523	TL(2)= -3.007	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	0.0211	-3.858				
1/15/2003	0.02	-3.912				
4/10/2003	0.02	-3.912				
7/14/2003	0.02	-3.912				
10/13/2003	0.02	-3.912				
1/13/2004	0.02	-3.912				
4/13/2004	0.02	-3.912				
7/21/2004	0.02	-3.912				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
8/13/2002	0.05	-2.996				
9/16/2002	0.05	-2.996				
10/16/2002	0.02	-3.912				
1/13/2003	0.02	-3.912				
4/10/2003	0.02	-3.912				
7/16/2003	0.02	-3.912				
10/14/2003	0.02	-3.912				

0.02

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00090	1 NO	-7.012	N/A
MW221	Sidegradient	Yes	0.0012	NO	-6.725	N/A
MW222	Sidegradient	Yes	0.00067	3 NO	-7.304	N/A
MW223	Sidegradient	Yes	0.000672	2 NO	-7.305	N/A
MW224	Sidegradient	Yes	0.00053	9 NO	-7.526	N/A
MW369	Downgradien	t Yes	0.00165	NO	-6.407	N/A
MW372	Downgradien	t Yes	0.00136	NO	-6.600	N/A
MW384	Sidegradient	Yes	0.00102	NO	-6.888	N/A
MW387	Downgradien	t Yes	0.00201	NO	-6.210	N/A
MW391	Downgradien	t Yes	0.00146	NO	-6.529	N/A
MW394	Upgradient	Yes	0.0016	NO	-6.438	N/A

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Cyanide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.010	CV(1)= 0.431	K factor**= 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.797	S= 0.313	CV(2) =-0.082	K factor**= 2.523	TL(2)= -3.008	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Date Collected	Result	LN(Result)					
10/14/2002	0.02	-3.912					
1/15/2003	0.02	-3.912					
4/10/2003	0.02	-3.912					
7/14/2003	0.02	-3.912					
10/13/2003	0.02	-3.912					
1/13/2004	0.02	-3.912					
4/13/2004	0.05	-2.996					
7/21/2004	0.05	-2.996					
Well Number:	MW394						
Date Collected	Result	LN(Result)					

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.2	N/A	-1.609	N/A
MW221	Sidegradient	No	0.2	N/A	-1.609	N/A
MW222	Sidegradient	No	0.2	N/A	-1.609	N/A
MW223	Sidegradient	Yes	0.00181	NO	-6.314	N/A
MW224	Sidegradient	No	0.2	N/A	-1.609	N/A
MW369	Downgradien	t No	0.2	N/A	-1.609	N/A
MW372	Downgradien	t No	0.2	N/A	-1.609	N/A
MW384	Sidegradient	No	0.2	N/A	-1.609	N/A
MW387	Downgradien	t No	0.2	N/A	-1.609	N/A
MW391	Downgradien	t No	0.2	N/A	-1.609	N/A
MW394	Upgradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912 -3.912

-3.912

-3.912

-3.912

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.784	S= 1.887	CV(1)= 0.499	K factor**= 2.523	TL(1)= 8.545	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.182	S = 0.612	CV(2)= 0.518	K factor**= 2.523	TL(2)= 2.727	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW220							
Date Collected	Result	LN(Result)						

6.79

7.25

3.6

0.94

1.65

3.48

1.05

4.46

MW394

Result

6.09

3.85

5.11

3.83

4.15

1.83

3.33

3.14

1.915

1.981

1.281

-0.062

0.501

1.247

0.049

1.495

1.807

1.348

1.631

1.343

1.423

0.604

1.203

1.144

LN(Result)

10/14/2002

1/15/2003

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	5.18	NO	1.645	N/A
MW221	Sidegradient	Yes	3.48	NO	1.247	N/A
MW222	Sidegradient	Yes	4.01	NO	1.389	N/A
MW223	Sidegradient	Yes	1.31	NO	0.270	N/A
MW224	Sidegradient	Yes	2.9	NO	1.065	N/A
MW369	Downgradien	t Yes	2.46	NO	0.900	N/A
MW372	Downgradien	t Yes	0.88	NO	-0.128	N/A
MW384	Sidegradient	Yes	3.06	NO	1.118	N/A
MW387	Downgradien	t Yes	3.75	NO	1.322	N/A
MW391	Downgradien	t Yes	3.79	NO	1.332	N/A
MW394	Upgradient	Yes	5.3	NO	1.668	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 232.68	8 S= 27.490	CV(1)= 0.118	K factor**= 2.523	TL(1)= 302.045	LL(1)=N/A
Statistics-Transformed Background Data	X= 5.443	S= 0.118	CV(2) =0.022	K factor**= 2.523	TL(2)= 5.740	LL(2)=N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 247 259 201 228 249 240	5.509 5.557 5.303 5.429 5.517 5.481

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	207	NO	5.333	N/A	
MW221	Sidegradient	Yes	197	NO	5.283	N/A	
MW222	Sidegradient	Yes	190	NO	5.247	N/A	
MW223	Sidegradient	Yes	194	NO	5.268	N/A	
MW224	Sidegradient	Yes	237	NO	5.468	N/A	
MW369	Downgradien	t Yes	197	NO	5.283	N/A	
MW372	Downgradien	t Yes	323	YES	5.778	N/A	
MW384	Sidegradient	Yes	247	NO	5.509	N/A	
MW387	Downgradien	t Yes	243	NO	5.493	N/A	
MW391	Downgradien	t Yes	319	YES	5.765	N/A	
MW394	Upgradient	Yes	204	NO	5.318	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.000	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 2.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.693	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 0.693	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number:	MW220					

Date Collected	Result	LN(Result)
10/14/2002	2	0.693
1/15/2003	2	0.693
4/10/2003	2	0.693
7/14/2003	2	0.693
10/13/2003	2	0.693
1/13/2004	2	0.693
4/13/2004	2	0.693
7/21/2004	2	0.693
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 2	0.693 0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 2 2 2	0.693 0.693 0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 2 2 2 2 2	0.693 0.693 0.693 0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 2 2 2 2 2 2 2 2	0.693 0.693 0.693 0.693 0.693 0.693

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.5	N/A	-0.693	N/A	
MW221	Sidegradient	No	0.5	N/A	-0.693	N/A	
MW222	Sidegradient	No	0.5	N/A	-0.693	N/A	
MW223	Sidegradient	No	0.5	N/A	-0.693	N/A	
MW224	Sidegradient	No	0.5	N/A	-0.693	N/A	
MW369	Downgradien	t No	0.5	N/A	-0.693	N/A	
MW372	Downgradien	t Yes	0.169	NO	-1.778	N/A	
MW384	Sidegradient	No	0.5	N/A	-0.693	N/A	
MW387	Downgradien	t No	0.5	N/A	-0.693	N/A	
MW391	Downgradien	t No	0.5	N/A	-0.693	N/A	
MW394	Upgradient	No	0.5	N/A	-0.693	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.897	S= 1.050	CV(1)= 1.170	K factor**= 2.523	TL(1)= 3.545	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.565	S= 0.951	CV(2) =-1.683	K factor**= 2.523	TL(2)= 1.834	LL(2)=N/A

Historical Background Data from	
Upgradient Wells with Transformed Result	t

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.429	-0.846
7/14/2003	4.33	1.466
10/13/2003	1.81	0.593
1/13/2004	0.793	-0.232
4/13/2004	0.13	-2.040
7/21/2004	0.382	-0.962
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.293
Date Collected	Result	
Date Collected 8/13/2002	Result 1.34	0.293
Date Collected 8/13/2002 9/16/2002	Result 1.34 0.328	0.293 -1.115
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.34 0.328 1.38	0.293 -1.115 0.322
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.34 0.328 1.38 1.3	0.293 -1.115 0.322 0.262
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.34 0.328 1.38 1.3 0.494	0.293 -1.115 0.322 0.262 -0.705
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.34 0.328 1.38 1.3 0.494 0.62	0.293 -1.115 0.322 0.262 -0.705 -0.478

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.138	N/A	-1.981	NO	
MW221	Sidegradient	Yes	0.0491	N/A	-3.014	NO	
MW222	Sidegradient	Yes	0.0596	N/A	-2.820	NO	
MW223	Sidegradient	Yes	0.0408	N/A	-3.199	NO	
MW224	Sidegradient	No	0.1	N/A	-2.303	N/A	
MW369	Downgradien	t Yes	0.0807	N/A	-2.517	NO	
MW372	Downgradien	t Yes	0.22	N/A	-1.514	NO	
MW384	Sidegradient	Yes	0.305	N/A	-1.187	NO	
MW387	Downgradien	t Yes	0.0853	N/A	-2.462	NO	
MW391	Downgradien	t Yes	0.12	N/A	-2.120	NO	
MW394	Upgradient	Yes	0.133	N/A	-2.017	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.796	S= 1.703	CV(1)= 0.158	K factor**= 2.523	TL(1)= 15.092	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.368	S= 0.158	CV(2)= 0.067	K factor**= 2.523	TL(2)= 2.766	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						

Date Collected	Result	LN(Result)
10/14/2002	9.16	2.215
1/15/2003	10	2.303
4/10/2003	10.8	2.380
7/14/2003	14.7	2.688
10/13/2003	9.03	2.201
1/13/2004	8.49	2.139
4/13/2004	9.7	2.272
7/21/2004	8.06	2.087
X7 11 X7 1		
Well Number:	MW394	
Date Collected		LN(Result)
		LN(Result) 2.468
Date Collected	Result	
Date Collected 8/13/2002	Result 11.8	2.468
Date Collected 8/13/2002 9/16/2002	Result 11.8 12.1	2.468 2.493
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.8 12.1 11.3	2.468 2.493 2.425
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.8 12.1 11.3 10.3	2.468 2.493 2.425 2.332
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.8 12.1 11.3 10.3 11.7	2.468 2.493 2.425 2.332 2.460
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 11.8 12.1 11.3 10.3 11.7 12	2.468 2.493 2.425 2.332 2.460 2.485

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	11.1	NO	2.407	N/A	
MW221	Sidegradient	Yes	10.2	NO	2.322	N/A	
MW222	Sidegradient	Yes	10.1	NO	2.313	N/A	
MW223	Sidegradient	Yes	10.2	NO	2.322	N/A	
MW224	Sidegradient	Yes	10.2	NO	2.322	N/A	
MW369	Downgradien	t Yes	6.5	NO	1.872	N/A	
MW372	Downgradien	t Yes	16.2	YES	2.785	N/A	
MW384	Sidegradient	Yes	9.67	NO	2.269	N/A	
MW387	Downgradien	t Yes	11.7	NO	2.460	N/A	
MW391	Downgradien	t Yes	11.9	NO	2.477	N/A	
MW394	Upgradient	Yes	12	NO	2.485	N/A	
N/A - Resu	lts identified as N	Jon-Detects (luring lah	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.287	S= 0.619	CV(1)= 2.156	K factor**= 2.523	TL(1)= 1.848	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.455	S= 1.619	CV(2) =-0.659	K factor**= 2.523	TL(2)= 1.630	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number: MW220							
Date Collected	Result	LN(Result)					
10/14/2002 0.0306 -3.487							

0.0291

0.0137

2.54

0.378

0.159

0.00707

0.0841

MW394

Result

0.542

0.155

0.103

0.128

0.005

0.272

0.0795

0.0658

-3.537

-4.290

0.932

-0.973

-1.839

-4.952

-2.476

-0.612

-1.864

-2.273

-2.056

-5.298

-1.302

-2.532

-2.721

LN(Result)

1/15/2003

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00318	N/A	-5.751	NO
MW221	Sidegradient	Yes	0.00301	N/A	-5.806	NO
MW222	Sidegradient	Yes	0.0089	N/A	-4.722	NO
MW223	Sidegradient	Yes	0.0185	N/A	-3.990	NO
MW224	Sidegradient	Yes	0.0366	N/A	-3.308	NO
MW369	Downgradien	t Yes	0.00736	N/A	-4.912	NO
MW372	Downgradien	t Yes	0.00372	N/A	-5.594	NO
MW384	Sidegradient	Yes	0.0281	N/A	-3.572	NO
MW387	Downgradien	t Yes	0.00876	N/A	-4.738	NO
MW391	Downgradien	t Yes	0.00307	N/A	-5.786	NO
MW394	Upgradient	Yes	0.00354	N/A	-5.644	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Molybdenum **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.006	S = 0.008	CV(1)= 1.261	K factor**= 2.523	TL(1)= 0.026	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.747	S= 1.205	CV(2) =-0.210	K factor**= 2.523	TL(2)= -2.708	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	0.00558	-5.189				
1/15/2003	0.00983	-4.622				
4/10/2003	0.0109	-4.519				
7/14/2003	0.00245	-6.012				
10/13/2003	0.00566	-5.174				
1/13/2004	0.00572	-5.164				
4/13/2004	0.001	-6.908				
7/21/2004	0.00392	-5.542				
Well Number:	MW394					

wen Number.	WI W 220	
Date Collected	Result	LN(Result)
10/14/2002	0.00558	-5.189
1/15/2003	0.00983	-4.622
4/10/2003	0.0109	-4.519
7/14/2003	0.00245	-6.012
10/13/2003	0.00566	-5.174
1/13/2004	0.00572	-5.164
4/13/2004	0.001	-6.908
7/21/2004	0.00392	-5.542
Well Number:	MW394	
		LN(Result)
Well Number: Date Collected 8/13/2002		LN(Result) -3.689
Date Collected	Result	· /
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0017	N/A	-6.377	NO
MW221	Sidegradient	Yes	0.00779	N/A	-4.855	NO
MW222	Sidegradient	Yes	0.00052	2 N/A	-7.558	NO
MW223	Sidegradient	Yes	0.007	N/A	-4.962	NO
MW224	Sidegradient	Yes	0.00075	4 N/A	-7.190	NO
MW369	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW372	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW384	Sidegradient	No	0.0005	N/A	-7.601	N/A
MW387	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW391	Downgradien	t Yes	0.0012	N/A	-6.725	NO
MW394	Upgradient	No	0.0005	N/A	-7.601	N/A
N/A - Resul	lts identified as N	Ion-Detects	during labo	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.127	S= 0.228	CV(1)= 1.790	K factor**= 2.523	TL(1)= 0.701	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.617	S= 1.837	CV(2) =-0.508	K factor**= 2.523	TL(2)= 1.019	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.418	-0.872
1/15/2003	0.738	-0.304
4/10/2003	0.544	-0.609
7/14/2003	0.106	-2.244
10/13/2003	0.0529	-2.939
1/13/2004	0.0209	-3.868
4/13/2004	0.005	-5.298
7/21/2004	0.0192	-3.953
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.05 0.05 0.005 0.005	-2.996 -2.996 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -5.298 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.05 0.05 0.005 0.005 0.005 0.005	-2.996 -2.996 -5.298 -5.298 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0265	N/A	-3.631	NO
MW221	Sidegradient	Yes	0.105	N/A	-2.254	NO
MW222	Sidegradient	Yes	0.0963	N/A	-2.340	NO
MW223	Sidegradient	Yes	0.316	N/A	-1.152	NO
MW224	Sidegradient	Yes	0.231	N/A	-1.465	NO
MW369	Downgradien	t Yes	0.0091	N/A	-4.699	NO
MW372	Downgradien	t No	0.002	N/A	-6.215	N/A
MW384	Sidegradient	Yes	0.00122	2 N/A	-6.709	NO
MW387	Downgradien	t No	0.002	N/A	-6.215	N/A
MW391	Downgradien	t Yes	0.00166	6 N/A	-6.401	NO
MW394	Upgradient	Yes	0.00283	N/A	-5.867	NO
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis **Historical Background Comparison URGA Oxidation-Reduction Potential UNITS: mV**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 179.87	2 S = 86.318	CV(1)= 0.480	K factor**= 2.523	TL(1)= 397.652	LL(1)=N/A
Statistics-Transformed Background Data	X= 4.861	S= 1.252	CV(2)= 0.258	K factor**= 2.523	TL(2)= 8.021	LL(2)=N/A

Historical Background	Data from	
Upgradient Wells with	Transformed	Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	205	5.323
1/15/2003	1.95	0.668
4/10/2003	203	5.313
7/14/2003	30	3.401
10/13/2003	107	4.673
1/13/2004	295	5.687
4/13/2004	190	5.247
7/21/2004	319	5.765
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 90	4.500
Date Collected 8/13/2002 9/16/2002	Result 90 240	4.500 5.481
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 90 240 185	4.500 5.481 5.220
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 90 240 185 220	4.500 5.481 5.220 5.394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 90 240 185 220 196	4.500 5.481 5.220 5.394 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	390	NO	5.966	N/A
MW221	Sidegradient	Yes	540	YES	6.292	N/A
MW222	Sidegradient	Yes	464	YES	6.140	N/A
MW223	Sidegradient	Yes	483	YES	6.180	N/A
MW224	Sidegradient	Yes	458	YES	6.127	N/A
MW369	Downgradien	t Yes	338	NO	5.823	N/A
MW372	Downgradien	t Yes	371	NO	5.916	N/A
MW384	Sidegradient	Yes	352	NO	5.864	N/A
MW387	Downgradien	t Yes	354	NO	5.869	N/A
MW391	Downgradien	t Yes	301	NO	5.707	N/A
MW394	Upgradient	Yes	375	NO	5.927	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW221	
MW222	
MW223	
MW224	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis **Historical Background Comparison UNITS: Std Unit** pН **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.138	S= 0.282	CV(1)= 0.046	K factor**= 2.904	TL(1)= 6.957	LL(1)=5.3179
Statistics-Transformed Background Data	X= 1.813	S = 0.047	CV(2)= 0.026	K factor**= 2.904	TL(2)= 1.950	LL(2)=1.6765

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.04	1.798
1/15/2003	6.31	1.842
4/10/2003	6.5	1.872
7/14/2003	6.3	1.841
10/13/2003	6.34	1.847
1/13/2004	6.33	1.845
4/13/2004	6.3	1.841
7/21/2004	5.9	1.775
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	5.8	1.758
9/30/2002	5.93	1.780
10/16/2002	5.42	1.690
1/13/2003	6	1.792
4/10/2003	6.04	1.798
7/16/2003	6.2	1.825
10/14/2003	6.4	1.856
1/13/2004	6.39	1.855

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	5.75	NO	1.749	N/A
MW221	Sidegradient	Yes	6.08	NO	1.805	N/A
MW222	Sidegradient	Yes	6.14	NO	1.815	N/A
MW223	Sidegradient	Yes	6.09	NO	1.807	N/A
MW224	Sidegradient	Yes	6.18	NO	1.821	N/A
MW369	Downgradien	t Yes	6.19	NO	1.823	N/A
MW372	Downgradien	t Yes	6.13	NO	1.813	N/A
MW384	Sidegradient	Yes	5.81	NO	1.760	N/A
MW387	Downgradien	t Yes	5.81	NO	1.760	N/A
MW391	Downgradien	t Yes	5.99	NO	1.790	N/A
MW394	Upgradient	Yes	5.75	NO	1.749	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.654	S= 9.310	CV(1)= 1.399	K factor**= 2.523	TL(1)= 30.144	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.130	S= 1.208	CV(2)= 1.069	K factor**= 2.523	TL(2)= 4.178	LL(2)=N/A

Historical Bac Upgradient W	kground Da ells with Tr	ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.7	1.902

3.391

3.215

0.122

1.233

1.904

2.960

1.379

0.693

0.693

0.030

0.095

0.215

0.131

0.049

0.068

LN(Result)

29.7

24.9

1.13

3.43

6.71

19.3

3.97

MW394

Result

2

2

1.03

1.1

1.24

1.14

1.05

1.07

1/15/2003

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.75	N/A	0.560	NO
MW221	Sidegradient	Yes	2.21	N/A	0.793	NO
MW222	Sidegradient	Yes	0.797	N/A	-0.227	NO
MW223	Sidegradient	Yes	2.36	N/A	0.859	NO
MW224	Sidegradient	Yes	0.884	N/A	-0.123	NO
MW369	Downgradien	t Yes	0.509	N/A	-0.675	NO
MW372	Downgradien	t Yes	1.76	N/A	0.565	NO
MW384	Sidegradient	Yes	1.1	N/A	0.095	NO
MW387	Downgradien	t Yes	1.46	N/A	0.378	NO
MW391	Downgradien	t Yes	0.375	N/A	-0.981	NO
MW394	Upgradient	Yes	1.44	N/A	0.365	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 36.363	S= 8.666	CV(1)= 0.238	K factor**= 2.523	TL(1)= 58.227	LL(1)= N/A
Statistics-Transformed Background Data	X =3.570	S= 0.222	CV(2)= 0.062	K factor**= 2.523	TL(2)= 4.129	LL(2)=N/A

	kground Data from fells with Transformed Result
Well Number:	MW220

Date Collected	Result	LN(Result)
10/14/2002	35.4	3.567
1/15/2003	40.6	3.704
4/10/2003	51	3.932
7/14/2003	58.2	4.064
10/13/2003	38.1	3.640
1/13/2004	37	3.611
4/13/2004	43.2	3.766
7/21/2004	33.8	3.520
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.493
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 32.9	3.493
Date Collected 8/13/2002 9/16/2002	Result 32.9 29.9	3.493 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 32.9 29.9 29	3.493 3.398 3.367
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 32.9 29.9 29 27.1	3.493 3.398 3.367 3.300
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 32.9 29.9 29 27.1 24.8	3.493 3.398 3.367 3.300 3.211
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 32.9 29.9 27.1 24.8 35.6	3.493 3.398 3.367 3.300 3.211 3.572

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	49.6	NO	3.904	N/A
MW221	Sidegradient	Yes	49.5	NO	3.902	N/A
MW222	Sidegradient	Yes	44.3	NO	3.791	N/A
MW223	Sidegradient	Yes	45.7	NO	3.822	N/A
MW224	Sidegradient	Yes	55.6	NO	4.018	N/A
MW369	Downgradien	t Yes	48.8	NO	3.888	N/A
MW372	Downgradien	t Yes	39	NO	3.664	N/A
MW384	Sidegradient	Yes	47.2	NO	3.854	N/A
MW387	Downgradien	t Yes	45.9	NO	3.826	N/A
MW391	Downgradien	t Yes	85.8	YES	4.452	N/A
MW394	Upgradient	Yes	30.2	NO	3.408	N/A
MW391 MW394	Downgradien Upgradient	t Yes Yes	85.8 30.2	YES	4.452 3.408	N/A N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.481 S=	= 2.648	CV(1)= 0.253	K factor**= 2.523	TL(1)= 17.161	LL(1)=N/A
Statistics-Transformed Background	X= 2.322 S =	= 0.239	CV(2)= 0.103	K factor**= 2.523	TL(2)= 2.925	LL(2)=N/A

	kground Data from fells with Transformed Result
Well Number:	MW220

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	10.4	2.342
1/15/2003	9.8	2.282
4/10/2003	15.4	2.734
7/14/2003	14.9	2.701
10/13/2003	13.5	2.603
1/13/2004	10.3	2.332
4/13/2004	14.3	2.660
7/21/2004	10.5	2.351
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.416
Date Collected	Result	()
Date Collected 8/13/2002	Result 11.2	2.416
Date Collected 8/13/2002 9/16/2002	Result 11.2 8.3	2.416 2.116
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.2 8.3 8	2.416 2.116 2.079
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.2 8.3 8 8.5	2.416 2.116 2.079 2.140
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.2 8.3 8 8.5 7.9	2.416 2.116 2.079 2.140 2.067
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 11.2 8.3 8 8.5 7.9 8.4	2.416 2.116 2.079 2.140 2.067 2.128

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	24.7	YES	3.207	N/A
MW221	Sidegradient	Yes	15.8	NO	2.760	N/A
MW222	Sidegradient	Yes	13.7	NO	2.617	N/A
MW223	Sidegradient	Yes	18.6	YES	2.923	N/A
MW224	Sidegradient	Yes	14.3	NO	2.660	N/A
MW369	Downgradien	t Yes	6.71	NO	1.904	N/A
MW372	Downgradien	t Yes	81.5	YES	4.401	N/A
MW384	Sidegradient	Yes	24.3	YES	3.190	N/A
MW387	Downgradien	t Yes	13	NO	2.565	N/A
MW391	Downgradien	t Yes	87.2	YES	4.468	N/A
MW394	Upgradient	Yes	10.5	NO	2.351	N/A
N/A Dagu	lta idantified on N	Ion Dotooto	dumin a lab	oratory analyzia or	data validatio	n and wars not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells wi	th Exceedances	
MW220		
MW223		
MW372		
MW384		
MW391		

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.354	S= 9.280	CV(1)= 0.992	K factor**= 2.523	TL(1)= 32.768	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.270	S= 0.849	CV(2)= 0.374	K factor**= 2.523	TL(2)= 3.262	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW220			
Date Collected	Result	LN(Result)		
10/14/2002	19.7	2.981		
1/15/2003	26.1	3.262		

1.270

#Func!

3.045

1.844

1.099

2.681

2.639

1.696 0.912

2.907

#Func!

#Func!

2.907

#Func!

LN(Result)

3.56

0

21

3

6.32

14.6

MW394

Result

14

5.45

2.49

18.3

-1.45

-1.71

18.3

0

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	14	N/A	2.639	N/A
MW221	Sidegradient	Yes	22.8	NO	3.127	N/A
MW222	Sidegradient	No	10.2	N/A	2.322	N/A
MW223	Sidegradient	No	0.758	N/A	-0.277	N/A
MW224	Sidegradient	No	7.24	N/A	1.980	N/A
MW369	Downgradien	t Yes	31.4	NO	3.447	N/A
MW372	Downgradien	t Yes	70.9	YES	4.261	N/A
MW384	Sidegradient	Yes	126	YES	4.836	N/A
MW387	Downgradien	t Yes	205	YES	5.323	N/A
MW391	Downgradien	t No	-2.39	N/A	#Error	N/A
MW394	Upgradient	No	10.6	N/A	2.361	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW372	
MW384	
MW387	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.494	S = 0.737	CV(1)= 0.493	K factor**= 2.523	TL(1)= 3.353	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.315	S= 0.402	CV(2)= 1.279	K factor**= 2.523	TL(2)= 1.330	LL(2)=N/A

	torical Background Data from
Upgradient Wells with Transformed Result	gradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1.1	0.095
4/10/2003	1	0.000
7/14/2003	3.3	1.194
10/13/2003	1.8	0.588
1/13/2004	1	0.000
4/13/2004	2	0.693
7/21/2004	3.1	1.131
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.262
Date Collected	Result	
Date Collected 8/13/2002	Result 1.3	0.262
Date Collected 8/13/2002 9/16/2002	Result 1.3 1	0.262 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.3 1 1	0.262 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.3 1 1.6	0.262 0.000 0.000 0.470
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.3 1 1.6 1	0.262 0.000 0.000 0.470 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.3 1 1.6 1 1.4	0.262 0.000 0.000 0.470 0.000 0.336

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.895	NO	-0.111	N/A
MW221	Sidegradient	Yes	0.834	NO	-0.182	N/A
MW222	Sidegradient	Yes	0.69	NO	-0.371	N/A
MW223	Sidegradient	Yes	0.795	NO	-0.229	N/A
MW224	Sidegradient	Yes	0.811	NO	-0.209	N/A
MW369	Downgradien	t No	1.47	N/A	0.385	N/A
MW372	Downgradien	t No	1.2	N/A	0.182	N/A
MW384	Sidegradient	No	1.33	N/A	0.285	N/A
MW387	Downgradien	t No	1.2	N/A	0.182	N/A
MW391	Downgradien	t No	1.2	N/A	0.182	N/A
MW394	Upgradient	Yes	0.687	NO	-0.375	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

	· · · ·		0			
Statistics-Background Data	X = 63.475	S = 163.13	5 CV(1)=2.570	K factor**= 2.523	TL(1) = 475.063	LL(1)=N/A
8						
Statistics-Transformed Background	V 2 102	C 1145	OV(2) = 0.2(0)	IZ for the orthogonal of 500	TL (2) 5 002	TT(A) NT/A
	X = 3.103	S= 1.145	CV(2)=0.369	K factor**= 2.523	1L(2)= 5.992	LL(2)=N/A
Data						

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				

Date Collected	Result	LN(Result)
10/14/2002	50	3.912
1/15/2003	10	2.303
4/10/2003	10	2.303
7/14/2003	10	2.303
10/13/2003	10	2.303
1/13/2004	10	2.303
4/13/2004	10	2.303
7/21/2004	10	2.303
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	· · · ·
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 672	3.912 6.510
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 50 672 50	3.912 6.510 3.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 50 672 50 36.1	3.912 6.510 3.912 3.586
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 50 672 50 36.1 10	3.912 6.510 3.912 3.586 2.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 50 672 50 36.1 10 42.7	3.912 6.510 3.912 3.586 2.303 3.754

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	11.9	N/A	2.477	NO
MW221	Sidegradient	Yes	9.98	N/A	2.301	NO
MW222	Sidegradient	Yes	4.68	N/A	1.543	NO
MW223	Sidegradient	Yes	5.96	N/A	1.785	NO
MW224	Sidegradient	Yes	4.9	N/A	1.589	NO
MW369	Downgradien	t Yes	13.3	N/A	2.588	NO
MW372	Downgradien	t Yes	9.54	N/A	2.255	NO
MW384	Sidegradient	Yes	9.7	N/A	2.272	NO
MW387	Downgradien	t Yes	21.2	N/A	3.054	NO
MW391	Downgradien	t Yes	15.7	N/A	2.754	NO
MW394	Upgradient	Yes	8.06	N/A	2.087	NO
NI/A Dam	14. : J	I D-tt-	J		J . 4 1: J . 4:	1 (

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

1	,	5	U U			
Statistics-Background Data	X= 8.813	S= 8.376	CV(1)= 0.951	K factor**= 2.523	TL(1)= 29.946	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.395	S= 1.449	CV(2)= 1.039	K factor**= 2.523	TL(2)= 5.052	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.773
Date Collected	Result	· /
Date Collected 8/13/2002	Result 16	2.773
Date Collected 8/13/2002 9/30/2002	Result 16 20	2.773 2.996
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 16 20 17	2.773 2.996 2.833
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 16 20 17 15	2.773 2.996 2.833 2.708
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 16 20 17 15 10	2.773 2.996 2.833 2.708 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.91	N/A	0.647	N/A
MW221	Sidegradient	Yes	0.36	N/A	-1.022	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t No	0.76	N/A	-0.274	N/A
MW372	Downgradien	t Yes	5.32	NO	1.671	N/A
MW384	Sidegradient	Yes	0.36	N/A	-1.022	N/A
MW387	Downgradien	t Yes	0.65	N/A	-0.431	N/A
MW391	Downgradien	t Yes	8.04	NO	2.084	N/A
MW394	Upgradient	Yes	4.95	N/A	1.599	N/A
N/A - Resu	Its identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.021	S = 0.002	CV(1)= 0.083	K factor**= 2.523	TL(1)= 0.025	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.884	S= 0.076	CV(2) =-0.020	K factor**= 2.523	TL(2)= -3.692	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	0.02	-3.912				
1/15/2003	0.02	-3.912				
4/10/2003	0.02	-3.912				
7/14/2003	0.02	-3.912				
10/13/2003	0.02	-3.912				
1/13/2004	0.02	-3.912				
4/13/2004	0.02	-3.912				
7/21/2004	0.02	-3.912				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
8/13/2002	0.025	-3.689				
9/16/2002	0.025	-3.689				
10/16/2002	0.02	-3.912				
1/13/2003	0.02	-3.912				
4/10/2003	0.02	-3.912				
7/16/2003	0.02	-3.912				
10/14/2003	0.02	-3.912				
1/13/2004	0.02	-3.912				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	No	0.01	N/A	-4.605	N/A
Sidegradient	No	0.01	N/A	-4.605	N/A
Sidegradient	Yes	0.00398	NO	-5.526	N/A
Sidegradient	Yes	0.00364	NO	-5.616	N/A
Sidegradient	No	0.01	N/A	-4.605	N/A
Downgradien	t No	0.01	N/A	-4.605	N/A
Downgradien	t No	0.01	N/A	-4.605	N/A
Sidegradient	No	0.01	N/A	-4.605	N/A
Downgradien	t No	0.01	N/A	-4.605	N/A
Downgradien	t No	0.01	N/A	-4.605	N/A
Upgradient	No	0.01	N/A	-4.605	N/A
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradien Downgradient Downgradient Downgradien	GradientDetected?UpgradientNoSidegradientYesSidegradientYesSidegradientNoDowngradientNoDowngradientNoSidegradientNoDowngradientNoSidegradientNoDowngradientNoDowngradientNoDowngradientNoDowngradientNoDowngradientNoDowngradientNoDowngradientNoDowngradientNo	GradientDetected?ResultUpgradientNo0.01SidegradientNo0.01SidegradientYes0.00364SidegradientYes0.00364SidegradientNo0.01DowngradientNo0.01DowngradientNo0.01SidegradientNo0.01DowngradientNo0.01SidegradientNo0.01DowngradientNo0.01DowngradientNo0.01	GradientDetected?ResultResult >TL(1)?UpgradientNo0.01N/ASidegradientNo0.01N/ASidegradientYes0.00398NOSidegradientYes0.00364NOSidegradientNo0.01N/ADowngradientNo0.01N/ADowngradientNo0.01N/ADowngradientNo0.01N/ADowngradientNo0.01N/ADowngradientNo0.01N/ADowngradientNo0.01N/ADowngradientNo0.01N/ADowngradientNo0.01N/A	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient No 0.01 N/A -4.605 Sidegradient No 0.01 N/A -4.605 Sidegradient Yes 0.00398 NO -5.526 Sidegradient Yes 0.00364 NO -5.616 Sidegradient No 0.01 N/A -4.605 Downgradient No 0.01 N/A -4.605

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.036	S= 0.026	CV(1)= 0.722	K factor**= 2.523	TL(1)= 0.101	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.485	S = 0.525	CV(2)=- 0.151	K factor**= 2.523	TL(2)= -2.162	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW220			
Data Collected	Pagult	I N(Pesult)		

wen number.	IVI VV 220	
Date Collected	Result	LN(Result)
10/14/2002	0.025	-3.689
1/15/2003	0.035	-3.352
4/10/2003	0.035	-3.352
7/14/2003	0.0389	-3.247
10/13/2003	0.026	-3.650
1/13/2004	0.02	-3.912
4/13/2004	0.02	-3.912
7/21/2004	0.02	-3.912
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) -2.303
Date Collected	Result	
Date Collected 8/13/2002	Result 0.1	-2.303
Date Collected 8/13/2002 9/16/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.1 0.1 0.025	-2.303 -2.303 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.1 0.1 0.025 0.035	-2.303 -2.303 -3.689 -3.352
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.1 0.025 0.035 0.035	-2.303 -2.303 -3.689 -3.352 -3.352
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.1 0.025 0.035 0.035 0.02	-2.303 -2.303 -3.689 -3.352 -3.352 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00397	NO	-5.529	N/A
MW221	Sidegradient	Yes	0.0042	NO	-5.473	N/A
MW222	Sidegradient	Yes	0.00365	NO	-5.613	N/A
MW223	Sidegradient	Yes	0.00379	NO	-5.575	N/A
MW224	Sidegradient	No	0.01	N/A	-4.605	N/A
MW369	Downgradien	t Yes	0.00393	NO	-5.539	N/A
MW372	Downgradien	t Yes	0.00541	NO	-5.220	N/A
MW384	Sidegradient	Yes	0.0049	NO	-5.319	N/A
MW387	Downgradien	t Yes	0.00468	NO	-5.364	N/A
MW391	Downgradien	t Yes	0.00515	NO	-5.269	N/A
MW394	Upgradient	Yes	0.00619	NO	-5.085	N/A
N/A - Resu	lts identified as N	Ion-Detects	luring lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Acetone UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.063	S= 0.250	CV(1)= 0.025	K factor**= 2.523	TL(1)= 10.693	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.309	S= 0.024	CV(2)= 0.010	K factor**= 2.523	TL(2)= 2.369	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW395			
Date Collected	Result	LN(Result)		

Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	10	2.303
10/16/2002	10	2.303
1/13/2003	10	2.303
4/10/2003	10	2.303
7/16/2003	10	2.303
10/14/2003	10	2.303
4/12/2004	10	2.303
Wall Manham	111207	
Well Number:	MW397	
Date Collected		LN(Result)
		LN(Result) 2.303
Date Collected	Result	()
Date Collected 8/13/2002	Result 10	2.303
Date Collected 8/13/2002 9/30/2002	Result 10 10	2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 10 10 10	2.303 2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 10 10 10 10	2.303 2.303 2.303 2.303 2.303
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 10 10 10 10 10	2.303 2.303 2.303 2.303 2.303 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	4.23	NO	1.442	N/A
MW373	Downgradient	t No	5	N/A	1.609	N/A
MW385	Sidegradient	No	5	N/A	1.609	N/A
MW388	Downgradient	t No	5	N/A	1.609	N/A
MW392	Downgradient	t No	5	N/A	1.609	N/A
MW395	Upgradient	No	5	N/A	1.609	N/A
MW397	Upgradient	No	5	N/A	1.609	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.258	S= 0.221	CV(1)= 0.856	K factor**= 2.523	TL(1)= 0.815	LL(1)=N/A
Statistics-Transformed Background Data	X= -2.266	S= 2.485	CV(2) =-1.097	K factor**= 2.523	TL(2)= 4.003	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu					
Well Number:	MW395				

Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) -0.194
Date Collected	Result	
Date Collected 8/13/2002	Result 0.824	-0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	-0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	-0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	-0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	-0.194 -1.609 -8.517 -1.013 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.824 0.2 0.0002 0.363 0.2 0.2	-0.194 -1.609 -8.517 -1.013 -1.609 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	0.05	N/A	-2.996	N/A
MW373	Downgradient	t No	0.05	N/A	-2.996	N/A
MW385	Sidegradient	No	0.05	N/A	-2.996	N/A
MW388	Downgradient	Yes	0.0559	NO	-2.884	N/A
MW392	Downgradient	t No	0.05	N/A	-2.996	N/A
MW395	Upgradient	Yes	0.0541	NO	-2.917	N/A
MW397	Upgradient	Yes	0.103	NO	-2.273	N/A
N/A - Resu	lts identified as N	on-Detects	luring lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.183	S= 2.612	CV(1)= 0.364	K factor**= 2.523	TL(1)= 13.773	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.870	S= 0.552	CV(2)= 0.295	K factor**= 2.523	TL(2)= 3.261	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW305

Well Number:	MW 395	
Date Collected	Result	LN(Result)
8/13/2002	1.09	0.086
9/16/2002	5.79	1.756
10/16/2002	6.82	1.920
1/13/2003	5.01	1.611
4/10/2003	6.1	1.808
7/16/2003	8.51	2.141
10/14/2003	4.99	1.607
1/13/2004	6.58	1.884
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.259
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 9.57	2.259
Date Collected 8/13/2002 9/16/2002	Result 9.57 11	2.259 2.398
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 9.57 11 9.3	2.259 2.398 2.230
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 9.57 11 9.3 8.63	2.259 2.398 2.230 2.155
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 9.57 11 9.3 8.63 10	2.259 2.398 2.230 2.155 2.303
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 9.57 11 9.3 8.63 10 6.89	2.259 2.398 2.230 2.155 2.303 1.930

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	102	YES	4.625	N/A
MW373	Downgradient	Yes	30.6	N/A	3.421	N/A
MW385	Sidegradient	Yes	79.3	YES	4.373	N/A
MW388	Downgradient	Yes	112	YES	4.718	N/A
MW392	Downgradient	t No	5	N/A	1.609	N/A
MW395	Upgradient	No	7.89	N/A	2.066	N/A
MW397	Upgradient	Yes	13.8	N/A	2.625	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.650	S = 0.805	CV(1)= 1.238	K factor**= 2.523	TL(1)= 2.681	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.034	S = 1.030	CV(2) =-0.996	K factor**= 2.523	TL(2)= 1.564	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	(
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2 2. 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.031	N/A	-3.474	NO
MW373	Downgradien	Yes	1.62	N/A	0.482	NO
MW385	Sidegradient	Yes	0.0217	N/A	-3.830	NO
MW388	Downgradien	Yes	0.021	N/A	-3.863	NO
MW392	Downgradien	Yes	0.0307	N/A	-3.483	NO
MW395	Upgradient	Yes	0.0241	N/A	-3.726	NO
MW397	Upgradient	No	0.00755	5 N/A	-4.886	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S= 0.000	CV(1)=0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Upgradient Wells with Transformed Result	Historical Background Data from
	Upgradient Wells with Transformed Result

Well	Number:	MW395

Result	LN(Result)
1	0.000
1	0.000
1	0.000
1	0.000
1	0.000
1	0.000
1	0.000
1	0.000
MW397	
Result	LN(Result)
1	0.000
1	0.000 0.000
-	
1	0.000
1	0.000 0.000
1 1 1	0.000 0.000 0.000
1 1 1 1	0.000 0.000 0.000 0.000
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.371	NO	-0.992	N/A
MW373	Downgradien	t Yes	0.573	NO	-0.557	N/A
MW385	Sidegradient	Yes	0.248	NO	-1.394	N/A
MW388	Downgradien	t Yes	0.294	NO	-1.224	N/A
MW392	Downgradien	t Yes	0.602	NO	-0.507	N/A
MW395	Upgradient	Yes	0.581	NO	-0.543	N/A
MW397	Upgradient	Yes	0.415	NO	-0.879	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 23.103	S= 11.538	CV(1)= 0.499	K factor**= 2.523	TL(1)= 52.213	LL(1)=N/A
Statistics-Transformed Background	X= 2.357	S= 2.411	CV(2) =1.023	K factor**= 2.523	TL(2)= 8.439	LL(2)= N/A

	kground Data from fells with Transformed Result
Well Number:	MW395

wen runnber.	101 (0 5) 5	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.965
Date Collected	Result	
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 19.4 19 0.0179 17.8 20.3 19.4	2.965 2.944 -4.023 2.879 3.011 2.965

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	26.2	NO	3.266	N/A
MW373	Downgradien	t Yes	49.3	NO	3.898	N/A
MW385	Sidegradient	Yes	28.1	NO	3.336	N/A
MW388	Downgradien	t Yes	23	NO	3.135	N/A
MW392	Downgradien	t Yes	28.3	NO	3.343	N/A
MW395	Upgradient	Yes	27.1	NO	3.300	N/A
MW397	Upgradient	Yes	16.9	NO	2.827	N/A
N/A Pasul	te identified as N	Ion Detects	luring lab	oratory analysis or	data validatio	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =35.313 S =	1.250	CV(1)= 0.035	K factor**= 2.523	TL(1)= 38.466	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.564 S=	0.033	CV(2)= 0.009	K factor**= 2.523	TL(2)= 3.648	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW305

Well Number:	MW 395	
Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	3.555
4/10/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/13/2004	35	3.555
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.689
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 40	3.689
Date Collected 8/13/2002 9/16/2002	Result 40 35	3.689 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 40 35 35	3.689 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 40 35 35 35	3.689 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 40 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 40 35 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	19.4	NO	2.965	N/A
MW373	Downgradien	Yes	30.9	NO	3.431	N/A
MW385	Sidegradient	No	20	N/A	2.996	N/A
MW388	Downgradien	Yes	17.8	NO	2.879	N/A
MW392	Downgradien	Yes	29.3	NO	3.378	N/A
MW395	Upgradient	Yes	24.3	NO	3.190	N/A
MW397	Upgradient	No	14.5	N/A	2.674	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 51.844	S= 11.652	CV(1)= 0.225	K factor**= 2.523	TL(1)= 81.242	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.924	S= 0.229	CV(2)= 0.058	K factor**= 2.523	TL(2)= 4.501	LL(2)= N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	62.2	4.130
9/16/2002	64.7	4.170

4.130

4.151

4.160

4.159

4.146

4.104

3.661

3.684

3.671

3.701

3.740

3.738

3.709

3.728

LN(Result)

62.2

63.5

64.1

64

63.2

60.6

MW397

Result

38.9

39.8

39.3

40.5

42.1

42

40.8

41.6

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

continu utilizin urrent Quarter Data

Because $CV(1)$ is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	36	NO	3.584	N/A
MW373	Downgradient	Yes	45	NO	3.807	N/A
MW385	Sidegradient	Yes	31.5	NO	3.450	N/A
MW388	Downgradient	Yes	35.3	NO	3.564	N/A
MW392	Downgradient	Yes	50	NO	3.912	N/A
MW395	Upgradient	Yes	47.5	NO	3.861	N/A
MW397	Upgradient	Yes	33.5	NO	3.512	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis **Historical Background Comparison** cis-1,2-Dichloroethene UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

1	,	2	0			
Statistics-Background Data	X= 5.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.609	S = 0.000	CV(2)= 0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	5	1.609
9/30/2002	5	1.609
10/16/2002	5	1.609
1/13/2003	5	1.609
4/10/2003	5	1.609
7/16/2003	5	1.609
10/14/2003	5	1.609
1/13/2004	5	1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	· /
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	1	N/A	0.000	N/A
MW373	Downgradient	t No	1	N/A	0.000	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradient	t No	1	N/A	0.000	N/A
MW392	Downgradient	Yes	1.46	NO	0.378	N/A
MW395	Upgradient	No	1	N/A	0.000	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A
N/A - Resu	Its identified as N	Ion-Detects of	luring lah	oratory analysis or	data validatio	and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.007	S= 0.011	CV(1)= 1.515	K factor**= 2.523	TL(1)= 0.034	LL(1)=N/A
Statistics-Transformed Background Data	X= -6.053	S= 1.416	CV(2) =-0.234	K factor**= 2.523	TL(2)= -2.480	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	· · · ·
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	0.00032	5 N/A	-8.032	NO
MW373	Downgradient	No	0.001	N/A	-6.908	N/A
MW385	Sidegradient	No	0.001	N/A	-6.908	N/A
MW388	Downgradient	No	0.001	N/A	-6.908	N/A
MW392	Downgradient	No	0.001	N/A	-6.908	N/A
MW395	Upgradient	No	0.001	N/A	-6.908	N/A
MW397	Upgradient	No	0.001	N/A	-6.908	N/A
N/A - Resu	lts identified as N	on-Detects of	during labo	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 377.873	5 S= 52.101	CV(1)= 0.138	K factor**= 2.523	TL(1)= 509.326	LL(1)= N/A
Statistics-Transformed Background	X= 5.926	S= 0.136	CV(2) =0.023	K factor**= 2.523	TL(2)= 6.270	LL(2)=N/A

Historical Background	Data from	
Upgradient Wells with	Transformed Re	esult

MW204

Wall Manuels and

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.775
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 322 315 317 320 390 354	5.775 5.753 5.759 5.768 5.966 5.869

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	427	NO	6.057	N/A
MW373	Downgradient	Yes	622	YES	6.433	N/A
MW385	Sidegradient	Yes	433	NO	6.071	N/A
MW388	Downgradient	Yes	423	NO	6.047	N/A
MW392	Downgradient	Yes	430	NO	6.064	N/A
MW395	Upgradient	Yes	396	NO	5.981	N/A
MW397	Upgradient	Yes	326	NO	5.787	N/A
			U	oratory analysis or		

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.028	S= 0.013	CV(1)= 0.474	K factor**= 2.523	TL(1)= 0.061	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.662	S = 0.406	CV(2)=- 0.111	K factor**= 2.523	TL(2)= -2.638	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW395			

Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.0281	-3.572
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.02	-2.996 -2.996 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.02 0.02	-2.996 -2.996 -3.912 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.02 0.02 0.02	-2.996 -2.996 -3.912 -3.912 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.05 0.05 0.02 0.02 0.02 0.02 0.02	-2.996 -2.996 -3.912 -3.912 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	0.00091	NO	-7.002	N/A	
MW373	Downgradien	t Yes	0.00052	3 NO	-7.556	N/A	
MW385	Sidegradient	Yes	0.00050	3 NO	-7.595	N/A	
MW388	Downgradien	t Yes	0.00143	NO	-6.550	N/A	
MW392	Downgradien	t Yes	0.00196	NO	-6.235	N/A	
MW395	Upgradient	Yes	0.00081	9 NO	-7.107	N/A	
MW397	Upgradient	Yes	0.00060	8 NO	-7.405	N/A	
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.							

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 4.678	S= 2.431	CV(1)= 0.520	K factor**= 2.523	TL(1)= 10.812	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.414	S = 0.550	CV(2) =0.389	K factor**= 2.523	TL(2)= 2.802	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	Well Number: MW395				
Date Collected Result LN(Result)					
8/13/2002 7.29 1.987					

9/30/2002 4.03 1.394 10/16/2002 3.85 1.348 1/13/2003 2.36 0.859 4/10/2003 1.14 0.131 7/16/2003 1.76 0.565 10/14/2003 4.05 1.399 1/13/2004 4.26 1.449 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 11.56 2.448 9/16/2002 5.86 1.768 10/17/2002 5.94 1.782 1/13/2003 4.66 1.539 4/8/2003 3.77 1.327 7/16/2003 3.47 1.244 10/14/2003 5.34 1.675 1/13/2004 1.707 5.51

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	3.36	NO	1.212	N/A
MW373	Downgradien	t Yes	2.52	NO	0.924	N/A
MW385	Sidegradient	Yes	3.3	NO	1.194	N/A
MW388	Downgradien	t Yes	3.69	NO	1.306	N/A
MW392	Downgradien	t Yes	4	NO	1.386	N/A
MW395	Upgradient	Yes	3.39	NO	1.221	N/A
MW397	Upgradient	Yes	6.59	NO	1.886	N/A
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validatio	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =219.250 S = 34.107	CV(1)= 0.156	K factor**= 2.523	TL(1)= 305.301	LL(1)=N/A
Statistics-Transformed Background Data	X =5.379 S = 0.152	CV(2)= 0.028	K factor**= 2.523	TL(2)= 5.762	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MU204

Wall Manuels and

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.231
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 187 197 183 182 217 196	5.231 5.283 5.209 5.204 5.380 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	179	NO	5.187	N/A
MW373	Downgradien	t Yes	340	YES	5.829	N/A
MW385	Sidegradient	Yes	227	NO	5.425	N/A
MW388	Downgradien	t Yes	221	NO	5.398	N/A
MW392	Downgradien	t Yes	221	NO	5.398	N/A
MW395	Upgradient	Yes	203	NO	5.313	N/A
MW397	Upgradient	Yes	160	NO	5.075	N/A
			U	oratory analysis or		n and were not where the result for a

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.400	S = 0.514	CV(1)= 1.286	K factor**= 2.523	TL(1)= 1.698	LL(1)=N/A
Statistics-Transformed Background	X= -2.197	S= 2.634	CV(2)= -1.199	K factor**= 2.523	TL(2)= 4.449	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
8/12/2002							

8/13/2002 0.294-1.2249/16/2002 0.2 -1.60910/16/2002 0.0002 -8.517 1/13/2003 1.33 0.285 4/10/2003 1.31 0.270 7/16/2003 0.2 -1.60910/14/2003 0.1 -2.303 1/13/2004 0.1 -2.303Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 1.58 0.457 9/16/2002 0.232 -1.461 0.0002 10/17/2002 -8.517 1/13/2003 0.453 -0.792 4/8/2003 0.2 -1.609 7/16/2003 0.2 -1.60910/14/2003 -2.3030.1 1/13/2004 0.1 -2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	0.1	N/A	-2.303	N/A
MW373	Downgradient	t No	0.1	N/A	-2.303	N/A
MW385	Sidegradient	No	0.1	N/A	-2.303	N/A
MW388	Downgradient	t Yes	0.19	N/A	-1.661	NO
MW392	Downgradient	t Yes	0.552	N/A	-0.594	NO
MW395	Upgradient	Yes	0.0865	N/A	-2.448	NO
MW397	Upgradient	Yes	0.192	N/A	-1.650	NO
N/A - Resu	lts identified as N	Ion-Detects	during lah	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.102	S= 4.685	CV(1)= 0.515	K factor**= 2.523	TL(1)= 20.922	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.423	S= 2.408	CV(2)= 1.692	K factor**= 2.523	TL(2)= 7.500	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
0 14 0 10 0 0 0	10.5					

Date Collected	Result	LN(Result)
8/13/2002	12.5	2.526
9/16/2002	13	2.565
10/16/2002	0.0127	-4.366
1/13/2003	11.2	2.416
4/10/2003	17.5	2.862
7/16/2003	12.9	2.557
10/14/2003	13.4	2.595
1/13/2004	12.4	2.518
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.058
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 7.83	2.058
Date Collected 8/13/2002 9/16/2002	Result 7.83 7.64	2.058 2.033
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 7.83 7.64 0.00658	2.058 2.033 -5.024
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 7.83 7.64 0.00658 6.69	2.058 2.033 -5.024 1.901
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 7.83 7.64 0.00658 6.69 7.28	2.058 2.033 -5.024 1.901 1.985

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	11.1	NO	2.407	N/A
MW373	Downgradient	t Yes	18	NO	2.890	N/A
MW385	Sidegradient	Yes	10.1	NO	2.313	N/A
MW388	Downgradient	t Yes	9.43	NO	2.244	N/A
MW392	Downgradient	t Yes	9.56	NO	2.258	N/A
MW395	Upgradient	Yes	11.7	NO	2.460	N/A
MW397	Upgradient	Yes	7.38	NO	1.999	N/A
N/A - Resul	lts identified as N	Ion-Detects of	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.131	S= 0.195	CV(1)= 1.487	K factor**= 2.523	TL(1)= 0.624	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.104	S = 1.529	CV(2) =-0.493	K factor**= 2.523	TL(2)= 0.755	LL(2)=N/A

Historical Bac Upgradient W	kground Da ells with Tr	ata from ransformed Result						
Well Number: MW395								
Date Collected	Result	I N(Result)						

Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.764
Date Collected	Result	· · · ·
Date Collected 8/13/2002	Result 0.466	-0.764
Date Collected 8/13/2002 9/16/2002	Result 0.466 0.077	-0.764 -2.564
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.466 0.077 0.028	-0.764 -2.564 -3.576
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.466 0.077 0.028 0.0164	-0.764 -2.564 -3.576 -4.110
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.466 0.077 0.028 0.0164 0.0407	-0.764 -2.564 -3.576 -4.110 -3.202

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	t Yes	0.00167	N/A	-6.395	NO	
MW373	Downgradient	Yes	0.00263	N/A	-5.941	NO	
MW385	Sidegradient	No	0.005	N/A	-5.298	N/A	
MW388	Downgradient	Yes	0.00118	N/A	-6.742	NO	
MW392	Downgradient	Yes	0.142	N/A	-1.952	NO	
MW395	Upgradient	Yes	0.00188	N/A	-6.276	NO	
MW397	Upgradient	Yes	0.00499	N/A	-5.300	NO	
N/A - Resu	lts identified as N	on-Detects	during labo	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.007	S= 0.011	CV(1)= 1.451	K factor**= 2.523	TL(1)= 0.034	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.990	S = 1.443	CV(2)= -0.241	K factor**= 2.523	TL(2)= -2.349	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW305

Well Number

Well Number:	MW 395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00609	-5.101
4/10/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	()
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	0.0005	N/A	-7.601	N/A
MW373	Downgradient	t No	0.0005	N/A	-7.601	N/A
MW385	Sidegradient	Yes	0.00020	1 N/A	-8.512	NO
MW388	Downgradient	t No	0.0005	N/A	-7.601	N/A
MW392	Downgradient	t No	0.0005	N/A	-7.601	N/A
MW395	Upgradient	Yes	0.00024	1 N/A	-8.331	NO
MW397	Upgradient	No	0.0005	N/A	-7.601	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Nickel UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.018	S= 0.020	CV(1)= 1.089	K factor**= 2.523	TL(1)= 0.068	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.540	S = 1.020	CV(2) =-0.225	K factor**= 2.523	TL(2)= -1.965	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	`
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.005 0.00502	-2.996 -2.996 -5.298 -5.294
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.005 0.00502 0.00502	-2.996 -2.996 -5.298 -5.294 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	0.002	N/A	-6.215	N/A
MW373	Downgradient	No	0.002	N/A	-6.215	N/A
MW385	Sidegradient	Yes	0.00095	3 N/A	-6.956	NO
MW388	Downgradient	Yes	0.00122	N/A	-6.709	NO
MW392	Downgradient	Yes	0.00114	N/A	-6.777	NO
MW395	Upgradient	Yes	0.001	N/A	-6.908	NO
MW397	Upgradient	Yes	0.00061	2 N/A	-7.399	NO
N/A - Resul	lts identified as N	on-Detects	during labo	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 157.250 S=	52.376	CV(1)= 0.333	K factor**= 2.523	TL(1)= 289.395	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.003 S =	0.348	CV(2) =0.069	K factor**= 2.523	TL(2)= 5.880	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Res					
Well Number:	MW395				

Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.745
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 115 140 185 230 155 188	4.745 4.942 5.220 5.438 5.043 5.236

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	369	YES	5.911	N/A
MW373	Downgradien	t Yes	318	YES	5.762	N/A
MW385	Sidegradient	Yes	330	YES	5.799	N/A
MW388	Downgradien	t Yes	350	YES	5.858	N/A
MW392	Downgradien	t Yes	330	YES	5.799	N/A
MW395	Upgradient	Yes	336	YES	5.817	N/A
MW397	Upgradient	Yes	404	YES	6.001	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW370
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW373
concentration with respect to historical background data.	MW385
	MW388
	MW392
	MW395
	MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.048	S= 0.248	CV(1)= 0.041	K factor**= 2.904	TL(1)= 6.767	LL(1)=5.3289
Statistics-Transformed Background Data	X= 1.799	S= 0.042	CV(2)= 0.023	K factor**= 2.904	TL(2)= 1.920	LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	5.8	1.758			
9/16/2002	6	1.792			
10/16/2002	5.47	1.699			
1/13/2003	6	1.792			
4/10/2003	6.18	1.821			
7/16/2003	6	1.792			
10/14/2003	6.31	1.842			

1/13/2004	6.24	1.831
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	5.84	1.765
9/30/2002	6	1.792
10/17/2002	5.75	1.749
1/13/2003	6	1.792
4/8/2003	6.3	1.841
7/16/2003	6.2	1.825
10/14/2003	6.36	1.850
1/13/2004	6.32	1.844

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>		
MW370	Downgradient	Yes	6.09	NO	1.807	N/A		
MW373	Downgradient	Yes	6.14	NO	1.815	N/A		
MW385	Sidegradient	Yes	6.21	NO	1.826	N/A		
MW388	Downgradient	Yes	5.77	NO	1.753	N/A		
MW392	Downgradient	Yes	5.69	NO	1.739	N/A		
MW395	Upgradient	Yes	6.7	NO	1.902	N/A		
MW397	Upgradient	Yes	6.03	NO	1.797	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.590	S= 0.642	CV(1)= 0.404	K factor**= 2.523	TL(1)= 3.208	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.306	S = 2.457	CV(2) =-8.028	K factor**= 2.523	TL(2)= 5.892	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	2	0.693			
9/16/2002	2	0.693			
10/16/2002	0.00129	-6.653			
1/13/2003	1.51	0.412			
4/10/2003	1.67	0.513			
7/16/2003	1.73	0.548			
10/14/2003	1.7	0.531			
1/13/2004	1.58	0.457			
Well Number:	MW397				
Date Collected	Result	LN(Result)			

Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	2.03	0.708
9/16/2002	2	0.693
10/17/2002	0.00145	-6.536
1/13/2003	1.69	0.525
4/8/2003	1.73	0.548
7/16/2003	2	0.693
10/14/2003	1.92	0.652
1/13/2004	1.87	0.626

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	2.37	NO	0.863	N/A
MW373	Downgradien	t Yes	2.19	NO	0.784	N/A
MW385	Sidegradient	Yes	1.73	NO	0.548	N/A
MW388	Downgradien	t Yes	1.66	NO	0.507	N/A
MW392	Downgradien	t Yes	1.75	NO	0.560	N/A
MW395	Upgradient	Yes	1.62	NO	0.482	N/A
MW397	Upgradient	Yes	1.58	NO	0.457	N/A
N/A - Resul	ts identified as N	Ion-Detects	turing lah	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 29.560	S= 13.894	CV(1)= 0.470	K factor**= 2.523	TL(1)= 64.616	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.615	S = 2.411	CV(2) =0.922	K factor**= 2.523	TL(2)= 8.699	LL(2)=N/A

	kground Data from ells with Transformed Result
Wall Marsham	M31/205

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.561
Date Collected	Result	
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 35.2 34.3 0.0336 31.3 46.1 38.4	3.561 3.535 -3.393 3.444 3.831 3.648

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	38.1	NO	3.640	N/A
MW373	Downgradient	Yes	40.9	NO	3.711	N/A
MW385	Sidegradient	Yes	37.8	NO	3.632	N/A
MW388	Downgradient	Yes	40.4	NO	3.699	N/A
MW392	Downgradient	Yes	35.1	NO	3.558	N/A
MW395	Upgradient	Yes	30.7	NO	3.424	N/A
MW397	Upgradient	Yes	32.4	NO	3.478	N/A
N/A - Resul	V/A - Results identified as Non-Detects during laboratory analysis or data validation and were not					

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.756 S = 2.147	CV(1)= 0.200	K factor**= 2.523	TL(1)= 16.173	LL(1)= N/A
Statistics-Transformed Background Data	X =2.356 S = 0.203	CV(2) =0.086	K factor**= 2.523	TL(2)= 2.869	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW395			
Date Collected	Result	LN(Result)		
8/13/2002	10.3	2.332		
9/16/2002	9.1	2.208		

2.175

2.197

2.116

2.104

2.116

2.104

2.639

2.549

2.510

2.542

2.549

2.573

2.493

2.493

LN(Result)

8.8

8.3

8.2

8.3

8.2

MW397

Result

14

12.8

12.3

12.7

12.8

13.1

12.1

12.1

9

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	21.5	YES	3.068	N/A
MW373	Downgradien	t Yes	81.3	YES	4.398	N/A
MW385	Sidegradient	Yes	21.1	YES	3.049	N/A
MW388	Downgradien	t Yes	25.9	YES	3.254	N/A
MW392	Downgradien	t Yes	7.21	NO	1.975	N/A
MW395	Upgradient	Yes	10.4	NO	2.342	N/A
MW397	Upgradient	Yes	9.94	NO	2.297	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW370 MW373 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =11.359 S = 9	0.138	CV(1)= 0.805	K factor**= 2.523	TL(1)= 34.414	LL(1)=N/A
Statistics-Transformed Background Data	X =2.398 S = 0).859	CV(2) =0.358	K factor**= 2.523	TL(2)= 3.246	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	20.8	3.035				
9/16/2002	16.2	2.785				
10/16/2002	8.28	2.114				
1/13/2003	13	2.565				
4/10/2003	-9.37	#Func!				
7/16/2003	0.826	-0.191				
10/14/2003	14.1	2.646				
1/13/2004	0	#Func!				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	6.06	1.802				
9/16/2002	17.3	2.851				
10/17/2002	25.7	3.246				
1/13/2003	20.9	3.040				
4/8/2003	20.1	3.001				
7/16/2003	9.2	2.219				
10/14/2003	10.1	2.313				

8.54

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	96.2	YES	4.566	N/A
MW373	Downgradient	t No	-15.9	N/A	#Error	N/A
MW385	Sidegradient	Yes	161	YES	5.081	N/A
MW388	Downgradient	tYes	135	YES	4.905	N/A
MW392	Downgradient	t No	-2.24	N/A	#Error	N/A
MW395	Upgradient	No	9.05	N/A	2.203	N/A
MW397	Upgradient	Yes	21.9	NO	3.086	N/A
N/A - Resul	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not					

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.145

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

1	,	2	0			
Statistics-Background Data	X= 1.544	S= 0.856	CV(1)= 0.554	K factor**= 2.523	TL(1)= 3.702	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.325	S= 0.452	CV(2)= 1.393	K factor**= 2.523	TL(2)= 1.465	LL(2)=N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

MW305

Well Number

Well Number:	MW 395	
Date Collected	Result	LN(Result)
8/13/2002	1.6	0.470
9/16/2002	1.1	0.095
10/16/2002	1	0.000
1/13/2003	2	0.693
4/10/2003	3.4	1.224
7/16/2003	2	0.693
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 3.6	0.000 0.000 0.000 1.281
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 3.6 1.9	0.000 0.000 0.000 1.281 0.642
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 1 1 3.6 1.9 1.1	0.000 0.000 0.000 1.281 0.642 0.095

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	1.3	N/A	0.262	N/A
MW373	Downgradient	t No	1.14	N/A	0.131	N/A
MW385	Sidegradient	No	1.3	N/A	0.262	N/A
MW388	Downgradient	t No	1.13	N/A	0.122	N/A
MW392	Downgradient	t No	1.39	N/A	0.329	N/A
MW395	Upgradient	Yes	0.705	NO	-0.350	N/A
MW397	Upgradient	Yes	0.561	NO	-0.578	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =31.513	S= 18.609	CV(1)= 0.591	K factor**= 2.523	TL(1)= 78.462	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.240	S = 0.707	CV(2)= 0.218	K factor**= 2.523	TL(2)= 5.024	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW395			
Date Collected	Result	LN(Result)		

Date Collected	Result	LN(Result)
8/13/2002	50	3.912
9/16/2002	50	3.912
10/16/2002	50	3.912
1/13/2003	18.3	2.907
4/10/2003	51.2	3.936
7/16/2003	42.6	3.752
10/14/2003	12.3	2.510
1/13/2004	10	2.303
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.912
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 50	3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 50 50 50	3.912 3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 50 50 50 12	3.912 3.912 3.912 2.485
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 50 50 50 12 19.9	3.912 3.912 3.912 2.485 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	12.5	NO	2.526	N/A
MW373	Downgradient	Yes	19.9	NO	2.991	N/A
MW385	Sidegradient	Yes	5.54	NO	1.712	N/A
MW388	Downgradient	Yes	18.3	NO	2.907	N/A
MW392	Downgradient	Yes	32.9	NO	3.493	N/A
MW395	Upgradient	Yes	6.2	NO	1.825	N/A
MW397	Upgradient	Yes	6.38	NO	1.853	N/A
N/A - Resul	lts identified as N	on-Detects	luring lah	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis **Historical Background Comparison** Trichloroethene UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 7.313	S= 5 701	CV(1)= 0.780	K factor**= 2.523	TL(1) = 21.695	LL(1)=N/A
0					11(1) 21.095	
Statistics-Transformed Background Data	X= 1.467	S= 1.213	CV(2)= 0.827	K factor**= 2.523	TL(2)= 4.528	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	14	2.639
10/16/2002	12	2.485
1/13/2003	14	2.639
4/10/2003	14	2.639
7/16/2003	13	2.565
10/14/2003	12	2.485
1/13/2004	11	2.398
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	()
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1	1.609 1.609 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1	1.609 1.609 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	0.79	N/A	-0.236	N/A
MW373	Downgradient	Yes	5.53	NO	1.710	N/A
MW385	Sidegradient	Yes	0.42	N/A	-0.868	N/A
MW388	Downgradient	Yes	0.58	N/A	-0.545	N/A
MW392	Downgradient	Yes	12.6	NO	2.534	N/A
MW395	Upgradient	Yes	4.16	N/A	1.426	N/A
MW397	Upgradient	Yes	0.42	N/A	-0.868	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.021	S= 0.002	CV(1)= 0.105	K factor**= 2.523	TL(1)= 0.027	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.856	S = 0.100	CV(2) =-0.026	K factor**= 2.523	TL(2)= -3.604	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	0.025	-3.689			
9/16/2002	0.025	-3.689			
10/16/2002	0.02	-3.912			
1/13/2003	0.02	-3.912			
7/16/2003	0.02	-3.912			
10/14/2003	0.02	-3.912			
1/13/2004	0.02	-3.912			
4/12/2004	0.02	-3.912			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	0.025	-3.689			
9/16/2002	0.025	-3.689			
10/17/2002	0.02	-3.912			

0.02

0.02

0.02

0.02

0.02

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	No	0.01	N/A	-4.605	N/A		
MW373	Downgradient	No	0.01	N/A	-4.605	N/A		
MW385	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW388	Downgradient	No	0.01	N/A	-4.605	N/A		
MW392	Downgradient	No	0.01	N/A	-4.605	N/A		
MW395	Upgradient	No	0.01	N/A	-4.605	N/A		
MW397	Upgradient	Yes	0.00347	7 NO	-5.664	N/A		
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not		

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

-3.912

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.044	S= 0.034	CV(1)= 0.760	K factor**= 2.523	TL(1)= 0.129	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.342	S= 0.659	CV(2) =-0.197	K factor**= 2.523	TL(2)= -1.679	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul							
Well Number:	MW395						

Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/10/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
TT7 11 NT 1	1 (11/207	
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.303
Date Collected	Result	
Date Collected 8/13/2002	Result 0.1	-2.303
Date Collected 8/13/2002 9/16/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.1 0.1 0.025	-2.303 -2.303 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.1 0.1 0.025 0.035	-2.303 -2.303 -3.689 -3.352
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.1 0.025 0.035 0.035	-2.303 -2.303 -3.689 -3.352 -3.352
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.1 0.025 0.035 0.035 0.02	-2.303 -2.303 -3.689 -3.352 -3.352 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	0.0042	NO	-5.473	N/A		
MW373	Downgradient	Yes	0.00413	NO	-5.489	N/A		
MW385	Sidegradient	Yes	0.00388	NO	-5.552	N/A		
MW388	Downgradient	Yes	0.00515	NO	-5.269	N/A		
MW392	Downgradient	Yes	0.00743	NO	-4.902	N/A		
MW395	Upgradient	Yes	0.00479	NO	-5.341	N/A		
MW397	Upgradient	Yes	0.00515	NO	-5.269	N/A		
			U	oratory analysis or				

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T Third Quarter 2018 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=1.189 **S**= 2.424 CV(1)=2.038 K factor**= 3.188 LL(1)=N/A **Statistics-Background Data** TL(1)= 8.917 **Statistics-Transformed Background X**=-0.239 **S**= 2.098 CV(2)=-8.769 K factor**= 3.188 TL(2)= 1.675 LL(2)=N/A Data Because CV(1) is greater than 1, the C . . . ••

Current Background Data from Upgradient Wells with Transformed Result							atural logari est well result		ckground and Iculated
Well Number:	MW396						tilizing TL(2		
Date Collected	Result	LN(Result)				#	Because the	natural log	g was not
7/19/2016	-2.66	#Func!						•	und values, the
10/12/2016	2.09	0.737					L was consid	0	
1/17/2017	0.0175	-4.046					naximum bac		
4/20/2017	0.34	-1.079	r					8	
7/19/2017	1.07	0.068	Curren	t Quarter Data					
10/9/2017	-0.033	#Func!			D · · 10	D 1	D 10. TH (1)0		
1/23/2018	5.34	1.675	Well No.	Gradient	Detected?	Result	Result \geq TL(1)?	LN(Result)	LN(Result) > TL(2)
4/19/2018	3.35	1.209	MW390	Downgradient	Yes	50.5	N/A	3.922	YES

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis **Current Background Comparison UNITS: mV** UCRS **Oxidation-Reduction Potential**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =240.873	5 S = 55.375	CV(1)= 0.230	K factor**= 3.188	TL(1)= 417.411	LL(1)=N/A
Statistics-Transformed Background	X= 5.462	S = 0.223	CV(2)= 0.041	K factor**= 3.188	TL(2)= 6.172	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Date Collected	Result	LN(Result)
7/19/2016	339	5.826
10/12/2016	221	5.398
1/17/2017	209	5.342
4/20/2017	172	5.147
7/19/2017	291	5.673
10/9/2017	217	5.380
1/23/2018	203	5.313
4/19/2018	275	5.617

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW396

Data

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	331	NO	5.802	N/A			
MW390	Downgradient	Yes	360	NO	5.886	N/A			
MW393	Downgradient	t Yes	358	NO	5.881	N/A			
MW396	Upgradient	Yes	353	NO	5.866	N/A			

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Backg	tatistics-Transformed Background X=1.15		X= -3.161	S= 7.489	CV(1)=- 2.369	K factor**= 3.188	TL(1)= 20.714	LL(1)=N/A	
Statistics-Trans Data			X= 1.153	S = 0.684	CV(2)= 0.593	K factor**= 3.188	TL(2)= 1.766	LL(2)=N/A	
Current Back Wells with Tr	ansformed I		ndient			1, assume	V(1) is less than normal distribut ⁄ith statistical an L(1).	tion and	
Well Number:	MW396		<u></u>			0			
Date Collected	Result	LN(Result	t)				he natural log w		
7/19/2016	3.89	1.358				possbile fo	r all background	d values, the	
10/12/2016	-10.9	#Func!				TL was co	nsidered equal t	o the	
1/17/2017	3.72	1.314				maximum			
4/20/2017	-7.44	#Func!					8		
7/19/2017	1.19	0.174		Current	Quarter Data				
10/9/2017	-11.3	#Func!		L					
1/23/2018	5.85	1.766		Well No. Gradient Detected? Result Result >TL(1)? LN(N(Result) > TL(2)	

MW390 Downgradient Yes

57

YES

4.043

Conclusion of Statistical Analysis on Current Data

#Func!

-10.3

4/19/2018

Wells with Exceedances MW390

N/A

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis **Current Background Comparison** URGA Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.784	S= 7.632	CV(1)= 0.780	K factor**= 2.523	TL(1)=29.038	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.261	S = 0.656	CV(2)= 0.290	K factor**= 2.523	TL(2)= 3.114	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW384	Sidegradient	Yes	100	YES	4.605	N/A		
MW387	Downgradient	Yes	147	YES	4.990	N/A		

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

1.889

3.077

2.610

3.001

3.114

2.573

2.549

2.667

1.396

0.920

1.717

2.207

1.839

#Func!

#Func!

2.092

LN(Result)

MW220

Result

6.61

21.7

13.6

20.1

22.5

13.1

12.8

14.4

MW394

Result

4.04

2.51

5.57

9.09

6.29

-0.603

-3.27

8.1

Wells with Transformed Result

Well Number:

Date Collected

7/19/2016

10/10/2016

1/11/2017

4/19/2017

7/19/2017

10/9/2017

1/23/2018

4/17/2018

7/19/2016

10/12/2016

1/17/2017

4/20/2017

7/19/2017

10/9/2017

1/23/2018

4/19/2018

Well Number:

Date Collected

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-6

Wells with Exceedances MW384 MW387

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW384	Sidegradient	Yes	100	YES	4.605	N/A
MW387	Downgradient	Yes	147	YES	4.990	N/A

C-746-S/T Third Quarter 2018 Statistical Analysis Current Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 20.497	S= 10.197	CV(1)= 0.497	K factor**= 2.523	TL(1)= 46.224	LL(1)=N/A
Statistics-Transformed Background	X =2.923	S = 0.439	CV(2)= 0.150	K factor**= 2.523	TL(2)= 4.031	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW220	
Date Collected	Result	LN(Result)
7/19/2016	33.1	3.500
10/10/2016	13.9	2.632
1/11/2017	12.7	2.542
4/19/2017	24	3.178
7/19/2017	46.8	3.846
10/9/2017	14.2	2.653
1/23/2018	18.9	2.939
4/17/2018	26.3	3.270
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.552
Date Collected	Result	,
Date Collected 7/19/2016	Result 34.9	3.552
Date Collected 7/19/2016 10/12/2016	Result 34.9 13.6	3.552 2.610
Date Collected 7/19/2016 10/12/2016 1/17/2017	Result 34.9 13.6 9.95	3.552 2.610 2.298
Date Collected 7/19/2016 10/12/2016 1/17/2017 4/20/2017	Result 34.9 13.6 9.95 16.1	3.552 2.610 2.298 2.779
Date Collected 7/19/2016 10/12/2016 1/17/2017 4/20/2017 7/19/2017	Result 34.9 13.6 9.95 16.1 20	3.552 2.610 2.298 2.779 2.996

Current Background Data from Upgradient

Wells with Transformed Result

Data

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	39.1	NO	3.666	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =213.875 S = 69.391	CV(1)= 0.324	K factor**= 2.523	TL(1)= 388.947	LL(1)=N/A
Statistics-Transformed Background Data	X =5.331 S = 0.252	CV(2)= 0.047	K factor**= 2.523	TL(2)= 5.966	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected Result LN(Result) 7/19/2016 200 5.298 10/10/2016 187 5.231 1/11/2017 201 5.303 4/19/2017 193 5.263 7/19/2017 451 6.111 10/9/2017 147 4.990 1/23/2018 163 5.094 4/17/2018 5.209 183 Well Number: MW394 Date Collected Result LN(Result) 7/19/2016 231 5.442 10/12/2016 219 5.389 1/17/2017 213 5.361 4/20/2017 203 5.313 7/19/2017 203 5.313 10/9/2017 170 5.136 1/23/2018 187 5.231 4/19/2018 271 5.602

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	t Yes	323	NO	5.778	N/A
MW391	Downgradient	Yes	319	NO	5.765	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis **Current Background Comparison** URGA Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.193 S = 1.554	CV(1)= 0.152	K factor**= 2.523	TL(1)= 14.112	LL(1)=N/A
Statistics-Transformed Background Data	X =2.310 S = 0.156	CV(2)= 0.067	K factor**= 2.523	TL(2)= 2.704	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

8.7	2.163							
8.48	2.138							
9.11	2.209							
9.36	2.236	Curre	nt Quarter Data					
8.67	2.160	Wall N	o. Gradient	Dataatad?	Dogult	\mathbf{D} agailt $\mathbf{\nabla} \mathbf{TL}(1)$	I N(D agult)	I N(Pagult) > TL(2)
8.04	2.084	well no	b. Gradient	Delected?	Result	Result $\geq 1L(1)$?	LN(Result)	LN(Result) > TL(2)
9.63	2.265	MW37	2 Downgradient	t Yes	16.2	YES	2.785	N/A
MW394								
Result	LN(Result)							
11.7	2.460							
12.1	2.493							
11.7	2.460							

Conclusion of Statistical Analysis on Current Data

2.451

2.434

2.434

2.442

2.460

Current Background Data from Upgradient

LN(Result)

2.078

MW220

Result

7.99

11.6

11.4

11.4

11.5

11.7

Wells with Transformed Result

Well Number:

Date Collected

7/19/2016

10/10/2016

1/11/2017

4/19/2017

7/19/2017

10/9/2017

1/23/2018

4/17/2018

7/19/2016

10/12/2016

1/17/2017

4/20/2017

7/19/2017

10/9/2017

1/23/2018

4/19/2018

Well Number:

Date Collected

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =353.813 S = 52.821	CV(1)= 0.149	K factor**= 2.523	TL(1)= 487.079	LL(1)=N/A
Statistics-Transformed Background Data	X =5.858 S = 0.151	CV(2)= 0.026	K factor**= 2.523	TL(2)= 6.240	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected Result LN(Result) 7/19/2016 425 6.052 10/10/2016 6.026 414 6.033 1/11/2017 417 4/19/2017 283 5.645 7/19/2017 350 5.858 10/9/2017 436 6.078 1/23/2018 362 5.892 4/17/2018 305 5.720 Well Number: MW394 Date Collected Result LN(Result) 7/19/2016 348 5.852 10/12/2016 369 5.911 1/17/2017 397 5.984 4/20/2017 306 5.724 7/19/2017 338 5.823 10/9/2017 5.820 337 1/23/2018 264 5.576 4/19/2018 310 5.737

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data	1				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW221	Sidegradient	Yes	540	YES	6.292	N/A
MW222	Sidegradient	Yes	464	NO	6.140	N/A
MW223	Sidegradient	Yes	483	NO	6.180	N/A
MW224	Sidegradient	Yes	458	NO	6.127	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW221

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Current Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =36.663 S =	= 4.926	CV(1)= 0.134	K factor**= 2.523	TL(1)= 49.090	LL(1)= N/A
Statistics-Transformed Background Data	X =3.593 S =	= 0.137	CV(2) =0.038	K factor**= 2.523	TL(2)= 3.938	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW391	Downgradien	t Yes	85.8	YES	4.452	N/A

10/10/2016	39.6	3.679
1/11/2017	41	3.714
4/19/2017	41.4	3.723
7/19/2017	42	3.738
10/9/2017	40.9	3.711
1/23/2018	38.8	3.658
4/17/2018	44.6	3.798
Well Number:	MW394	
Date Collected	Result	LN(Result)
Date Collected 7/19/2016	Result 31.4	LN(Result) 3.447
		. ,
7/19/2016	31.4	3.447
7/19/2016 10/12/2016	31.4 34.9	3.447 3.552
7/19/2016 10/12/2016 1/17/2017	31.4 34.9 35.3	3.447 3.552 3.564
7/19/2016 10/12/2016 1/17/2017 4/20/2017	31.4 34.9 35.3 30.7	3.447 3.552 3.564 3.424

30.4

Current Background Data from Upgradient

LN(Result)

3.684

MW220

Result

39.8

Wells with Transformed Result

Well Number:

Date Collected

7/19/2016

4/19/2018

Conclusion of Statistical Analysis on Current Data

3.414

Wells with Exceedances MW391

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =14.775 S = 4.669	CV(1)= 0.316	K factor**= 2.523	TL(1)= 26.555	LL(1)=N/A
Statistics-Transformed Background Data	X =2.646 S = 0.316	CV(2)= 0.120	K factor**= 2.523	TL(2)= 3.444	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected Result LN(Result) 7/19/2016 17.9 2.885 10/10/2016 2.929 18.7 2.912 1/11/2017 18.4 19.9 2.991 4/19/2017 7/19/2017 22.7 3.122 10/9/2017 17.6 2.868 1/23/2018 16.4 2.797 4/17/2018 21.1 3.049 Well Number: MW394 Date Collected Result LN(Result) 7/19/2016 10.5 2.351 10/12/2016 10.4 2.342 1/17/2017 10.8 2.380 4/20/2017 10.5 2.351 7/19/2017 10.2 2.322 10/9/2017 10.5 2.351 1/23/2018 10.4 2.342 4/19/2018 10.4 2.342

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	24.7	NO	3.207	N/A
MW223	Sidegradient	Yes	18.6	NO	2.923	N/A
MW372	Downgradient	Yes	81.5	YES	4.401	N/A
MW384	Sidegradient	Yes	24.3	NO	3.190	N/A
MW391	Downgradient	t Yes	87.2	YES	4.468	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-12

Wells with Exceedances MW372 MW391

C-746-S/T Third Quarter 2018 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

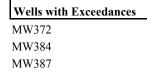
Statistics-Background Data	X =13.667 S = 9.318	CV(1)= 0.682	K factor**= 2.523	TL(1)= 37.175	LL(1)=N/A
Statistics-Transformed Background Data	X =2.175 S = 1.312	CV(2) =0.603	K factor**= 2.523	TL(2)= 5.485	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected Result LN(Result) 7/19/2016 28.9 3.364 10/10/2016 2.510 12.3 1/11/2017 23.2 3.144 3.030 4/19/2017 20.7 7/19/2017 22.7 3.122 10/9/2017 18.3 2.907 1/23/2018 27.43.311 4/17/2018 19.9 2.991 Well Number: MW394 Date Collected Result LN(Result) 7/19/2016 5.87 1.770 10/12/2016 4.39 1.479 1/17/2017 7.79 2.053 4/20/2017 7.82 2.057 7/19/2017 11.1 2.407 10/9/2017 1.99 0.688 1/23/2018 6.15 1.816 4/19/2018 0.158 -1.845

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW372	Downgradient	Yes	70.9	YES	4.261	N/A			
MW384	Sidegradient	Yes	126	YES	4.836	N/A			
MW387	Downgradient	t Yes	205	YES	5.323	N/A			

Conclusion of Statistical Analysis on Current Data


The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.275	S = 3.448	CV(1)= 0.549	K factor**= 2.523	TL(1)= 14.973	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.841	S = 0.419	CV(2) =0.228	K factor**= 2.523	TL(2)= 2.493	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	102	YES	4.625	N/A		
MW385	Sidegradient	Yes	79.3	YES	4.373	N/A		
MW388	Downgradient	Yes	112	YES	4.718	N/A		

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

#Func!

1.286

1.670

2.029

1.641

2.100

2.027

1.686

2.019

1.746

1.486

2.493

2.251

2.477 0.978

1.717

LN(Result)

MW395

Result

-1.87

3.62

5.31

7.61

5.16

8.17

7.59

5.4

MW397

Result

7.53

5.73

4.42

12.1

9.5

11.9

2.66

5.57

Wells with Transformed Result

Well Number:

Date Collected

7/19/2016

10/12/2016

1/17/2017

4/20/2017

7/19/2017

10/9/2017

1/23/2018

4/19/2018

7/19/2016

10/11/2016

1/11/2017

4/20/2017

7/19/2017

10/9/2017

1/23/2018

4/17/2018

Well Number:

Date Collected

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-14

Wells with Exceedances MW370 MW385 MW388

C-746-S/T Third Quarter 2018 Statistical Analysis Current Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =355.000 S = 31.692	CV(1)= 0.089	K factor**= 2.523	TL(1)= 434.960	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.868 S = 0.090	CV(2)= 0.015	K factor**= 2.523	TL(2)= 6.095	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW395	
Date Collected	Result	LN(Result)
7/19/2016	394	5.976
10/12/2016	377	5.932
1/17/2017	386	5.956
4/20/2017	392	5.971
7/19/2017	392	5.971
10/9/2017	378	5.935
1/23/2018	384	5.951
4/19/2018	372	5.919
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.808
Date Collected	Result	
Date Collected 7/19/2016	Result 333	5.808
Date Collected 7/19/2016 10/11/2016	Result 333 334	5.808 5.811
Date Collected 7/19/2016 10/11/2016 1/11/2017	Result 333 334 337	5.808 5.811 5.820
Date Collected 7/19/2016 10/11/2016 1/11/2017 4/20/2017	Result 333 334 337 320	5.808 5.811 5.820 5.768
Date Collected 7/19/2016 10/11/2016 1/11/2017 4/20/2017 7/19/2017	Result 333 334 337 320 315	5.808 5.811 5.820 5.768 5.753

Current Background Data from Upgradient

Wells with Transformed Result

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	622	YES	6.433	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis **Current Background Comparison Dissolved Solids** LRGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =187.375 S = 32.172	CV(1)= 0.172	K factor**= 2.523	TL(1)= 268.545	LL(1)=N/A
Statistics-Transformed Background	X = 5219 $S = 0174$	CV(2) = 0.033	K factor**= 2 523	TL(2) = 5.658	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

5.407							
5.318	Commont	Quantan Data					
5.347	Current	Quarter Data					
5.094 5.170	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
5.549	MW373	Downgradien	t Yes	340	YES	5.829	N/A
LN(Result)							
5 100							

Conclusion of Statistical Analysis on Current Data

Data

Well Number:

Date Collected

7/19/2016

10/12/2016

1/17/2017

4/20/2017

7/19/2017

10/9/2017

1/23/2018

4/19/2018

7/19/2016

10/11/2016

1/11/2017

4/20/2017

7/19/2017

10/9/2017

1/23/2018

4/17/2018

Well Number:

Date Collected

Current Background Data from Upgradient

LN(Result)

5.389

5.366

5.130

5.112

5.231

5.193

5.142

5.050

5.187

4.820

MW395

Result

219

214

223

204

210

163

176

257

MW397

Result

169

166

187

180

171

156

179

124

Wells with Transformed Result

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =343.938 S = 71.621	CV(1)= 0.208	K factor**= 2.523	TL(1)= 524.637	LL(1)=N/A
Statistics-Transformed Background Data	X =5.815 S = 0.245	CV(2)= 0.042	K factor**= 2.523	TL(2)= 6.434	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW395 Date Collected Result LN(Result) 7/19/2016 428 6.059 10/12/2016 357 5.878 1/17/2017 299 5.700 4/20/2017 190 5.247 7/19/2017 392 5.971 10/9/2017 385 5.953 1/23/2018 195 5.273 4/19/2018 5.905 367 Well Number: MW397 Date Collected Result LN(Result) 7/19/2016 420 6.040 10/11/2016 378 5.935 1/11/2017 416 6.031 4/20/2017 282 5.642 7/19/2017 352 5.864 10/9/2017 362 5.892 1/23/2018 361 5.889 4/17/2018 319 5.765

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	369	NO	5.911	N/A	
MW373	Downgradient	Yes	318	NO	5.762	N/A	
MW385	Sidegradient	Yes	330	NO	5.799	N/A	
MW388	Downgradient	Yes	350	NO	5.858	N/A	
MW392	Downgradient	Yes	330	NO	5.799	N/A	
MW395	Upgradient	Yes	336	NO	5.817	N/A	
MW397	Upgradient	Yes	404	NO	6.001	N/A	

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.417	S= 0.682	CV(1)= 0.066	K factor**= 2.523	TL(1)= 12.138	LL(1)=N/A
Statistics-Transformed Background Data	X =2.341	S = 0.065	CV(2)= 0.028	K factor**= 2.523	TL(2)= 2.506	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW395 Date Collected Result LN(Result) 7/19/2016 9.9 2.293 10/12/2016 9.86 2.288 1/17/2017 10.1 2.313 4/20/2017 10.4 2.342 7/19/2017 10 2.303 10/9/2017 10.1 2.313 1/23/2018 10.4 2.342 4/19/2018 10.5 2.351 Well Number: MW397 Date Collected Result LN(Result) 7/19/2016 11 2.398 10/11/2016 11.3 2.425 1/11/2017 11.6 2.451 4/20/2017 9.7 2.272 7/19/2017 10.1 2.313 10/9/2017 11.1 2.407 1/23/2018 11.4 2.434 4/17/2018 9.21 2.220

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	21.5	YES	3.068	N/A	
MW373	Downgradient	Yes	81.3	YES	4.398	N/A	
MW385	Sidegradient	Yes	21.1	YES	3.049	N/A	
MW388	Downgradient	Yes	25.9	YES	3.254	N/A	

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW370 MW373 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Third Quarter 2018 Statistical Analysis **Current Background Comparison Technetium-99 LRGA** UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.984 S = 6.477	CV(1)= 0.499	K factor**= 2.523	TL(1)= 29.325	LL(1)=N/A
Statistics-Transformed Background Data	X =2.415 S = 0.631	CV(2)= 0.261	K factor**= 2.523	TL(2)= 4.007	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	96.2	YES	4.566	N/A	
MW385	Sidegradient	Yes	161	YES	5.081	N/A	
MW388	Downgradient	Yes	135	YES	4.905	N/A	

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-19

Wells with Exceedances MW370 MW385 MW388

Well Number:	MW395	
Date Collected	Result	LN(Result)
7/19/2016	13.2	2.580
10/12/2016	2.15	0.765
1/17/2017	11.4	2.434
4/20/2017	9.95	2.298
7/19/2017	19.2	2.955
10/9/2017	3.67	1.300
1/23/2018	15.7	2.754
4/19/2018	9.83	2.285

Current Background Data from Upgradient

Wells with Transformed Result

Well Number:	MW397	
Date Collected	Result	LN(Result)
7/19/2016	14.9	2.701
10/11/2016	9.1	2.208
1/11/2017	8.85	2.180
4/20/2017	14.9	2.701
7/19/2017	29.8	3.395
10/9/2017	13	2.565
1/23/2018	13.2	2.580
4/17/2018	18.9	2.939

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

October 8, 2018

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an Environmental Scientist, with a bachelor's degree in science, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the third quarter 2018 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

an

Jennifer R. Watson

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

GROUNDWATER FLOW RATE AND DIRECTION

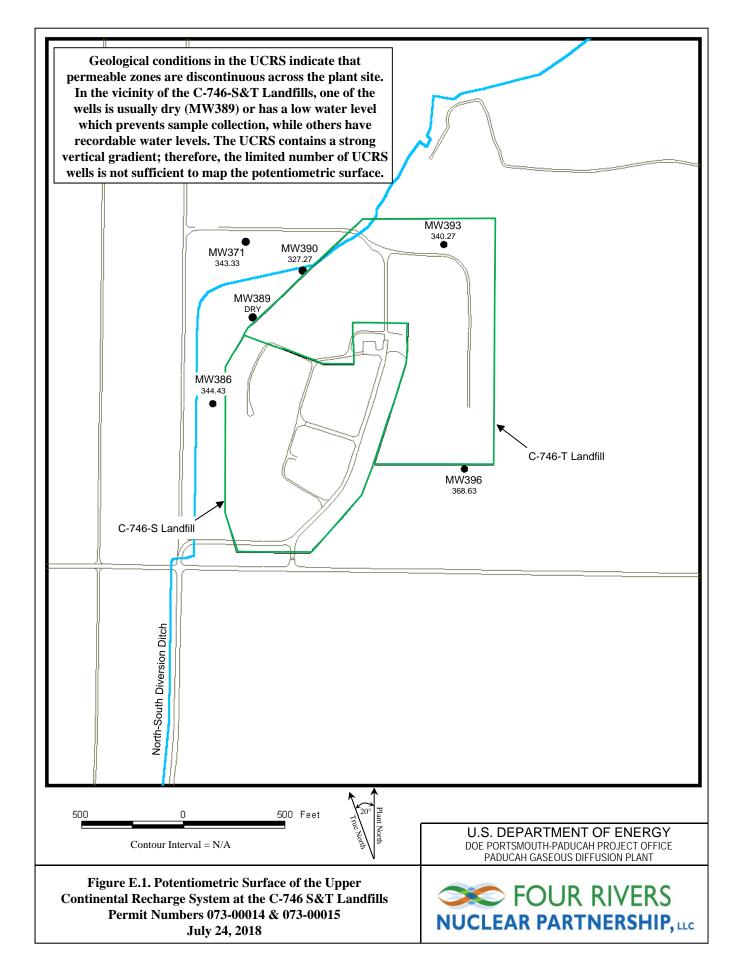
THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT—QUARTERLY, 3rd CY 2018 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u> LAB ID: <u>None</u> For Official Use Only

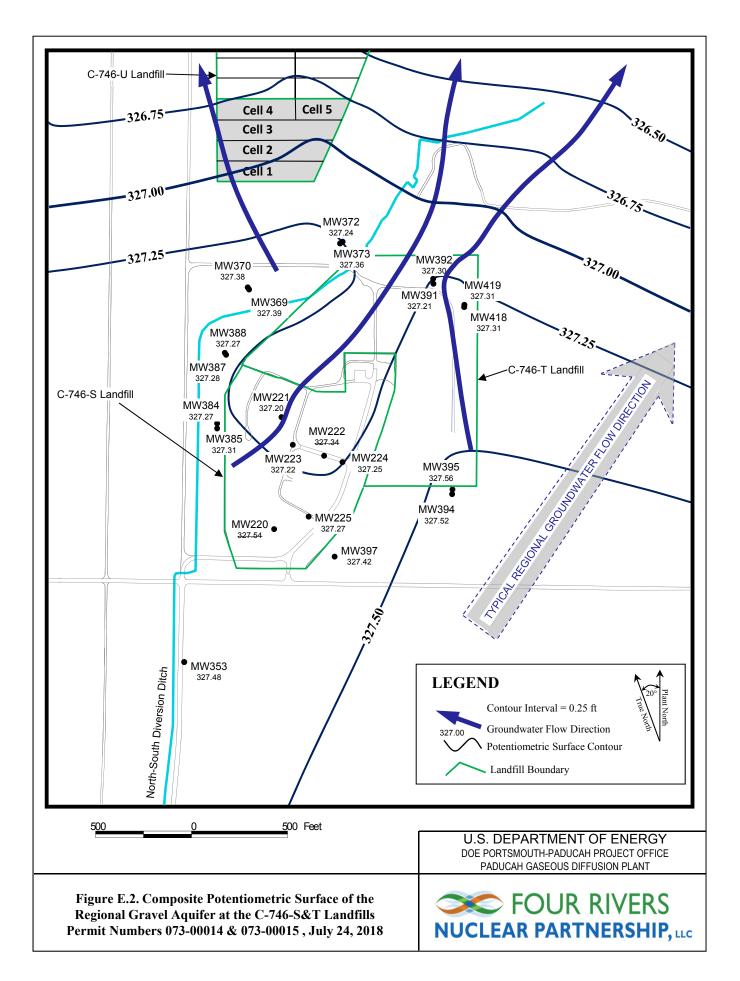
GROUNDWATER FLOW RATE AND DIRECTION

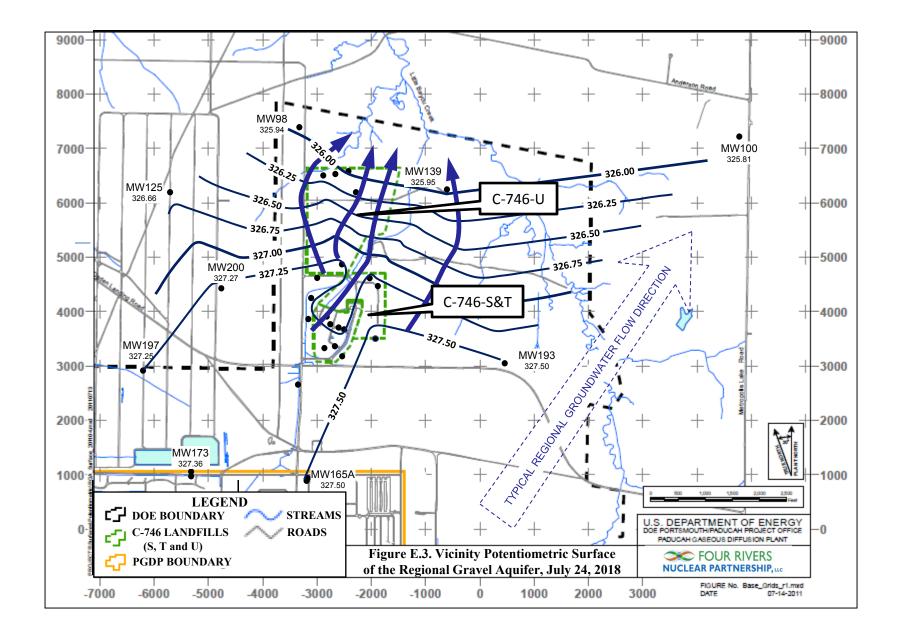
Whenever monitoring wells (MWs) are sampled, 401 *KAR* 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the third quarter 2018 and to determine the groundwater flow rate and direction.


Water levels during this reporting period were measured on July 24, 2018. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters.¹ Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 4.96×10^{-4} feet (ft)/ft. Additional water level measurements in July (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 5.93×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.


Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for July 2018, the groundwater flow direction in the immediate area of the landfill was oriented north to northeastward.


¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

							Ra	w Data	*Corre	ected Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
7/24/2018	7:53	MW220	URGA	382.27	30.00	-0.01	54.74	327.53	54.73	327.54
7/24/2018	7:56	MW221	URGA	391.51	30.00	-0.01	64.32	327.19	64.31	327.20
7/24/2018	8:00	MW222	URGA	395.39	30.00	-0.01	68.06	327.33	68.05	327.34
7/24/2018	7:58	MW223	URGA	394.49	30.00	-0.01	67.28	327.21	67.27	327.22
7/24/2018	8:03	MW224	URGA	395.82	30.00	-0.01	68.58	327.24	68.57	327.25
7/24/2018	7:55	MW225	URGA	385.88	30.00	-0.01	58.62	327.26	58.61	327.27
7/24/2018	8:34	MW353	LRGA	375.12	30.00	-0.01	47.65	327.47	47.64	327.48
7/24/2018	7:48	MW384	URGA	365.42	29.99	0.00	38.15	327.27	38.15	327.27
7/24/2018	7:50	MW385	LRGA	365.86	29.99	0.00	38.55	327.31	38.55	327.31
7/24/2018	7:49	MW386	UCRS	365.47	29.99	0.00	21.04	344.43	21.04	344.43
7/24/2018	7:45	MW387	URGA	363.65	29.99	0.00	36.37	327.28	36.37	327.28
7/24/2018	7:44	MW388	LRGA	363.64	29.99	0.00	36.37	327.27	36.37	327.27
7/24/2018	0.32	MW389	UCRS	364.26	29.99		DRY		DRY	
7/24/2018	7:40	MW390	UCRS	360.60	29.99	0.00	33.33	327.27	33.33	327.27
7/24/2018	7:28	MW391	URGA	366.83	29.99	0.00	39.62	327.21	39.62	327.21
7/24/2018	7:30	MW392	LRGA	366.07	29.99	0.00	38.77	327.30	38.77	327.30
7/24/2018	7:29	MW393	UCRS	366.81	29.99	0.00	26.54	340.27	26.54	340.27
7/24/2018	7:37	MW394	URGA	378.64	29.99	0.00	51.12	327.52	51.12	327.52
7/24/2018	7:35	MW395	LRGA	379.34	29.99	0.00	51.78	327.56	51.78	327.56
7/24/2018	7:36	MW396	UCRS	378.84	29.99	0.00	10.21	368.63	10.21	368.63
7/24/2018	7:40	MW397	LRGA	387.12	29.99	0.00	59.70	327.42	59.70	327.42
7/24/2018	7:32	MW418	URGA	367.37	29.99	0.00	40.06	327.31	40.06	327.31
7/24/2018	7:33	MW419	LRGA	367.22	29.99	0.00	39.91	327.31	39.91	327.31
Initial Baro	metric Pr	essure	29.99							
Elev = eleva	ation									
amsl = abov	ve mean s	ea level								
BP = barom	etric pres	ssure								
	-	er in feet bel	ow datum							
1		ional Gravel								
		ional Gravel								
	-		arge System							
*Assumes a	-		č ,							

Table E.1. C-746-S&T Landfills Third Quarter 2018 (July) Water Levels

	ft/ft
Beneath Landfill Mound	4.96×10^{-4}
Vicinity	5.93×10^{-4}

Table E.2. C-746-S&T Landfills Hydraulic Gradients

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Conductivity (K)		Specific 1	Discharge (q)	Average Linear Velocity (v)		
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s	
Beneath Landfill Mound						
725	0.256	0.360	$1.27 imes 10^{-4}$	1.44	$5.08 imes 10^{-4}$	
425	0.150	0.211	7.45×10^{-5}	0.844	$2.98 imes 10^{-4}$	
Vicinity						
725	0.256	0.430	1.52×10^{-4}	1.72	$6.07 imes 10^{-4}$	
425	0.150	0.252	$8.89 imes 10^{-5}$	1.01	3.56×10^{-4}	

APPENDIX F

NOTIFICATIONS

THIS PAGE INTENTIONALLY LEFT BLANK

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the third quarter 2018 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	Parameter	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW391 MW372, MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW370, MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

8/27/2018

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4818	MW370	Beta activity	9310	102	pCi/L	50
8004-4808	MW372	Trichloroethene	8260B	5.32	ug/L	5
8004-4792	MW373	Trichloroethene	8260B	5.53	ug/L	5
8004-4809	MW384	Beta activity	9310	100	pCi/L	50
8004-4810	MW385	Beta activity	9310	79.3	pCi/L	50
8004-4815	MW387	Beta activity	9310	147	pCi/L	50
8004-4816	MW388	Beta activity	9310	112	pCi/L	50
8004-4811	MW390	Beta activity	9310	50.5	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	8.04	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	12.6	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

THIS PAGE INTENTIONALLY LEFT BLANK

Gradient Monitoring Woll	S						_	_			URG	1								LRG/	1		
Manitoning Wall	5	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
ACETONE																							
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
ALPHA ACTIVITY																							
Quarter 4, 2002																							
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*					-	*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003							*	*			*		-1-	*									
Quarter 1, 2003			*				*	*			*												
Quarter 2, 2004			Ŧ				*	Ŧ			Ŧ			*									
							*							*									
Quarter 3, 2004	<u> </u>		*			<u> </u>	*							-	<u> </u>	<u> </u>							──
Quarter 4, 2004	L					L	ļ			<u> </u>	ļ	ļ			ļ	<u> </u>							─
Quarter 1, 2005			*																				⊢
Quarter 2, 2005			*				*																
Quarter 3, 2005			*				*			*											*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
							*										*						
Quarter 1, 2007																							
Quarter 2, 2007							*										*						<u> </u>
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												-
Quarter 1, 2009			*				*				*												
Quarter 2, 2010			*								*												
														J.			÷			J.			
Quarter 3, 2010			*								*			*			*			*			<u> </u>
Quarter 1, 2011							*				*												
Quarter 2, 2011			*								*												ĺ
Quarter 2, 2012			*																				
Quarter 3, 2012							*																
Quarter 1, 2013		1					*				*				1	1					1		<u> </u>
Quarter 3, 2013			*																				<u> </u>
Quarter 1, 2014	-					-	*																<u> </u>
Quarter 2, 2014											*												├
			*																				──
Quarter 4, 2014	L		*	<u> </u>		L	*	<u> </u>	<u> </u>	<u> </u>	ļ	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>		<u> </u>	
Quarter 1, 2016							*							ىر									—
Quarter 2, 2016							ч.							*									—
Quarter 1, 2017	L					L	*																
Quarter 4, 2017	L					L	L.																*
Quarter 1, 2018							*										_						
BARIUM							_	_															
Quarter 3, 2003																							L
Quarter 4, 2003																							
BETA ACTIVITY																							
Quarter 4, 2002																							
Quarter 1, 2003															1	1							
Quarter 2, 2003																							
Quarter 3, 2003																							
	-	•	-			-											-			•	•		

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills

Groundwater Flow System	1		UCRS	S							URGA	ł								LRG/	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																						-	
Quarter 4, 2003	1																					-	
Quarter 1, 2004																						<u> </u>	
Quarter 2, 2004																							1
Quarter 3, 2004																							
Quarter 4, 2004																							1
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																						-	
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 3, 2006																							
Quarter 4, 2006																							
Quarter 1, 2007																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008						L									L			L				Ľ	
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																						-	
Quarter 1, 2010																							
Quarter 2, 2010																						-	
Quarter 3, 2010																						-	
Quarter 4, 2010																						-	
Quarter 1, 2011																						-	
Quarter 2, 2011																							
Quarter 3, 2011																						-	
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																						-	
Quarter 1, 2013																						-	
Quarter 2, 2013																						-	
Quarter 3, 2013																						-	
Quarter 4, 2013																						-	
Quarter 1, 2014																							
Quarter 2, 2014																							
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015																							
Quarter 2, 2015																							
Quarter 3, 2015																							
Quarter 4, 2015														-									1
Quarter 1, 2016														-									
Quarter 2, 2016	1						1							1								t —	
Quarter 3, 2016	1													1								1	
Quarter 4, 2016	1													1								1	
Quarter 1, 2017	1													1								1	
Quarter 2, 2017	1													1							t	<u>† </u>	-
Quarter 3, 2017	1													1							t	<u>† </u>	-
Quarter 4, 2017	1						1							1			-					t —	
Quarter 1, 2018	1													1								†	
Quarter 2, 2018	1													1								†	
Quarter 3, 2018	1													1					-			†	
BROMIDE																							
Quarter 1, 2003			*																			-	
Quarter 4, 2003			*																			<u> </u>	
Quarter 1, 2003	-		*											<u> </u>							<u> </u>	 	<u> </u>
Quarter 1, 2004		1	^											1				1	1		1	<u> </u>	

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	3						۱	URG	A								LRG/	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BROMIDE																							
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				<u> </u>
Quarter 4, 2004			*																				L
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM	_		.																				
Quarter 1, 2003	_		*									*											
Quarter 2, 2003	_		*									*											
Quarter 3, 2003 Quarter 4, 2003	_		*									*							*				
Quarter 1, 2003	-		*									*		*					*				
Quarter 2, 2004	-		*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005	+											*							*				1
Quarter 4, 2005												*							*				1
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007	-											*							*				
Quarter 2, 2007	-											*							*				
Quarter 3, 2007	-											*							*				
Quarter 4, 2007	-											*							*				
Quarter 1, 2008	-											*							*				
Quarter 2, 2008	-											*							*				
Quarter 3, 2008	-											*							*				
Quarter 4, 2008	-											*							*				
Quarter 1, 2009	-											*							*				
Quarter 2, 2009	_											*							*				
Quarter 3, 2009	_											*							*				
Quarter 4, 2009	_											*							*				
Quarter 1, 2009	_											*							*				
Quarter 2, 2010	-											*							*				
Quarter 3, 2010	_											*							*				
Quarter 4, 2010	_											*							*				
Quarter 1, 2010	_											*							*				
Quarter 2, 2011	-											*	*						*				
Quarter 3, 2011	-											*	Ŧ						*				
Quarter 4, 2011	_											*							*				
Quarter 1, 2012	-											*							*				
Quarter 2, 2012	-											*							*				
Quarter 3, 2012	_											*							*				
												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013 Quarter 2, 2013	+											*							*				──
	+											*							*				──
Quarter 3, 2013 Quarter 4, 2013	+											*							*				──
Quarter 4, 2013 Quarter 1, 2014												*						*	*				┢──
	_											*						Ť	*	-			
Quarter 2, 2014	_	<u> </u>										*	<u> </u>		<u> </u>	<u> </u>		*	* *	<u> </u>			<u> </u>
Quarter 3, 2014	_											*						*	*				
Quarter 4, 2014			<u> </u>		<u> </u>					<u> </u>	<u> </u>		بدر	<u> </u>							<u> </u>	<u> </u>	
Quarter 1, 2015			<u> </u>		<u> </u>					<u> </u>	<u> </u>	*	*	<u> </u>					*		<u> </u>	<u> </u>	
Quarter 2, 2015	_	<u> </u>										*	<u> </u>		<u> </u>	<u> </u>			*	<u> </u>			⊢
Quarter 3, 2015			<u> </u>		<u> </u>					<u> </u>	<u> </u>	* *		<u> </u>					* *		<u> </u>	<u> </u>	┣—
Quarter 4, 2015	1	l I	1				1	1	1		1	*	1		1	1			*	1			1

Chart of MCL and Historical UT	Exceedances for the C-746-S&T	Landfills (Continued)
--------------------------------	-------------------------------	-----------------------

Groundwater Flow System	~		UCRS		11	C	c	C	c		URGA		P	F	1.1	17	C	Б		LRG			1 -
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U 205	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	39
CALCIUM																							
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				
Quarter 2, 2017												*							*				
Quarter 3, 2017												*							*				T
Quarter 4, 2017												*							*				1
Quarter 1, 2018												*							*				T
Quarter 2, 2018												*							*				1
CARBON DISULFIDE																							
Quarter 4, 2010											*												t
Quarter 1, 2010												*									*		+
													*										-
Quarter 2, 2017													*										
CHEMICAL OXYGEN DEMA	AIND			*		_																	F
Quarter 1, 2003	_			*																			╞
Quarter 2, 2003				*			*			*							<u> </u>			<u> </u>		<u> </u>	╞
Quarter 3, 2003				*			ボ			*							<u> </u>			<u> </u>		<u> </u>	╞
Quarter 4, 2003	*			*																			Ļ
Quarter 1, 2004	*			*																			+
Quarter 4, 2004																							1
Quarter 1, 2005	*																			L		L	Ļ
Quarter 2, 2005	*																						L
Quarter 3, 2005	*									*		*									*		L
Quarter 4, 2005	*									*													
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						T
Quarter 4, 2006																	*						1
Quarter 1, 2007	*									*													t
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						+
Quarter 4, 2007	*																						+
Quarter 1, 2007	*																						+
	*																						-
Quarter 2, 2008																							_
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*																						Γ
Quarter 4, 2009	*																						T
Quarter 1, 2010	*	1	1		1		1	1	1			1	1	1	1	1			1	1	1	1	t
Quarter 2, 2010	*																						t
Quarter 3, 2010	*														-								$^{+}$
Quarter 4, 2010	*																						┢
Quarter 3, 2011	*																						┢
Quarter 4, 2011	*																						╀
	*	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	┞					
Quarter 1, 2012															<u> </u>					<u> </u>		<u> </u>	L
Quarter 1, 2013	*																						Ļ
Quarter 3, 2013	*												L		<u> </u>			L.					L
Quarter 3, 2014	*								*				*					*					L
Quarter 4, 2014							*																
Quarter 2, 2015																*							Γ
Quarter 3, 2015															*								1
Quarter 3, 2016			*					1	1		*			1						1		1	T
Quarter 4, 2016	1														1		*						t
Quarter 2, 2017				-		-	*			-					-			-					$^{+}$
Quarter 3, 2017	*						<u> </u>				-				*		-						┢
Quarter 4, 2017						*									-								╀
	—					*								*						<u> </u>		*	+
Quarter 2, 2018		L	L		L		L	L	L				L	*	I	L			L	L	L	*	L
Quarter 3, 2018		1	1									*		1	1					I			1

Chart of MCL and Historical UT	Exceedances for the C-746-S&T	Landfills (Continued)
--------------------------------	-------------------------------	-----------------------

CHLORIDE	Flow System			UCRS	S						1	URGA	١]	LRGA	1		
CHLONDE Chlonder		S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
CHLONDE Image: Solution of the s	ell	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1.2003 Image 2.2003 Image 2.2004 Image 2.2007 Image 2.200																								
Quarter 1, 2003 Image: Constraint of the second secon	3			*														-						
Durter 4.2003 Image: All and A																								
Numer 4: 2003 Image: Section of the secti																							-	
Quarter 1.2004 Image: Constraint of the second																							-	
Outret 7: 2004 Image: Construct 7: 2004 Image: Construct 7: 2005 Image: Construct 7: 2007 Image: Construct																								-
Quarter 3. 2004 *																								
Quarter 1, 2005 •																								
Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2014 Quarter 4, 2014																								
Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014																								
Quarter 1, 2005 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																								
Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2014 Quarter 4, 2014																								
Quarter 1, 2006 *																								
Quarter 2, 2006 * <td< td=""><td>5</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	5			*																				
Quarter 3, 2006 * <td< td=""><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td></td<>	5																		*					
Quarter 1, 2007 * <td< td=""><td>5</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	5			*																				
Quarter 1, 2007 * <td< td=""><td>6</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	6			*																				
Quarter 1, 2007 * Quarter 2, 2007 * Quarter 3, 2007 * Quarter 4, 2007 * Quarter 4, 2007 * Quarter 1, 2008 * Quarter 2, 2008 * Quarter 3, 2008 * Quarter 4, 2008 * Quarter 4, 2008 * Quarter 4, 2008 * Quarter 4, 2009 * <td< td=""><td>5</td><td></td><td></td><td>*</td><td></td><td></td><td>1</td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	5			*			1	1	1	1				1		1								
Quarter 2, 2007 * Quarter 3, 2007 * Quarter 4, 2007 * Quarter 4, 2007 * Quarter 4, 2007 * Quarter 4, 2008 * Quarter 3, 2008 * Quarter 4, 2008 * Quarter 4, 2008 * Quarter 4, 2008 * Quarter 4, 2008 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 4, 2009 * Quarter 4, 2009 * Quarter 4, 2010 Quarter 4, 2010<				*		-																		<u> </u>
Quarter 3, 2007 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\vdash</td><td></td></td<>															<u> </u>								\vdash	
Quarter 4, 2007 * <td< td=""><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td></td><td>-</td><td> </td><td>-</td><td>-</td><td><u> </u></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td></td<>			-		-			-	-	-		-		-		-	-	<u> </u>					<u> </u>	
Quarter 1, 2008 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td></td<>																								
Quarter 2, 2008 * <td< td=""><td></td><td></td><td> </td><td></td><td> </td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\vdash</td><td><u> </u></td></td<>																							\vdash	<u> </u>
Quarter 3, 2008 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																								
Quarter 4, 2008 * <td< td=""><td>3</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	3			*																				
Quarter 1, 2009 * <td< td=""><td>3</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	3			*																				
Quarter 3, 2009 * <td< td=""><td>3</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	3			*																				
Quarter 2, 2009 * <td< td=""><td>)</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>)			*																				
Quarter 3, 2009 * <td< td=""><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				*																				
Quarter 4, 2009 * <td< td=""><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></td<>				*																			-	
Quarter 1, 2010 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td></td<>																							<u> </u>	
Quarter 3, 2010 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																								
Quarter 3, 2010 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																								
Quarter 4, 2010 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																		_						
Quarter 2, 2011 * <td< td=""><td>)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>)																							
Quarter 3, 2011 * <td< td=""><td>)</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>)			*																				
Quarter 4, 2011 * <td< td=""><td>l</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	l			*																				
Quarter 4, 2011 * <td< td=""><td>[</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	[*																				
Quarter 3, 2012 * <td< td=""><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				*																				
Quarter 3, 2013 * <td< td=""><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></td<>				*																			-	
Quarter 4, 2013 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td></td<>																							<u> </u>	
Quarter 4, 2014 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td></td<>																								
CHROMIUM Image: Constraint of the second																								
Quarter 4, 2002 Image: Constraint of the second	1			*																				
Quarter 1, 2003 Image: Constraint of the second																								
Quarter 2, 2003 Image: Construction of the construction of t																								
Quarter 3, 2009 Image: Construction of the second seco	3																							
COBALT Image: Comparison of the image: Comparison	3																							
Quarter 3, 2003 * Quarter 4, 2002 * * * Quarter 1, 2003 * * * Quarter 2, 2003 * * * Quarter 3, 2003 * * * Quarter 4, 2003 * * Quarter 4, 2003 * * Quarter 1, 2004 * * Quarter 3, 2004 * Quarter 1, 2004 * Quarter 1, 2004 * Quarter 1, 2005 *)																							
CONDUCTIVITY Image: Conduct of the second seco																								
Quarter 4, 2002 * * * * Quarter 1, 2003 * * * * Quarter 2, 2003 * * * * Quarter 3, 2003 * * * * Quarter 4, 2003 * * * * Quarter 4, 2003 * * * * Quarter 1, 2004 * * * Quarter 3, 2004 * * * Quarter 3, 2004 * * * Quarter 1, 2005 * * *	3							*																
Quarter 1, 2003 *	ITY		_																					
Quarter 1, 2003 * * * * Quarter 2, 2003 * * * * Quarter 3, 2003 * * * * Quarter 4, 2003 * * * * Quarter 1, 2004 * * * * Quarter 2, 2004 * * * * Quarter 3, 2004 * * * * Quarter 4, 2004 * * * * Quarter 1, 2005 * * * *	2										*									*				
Quarter 2, 2003 * * * * * Quarter 3, 2003 * * * * * Quarter 4, 2003 * * * * * Quarter 1, 2004 * * * * * Quarter 2, 2004 * * * * * Quarter 3, 2004 * * * * * Quarter 4, 2004 * * * * * Quarter 1, 2005 * * * * *				*			1	1	1	1	*			1		1				*				
Quarter 3, 2003 * * * * * Quarter 4, 2003 * * * Quarter 1, 2004 * * * Quarter 2, 2004 * * Quarter 3, 2004 * * Quarter 4, 2004 * * Quarter 1, 2005 * * Quarter 2, 2005 *				*		1					*									*				
Quarter 4, 2003 * * * * Quarter 1, 2004 * * Quarter 2, 2004 * * Quarter 3, 2004 * * Quarter 4, 2004 * * * Quarter 1, 2005 * *				*			1		*		*									*				
Quarter 1, 2004 <t< td=""><td></td><td></td><td></td><td>*</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td></t<>				*			1				*									*				
Quarter 2, 2004 * * Quarter 3, 2004 * * Quarter 4, 2004 * * Quarter 1, 2005 * * Quarter 2, 2005 * *				1		1	1													*				
Quarter 3, 2004 *											*							-		*				
X X																		-		*				
Quarter 1, 2005 *			-	*											<u> </u>								├ ──┤	
Quarter 2, 2005			-										*						-		-	-		<u> </u>
Q			-																-		-	-		<u> </u>
N 100 114 1 400 1 1 1 1 1 1 1 1 1 1 1 1 1			<u> </u>										-1+											├
			-	<u> </u>		<u> </u>					*		*							*			\vdash	─
		<u> </u>		<u> </u>	<u> </u>	<u> </u>					-				<u> </u>			<u> </u>		*			\vdash	<u> </u>
Quarter 1, 2006)	_	L	L		L	L						*				<u> </u>	_		*				L

Groundwater Flow System		1	UCRS	3						τ	JRGA	1								LRG	۹.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																							
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007												*					*		*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*							*	<u> </u>			┣_
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												• *							*				
Quarter 4, 2013												• *							* *				
Quarter 1, 2014												*							*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*							*				L
Quarter 4, 2014												• *							*				
Quarter 1, 2015												*							*				
Quarter 2, 2015																			*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												* *							*				
Quarter 1, 2016												¥											
Quarter 2, 2016												*							*				├
Quarter 3, 2016												*							*				├
Quarter 4, 2016 Quarter 1, 2017																			*				├
																							├
Quarter 2, 2017 Quarter 3, 2017																			*				├
Quarter 3, 2017 Quarter 4, 2017																			*				
Quarter 4, 2017 Quarter 1, 2018																			* *	-			├
Quarter 1, 2018 Quarter 2, 2018																			*				├
Quarter 3, 2018																			*				├
DISSOLVED OXYGEN						_													*				
Quarter 3, 2006			*			_		*									_						
DISSOLVED SOLIDS			-1.			-																	
Quarter 4, 2002						_				*							-		*				
Quarter 1, 2002 Quarter 1, 2003			*							*									*				
Quarter 1, 2003 Quarter 2, 2003			*							*									*				├──
Quarter 2, 2003 Quarter 3, 2003			*				*	*		*		*							*				├──
Quarter 4, 2003 Quarter 4, 2003			*				*	Ŧ	*	*		*					<u> </u>		*				
Quarter 1, 2003 Quarter 1, 2004			*				-17		**			*							*				├──
Quarter 1, 2004 Quarter 2, 2004		-					-			*		*							*		-	-	<u> </u>
										*		*					<u> </u>		*				
Quarter 3 2004																							1
Quarter 3, 2004 Quarter 4, 2004										*		*							*				

Groundwater Flow System		1	UCRS	3						1	URGA	1								LRG/	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	39
DISSOLVED SOLIDS																							
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007																			*				
Quarter 2, 2007										*		*							*				
Quarter 3, 2007	_									*		*							*				
										-1-		*							*				
Quarter 4, 2007	_											*							*				
Quarter 1, 2008	_																						
Quarter 2, 2008	+	<u> </u>					<u> </u>	<u> </u>			<u> </u>	* *			<u> </u>				*	<u> </u>			L
Quarter 3, 2008	_									J.		* *							* *				L
Quarter 4, 2008										*		*							*				L
Quarter 1, 2009												*							*				
Quarter 2, 2009	_	L					L	L			L	*	*		L				*	L			L
Quarter 3, 2009												* *	* *						* *				L
Quarter 4, 2009												* *	* *						* *				L
Quarter 1, 2010	_									ىلو		* *	* *						* *				L
Quarter 2, 2010	_									* *		* *	*						* *				
Quarter 3, 2010																							
Quarter 4, 2010										* *		* *							* *				_
Quarter 1, 2011	_									Ŧ		*	*						*				
Quarter 2, 2011 Quarter 3, 2011												*	Ť						*				_
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*	*						*				-
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*	*						*				
Quarter 2, 2014												*							*				
Quarter 3, 2014									*			*	*						*				
Quarter 4, 2014												*	*						*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015									*			*						*	*				Ĺ
Quarter 1, 2016												*							*				
Quarter 2, 2016												* :	*	*					* :				
Quarter 3, 2016	_	L					L	L			L	*			L				*	L			L
Quarter 4, 2016							L	L				*			L				*	L			L
Quarter 1, 2017												* *							*				L
Quarter 2, 2017												* *		-	-				* *				L
Quarter 3, 2017	_											* *		*	*				* *				L
Quarter 4, 2017	_											*							* *				L
Quarter 1, 2018	_											*							*				L
Quarter 2, 2018												*		<u>.</u>					*				-
Quarter 3, 2018						_						*		*					*				
IODIDE Quarter 4, 2002																					*		
Quarter 4, 2002 Quarter 2, 2003	+					*															*		L
· · ·						*							*										L
Quarter 3, 2003 Quarter 1, 2004	_			*									~										⊢
Quarter 1, 2004 Quarter 3, 2010				т																	*		⊢
Quarter 2, 2010 Quarter 2, 2013		-			\vdash		-	-		*	-				-	\vdash				-	*		⊢
Quarter 2, 2013										÷													

Groundwater Flow System			UCRS	3							URG	4								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006	_										*	-											
	_										*	*											
Quarter 1, 2007											*	*											
Quarter 2, 2007	_										*	J.											
Quarter 2, 2008												*											L
Quarter 3, 2008												*											
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
												*							*				
Quarter 1, 2007	_											*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007																							
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010	_											*	*						*				
	_											*							*				
Quarter 3, 2010	_	<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>				ļ	<u> </u>	<u> </u>	-						└──
Quarter 4, 2010												*							* *				L
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				[
Quarter 1, 2012	1											*							*				
Quarter 2, 2012							-					*							*				<u> </u>
Quarter 3, 2012							-			-	-	*	*						*	-			
Quarter 4, 2012												*	*						*				
		i i						1	1	1	1			1	1	1							i -

Groundwater Flow System		1	UCRS	S						1	URG/	4					1			LRG/	1		
Gradient	s	D	D	D	U	s	S	S	S	S	D	D	D	D	U	U	s	D	D	D	D	U	U
Monitoring Well	386		390	393			222		224	384	369	372		391		394			373	388	392	395	397
MAGNESIUM	500	507	570	373	370	221		225	221	501	507	572	507	571	220	57.	500	510	515	500	372	575	
Quarter 1, 2013												*							*			_	_
Quarter 2, 2013												*							*				
												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*						J.					
Quarter 1, 2014												-14						*	*				
Quarter 2, 2014												*	*						*				
Quarter 3, 2014												*							*				ļ
Quarter 4, 2014												*	*						*				ļ
Quarter 1, 2015												*	*						*				ļ
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												* *		*					*				ļ
Quarter 3, 2016												*		ىتو					*				
Quarter 4, 2016												*		*					*				
Quarter 1, 2017		<u> </u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>		<u> </u>	*	<u> </u>	*	<u> </u>				*	<u> </u>			
Quarter 2, 2017												*		ىتو									
Quarter 3, 2017												*		*					يىر				
Quarter 4, 2017												*	<u>ч</u>						*				
Quarter 1, 2018												*	*						*				
Quarter 2, 2018												*											ļ
Quarter 3, 2018												*											
MANGANESE																					÷		
Quarter 4, 2002							*	*													*		
Quarter 3, 2003							* *	*															
Quarter 4, 2003								*															
Quarter 1, 2004							* *																
Quarter 2, 2004							*	*															
Quarter 4, 2004								*															
Quarter 1, 2005							*																
Quarter 3, 2005																					*		L
Quarter 3, 2009	*																						µ
OXIDATION-REDUCTION POT	ſENI	TAL																					
Quarter 4, 2003			*																				ļ
Quarter 2, 2004			*																				ļ
Quarter 3, 2004			*															*					L
Quarter 4, 2004			*			*																	ļ
Quarter 1, 2005			*															*					L
Quarter 2, 2005	*		*										<u> </u>										
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				L
Quarter 2, 2006			*										<u> </u>										
Quarter 3, 2006			*															*					
Quarter 4, 2006			*										<u> </u>										l
Quarter 1, 2007			*				44]	
Quarter 2, 2007			*				*						<u> </u>										l
Quarter 3, 2007			*				*						<u> </u>										l
Quarter 4, 2007			*										<u> </u>										l
Quarter 1, 2008			*			*			*														
Quarter 2, 2008	*		*	*		*							*				*		*	*			l
Quarter 3, 2008			*	*		*							*	L			*		*	*			
Quarter 4, 2008		L	*	*	L	*	*	*	*		L	L	*	L	L		*	*	L	*			µ
Quarter 1, 2009			*				*	*	*				*	*			L.	*	L	*			l
Quarter 3, 2009			*	*		*							<u> </u>	L			*	*	*	*			
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*						L								_			*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			µ
Quarter 3, 2010	*		*	*		*											*	*	*	*			
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*	*		*			*		*		*	*	*	*			
	-	_	_			_		_	_		_		_	_	_	_				_	_	_	

I

Chart of MCL and Historical UTI	L Exceedances for the C-746-S&T Land	s (Continued)
---------------------------------	--------------------------------------	---------------

Gradient			UCRS	5						1	URG	A								LRG/	4		
	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
OXIDATION-REDUCTION PO	TENI	ΓIAL																					
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	* *	*	*	*		
Quarter 1, 2013	-			*		*	÷	*	*		* *		*	*			÷	*	÷	*	* *		
Quarter 2, 2013	*	-	*	*		*	* *	*	*	*	*		*				*	*	* *	*	*		
Quarter 3, 2013 Quarter 4, 2013	^		*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2013	*		*	*		*	*	Ŧ	*	Ŧ	*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		
Quarter 3, 2014	*		*	*		*											*	*	*	*			
Quarter 4, 2014	*		*	*							*		*				*	*	*	*	*		
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*		*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*		*	*	*	*	*	*	*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 2, 2016	*		*	*	*	*		*	*	*			*	*	*	*	*	*		*	*	*	*
Quarter 3, 2016	*		*	*	*	*	* *	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 4, 2016	*		*	*	*		*	*		*			*		*		*	*	*	*	*	*	*
Quarter 1, 2017	*	<u> </u>	*	*	*			*	*			<u> </u>	<u> </u>		*			*		*		*	*
Quarter 2, 2017	*		*	*	*												* *	J.	÷	*	*	J.	J.
Quarter 3, 2017	*		*	*	*	J.	÷	J.	J.	÷	.		J.	J.	÷		* *	* *	* *	*	*	* *	*
Quarter 4, 2017			*	*	*	*	*	*	*	*	*		*	*	*		*	* *		*	*	*	*
Quarter 1, 2018	*		*	*	*	*											*	* *	* *	*	*	*	*
Quarter 2, 2018 Quarter 3, 2018	*		*	*	*	*	*	*	*								* *	*	*	*	*	*	*
PCB-1016	*		Ŧ	*	T	*	Ŧ	*	*								Ŧ	Ť	Ŧ	Ŧ	*	Ŧ	T
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004							-	-	-		*							-					
Quarter 3, 2005							*				*												
Quarter 1, 2006		1									*												
Quarter 2, 2006											*												
Quarter 4, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007												*											
Quarter 3, 2007											*												
Quarter 2, 2008											*	*											
Quarter 3, 2008											*												
Quarter 4, 2008											*												
Quarter 1, 2009											*												
Quarter 2, 2009											*												
Quarter 3, 2009											*												
Quarter 4, 2009											*												
Quarter 1, 2010											*												
Quarter 2, 2010											*												
Quarter 3, 2010											*												
Quarter 4, 2010											*												
PCB-1232																							
Quarter 1, 2011											*												
PCB-1248																							
Quarter 2, 2008	1	1										*											
PCB-1260	1																						
Quarter 2, 2006																		*					
рН		1																					
																	*						
Quarter 4, 2002	1	1				L						L	L				*						
Quarter 4, 2002 Quarter 2, 2003				r	T			1	1		1						*			r	1		
Quarter 2, 2003 Quarter 3, 2003											_	_	_			· · · · · ·							
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003							*										*						
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004							*										*						
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004																	* *						
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004																	*						

Groundwater Flow System			UCRS	5						1	URG	A								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
pH																							
Quarter 4, 2004																	*						
Quarter 3, 2005	-									*							*				*		
Quarter 4, 2005	_									*							*				-		
Quarter 1, 2005	-																*						
Quarter 2, 2006	_																*						-
	_																*						
Quarter 3, 2006	_																*						
Quarter 3, 2007	_																						
Quarter 4, 2007																	*						
Quarter 4, 2008																	*						
Quarter 1, 2009																	*						
Quarter 1, 2011																	*						
Quarter 2, 2011											*												
Quarter 3, 2011											*												
Quarter 1, 2012														*									
Quarter 1, 2013										*			*				*						
Quarter 4, 2014																					*		
Quarter 2, 2016						1												*	*		1		
POTASSIUM																							
Quarter 4, 2002																		*	*		1		
Quarter 3, 2002	-				-			-		-	-	1		-	-	-		-	*		1	-	<u> </u>
Quarter 2, 2005	-																		*				<u> </u>
Quarter 3, 2005	-																		*				
	-																		*				
Quarter 4, 2005	_																		*				-
Quarter 2, 2006	_																		*				
Quarter 3, 2006	_																						L
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				
Quarter 3, 2013																			*				
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004																			*				
Quarter 2, 2005									*														
Quarter 1, 2009											*												
Quarter 3, 2014	_								*		-	*											
Quarter 4, 2014	-		*								*							*					
Quarter 1, 2014 Quarter 1, 2015	-		*				*			*		*						*					
	_		*				*			*		*						* *					
Quarter 2, 2015	_						*			*		*						*					
Quarter 3, 2015	_		*											L	3 14							,14	┣—
Quarter 4, 2015					*	*									*		*				*	*	⊢
Quarter 2, 2016			*						*		*	*	*	*	*	*		*					
Quarter 3, 2016	_																	*					
Quarter 4, 2016	*		*			*			*				*		*					*		*	
Quarter 1, 2017			*							*	*							*					L
Quarter 2, 2017							L	L			L						*	*	L	*	*		L
Quarter 3, 2017					*			ſ	*	*	*	ſ	[*			
Quarter 4, 2017																		*		*			
Quarter 1, 2018						1						*						*		*	1		
RADIUM-228																							
Quarter 2, 2005																					1		
Quarter 3, 2005																					1		<u> </u>
Quarter 4, 2005			-		<u> </u>													<u> </u>			1		├──
Quarter 1, 2005	-						<u> </u>	<u> </u>			<u> </u>									<u> </u>			├──
· ·																							
SELENIUM			_		_																		
Quarter 4, 2002						I	L	I	L		I	I	L							L	<u> </u>	-	<u> </u>
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
		_																					

Groundwater Flow System	~	-	UCRS	_	T *	6	C	c	c		URGA			r	**	**		F		LRG	-		<u> </u>
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	39
SODIUM	_																		J.		-		
Quarter 4, 2002	_			÷					JL.	<u>ب</u> د	.								*		*		⊢
Quarter 1, 2003	_			*					*	*	*		*										<u> </u>
Quarter 2, 2003 Quarter 3, 2003	-			*			*	*		*	*		*										-
Quarter 4, 2003	_						*	Ť	*	*													-
Quarter 1, 2003	_						*		*	*				*									-
Quarter 2, 2004	-									*													-
Quarter 3, 2004	-									*													-
Quarter 4, 2004	-								*	*													+
Quarter 1, 2005	-									*									*				-
Quarter 2, 2005	-									*									*				-
Quarter 3, 2005	-								*	*									*				-
	-								*	*									Ŧ				_
Quarter 4, 2005	_								*	*													_
Quarter 1, 2006	_									Ť													
Quarter 2, 2006	_								*	<u>ب</u> د		<u>ч</u>							<u>ب</u>				
Quarter 3, 2006	_								*	*		*							*				L
Quarter 4, 2006	_						<u> </u>		*	*	L			L	L	L	*		L				
Quarter 1, 2007	_								*			*											
Quarter 2, 2007									*	*													
Quarter 3, 2007									*														
Quarter 4, 2007									*														Γ
Quarter 1, 2008	Ĭ								*														
Quarter 3, 2008												*											F
Quarter 4, 2008									*	*													1
Quarter 1, 2009									*			*							*				-
Quarter 3, 2009												*											-
Quarter 4, 2009	-								*			*											
Quarter 1, 2009	_								-1-			*											_
	_									*		*											
Quarter 2, 2010	_									*		*											
Quarter 3, 2010	_																						_
Quarter 4, 2010									*	*													
Quarter 1, 2011										*													
Quarter 2, 2011									*														
Quarter 4, 2011																			*				
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				1
Quarter 2, 2013												*											t
Quarter 3, 2013	1	-			-	-		-	-			*	-					-	*	-	-	-	⊢
Quarter 4, 2013	-											*							*				┢
Quarter 1, 2013	+	-										*						-	-	-	-	-	⊢
Quarter 1, 2014 Quarter 2, 2014	-								*		*	*					<u> </u>		*				⊢
Quarter 2, 2014 Quarter 3, 2014		-					-		*		*	*						-	*	-	-	-	⊢
	_	<u> </u>					<u> </u>		4	ų.	<u> </u>		4	<u> </u>	<u> </u>	<u> </u>		<u> </u>	*	<u> </u>	<u> </u>	<u> </u>	⊢
Quarter 4, 2014		<u> </u>							*	*		*	*	-	-	-		<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	⊢
Quarter 1, 2015	_											<u>.</u>	*				<u> </u>						⊢
Quarter 2, 2015	_									<u>.</u>		*					<u> </u>						⊢
Quarter 3, 2015									*	*		*					<u> </u>						⊢
Quarter 4, 2015									*	*	*	*											⊢
Quarter 2, 2016	_	<u> </u>									*		<u> </u>				<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	;
Quarter 3, 2016	_	<u> </u>								<u>.</u>	*		*				<u> </u>	*		<u> </u>	<u> </u>	<u> </u>	⊢*
Quarter 1, 2017		<u> </u>							*	*	*	<u> </u>	*	<u> </u>	<u> </u>	<u> </u>		*	<u> </u>	<u> </u>	<u> </u>	<u> </u>	⊢
Quarter 2, 2017	_	<u> </u>							*	*	*		*				<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	⊢
Quarter 2, 2018													*	*									⊢
Quarter 3, 2018						_								*									⊢
STRONTIUM-90	_																						F
Quarter 2, 2003																	<u> </u>						⊢
Quarter 1, 2004						_																	-
SULFATE						_													÷				F
Quarter 4, 2002	_											4	4				<u>ч</u>		*				L
Quarter 1, 2003	_	L								ىلو		*	*				*	مدر	*	L	L	L	⊢
Quarter 2, 2003	1									*		*	*					*	*	1	1	1	1

Chart of MCL and Historical UTI	L Exceedances for the C-746-S&T Landfills (Continued)
--	---	------------

Groundwater Flow System	~	r	UCRS	r	т×	C	C	0	C	-	URG	r	P	P	тī	тī	0	P		LRG/		тт	Τ.
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	1
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	3
SULFATE																							
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				Τ
Quarter 2, 2005										*		*	*					*	*				Γ
Quarter 3, 2005										*		*	*				*	*	*				T
Quarter 4, 2005										*		*	*					*	*	*			t
Quarter 1, 2006										*		*	*				*	*	*	*			╈
									*	*		*	*				*	*	*	*			╀
Quarter 2, 2006																		*				Ļ	╞
Quarter 3, 2006									*	*		*	*				*		*	*			
Quarter 4, 2006									*	*		*	*				*		*				
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*	ſ			*		*	*			
Quarter 3, 2007						1	1		*	*	1	*	*		1		*		*	*		1	t
Quarter 4, 2007			-		-			-		*		*	*				*	*	*	*		<u> </u>	$^{+}$
Quarter 1, 2007							\vdash			*	<u> </u>	*	*				*	*	*	*		┝──	+
Quarter 1, 2008 Quarter 2, 2008	_							*		*	*	*	*	*			*	*	*	*		<u> </u>	╋
								Ŧ			T			Ŧ									╞
Quarter 3, 2008						I	<u> </u>			*	<u> </u>	*	*		L		*	*	*	*		<u> </u>	Ļ
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			Т
Quarter 3, 2009									*	*		*	*				*	*	*	*			T
Quarter 4, 2009	*									*		*	*				*	*	*				t
Quarter 1, 2010	*								*	*		*	*				*		*				+
Quarter 2, 2010									*	*		*	*				*	*	*	*			╈
										*		*	*				*	*	*	*			╀
Quarter 3, 2010	*																			*			_
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			Γ
Quarter 4, 2011	*									*		*	*				*	*	*	*			t
Quarter 1, 2012	*									*		*	*				*	*	*	*			+
Quarter 2, 2012	*									*		*	*				*	*	*	*			+
Quarter 3, 2012	*									*		*	*				*	*	*	*			┿
	<u>^</u>																						╇
Quarter 4, 2012										*		*	*				*	*	*	*			
Quarter 1, 2013										*		*	*				*	*	*	*			
Quarter 2, 2013										*		*	*	*			*	*	*	*			
Quarter 3, 2013										*		*	*	*			*	*	*	*			Т
Quarter 4, 2013										*		*	*				*	*	*	*			Γ
Quarter 1, 2014						1	1	*		*	1	*	*		1		*	*	*	*		1	t
Quarter 2, 2014			-		-			-		*		*	*	*			*	*	*	*		<u> </u>	$^{+}$
Quarter 3, 2014							-			*	-	*	*	*			*	*	*	*		├	+
Quarter 4, 2014 Quarter 4, 2014		-	-	-	-		-	-	-	*	-	*	*	-		-	*	*	*	*	-	├	╋
										*		*	*				*	*	*	*			╀
Quarter 1, 2015		ļ	<u> </u>	ļ	<u> </u>		<u> </u>	<u> </u>	ļ	*	*			*	*	ļ	*	*	*	*	ļ	—	╀
Quarter 2, 2015								يىر.			*	*	*	*								┣	╞
Quarter 3, 2015		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	*	<u> </u>	*		*	*	*	*	<u> </u>	*	*	*	*	<u> </u>	┝──	Ļ
Quarter 4, 2015						I	<u> </u>			*	<u> </u>	*	*	*	L		*	444	*	*		<u> </u>	Ļ
Quarter 1, 2016		L	I	L	I		<u> </u>	*	L	*	<u> </u>	*	*	*		L	*	*	*	*	L	Ļ	Ļ
Quarter 2, 2016							<u> </u>	*		*	<u> </u>	*	*	*	*		*	*	*	*		<u> </u>	L
Quarter 3, 2016						I		*		*		*	*	*	*		*	*	*	*			L
Quarter 4, 2016						I				*		*	*	*	*		*	*	*	*			L
Quarter 1, 2017										*		*	*	*	*		*	*	*	*			L
Quarter 2, 2017								*		*		*	*	*	*		*	*	*	*			Ĺ
Quarter 3, 2017								*		*		*	*	*	*		*	*	*	*			ſ
Quarter 4, 2017										*		*	*	*	*		*	*	*	*			Γ
Quarter 1, 2018		L		L		L	L		L	*		*	*	*	L	L	*	*	*	*	L		Γ
Quarter 2, 2018								*		*	*	*	*	*	*		*	*	*	*			Т
		-	1	-	1	1	1	*		*	1	*		*	*		*	*	*	*		1	1

Groundwater Flow System			UCRS	S							URG	4								LRG/	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	τ
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	39
TECHNETIUM-99																							
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				1
Quarter 2, 2003	*		*							*			*				*						1
Quarter 3, 2003			*										*				*			*			1
Quarter 4, 2003			*				1			*		*	*				*		*	*			1
Quarter 1, 2004			*									*	*				*		*				1
Quarter 2, 2004			*									*	*				*		*	*			t
Quarter 3, 2004			*									*					*		*				T
Quarter 4, 2004			*							*		*	*				*	*	*				t
Quarter 1, 2005			*							*		*	*				*			*			┢
Quarter 2, 2005			*							*		-	*				*	*	*	*			┝
Quarter 3, 2005	-		*							*			*				*	*	*	*			┢
												J.						Ŧ	*				╞
Quarter 4, 2005			*							*		*	*				*			*			L
Quarter 1, 2006										*		*	*						*	*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006			*							*			*				*	*	*	*			
Quarter 4, 2006	*									*		*	*						*	*			Г
Quarter 1, 2007			*		1		1			*	1	1	*	l	1	1	*		*	*	1	1	T
Quarter 2, 2007			*				1			*		*	*				*	*		*			+
Quarter 3, 2007			*		-					*	*	*	*		-	-	*		*	*	-	-	+
Quarter 4, 2007			*							*	-	*	*				*		*	*			┢
`			*							*		*	*				*	*	*	*			┢
Quarter 1, 2008					-		-				*	*			-	-	*	*			-	-	┡
Quarter 2, 2008			*							*	*		*						*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*						Γ
Quarter 2, 2009			*							*		*	*				*	*		*			Γ
Quarter 3, 2009			*							*	*	*	*				*			*			t
Quarter 4, 2009			*							*		*	*				*						+
Quarter 1, 2010	_		*							*		*	*				*						+
Quarter 2, 2010			*							*			*				*	*		*			┢
			*							*	*	<u>ч</u>					*	Ŧ		Ŧ			┝
Quarter 3, 2010											*	*	*										L
Quarter 4, 2010			*							*		*	*				*						
Quarter 1, 2011										*			*				*						
Quarter 2, 2011			*							*			*				*			*			
Quarter 3, 2011			*							*			*				*			*			Γ
Quarter 4, 2011			*							*	*	*	*				*						T
Quarter 1, 2012			*							*			*				*			*			t
Quarter 2, 2012			*							*			*				*		*	*			┢
Quarter 3, 2012	-		*							*		*	*				*						┢
				<u> </u>	<u> </u>		-	<u> </u>	<u> </u>	*	<u> </u>	*	*		<u> </u>	<u> </u>	*		*	*	<u> </u>	<u> </u>	┢
Quarter 4, 2012												*											╞
Quarter 1, 2013							<u> </u>		L	*		484	*				*		*	*			L
Quarter 2, 2013			L .							*		*	*				*		*	*			
Quarter 3, 2013			*							*		*	*				*		*	*			L
Quarter 4, 2013			*							*		*	*				*		*	*			Γ
Quarter 1, 2014	1		*							*	*		*				*		*	*			Γ
Quarter 2, 2014			*		1		1			*	*	1	*	*	1	1	*		*	*	1	1	T
Quarter 3, 2014	1		*							*			*				*			*			t
Quarter 4, 2014	-	-	*				\vdash			*	*	*	*				*		*	*			┢
Quarter 1, 2015			*							*	*	*	*				*		-	*			┢
			*							*	*	*	*				*			*			╞
Quarter 2, 2015					-		-					4			-	-		J.	ų.		-	-	┡
Quarter 3, 2015			*							*	*	*	*				*	*	*	*			L
Quarter 4, 2015			*							*	*	*	*				*	*		*			1
Quarter 1, 2016			*							*	*		*				*		*	*			1
Quarter 2, 2016			*			*				*			*	ſ			*	*		*			Γ
Quarter 3, 2016	Ĩ		*							*		*	*				*	*		*			t
Quarter 4, 2016	1		*	-				-		*	*		*				*			*			t
Quarter 1, 2017		-	*				1			*			*				*	*	-	*			┢
Quarter 2, 2017		-	*							*			*				*	*	-	*			┢
			*	-			-	-		*	*		*				*	*		*			┢
Quarter 3, 2017							<u> </u>				*	,14											┡
Quarter 4, 2017			*	1			1	1		*		*	*	1	1	1	*	*		*	1	1	1

TechNeruonese Image: 1.013 Image: 1.013 <t< th=""><th>dwater Flow System</th><th></th><th>1</th><th>UCRS</th><th>5</th><th></th><th></th><th></th><th></th><th></th><th>1</th><th>URGA</th><th>4</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>LRG/</th><th>A</th><th></th><th></th></t<>	dwater Flow System		1	UCRS	5						1	URGA	4								LRG/	A		
TACUNATURA-90 Image: Another Ano	-	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Quarter 1.2018 Image 2.0018 Image 2.001	ring Well 386	86 3	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Datamer 3.2018 Description Description <thdescription< th=""></thdescription<>	NETIUM-99																							
Data of 2,018 Description	1, 2018			*							*	*		*				*	*		*			
THORUMA-230 Image: Solution of the sol	2, 2018			*							*	*	*	*				*	*		*			
Quarter 1.2012 Quarter 3.2015 Quarter 1.2017 Quarter	3, 2018			*							*		*	*				*	*		*			
Owner 4. 2014 * <	IUM-230																							
Numer: Numer:<	*1,2012 *	ŧ								*					*									
Quarrer 1, 2017 Image: Constraint of the con	*4,2014	ŧ		*																				
THORUN-234 Image: Constraint of the second sec	3, 2015 *	ŧ								*	*			*		*								
Quarter 1. 2003 Quarter 4. 2007 Quarter 4. 2002 Quarter 4.	1, 2017			*							*							*						
Quarter 4, 2007 Image: Constraint of the second secon	IUM-234																							
TOLUENE Image: state of the	2, 2003						*								*									
Quarter 1, 2004 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2005 Quarter 4,	4, 2007									*														
TOTAL ORGANIC CARBON Image: August of the second secon	ENE																							
Quarter 1, 2003 *	2, 2014										*	*		*										
Quarter 1, 2003 *	L ORGANIC CARBON																							
Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4,	4, 2002																							
Quarter 3, 2003					*														*	*				
Quarter 1, 2003 Image: A model of the second of the se	,													*								*		
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 4,									*			*	*											
Quarter 2, 2004 * * Quarter 3, 2004 Quarter 3, 2004								*		*														
Quarter 3, 2004 * * * <																								
Quarter 1, 2004 * * * * * * * * * * * * * * * * * * * *												*												
Quarter 1, 2005 Image: Constraint of the constraint of t	,	Τ																						
Quarter 2, 2005	4, 2004	_T									*													L
Quarter 3, 2005 * * * Quarter 4, 2006 * * * Quarter 2, 2006 * * * * * * * * <t< td=""><td>1, 2005</td><td></td><td></td><td></td><td></td><td></td><td>L</td><td>L</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td>L</td><td></td><td></td><td></td><td>L</td><td></td><td></td><td></td><td>L</td><td></td></t<>	1, 2005						L	L			*				L				L				L	
Quarter 1, 2005 * * * * * * Quarter 2, 2006 * * * * * * * Quarter 2, 2006 * <	2, 2005										*											*		
Quarter 1, 2006 Image: Constraint of the second	3, 2005										*		*									*		
Quarter 2, 2006 Image: Constraint of the constraint of t	4, 2005										*											*		
Quarter 2, 2006 Image: Constraint of the constraint of t	1,2006										*													
Quarter 4, 2006 *											*		*											
Quarter 1, 2007 *																		*						
Quarter 3, 2007 *		ŧ									*													
Quarter 3, 2011	,						*	*	*	*	*			*	*			*						-
Quarter 3, 2012 * <td< td=""><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		+										*												
Quarter 3, 2016 Image: Constraint of the constraint of t		*																						
TOTAL ORGANIC HALIDES Image: Constraint of the second																				*				
Quarter 4, 2002 *		_																		4.				
Quarter 1, 2003 *		-					-											_	*	*		*		_
Quarter 3, 2003 * * Quarter 3, 2004 * * Quarter 3, 2004 * * Quarter 3, 2005 * <td></td> <td>_</td> <td></td> <td></td> <td>*</td> <td></td> <td>Ŧ</td> <td></td> <td></td> <td></td> <td></td>		_			*															Ŧ				
Quarter 2, 2004 Image: Constraint of the constraint of t		-																						-
Quarter 3, 2004 * <td< td=""><td></td><td>-</td><td></td><td></td><td>-1-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>		-			-1-																			-
Quarter 1, 2005 * <td< td=""><td></td><td>*</td><td></td><td></td><td></td><td>-</td><td> </td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>\vdash</td><td></td><td></td><td>-</td><td>-</td><td>*</td><td></td><td>├</td></td<>		*				-				-	-	-	-	-		-	\vdash			-	-	*		├
Quarter 2, 2005 * <td< td=""><td>-,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>├</td></td<>	-,																							├
Quarter 3, 2005 * <td< td=""><td>,</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td><u> </u></td></td<>	,				-														-				-	<u> </u>
Quarter 4, 2005 * Image: Constraint of the system of	_,				-														-				-	<u> </u>
Quarter 1, 2006 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>├──</td></td<>																								├──
Quarter 2, 2006 * <td< td=""><td>., = = = = =</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>├──</td></td<>	., = = = = =																							├──
Quarter 3, 2006 * <td< td=""><td>-,=</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>├</td></td<>	-,=					-		-						-	-					-	-			├
Quarter 4, 2006	,					-		-						-	-					-	-			├
Quarter 1, 2007 * <td< td=""><td>-,</td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>*</td><td></td><td>-</td><td>-</td><td></td><td></td><td>├</td></td<>	-,	-				-		-						-	-			*		-	-			├
Quarter 2, 2007 * <		*			-														-				-	<u> </u>
Quarter 3, 2007 * <	,																							├
Quarter 4, 2007 * * Quarter 1, 2008 * Quarter 4, 2008 * Quarter 4, 2008 * Quarter 4, 2008 * Quarter 1, 2009 *	_,																							├──
Quarter 1, 2008 * <	.,																					¥		├──
Quarter 4, 2008 * Image: Constraint of the second	,					-				-	-	-	-	-		-	\vdash			-	-	*		├
Quarter 4, 2008 *	,					-		-						-	-					-	-			├
Quarter 1, 2009 *	,					-		-						-	-					-	-			├
	,					<u> </u>	 							<u> </u>	<u> </u>						<u> </u>			├
Quarter 2, 2000 * *	,							-							-							*		├
	_,																					*		├
	.,					ļ	 			ļ	ļ	ļ	ļ	ļ		ļ			<u> </u>		ļ	ļ	<u> </u>	_
	,						<u> </u>																	_
	-,=						<u> </u>	<u> </u>							<u> </u>									_
Quarter 2, 2010 *	_,																			L				<u> </u>
Quarter 3, 2010 *	5, 2010 *	*																						

Groundwater Flow System		1	UCR	3						τ	URGA	ł							j	LRGA	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TOTAL ORGANIC HALIDES																							
Quarter 4, 2010	*																						1
Quarter 1, 2011	*																			<u> </u>			+
Quarter 3, 2013	-																		-		*		+
						_														-			-
TRICHLOROETHENE														_		-					_	_	
Quarter 4, 2002																				<u> </u>			
Quarter 1, 2003																							
Quarter 2, 2003																				l			
Quarter 3, 2003																							
Quarter 4, 2003																							1
Quarter 1, 2004																							1
Quarter 2, 2004																							+
Quarter 3, 2004																							+
																		-					+
Quarter 4, 2004																				<u> </u>			
Quarter 1, 2005																				⊢			
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																				1			1
Quarter 1, 2006																				i			1
Quarter 2, 2006	l																			[1
Quarter 2, 2007	1	 					 								 								1
Quarter 3, 2007																				<u> </u>			+
									<u> </u>	<u> </u>						-	<u> </u>						+
Quarter 4, 2007	 																			┝───			—
Quarter 1, 2008	I	L					L								L					┝──		┣──	⊢
Quarter 2, 2008																							
Quarter 3, 2008																				l			
Quarter 4, 2008																							
Quarter 1, 2009																							1
Quarter 2, 2009																				<u> </u>			+
Quarter 3, 2009																	-			<u> </u>			+
																-				 			
Quarter 4, 2009											-									—			
Quarter 1, 2010																				⊢			<u> </u>
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																				[
Quarter 1, 2011																							
Quarter 2, 2011																							1
Quarter 3, 2011																				<u> </u>			+
Quarter 4, 2011																							+
												-				-				<u> </u>			+
Quarter 1, 2012																-				┝──			
Quarter 2, 2012																				<u> </u>			
Quarter 3, 2012																							
Quarter 4, 2012			L	L									L				LĨ			L _			
Quarter 1, 2013																				ł			Τ
Quarter 2, 2013	l																			[1
Quarter 3, 2013																				[<u> </u>	1
Quarter 4, 2013																							+
Quarter 1, 2013																-							+
																-				<u> </u>		├	+
Quarter 2, 2014																			┝╤┙	┢───		—	–
Quarter 3, 2014																				⊢		<u> </u>	⊢
Quarter 4, 2014																				 			
Quarter 1, 2015																				1			
Quarter 2, 2015																				í			T
Quarter 3, 2015	1	1					1						1										1
Quarter 4, 2015	1		<u> </u>	<u> </u>																		<u> </u>	1
Quarter 1, 2015			-								-					-				<u> </u>		 	+
	I																<u> </u>			 		 	+
Quarter 2, 2016	I																			┝──		—	॒
Quarter 3, 2016																				<u> </u>			_
Quarter 4, 2016																				L			
Quarter 1, 2017																				1			1
Quarter 2, 2017	1	İ –					İ –								İ –								1
Quarter 3, 2017																	-			,		<u> </u>	+
												<u> </u>											+
Quarter 4, 2017	 																			<u> </u>			
0 / 1 2010																				i			
Quarter 1, 2018																							
Quarter 2, 2018																							
																							-

Groundwater Flow System			UCRS	3						τ	URGA	4								LRG/	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														
* Statistical test results indicate a	n elev	ated o	oncei	ntrati	on (i (. 96	tatieti	cally	zionif	icant	incre	ase)											
 MCL Exceedance 	ii elev	uteu (oneer	muun	011 (1.	, u 5	uuisu	curry	515IIII	icunt	mere	use)											
Previously reported as an MO	CL exe	ceeda	nce [.] h	nowey	/er re	sult v	vas ec	ual to	MC	L													
UCRS Upper Continental Recharge					,			1		-													
URGA Upper Regional Gravel Aqu																							
LRGA Lower Regional Gravel Aqu																							
S Sidegradient; D Downgradient; U		radie	nt																				
5 Staegraatent, 2 Downgraatent, C	- ~P5	auto																					

APPENDIX H

METHANE MONITORING DATA

CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:		08/20/2018 Time: 0930am Monitor:											:		Mic	chae	el Hid	eg				
Weather Co Mostly clou			grees	s wit	h sc	atte	red s	shov	vers													
Monitoring RAE Systen			E, S	eria	# 44	97																
			,				torir	ıg Lo	ocat	ion											Read (% Ll	
Ogden Landi Road Entrand		Che	ecked	d at g	round	lleve	əl							<u></u>							0	
North Landfil		Che	ecked	d at g	round	lleve	əl														0	
West Side of Landfill: North 37° West 88°	07.652'	Che	ecker	hat o	round	lleve	-j													·	0	
East Side of Landfill: North 37° West 88°	07.628'	-			round																0	
Cell 1 Gas Ve	ent (17)	1 0	2 0	3 0	4 0	5 0	6 0	7 0	8 0	9 0	10 0	11 0	12 0	13 0	14 0	15 0	16	1			0	
Cell 2 Gas V	ent (3)	1 0	2 0	3 0																	0	
Cell 3 Gas V	′ent (7)	1 0	2 0	3 0	4 0	5 0	6 0	7 0													0	
	l Office	Che	ecked	d at fl	oor le	vel															0	
Suspect or P	roblem Areas	No	area	s note	əd																N/A	Ą
Remarks:																						
ALL VENTS	S CHEC	CKEI	D 1"	FR	DM (THE	ΞM	JUT	ΉC	F VE	ENT											
Performed I	by:												·····									
	~y.			0	<u>Ju</u> Sig	I Ym 1.	nef	Šı	nt	r								8/	20	2/	18	
					Si	gnat	tyre														Date	

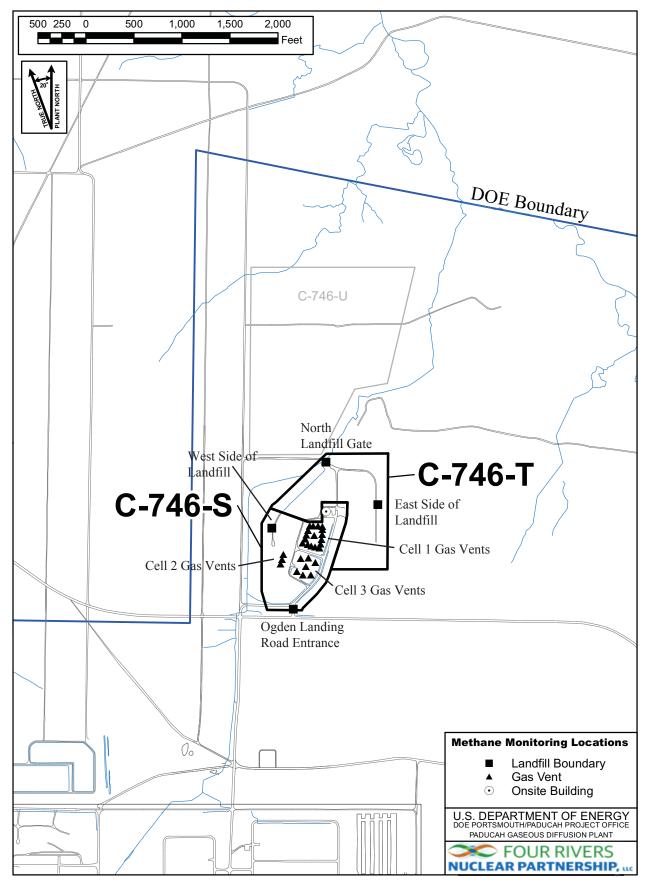


Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I

SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste ManagementRESIDENTIAL/INERT-QUARTERLYSolid Waste BranchFacility: US DOE - Paducah Gaseous Diffusion Plant14 Reilly RoadPermit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502) 564-6716

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L135 UPSTRE	AM	L154 DOWNST	REAM	L136 AT SI	TE	Ν	/
Sample Sequer	ice	#				1		1		1		\backslash	/
If sample is a	a Bl	lank, specify Type: (F)ield, (T)r:	ip, (M)ethod	, or (E)quipment	NA		NA		NA			
Sample Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		9/8/2018 13:5	55	9/8/2018 13:	35	9/24/2018 07	7:07		
Duplicate ("Y	(" c	or "N") ¹				N		N		N			7
Split ('Y' or	: "I	J") ²				N		N		N			/
Facility Samp	le	ID Number (if applicable)				L135SS4-18	3	L154US4-1	8	L136SS4-7	18		/
Laboratory Sa	mpl	le ID Number (if applicable)				459144001		459145001		46005100	1		
Date of Analy	ysis	s (Month/Day/Year)				9/25/2018		9/26/2018		10/3/2018	3		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷
A200-00-0	0	Flow	т	MGD	Field	0.03		0.21		0.03			
16887-00-6	2	Chloride(s)	т	MG/L	300.0	3.82		4.31		2.16			
14808-79-8	0	Sulfate	т	MG/L	300.0	10.8		10		7.11			\backslash
7439-89-6	0	Iron	т	MG/L	200.8	0.571		0.377		0.0941	J		$\left \right\rangle$
7440-23-5	0	Sodium	т	MG/L	200.8	3.11		3.02		1.42			$\left[\right]$
S0268	0	Organic Carbon ⁶	т	MG/L	9060	14.4		17.7		23.3			$ \rangle$
S0097	0	BOD ⁶	т	MG/L	not applicable		*		*		*	/	
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	85.2		81.2		96.7	*B		

 $^1 \mbox{Respond}$ "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by <u>separate</u> laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page. STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015

FINDS/UNIT: <u>KY8-890-008-982</u> / 1

LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	oint	t (KPDES Discharge Number, or	r "T	JPSTREAM" or	"DOWNSTREAM")	L135 UPSTRI	EAM	L154 DOWNSTE	REAM	L136 AT SI	TE		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	A G S ⁷
S0145	1	Specific Conductance	т	µHMS/CM	Field	142		177		231			
s0270	0	Total Suspended Solids	т	MG/L	160.2	14.7		47.9		4	J		
S0266	0	Total Dissolved Solids	т	MG/L	160.1	121	*	156	*	164	*		
S0269	0	Total Solids	т	MG/L	SM-2540 B 17	130	*	157	*	205			
S0296	0	рН	т	Units	Field	7.18		7.09		7.31		$\langle \rangle$	
7440-61-1		Uranium	т	MG/L	200.8	0.00218		0.00124		0.000505			
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	5.52	*	1.18	*	3.53	*		
12587-47-2		Gross Beta (β)	т	pCi/L	9310	62.1	*	13.5	*	8.87	*	X	
												/ \	
													\mathbf{N}
													\

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 & 073-00015 Finds/Unit: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

SURFACE WATER WRITTEN COMMENTS

Monitorir Point	ng Facility Sample ID	Constituent	Flag	Description
L135	L135SS4-18	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.33. Rad error is 6.26.
		Beta activity		TPU is 15.5. Rad error is 11.4.
L154	L154US4-18	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.62. Rad error is 1.61.
		Beta activity		TPU is 4.24. Rad error is 3.61.
L136	L136SS4-18	Biochemical Oxygen Demand (BOD		Insufficient flow to collect a sample.
		Chemical Oxygen Demand (COD)	Ν	Sample spike (MS/MSD) recovery not within control limits
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.79. Rad error is 3.74.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.68. Rad error is 7.53.