

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

FEB 2 7 2018

PPPO-02-4676497-18A

Ms. Robin Green Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Ms. Green and Mr. Hendricks:

C-746-S&T LANDFILLS FOURTH QUARTER CALENDAR YEAR 2017 (OCTOBER–DECEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FPDP-RPT-0088/V4, PERMIT NUMBER SW07300014, SW07300015, SW07300045

Enclosed is the subject report for fourth quarter calendar year 2017, provided in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The report includes groundwater analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results. The report usually contains surface water monitoring data; however, no surface water samples were collected for the quarter because no surface water flow was observed following a rainfall event.

The statistical analyses on the fourth quarter 2017 monitoring well data collected from the C-746-S&T Landfills were performed in accordance with Condition GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical increase notification for the fourth quarter calendar year 2017, in accordance with Condition GSTR0003, Standard Requirement 8, of the Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

ernife Woodard

Jennifer Woodard Paducah Site Lead Portsmouth/Paducah Project Office

Enclosure:

C-746-S&T Landfills 4th Qtr. CY 2017 (October–December) Compliance Monitoring Report

e-copy w/enclosure: april.webb@ky.gov, KDEP brian.begley@ky.gov, KDEP cheryl.baker@pad.pppo.gov, FRNP christopher.jung@ky.gov, KDEP curt.walker@pad.pppo.gov, FRNP dave.dollins@lex.doe.gov, PPPO elizabeth.wyatt@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov, FRNP gaye.brewer@ky.gov, KDEP jennifer.blewett@pad.pppo.gov, FRNP jennifer.watson@pad.pppo.gov, FRNP jennifer.woodard@lex.doe.gov, PPPO karen.walker@pad.pppo.gov, FRNP kelly.layne@pad.pppo.gov, FRNP ken.davis@pad.pppo.gov, FRNP kim.knerr@lex.doe.gov, PPPO leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP mike.guffey@ky.gov, KDEP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@swiftstaley.com, SSI stephaniec.brock@ky.gov, KYRHB stefanie.fountain@pad.pppo.gov, FRNP tracey.duncan@lex.doe.gov, PPPO

C-746-S&T Landfills Fourth Quarter Calendar Year 2017 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

FRNP Classification Support

2-26-18 Date

FPDP-RPT-0088/V4

C-746-S&T Landfills Fourth Quarter Calendar Year 2017 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—February 2018

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FOUR RIVERS NUCLEAR PARTNERSHIP, LLC, managing the Deactivation and Remediation Project at the Paducah Gaseous Diffusion Plant under Contract DE-EM0004895

FIGURE.			v
TABLES			v
ACRONY	'MS		vii
1.1 1.2	BACK MONIT 1.2.1 1.2.2 1.2.3	TION GROUND ΓORING PERIOD ACTIVITIES Groundwater Monitoring Methane Monitoring Surface Water Monitoring	1 1 3 3
2.1	A EVAI STATI 2.1.1 2.1.2 2.1.3	ESULTS LUATION/STATISTICAL SYNOPSIS STICAL ANALYSIS OF GROUNDWATER DATA Upper Continental Recharge System Upper Regional Gravel Aquifer Lower Regional Gravel Aquifer VERIFICATION AND VALIDATION	9 10 10 10 11
3. PROF	FESSIO	NAL GEOLOGIST AUTHORIZATION	13
4. REFE	ERENCE	ES	15
APPEND	IX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
APPEND	IX B:	FACILITY INFORMATION SHEET	B-1
APPEND	IX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
APPEND	IX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
APPEND	IX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
APPEND	IX F:	NOTIFICATIONS	F-1
APPEND	IX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
APPEND	IX H:	METHANE MONITORING DATA	H-1

CONTENTS

FIGURE

1. C	C-746-S&T Landfills Groundwater Monitoring Well Network2	2
------	--	---

TABLES

1.	Summary of MCL Exceedances	4
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells	5
4.	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	8
6.	Monitoring Wells Included in Statistical Analysis	10

ACRONYMS

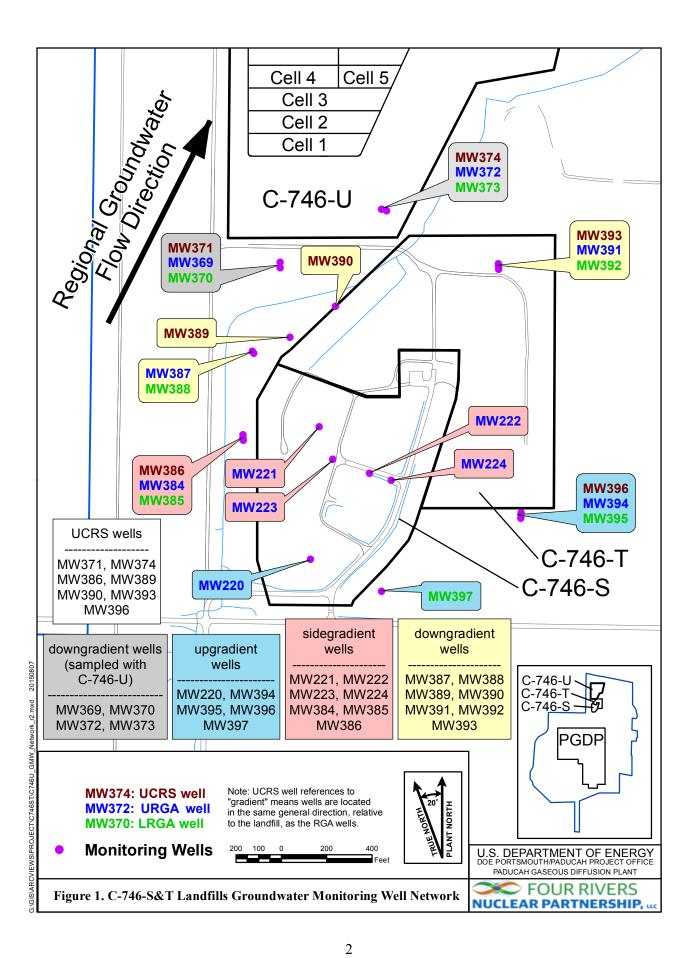
CFR CY KAR	Code of Federal Regulations calendar year Kentucky Administrative Regulations
KDWM	Kentucky Division of Waste Management
KRS	Kentucky Revised Statutes
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
MCL	maximum contaminant level
MW	monitoring well
PGDP	Paducah Gaseous Diffusion Plant
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer
UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills Fourth Quarter Calendar Year 2017 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. No surface water samples were collected for the quarter because no surface water flow was observed following a rainfall event. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 *KAR* 47:030 § 6 and for all permit required parameters listed in 40 *CFR* § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090 § 5.

1.1 BACKGROUND


The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Gaseous Diffusion Plant (PGDP) and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for PGDP. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from PGDP. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a water level measurement or sample; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan) (LATA Kentucky 2014) UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the fourth quarter 2017 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using Four Rivers Nuclear Partnership, LLC, procedure CP4-ES-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on October 17, 2017, in MWs of the C-746-S&T Landfills (see Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is north to northeastward, toward the Ohio River. During October, RGA groundwater flow in the area of the landfill was oriented primarily northward. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in October was 5.88×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 3.71×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.63 to 1.08 ft/day (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application, Attachment 12, of the Solid Waste Landfill Permit. Landfill operations staff monitored for the occurrence of methane in 1 on-site building location, 4 locations along the landfill boundary, and 27 passive-gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on November 28, 2017. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the approved C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

No surface water samples were collected for the quarter because no surface water flow was observed following a rainfall event.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014) which is Technical Application, Attachment 25, of the Solid Waste Landfill Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were further evaluated against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL during the fourth quarter 2017, as well as parameters that exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW369: Trichloroethene	MW370: Beta activity
	MW372: Beta activity	MW373: Trichloroethene
	MW384: Beta activity	MW385: Beta activity
	MW387: Beta activity	MW388: Beta activity
	MW391: Trichloroethene	MW392: Trichloroethene

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW369, MW373, MW391, and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedances for beta activity in MW370, MW372, MW387, and MW388 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances because the source(s) of these exceedances is not determined. To evaluate these preliminary Type 2 exceedances further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. MW372, MW387, and MW388 had no increasing Mann-Kendall trends for beta activity and are considered to be Type 1 exceedances (not attributable to the landfill). MW370 had an increasing trend that is discussed in detail later in this section.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 8, and 401 *KAR* 48:300 § 7.

Table 2. Exceedances of Statistical	y Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: Oxidation-reduction potential, sulfate	MW370: Beta activity, oxidation- reduction potential, radium-226,
-	-	sulfate, technetium-99
MW390: Oxidation-reduction	MW221: Chemical oxygen demand,	MW373: Calcium, conductivity,
potential, technetium-99	oxidation-reduction potential	dissolved solids, magnesium, oxidation-reduction potential, sulfate
MW393: Oxidation-reduction	MW222: Oxidation-reduction	MW385: Beta activity,
potential	potential	oxidation-reduction potential, sulfate, technetium-99
MW396: Oxidation-reduction	MW223: Oxidation-reduction	MW388: Beta activity,
potential	potential	oxidation-reduction potential,
	-	radium-226, sulfate, technetium-99
	MW224: Oxidation-reduction	MW392: Oxidation-reduction
	potential	potential
	MW369: Oxidation-reduction	MW395: Oxidation-reduction
	potential, technetium-99	potential
	MW372: Beta activity, calcium,	MW397: Aluminum,
	dissolved solids, magnesium, sulfate, technetium-99	oxidation-reduction potential
	MW384: Beta activity, oxidation-	
	reduction potential, sulfate,	
	technetium-99	
	MW387: Beta activity, oxidation-	
	reduction potential, sulfate,	
	technetium-99	
	MW391: Oxidation-reduction	
	potential, sulfate	

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that

is attributed to nearby RGA wells. Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386 Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393 Upgradient wells: MW220, MW394, MW395, MW396, MW397

Table 3. Exceedances of Current Background UTL in **Downgradient Wells**

URGA	LRGA		
MW369: Technetium-99	MW370: Beta activity, radium-226, sulfate, technetium-99		
MW372 : Beta activity, calcium, magnesium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate		
MW387: Beta activity, sulfate, technetium-99 MW391: Sulfate	MW388: Beta activity, sulfate, technetium-99		

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as upgradient, to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan. To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All but two of these preliminary Type 2 exceedances in downgradient wells—beta activity and technetium-99 in MW370—did not have an increasing trend and are considered to be Type 1 exceedances (not attributable to the landfill).

The Mann-Kendall statistical test indicates that there is an increasing trend in beta activity and technetium-99 in MW370 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, these are considered Type 2 exceedances (source unknown). The source of the trends is believed to be unrelated to the C-746-S&T Landfills for the following reasons.

- There is a known upgradient regional source of beta activity and technetium-99 associated with the technetium-99 Northwest Plume (see the Groundwater Monitoring Plan);
- Although the deeper (LRGA) MW370 shows increasing trends, the shallower, collocated (URGA) well, MW369, does not exceed statistically derived historical background concentrations for beta activity (refer to Table 2);
- Although the deeper (LRGA) MW370 shows increasing trends, the shallower, collocated (URGA) well, MW369, does not show the increasing Mann-Kendall trend for technetium-99 (refer to Table 4);
- The recent beta activity in MW370 is within the range of historical levels (3.66–84.6 pCi/L) of beta activity since 2002; and
- The recent technetium-99 in MW370 is within the range of historical levels (1.86–120 pCi/L) of technetium-99 since 2002.

In accordance with Permit Condition GSTR0003, Variance 2, of the Solid Waste Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S ³	Var(S) ⁴	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
	MW369	Technetium-99	8	0.05	0.452	2	65.333	3.09	0.071	No Trend
		Beta activity	8	0.05	0.031	16	65.333	6.36	0.571	Positive Trend
	NU1270	Radium-226	8	0.05	0.199	8	65.333	0.05	0.286	No Trend
	MW370	Sulfate	8	0.05	0.267	5	64.333	0.13	0.182	No Trend
		Technetium-99	8	0.05	0.031	16	65.333	6.72	0.571	Positive Trend
		Beta activity	8	0.05	0.138	10	65.333	3.39	0.357	No Trend
		Calcium	8	0.05	0.003	-22	65.333	-2.05	-0.786	Negative Trend
	MW372	Magnesium	8	0.05	0.000	-26	65.333	-0.97	-0.929	Negative Trend
		Sulfate	8	0.05	0.002	-23	64.333	-8.30	-0.837	Negative Trend
		Technetium-99	8	0.05	0.138	10	65.333	4.43	0.357	No Trend
C-746-	MW373	Calcium	8	0.05	0.199	-8	65.333	-1.28	-0.286	No Trend
S&T Landfills		Conductivity	8	0.05	0.452	-2	65.333	-5.14	-0.071	No Trend
		Dissolved Solids	8	0.05	0.360	-4	65.333	-4.42	-0.143	No Trend
		Magnesium	8	0.05	0.054	-14	65.333	-0.57	-0.500	No Trend
		Sulfate	8	0.05	0.053	-13	64.333	-3.43	-0.473	No Trend
	MW387	Beta activity	8	0.05	0.274	6	65.333	5.00	0.214	No Trend
		Sulfate	8	0.05	0.274	6	65.333	0.48	0.214	No Trend
		Technetium-99	8	0.05	0.360	4	65.333	5.04	0.143	No Trend
		Beta activity	8	0.05	0.031	-16	65.333	-6.90	-0.571	Negative Trend
	MW388	Sulfate	8	0.05	0.089	12	63.333	0.46	0.445	No Trend
		Technetium-99	8	0.05	0.274	-6	65.333	-4.88	-0.214	No Trend
	MW391	Sulfate	8	0.05	0.452	2	65.333	0.56	0.071	No Trend

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Footnotes:

¹ An alpha of 0.05 represents a 95% confidence interval.

² The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend. ⁴ VAR(S) represents the variance of S in the sample set and takes into account statistical ties.

⁵ The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all $(x_j-x_k)/(j-k)$, where x is a data point and j and k are values of time.

⁶ Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is positive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend.

⁷ The Mann-Kendall decision operates on two hypotheses, the H₀ and H_a. H₀ assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend. Two different tests were run to test for positive or negative trends. This table reports the test with the lowest p-value.

Note: Statistics generated using XLSTAT.

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS well MW390 with a technetium-99 value that exceeds both the historical and current backgrounds (Table 5). Because this well is not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T sources and is considered to be a Type 1 exceedance.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS	
MW390: Technetium-99	
*In the same direction (relative to the landfill) as RGA wells.	

All MCL and UTL exceedances, except for beta activity and technetium-99 in MW370, reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills. The increasing trends for these listed parameters do not appear to be landfill-related. The listed parameters will continue to be evaluated in the context of these observations.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the fourth quarter 2017 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance—an exceedance not exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both the upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

UCRS	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389**	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396***	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	
	MW387	
	MW391	
	MW394 (upgradient)	

Table 6. Monitoring Wells Included in Statistical Analysis*

*A map showing the MW locations is shown on Figure 1.

**MW389 had insufficient water to permit a water sample for laboratory analysis.

***In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the constituents that have exceeded both the historical uTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the UCRS. During the fourth quarter, oxidation-reduction potential and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Technetium-99 exceeded the current background UTL and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 32 parameters, including those with MCLs, required statistical analysis in the URGA. During the fourth quarter, beta activity, calcium, chemical oxygen demand, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, magnesium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.1.3 Lower Regional Gravel Aquifer

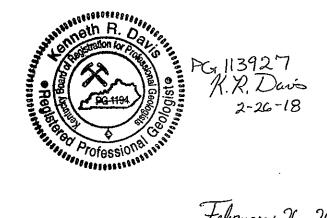
In this quarter, 30 parameters, including those with MCLs, required statistical analysis in the LRGA. During the fourth quarter, aluminum, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, radium-226, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices, and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.


Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills Fourth Quarter Calendar Year 2017 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FPDP-RPT-0088/V4)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

Kenneth R. Davis

Kenneth R. Davis

PG113927

February 26, 2018 Date

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE–Paducah Gaseous Diffusion Plant (As officially shown on DWM Permit Face)			Activity:	C-746-S&T Landfills
Permit No:	(As officially show SW07300014, SW07300015, SW07300045		ds/Unit No:	Quarter & Year	4th Qtr. CY 2017
Please check the	following as applicab	le:			
Character	rization <u>X</u> Q	uarterly _	Semiannual	Annual	Assessment
Please check applicable submittal(s):X			Groundwater	S	Surface Water
			Leachate	X	Methane Monitoring

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 *KAR* 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Myrna E. Redfield, Deputy Program Manager Four Rivers Nuclear Partnership, LLC

Jennifer Woodard, Paducah Site Lead U.S. Department of Energy

Date 2/27/18

APPENDIX B

FACILITY INFORMATION SHEET

Sampling Date:	Groundwater: October 201 Methane: November 2017	7 County: McCra	cken Permit Nos.	SW07300014, SW07300015, SW07300045
Facility Name:	U.S. DOE—Paducah Gased			
	(As offic	ally shown on DWM Permit Face)		
Site Address:	5600 Hobbs Road	Kevil, Kentucky		42053
	Street	City/State		Zip
Phone No:	(270) 441-6800 I	N 37° 07' 37.70"	Longitude:	W 88° 47' 55.41"
		OWNER INFORMATION		
Facility Owner:	U.S. DOE, Robert E. Edwa	rds III, Manager	Phone No:	(859) 227-5020
Contact Person:	Curt B. Walker		Phone No:	(270) 441-5226
Contact Person Ti	tle: Director, Environme			
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky	•	42053
U	Street	City/State		Zip
	(IF OT	SAMPLING PERSONNEL HER THAN LANDFILL OR LABORATO	DRY)	
Company:	GEO Consultants, LLC			
Contact Person:	Sam Martin		Phone No:	(270) 441-6755
Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky		42053
_	Street	City/State		Zip
		LABORATORY RECORD #1		
Laboratory:	GEL Laboratories, LLC	Lab ID N	o: KY90129	
Contact Person:	Valerie Davis		Phone No:	(843) 769-7391
Mailing Address:	2040 Savage Road	Charleston, South Carolina		29407
	Street	City/State		Zip
		LABORATORY RECORD #2		
Laboratory:	N/A	Lab ID	No: _{N/A}	
Contact Person:	N/A		Phone No:	N/A
Mailing Address:	N/A			
61100010005	Street	City/State		Zip
		LABORATORY RECORD #3		
Laboratory:	N/A	Lab ID	No: _{N/A}	
Contact Person:	N/A		Phone No:	N/A
Mailing Address:	N/A			
	Street	City/State		Zip

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-52	202	8000-52	242	8000-524	13
Facility's Loo	cal Well or Spring Number (e.g., M	ſ₩-1	, MW-2, etc	.)	220		221		222		223	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)q	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour:minu	tes)		10/9/2017 14	4:08	10/10/2017	08:04	10/10/2017	09:49	10/10/2017 (08:59
Duplicate ("Y	or "N") ²				Ν		Ν		Ν		Ν	
Split ("Y" or	"N") ³				Ν		Ν		N		Ν	
Facility Samp	le ID Number (if applicable)		MW220SG1	-18	MW221S0	G1-18	MW222S0	G1-18	MW223SG	1-18		
Laboratory Sar	mple ID Number (if applicable)		43464900	3	434754	001	434754	003	43475400	05		
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ysis	10/12/201	7	10/16/20	017	10/16/20	017	10/16/201	17		
Gradient with	respect to Monitored Unit (UP, DO), AWC	SIDE, UNKN	OWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.198	J	0.419		0.421		0.414	
16887-00-6	Chloride(s)	т	mg/L	9056	20.2	*	32.1		30.1		29.4	
16984-48-8	Fluoride	т	mg/L	9056	0.169		0.177		0.232		0.223	
\$0595	Nitrate & Nitrite	т	mg/L	9056	1.08		1.15		1.03		1.25	
14808-79-8	Sulfate	т	mg/L	9056	17.6		14.8		12.6		15	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.88		29.98		29.99		29.99	
S0145	Specific Conductance	т	µMH0/cm	Field	343		382		354		378	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

				(00110	/							
AKGWA NUMBER1	, Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	2	8000-5243	
Facility's Lo	cal Well or Spring Number (e.g., M	<i>I</i> -1, 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	324.31		323.93		324.33		324.24	
N238	Dissolved Oxygen	т	mg/L	Field	4.37		3.87		4.64		3.65	
S0266	Total Dissolved Solids	т	mg/L	160.1	147		203	*	210	*	207	*
S0296	рН	т	Units	Field	5.46		6.09		6.3		6.17	
NS215	Eh	т	mV	Field	436		442		444		444	
S0907	Temperature	т	°C	Field	22.22		18.17		17.94		18.28	
7429-90-5	Aluminum	т	mg/L	6020	0.0203	J	<0.05		0.0516		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.199		0.207		0.27		0.24	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0127	J	0.0151		0.00918	J	0.00707	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	19.9		20		17.3		20.9	
7440-47-3	Chromium	т	mg/L	6020	0.00374	J	0.0104		<0.01		0.0128	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		0.000552	J	0.000745	J
7440-50-8	Copper	т	mg/L	6020	0.0011	В	0.00132		0.00071	J	0.000773	J
7439-89-6	Iron	т	mg/L	6020	0.0482	J	0.0856	J	0.0616	J	<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	8.67		9.39		7.97		8.96	
7439-96-5	Manganese	т	mg/L	6020	0.00146	J	0.0034	J	0.00343	J	0.0199	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-520)1	8000-52	02	8000-524	42	8000-52	43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.000612		0.0013		0.000234	J	0.0042	
7440-02-0	Nickel	т	mg/L	6020	0.0163		0.00604		0.0514		0.105	
7440-09-7	Potassium	т	mg/L	6020	1.5		1.17		0.608		1.69	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	40.9		43.9		46.5		46.5	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	т	mg/L	6020	0.00345	J	0.00434	J	0.00462	J	0.00495	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8000-520	1	8000-520	02	8000-52	242	8000-52	243
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-7

AKGWA NUMBER1,	, Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	12	8000-524	43
Facility's Lo	cal Well or Spring Number (e.g., M	ww-1	1, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000194		<0.0000195		<0.0000196		<0.0000195	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0952		<0.0943		<0.0952		<0.0943	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.0943		<0.0952		<0.0943	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.0943		<0.0952		<0.0943	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.0943		<0.0952		<0.0943	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.0943		<0.0952		<0.0943	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0952		<0.0943		<0.0952		<0.0943	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-8

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	13
Facility's Loc	al Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.0943		<0.0952		<0.0943	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952		<0.0943		<0.0952		<0.0943	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.0943		<0.0952		<0.0943	
12587-46-1	Gross Alpha	т	pCi/L	9310	1.46	*	3.31	*	2.99	*	3.13	*
12587-47-2	Gross Beta	т	pCi/L	9310	13.1	*	8.91	*	5.8	*	7.49	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.212	*	0.348	*	0.27	*	0.374	*
10098-97-2	Strontium-90	т	pCi/L	905.0	2.98	*	-0.335	*	-3.57	*	0.0318	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	18.3	*	17.8	*	5.88	*	8.84	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.15	*	-0.0125	*	-0.281	*	0.131	*
10028-17-8	Tritium	т	pCi/L	906.0	62.2	*	-38.5	*	5.76	*	15.4	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	14.2	BJ*	46.4	*	<20	*	<20	*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		0.00242	J	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.29	J	1.43	J	1.36	J	1.33	J
s0586	Total Organic Halides	т	mg/L	9020	<0.01		0.008	J	0.0062	J	0.00716	J

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244	1	8004-48	320	8004-48	318	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	.)	224		369		370		372	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)g	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/10/2017 1	1:50	10/3/2017	08:26	10/3/2017	09:49	10/3/2017 1	2:47
Duplicate ("Y	" or "N") ²				N		Ν		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)		MW224SG1	-18	MW369U0	G1-18	MW370U0	G1-18	MW372UG	1-18		
Laboratory Sa	mple ID Number (if applicable)		43475400	7	434195	009	4341950	011	4341950	15		
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	ysis	10/17/201	7	10/9/20	17	10/9/20	17	10/9/201	7		
Gradient with	respect to Monitored Unit (UP, DC	wn,	SIDE, UNKN	OWN)	SIDE		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.4		0.353		0.413		0.568	
16887-00-6	Chloride(s)	т	mg/L	9056	29.5		30.4	*	33.8	*	48.3	*
16984-48-8	Fluoride	т	mg/L	9056	0.241		0.18		0.142		0.15	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.863		0.794		1.14		0.971	
14808-79-8	Sulfate	т	mg/L	9056	12.8		7.01		18.8		57.7	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.98		30.33		30.35		30.35	
s0145	Specific Conductance	т	µMH0/cm	Field	418		370		438		622	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

					(00110							
AKGWA NUMBER1	, Facility Well/Spring Number				8000-524	4	8004-482	:0	8004-4818	3	8004-4808	
Facility's Lo	cal Well or Spring Number (e.g., M	I-1 , 1	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	324.43		324.06		324.01		324.09	
N238	Dissolved Oxygen	т	mg/L	Field	3.57		2.02		3.78		1.54	
S0266	Total Dissolved Solids	т	mg/L	160.1	240	*	180		216		304	
s0296	рн	т	Units	Field	6.2		6.12		6.13		6.22	
NS215	Eh	т	mV	Field	434		399		392		358	
S0907	Temperature	т	°C	Field	19.33		18.5		18.72		20.61	
7429-90-5	Aluminum	т	mg/L	6020	0.0209	J	0.13		0.0805		0.0196	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00262	J	0.0021	J
7440-39-3	Barium	т	mg/L	6020	0.217		0.371		0.244		0.0573	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0135	J	0.0166		0.0341		0.716	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	21.7		15.9		27.9		46.5	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		0.00682	J	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.000333	J	0.00741		0.00237		0.000399	J
7440-50-8	Copper	т	mg/L	6020	0.000354	J	0.00131		0.00135		0.000635	J
7439-89-6	Iron	т	mg/L	6020	0.051	J	0.291		0.49		0.432	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	9.67		6.72		12		17.7	
7439-96-5	Manganese	т	mg/L	6020	0.00643		0.0413		0.174		0.0058	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	14	8004-48	20	8004-48	18	8004-48	08
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.000438	J	<0.0005		0.000687		0.000241	J
7440-02-0	Nickel	т	mg/L	6020	0.00537		0.00562		0.00143	J	0.000787	J
7440-09-7	Potassium	т	mg/L	6020	0.886		0.515		2.57		2.1	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00231	J	<0.005		0.0022	J
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	54.7		50.3		40.6		47.5	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		0.00373	J	<0.01		<0.01	
7440-66-6	Zinc	т	mg/L	6020	0.00341	J	0.00362	J	0.00736	J	<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8000-5244	4	8004-482	20	8004-48	318	8004-48	808
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00551		0.003		0.00449	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	1	8004-4820)	8004-481	18	8004-480	08
Facility's Loc	al Well or Spring Number (e.g., M	w-1	L, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000197		<0.0000197		<0.0000194	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0943		0.0475	J	<0.0962		<0.0952	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0943		<0.1		<0.0962		<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0943		<0.1		<0.0962		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0943		<0.1		<0.0962		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0943		0.0475	J	<0.0962		<0.0952	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0943		<0.1		<0.0962		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-14

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244		8004-4820		8004-481	8	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0943		<0.1		<0.0962		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0943		<0.1		<0.0962		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0943		<0.1		<0.0962		<0.0952	
12587-46-1	Gross Alpha	т	pCi/L	9310	0.703	*	1.64	*	0.072	*	3.27	*
12587-47-2	Gross Beta	т	pCi/L	9310	2.95	*	40.7	*	69	*	132	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.265	*	0.467	*	1.36	*	0.662	*
10098-97-2	Strontium-90	т	pCi/L	905.0	2.97	*	-1.05	*	-0.297	*	1.4	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	5.36	*	70.8	*	103	*	195	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.164	*	-0.203	*	0.396	*	0.664	*
10028-17-8	Tritium	т	pCi/L	906.0	85	*	-101	*	-108	*	-53.7	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	9.26	*J	9.71	J	17.5	J	21.5	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.43	J	1.6	J	1.26	J	1.42	J
s0586	Total Organic Halides	т	mg/L	9020	0.00688	J	0.0162		0.00684	J	0.013	

Division of Waste Management **RESIDENTIAL/INERT-OUARTERLY** Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER¹, Facility Well/Spring Number 8004-4792 8004-4809 8004-4810 8004-4804 373 385 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 384 386 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA NA NA 10/10/2017 10:13 10/3/2017 14:20 10/10/2017 12:36 10/10/2017 13:21 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν Ν Ν Split ("Y" or "N")³ Ν Ν Ν N MW373UG1-18 MW384SG1-18 MW385SG1-18 MW386SG1-18 Facility Sample ID Number (if applicable) 434195017 434754009 434754011 434754015 Laboratory Sample ID Number (if applicable) 10/9/2017 10/17/2017 10/17/2017 10/17/2017 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis DOWN SIDE SIDE SIDE Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN⁴ CONSTITUENT т Unit METHOD DETECTED F DETECTED DETECTED DETECTED F F F D OF VALUE L VALUE L VALUE L VALUE т. 5 MEASURE OR А OR А OR А OR А POL⁶ POL⁶ POL⁶ POL⁶ G G G G S^7 s s s 0.578 0.322 0.245 0.162 J 24959-67-9 Bromide т mg/L 9056 45.6 33.4 26.8 13.7 16887-00-6 Chloride(s) т 9056 mg/L 0.156 0.159 0.141 0.578 16984-48-8 Fluoride т 9056 mq/L 0.929 0.998 0.592 <0.1 s0595- т Nitrate & Nitrite 9056 mq/L 118 22.6 19.8 46.3 14808-79-8 т Sulfate mq/L 9056 30.33 29.98 29.97 30.01 NS1894 Barometric Pressure Reading T Inches/Hg Field 742 439 453 592 s0145- т Specific Conductance Field µMH0/cm

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

											r	
AKGWA NUMBER1	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	cal Well or Spring Number (e.g., My	1-1, 1	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
50906	Static Water Level Elevation	т	Ft. MSL	Field	324.1		323.99		323.95		343.94	
N238	Dissolved Oxygen	т	mg/L	Field	1.82		3.09		2.06		4.71	
S0266	Total Dissolved Solids	т	mg/L	160.1	444		259	*	246	*	344	*
s0296	pH	т	Units	Field	6.24		6.15		6.41		7.03	
NS215	Eh	т	mV	Field	347		424		406		214	
s0907	Temperature	т	°C	Field	19.89		18.78		18.67		17.78	
7429-90-5	Aluminum	т	mg/L	6020	0.0967		0.0271	J	0.547		0.0425	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.0021	J	0.0023	J	<0.005		0.00274	J
7440-39-3	Barium	т	mg/L	6020	0.0345		0.197		0.232		0.208	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	1.38		0.0298		0.0146	J	0.00527	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	58.5		24.4		35		20.9	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.00325	J	<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00464		0.000584	J	0.000493	J	0.0103	
7440-50-8	Copper	т	mg/L	6020	0.00138		0.000639	J	0.00142		0.00127	
7439-89-6	Iron	т	mg/L	6020	0.839		0.648		1.11		0.964	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		0.000509	J	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	22.3		10.2		12.9		8.94	
7439-96-5	Manganese	т	mg/L	6020	0.215		0.151		0.0169		1.33	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005		0.000527		0.000623	
7440-02-0	Nickel	т	mg/L	6020	0.00307		0.00101	J	0.0017	J	0.00243	
7440-09-7	Potassium	т	mg/L	6020	2.61		1.48		1.83		0.298	J
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	52.7		50.5		33.7		102	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.000168	J	0.000077	J
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		0.00348	J	<0.01	
7440-66-6	Zinc	т	mg/L	6020	0.0041	J	0.00437	J	0.00614	J	0.00605	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-480	09	8004-48	310	8004-48	304
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00693		0.00044	J	<0.001		0.00072	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809	9	8004-481	10	8004-480)4
Facility's Loc	cal Well or Spring Number (e.g., M	1 W-1	L, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198		<0.0000196		<0.0000195		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0952		<0.0943		<0.0943		<0.099	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.0943		<0.0943		<0.099	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.0943		<0.0943		<0.099	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.0943		<0.0943		<0.099	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.0943		<0.0943		<0.099	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0952		<0.0943		<0.0943		<0.099	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792		8004-4809)	8004-481	0	8004-480)4
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.0943		<0.0943		<0.099	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952		<0.0943		<0.0943		<0.099	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.0943		<0.0943		<0.099	
12587-46-1	Gross Alpha	т	pCi/L	9310	3.61	*	0.254	*	0.497	*	1.32	*
12587-47-2	Gross Beta	т	pCi/L	9310	20.6	*	114	*	101	*	0.897	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.68	*	0.498	*	0.687	*	0.219	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.84	*	-0.732	*	-1.33	*	-0.702	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	29.6	*	189	*	166	*	-5.16	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.453	*	0.298	*	-0.22	*	0.154	*
10028-17-8	Tritium	т	pCi/L	906.0	-38.7	*	-61.5	*	37.8	*	34	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	15.6	J	9.26	*J	<20	*	14.1	*J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		0.00293	J	<0.2		0.00215	J
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		0.183	J
s0268	Total Organic Carbon	т	mg/L	9060	1.46	J	1.71	J	1.62	J	7.16	
s0586	Total Organic Halides	Т	mg/L	9020	0.0122		0.012		0.00706	J	0.132	

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	5	8004-48	316	8004-481	12	8004-481	1
Facility's Loc	al Well or Spring Number (e.g., M	w−1	, MW-2, etc	.)	387		388		389		390	
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		10/10/2017 0	8:34	10/10/2017	09:26	NA		10/10/2017 0	7:45
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)		MW387SG1	-18	MW388S	G1-18	NA		MW390SG1	-18		
Laboratory Sam	ple ID Number (if applicable)		43475401	7	434754	019	NA		43475500	1		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						10/17/2	017	NA		10/12/201	7
Gradient with	respect to Monitored Unit (UP, DO	WN,	SIDE, UNKN	OWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.463		0.371			*	0.654	
16887-00-6	Chloride(s)	т	mg/L	9056	40.8		31.4			*	69.7	
16984-48-8	Fluoride	т	mg/L	9056	0.548		0.175			*	0.265	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.22		1.05			*	3.45	
14808-79-8	Sulfate	т	mg/L	9056	29.7		26.3			*	35.9	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.98		29.99			*	29.96	
S0145	Specific Conductance	т	µMH0/cm	Field	511		463			*	704	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

- * = See Comments
- J = Estimated Value

B = Analyte found in blank

A = Average value

- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

			(00110									
AKGWA NUMBER1	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g., M	I-1 , 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	324.34		324.24			*	324.31	
N238	Dissolved Oxygen	т	mg/L	Field	4.42		3.71			*	4.68	
S0266	Total Dissolved Solids	т	mg/L	160.1	276	*	257	*		*	384	
s0296	рн	т	Units	Field	6.54		6.41			*	6.7	
NS215	Eh	т	mV	Field	398		385			*	444	
50907	Temperature	т	°C	Field	18.11		17.67			*	18.61	
7429-90-5	Aluminum	т	mg/L	6020	0.107		0.329			*	0.58	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00447	J	0.00243	J		*	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.128		0.222			*	0.248	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.032		0.0292			*	0.00739	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	33.7		27.9			*	30.5	
7440-47-3	Chromium	т	mg/L	6020	0.00456	J	<0.01			*	0.00811	J
7440-48-4	Cobalt	т	mg/L	6020	0.000321	J	0.000334	J		*	0.000688	J
7440-50-8	Copper	т	mg/L	6020	0.00121		0.00144			*	0.00192	
7439-89-6	Iron	т	mg/L	6020	1.6		1.15			*	0.538	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	14.1		12.9			*	13.1	
7439-96-5	Manganese	т	mg/L	6020	0.106		0.0071			*	0.0044	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-481	15	8004-48	16	8004-48	12	8004-481	1
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.00024	J		*	0.000791	
7440-02-0	Nickel	т	mg/L	6020	0.000831	J	0.00155	J		*	0.00237	
7440-09-7	Potassium	т	mg/L	6020	1.75		2.19			*	0.424	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	т	mg/L	6020	51.1		48.8			*	94.6	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002			*	0.00012	J
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01			*	0.00392	J
7440-66-6	Zinc	т	mg/L	6020	0.00457	J	0.0045	J		*	0.00483	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-481	5	8004-48	16	8004-48	812	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00144		0.00078	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-481	6	8004-48	12	8004-4811	
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000194		<0.0000195			*	<0.0000195	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0962		<0.099			*	<0.1	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0962		<0.099			*	<0.1	*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0962		<0.099			*	<0.1	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0962		<0.099			*	<0.1	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0962		<0.099			*	<0.1	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0962		<0.099			*	<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4815		8004-4816	;	8004-481	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0962		<0.099			*	<0.1	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0962		<0.099			*	<0.1	*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0962		<0.099			*	<0.1	
12587-46-1	Gross Alpha	т	pCi/L	9310	0.99	*	2.24	*		*	2.94	*
12587-47-2	Gross Beta	т	pCi/L	9310	186	*	69.3	*		*	38.1	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.394	*	0.753	*		*	0.0063	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.45	*	0.333	*		*	0.286	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	291	*	119	*		*	36.7	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.511	*	-0.0442	*		*	0.0629	*
10028-17-8	Tritium	т	pCi/L	906.0	103	*	-16.8	*		*	24.8	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	17.3	*J	<20	*		*	<20	*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.85	J	1.93	J		*	2.66	
s0586	Total Organic Halides	Т	mg/L	9020	0.00414	J	0.0044	J		*	0.0128	
		Π										

Division of Waste Management **RESIDENTIAL/INERT-QUARTERLY** Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-48	306	8004-48	807	8004-480)2
Facility's Lo	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	.)	391		392		393		394	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)q	nuipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/9/2017 09	9:19	10/9/2017	07:50	10/9/2017	08:32	10/9/2017 1	2:31
Duplicate ("Y	" or "N") ²				N		Ν		N		Ν	
Split ("Y" or	"N") ³				N		Ν		Ν		Ν	
Facility Samp	le ID Number (if applicable)				MW391SG1	-18	MW392S0	G1-18	MW393S0	G1-18	MW394SG	1-18
Laboratory Sa	mple ID Number (if applicable)		43464900)1	434649	005	4346490	007	4346490	09		
Date of Analy	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					7	10/12/20	017	10/12/20	017	10/12/20 ⁻	17
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	OWN)	DOWN		DOW	N	DOW	Ν	UP	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.546		0.6		0.173	J	0.672	
16887-00-6	Chloride(s)	т	mg/L	9056	42.6	*	48.9	*	14.4	*	49.3	*
16984-48-8	Fluoride	т	mg/L	9056	0.151		0.2		0.122		0.154	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.979		0.603		0.0386	J	1.11	
14808-79-8	Sulfate	т	mg/L	9056	46.4		7.41		13		10.5	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.92		29.87		29.9		29.92	
S0145	Specific Conductance	т	µMH0/cm	Field	506		414		389		405	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

0==0							• /					
AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807		8004-4802	
Facility's Lo	ocal Well or Spring Number (e.g., M	w-1 , 1	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.12		324.11		339.52		324.57	
N238	Dissolved Oxygen	т	mg/L	Field	3.3		1.26		1.76		5.53	
S0266	Total Dissolved Solids	т	mg/L	160.1	211		183		169		170	
S0296	рн	т	Units	Field	5.36		6.29		5.95		6.37	
NS215	Eh	т	mV	Field	413		367		331		337	
S0907	Temperature	т	°C	Field	18.28		17.39		18.5		19.89	
7429-90-5	Aluminum	т	mg/L	6020	0.127		0.0769		0.0525		0.167	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00385	J	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.146		0.216		0.121		0.246	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.16		0.0281		0.02		0.0205	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	34.1		28.8		11.5		25.7	
7440-47-3	Chromium	т	mg/L	6020	0.00531	J	<0.01		0.00599	J	0.0048	J
7440-48-4	Cobalt	т	mg/L	6020	0.00063	J	0.000341	J	<0.001		0.000358	J
7440-50-8	Copper	т	mg/L	6020	0.00192	В	0.00179	В	0.00249	В	0.00151	В
7439-89-6	Iron	т	mg/L	6020	0.828		1.46		1.49		1.11	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	15		10.8		3.39		11.4	
7439-96-5	Manganese	т	mg/L	6020	0.0261		0.147		0.0467		0.0295	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-480)5	8004-4806		8004-4807		8004-4802	
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.000237	J	<0.0005		0.000272	J	0.00035	J
7440-02-0	Nickel	т	mg/L	6020	0.00145	J	0.00133	J	<0.002		0.00486	
7440-09-7	Potassium	т	mg/L	6020	1.77		1.76		0.383		1.19	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	36.6		36.5		68.7		33.6	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	т	mg/L	6020	0.00513	J	<0.01		0.00365	J	0.0052	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	06	8004-4807		8004-4802	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	0.00036	J	0.00058	J	<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00903		0.014		0.00077	J	0.00494	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	6	8004-480)7	8004-4802	
Facility's Loc	cal Well or Spring Number (e.g., M	w-:	1, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000194		<0.0000194		<0.0000193	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0952		<0.0943		<0.0962		<0.0952	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.0943		<0.0962		<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.0943		<0.0962		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.0943		<0.0962		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.0943		<0.0962		<0.0952	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0952		<0.0943		<0.0962		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-32

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4805	5	8004-480	6	8004-480)7	8004-480	02
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.0943		<0.0962		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952		<0.0943		<0.0962		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.0943		<0.0962		<0.0952	
12587-46-1	Gross Alpha	т	pCi/L	9310	1.08	*	0.845	*	1.03	*	1.62	*
12587-47-2	Gross Beta	т	pCi/L	9310	4.59	*	3.5	*	-0.399	*	-0.603	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.256	*	0.356	*	0.0257	*	0.271	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.0654	*	1.83	*	-0.232	*	-2.15	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	5.19	*	2.58	*	-5.48	*	1.99	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.00845	*	-0.00422	*	-0.0851	*	-0.0658	*
10028-17-8	Tritium	Т	pCi/L	906.0	-51.9	*	-9.54	*	57.9	*	57.9	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	14.2	BJ*	14.2	BJ*	15.8	BJ*	12.5	BJ*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.31	J	1.62	J	3.01		1.25	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0109		0.0332		0.0196		0.00934	J

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803		8004-4817		0000-0000	
Facility's Loc	al Well or Spring Number (e.g., M	W-1	, MW-2, etc	••)	395		396		397		E. BLANK	
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip, ((M)e	thod, or (E)q	quipment	NA		NA		NA		E	
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)						10/9/2017	11:07	10/9/2017	13:19	10/10/2017 (07:05
Duplicate ("Y"		Ν		N		Ν		Ν				
Split ("Y" or		Ν		N		N		Ν				
Facility Sampl		MW395SG1	-18	MW396S0	G1-18	MW397SC	G1-18	RI1SG1-1	18			
Laboratory Sam	Laboratory Sample ID Number (if applicable)						434649	013	4346490	015	434755004	
Date of Analys	is (Month/Day/Year) For <u>Volatile</u>	0r	ganics Anal	ysis	10/12/2017		10/12/2017		10/12/2017		10/12/201	17
Gradient with	respect to Monitored Unit (UP, DO	wn,	SIDE, UNKN	IOWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.519		1.1		0.447			*
16887-00-6	Chloride(s)	т	mg/L	9056	43	*	73.6	*	37.6	*		*
16984-48-8	Fluoride	т	mg/L	9056	0.12		0.507		0.117			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.55		0.0342	J	1.45			*
14808-79-8	Sulfate	т	mg/L	9056	10.1		23.5		11.1			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.93		29.93		29.91			*
S0145	Specific Conductance	т	µMH0/cm	Field	378		767		333			*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

							• /				- I	
AKGWA NUMBER1	, Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	7	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., M	I-1 , 1	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	324.97		365.74		324.61			*
N238	Dissolved Oxygen	т	mg/L	Field	4.93		0.72		4.58			*
S0266	Total Dissolved Solids	т	mg/L	160.1	163		380		156			*
S0296	рн	т	Units	Field	6.33		5.92		6.48			*
NS215	Eh	т	mV	Field	385		217		362			*
S0907	Temperature	т	°C	Field	18.06		18.28		19.83			*
7429-90-5	Aluminum	т	mg/L	6020	0.603		0.232		0.899		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.0022	J	<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.247		0.404		0.141		<0.002	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0225		0.00866	J	0.00934	J	<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	25.3		35.3		18.7		<0.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00359		0.000791	J	<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00115	В	0.00238	В	0.00144	В	<0.001	
7439-89-6	Iron	т	mg/L	6020	1.36		1.58		2.06		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		0.0007	J	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.4		16.1		8.41		<0.03	
7439-96-5	Manganese	т	mg/L	6020	0.00991		0.496		0.0434		<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	395		396		397		E. BLAN	٩K
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.000494	J	<0.0005		<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.00131	J	0.00176	J	0.00193	J	<0.002	
7440-09-7	Potassium	т	mg/L	6020	1.58		0.814		1.94		<0.3	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	29.4		102		33.4		<0.25	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		0.000105	J	<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		0.00338	J	<0.01	
7440-66-6	Zinc	т	mg/L	6020	0.0044	J	0.00903	J	0.00708	J	0.00378	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-480	1	8004-480)3	8004-48	317	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00332		0.00045	J	<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-481	7	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., M	1 W-1	L, MW-2, et	.c.)	395		396		397		E. BLAN	K
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000197		<0.0000195		<0.0000196	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0952		<0.0952	*	<0.0943		<0.0962	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.0952	*	<0.0943		<0.0962	*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.0952	*	<0.0943		<0.0962	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.0952	*	<0.0943		<0.0962	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.0952	*	<0.0943		<0.0962	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0952		<0.0952	*	<0.0943		<0.0962	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-38

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4801		8004-4803	3	8004-481	7	0000-000	0
Facility's Loo	cal Well or Spring Number (e.g.	, MW-1	, MW-2, et	.c.)	395		396		397		E. BLAN	К
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.0952	*	<0.0943		<0.0962	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952		<0.0952	*	<0.0943		<0.0962	*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.0952	*	<0.0943		<0.0962	
12587-46-1	Gross Alpha	т	pCi/L	9310	3	*	1.81	*	1.45	*	-0.236	*
12587-47-2	Gross Beta	т	pCi/L	9310	8.17	*	-0.033	*	11.9	*	0.483	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.345	*	0.238	*	0.123	*	0.6	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-2.15	*	-2.45	*	-1.17	*	0.152	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	3.67	*	-11.3	*	13	*	1.77	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.708	*	0.489	*	-0.0158	*	-0.185	*
10028-17-8	Tritium	т	pCi/L	906.0	87.6	*	79.2	*	62.2	*	37.2	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	14.2	BJ*	27.1	*В	14.2	BJ*		*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		0.604		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.25	J	6.14		1.17	J		*
s0586	Total Organic Halides	т	mg/L	9020	0.0148		0.0431		0.0103			*
								<u> </u>				

Division of Waste Management	RESIDENTIAL/INERT-QUARTERLY
Solid Waste Branch	Facility: US DOE – Paducah Gaseous Diffusion Plant
14 Reilly Road	Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1
Frankfort, KY 40601 (502)564-6	716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				000-000	00	0000-00	00	0000-000	00	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., M	W-1	, MW-2, etc	.)	F. BLAN	к	T. BLAN	K 1	T. BLANK	ζ2	T. BLANK	3
Sample Sequenc	:e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)q	quipment	F		т		т		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/10/2017 ⁻	10:20	10/9/2017	07:20	10/10/2017	07:00	10/10/2017 (07:15
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				Ν		N		N		N	
Facility Sampl	e ID Number (if applicable)				FB1SG1-	18	TB1SG1	-18	TB2SG1-	18	TB3SG1-	18
Laboratory Sam	aple ID Number (if applicable)				43475500	03	4346490)17	4347550	05	43475500	06
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	o Or	ganics Anal	ysis	10/12/20 ⁻	17	10/12/20)17	10/12/20	17	10/12//20 ⁻	17
Gradient with	respect to Monitored Unit (UP, DC	wn,	SIDE, UNKN	OWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	H D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	µMH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

					(00110							
AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	000-000	0	0000-0000)	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., M	1-1 , 1	MW-2, BLANK-	F, etc.)	F. BLAN	K	T. BLANK	(1	T. BLANK	2	T. BLANK (3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
S0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	т	mg/L	6020	<0.002			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	т	mg/L	6020	<0.001			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				0000-000	00	0000-00	00	0000-00	00	0000-00	00
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	K 1	T. BLAN	K 2	T. BLAN	К 3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	т	mg/L	6020	<0.01			*		*		*
7440-66-6	Zinc	т	mg/L	6020	<0.01			*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	C	0000-000	00	0000-00	000	0000-00	000
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	F. BLANK	(T. BLAN	٢1	T. BLAN	IK 2	T. BLAN	IK 3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., M	1 W-1	L, MW-2, et	.c.)	F. BLANK	(T. BLANK	1	T. BLANI	< 2	T. BLAN	<3
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000197		<0.0000198		<0.0000196	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.104			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.104	*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.104			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.104			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.104			*		*		*
12672-29-6	PCB-1248	т	ug/L	8082	<0.104			*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000)	0000-0000		0000-000	0	0000-000)0
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	F. BLANK	(T. BLANK 1		T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.104			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.104	*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.104			*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	3.47	*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310	-0.0557	*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.159	*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.3	*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	0.859	*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.00382	*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0	-43.8	*		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0	<0.5			*		*		*
s0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management	RESIDENTIAL/INERT-QUARTERLY	
Solid Waste Branch	Facility: US DOE - Paducah Gaseous	Diffusion Plant
14 Reilly Road	Permit Number:073-00014 & 073-00015	FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u>
Frankfort, KY 40601 (502)564-6	716	LAB ID: None
		For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER¹, Facility Well/Spring Number 8004-4804 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 386 Sample Sequence # 2 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA 10/10/2017 10:13 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Υ Split ("Y" or "N")³ Ν MW386DSG1-18 Facility Sample ID Number (if applicable) 434754013 Laboratory Sample ID Number (if applicable) 10/17/2017 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis SIDE Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN⁴ CONSTITUENT т Unit METHOD DETECTED F DETECTED DETECTED DETECTED F F F VALUE D OF VALUE г VALUE L г VALUE ь 5 MEASURE *δ*r OR А OR А OR А POL⁶ POL⁶ POL⁶ POL⁶ G G G G s⁷ s s s 0.157 .1 24959-67-9 Bromide т mg/L 9056 13.7 16887-00-6 Chloride(s) т 9056 mg/L 0.577 16984-48-8 Fluoride т 9056 mg/L <0.1 s0595- т Nitrate & Nitrite 9056 mq/L 46.3 т 14808-79-8 Sulfate mq/L 9056 30.01 T Inches/Hg NS1894 Barometric Pressure Reading Field 592 т s0145- -Specific Conductance Field µMH0/cm

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

					(00110							
AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	4	\backslash					/
Facility's Lo	cal Well or Spring Number (e.g., M	1-1 , 1	MW-2, BLANK-	F, etc.)	386							
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
50906	Static Water Level Elevation	т	Ft. MSL	Field	343.94							
N238	Dissolved Oxygen	т	mg/L	Field	4.71			Ν				
S0266	Total Dissolved Solids	т	mg/L	160.1	331	*		\square				
50296	рН	т	Units	Field	7.03						/	
NS215	Eh	т	mV	Field	214				$\left \right\rangle$	/	ſ	
S0907	Temperature	т	°C	Field	17.78					$\left \right $		
7429-90-5	Aluminum	т	mg/L	6020	0.0872							
7440-36-0	Antimony	т	mg/L	6020	<0.003				$ \land /$	1		
7440-38-2	Arsenic	т	mg/L	6020	0.00288	J			Х			
7440-39-3	Barium	т	mg/L	6020	0.209							
7440-41-7	Beryllium	т	mg/L	6020	<0.0005					Ν		
7440-42-8	Boron	т	mg/L	6020	0.00558	J				$ \rangle$		
7440-43-9	Cadmium	т	mg/L	6020	<0.001				\vee			
7440-70-2	Calcium	т	mg/L	6020	20.7			/	1		\backslash	
7440-47-3	Chromium	т	mg/L	6020	<0.01							
7440-48-4	Cobalt	т	mg/L	6020	0.0102			ľ				
7440-50-8	Copper	т	mg/L	6020	0.00198							
7439-89-6	Iron	т	mg/L	6020	1.1							
7439-92-1	Lead	т	mg/L	6020	<0.002							
7439-95-4	Magnesium	т	mg/L	6020	9.06							Ν
7439-96-5	Manganese	т	mg/L	6020	1.34							\Box
7439-97-6	Mercury	т	mg/L	7470	<0.0002		V					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-480	04	\backslash					
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	386							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.000731							
7440-02-0	Nickel	т	mg/L	6020	0.00269			\backslash				
7440-09-7	Potassium	т	mg/L	6020	0.305							
7440-16-6	Rhodium	т	mg/L	6020	<0.005						/	
7782-49-2	Selenium	т	mg/L	6020	<0.005				$\left \right\rangle$			
7440-22-4	Silver	Т	mg/L	6020	<0.001							
7440-23-5	Sodium	т	mg/L	6020	107					/		
7440-25-7	Tantalum	т	mg/L	6020	<0.005							
7440-28-0	Thallium	т	mg/L	6020	<0.002				X			
7440-61-1	Uranium	т	mg/L	6020	0.000079	J						
7440-62-2	Vanadium	т	mg/L	6020	0.00338	J				\land		
7440-66-6	Zinc	т	mg/L	6020	0.00692	J						
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005							
67-64-1	Acetone	т	mg/L	8260	<0.005						\backslash	
107-02-8	Acrolein	т	mg/L	8260	<0.005							
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005							
71-43-2	Benzene	т	mg/L	8260	<0.001							
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001							
1330-20-7	Xylenes	т	mg/L	8260	<0.003							
100-42-5	Styrene	т	mg/L	8260	<0.001							\mathbb{N}
108-88-3	Toluene	т	mg/L	8260	<0.001							$\left \right\rangle$
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number			8004-4804	4	\backslash					/	
Facility's Lo	cal Well or Spring Number (e.g.,	386										
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001							
75-25-2	Tribromomethane	т	mg/L	8260	<0.001			\setminus				
74-83-9	Methyl bromide	т	mg/L	8260	<0.001							
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005							
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005				\backslash		ſ	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005							
75-00-3	Chloroethane	т	mg/L	8260	<0.001					\backslash		
67-66-3	Chloroform	т	mg/L	8260	<0.001				$ \land /$			
74-87-3	Methyl chloride	т	mg/L	8260	<0.001				Х			
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001							
74-95-3	Methylene bromide	т	mg/L	8260	<0.001					\backslash		
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001							
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001				/			
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001			/	,		$\left \right\rangle$	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001							
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001							
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001							
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001							
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001							
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001							\backslash
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001							
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001							

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-4804	1	\backslash							
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)												
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001							
591-78-6	2-Hexanone	т	mg/L	8260	<0.005							
74-88-4	Iodomethane	т	mg/L	8260	<0.005			\backslash				
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001						/	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001				\backslash	/		
75-09-2	Dichloromethane	т	mg/L	8260	<0.005							
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005					\mathbf{V}		
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000194				$ \land /$			
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001				Х			
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001					Ν		
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001							
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001							
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001						\backslash	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001							
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001							
1336-36-3	PCB,Total	т	ug/L	8082	<0.098							
12674-11-2	PCB-1016	т	ug/L	8082	<0.098							
11104-28-2	PCB-1221	т	ug/L	8082	<0.098							
11141-16-5	PCB-1232	т	ug/L	8082	<0.098							\backslash
53469-21-9	PCB-1242	т	ug/L	8082	<0.098							
12672-29-6	PCB-1248	т	ug/L	8082	<0.098		/					

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	4	\backslash					
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						$\left \right\rangle$					
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.098							
11096-82-5	PCB-1260	т	ug/L	8082	<0.098			\setminus				
11100-14-4	PCB-1268	т	ug/L	8082	<0.098							
12587-46-1	Gross Alpha	т	pCi/L	9310	1.06	*						
12587-47-2	Gross Beta	т	pCi/L	9310	3.1	*			\backslash			
10043-66-0	Iodine-131	т	pCi/L			*						
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.0705	*				ſ		
10098-97-2	Strontium-90	т	pCi/L	905.0	0.892	*						
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	0.749	*						
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.185	*						
10028-17-8	Tritium	т	pCi/L	906.0	-46.8	*				$\left \right\rangle$		
s0130	Chemical Oxygen Demand	т	mg/L	410.4	22.2	*			/			
57-12-5	Cyanide	т	mg/L	9012	0.00182	J					\backslash	
20461-54-5	Iodide	т	mg/L	300.0	0.182	J						
s0268	Total Organic Carbon	т	mg/L	9060	6.94							
s0586	Total Organic Halides	т	mg/L	9020	0.138							
							/					

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5201 MW220	MW220SG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.11. Rad error is 2.1.
		Gross beta		TPU is 3.62. Rad error is 2.93.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.522. Rad error is 0.522.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 3.36. Rad error is 3.32.
		Technetium-99		TPU is 8.63. Rad error is 8.38.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.418. Rad error is 0.415.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 140. Rad error is 139.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
3000-5202 MW221	MW221SG1-18	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 3.21. Rad error is 3.17.
		Gross beta		TPU is 3.3. Rad error is 2.94.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 0.641. Rad error is 0.64.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.24. Rad error is 2.24.
		Technetium-99		TPU is 9.35. Rad error is 9.14.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.392. Rad error is 0.391.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 136. Rad error is 136.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
8000-5242 MW222	MW222SG1-18	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 3.12. Rad error is 3.08.
		Gross beta		TPU is 2.7. Rad error is 2.53.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. Tf is 0.526. Rad error is 0.525.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 3.43. Rad error is 3.43.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. This 8.33. Rad error is 8.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.325. Rad error is 0.325.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 140. Rad error is 140.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5243 MW223	8 MW223SG1-18	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 3.01. Rad error is 2.96.
		Gross beta		TPU is 3.31. Rad error is 3.06.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.653. Rad error is 0.652.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. This 1.97. Rad error is 1.97.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. Tf is 8.59. Rad error is 8.54.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.312. Rad error is 0.308.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 134. Rad error is 134.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
8000-5244 MW224	MW224SG1-18	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.28. Rad error is 2.28.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.09. Rad error is 2.03.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. This 0.653. Rad error is 0.653.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. Th is 2.69. Rad error is 2.65.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. This 8.88. Rad error is 8.86.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.316. Rad error is 0.312.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 143. Rad error is 142.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
004-4820 MW369	MW369UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. This 2.6. Rad error is 2.58.
		Gross beta		TPU is 8.1. Rad error is 4.61.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.391. Rad error is 0.384.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.16. Rad error is 1.16.
		Technetium-99		TPU is 15.7. Rad error is 13.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.799. Rad error is 0.798.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 143. Rad error is 143.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

is 2.18. Rad error is 2.18. Gross beta Iodine-131 Radium-226 Strontium-90 U Indicates analyte/prucide was analyzed for, but not detected. T is 1.8. Rad error is 1.8. Technetium-99 Technetium-99 Totius 1.8. Rad error is 1.8. Technetium-99 Totius 1.8. Rad error is 1.4.9. Indicates analyte/prucide was analyzed for, but not detected. T is 0.747. Rad error is 0.738. Tritium U Indicates analyte/prucide was analyzed for, but not detected. T is 0.747. Rad error is 0.738. Tritium V Indicates analyte/prucide was analyzed for, but not detected. T is 0.747. Rad error is 0.738. Tritium V Indicates analyte/prucide was analyzed for, but not detected. T is 0.747. Rad error is 0.738. Tritium N Sample spike recovery out of control limits. Tantalum N Sample spike recovery out of control limits. Gross beta Iodine-131 Choride TPU is 0.472. Rad error is 0.466. Strontium-90 TPU is 2.31. Rad error is 0.446. Strontium-90 TPU is 0.472. Rad error is 0.446. Strontium-90 TPU is 2.75. Rad error is 0.446. Strontium-90 TPU is 2.77. Rad error is 0.446. Indicates analyte/prucide was analyzed for, but not detected. T is 2.76. Rad error is 0.446. Strontium-90 TPU is 2.77. Rad error is 0.446. Strontium-90 TPU is 2.77. Rad error is 0.446. Choride M Post-digestion spike recovery out of control limits. Gross beta Indicates analyte/prucide was analyzed for, but not detected. T is 0.865. Rad error is 0.449. Tritium N Sample spike recovery out of control limits. Tantalum N Sample spike recovery out of control limits. Tantalum N	Monitoring Point	Facility Sample ID	Constituent	Flag	Description
Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 2.18. Rad error is 6.3. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.673. Rad error is 0.629. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.747. Rad error is 0.629. Thorium-230 Indicates analyte/nuclide was analyzed for, but not detected. T is 0.747. Rad error is 0.738. TPU is 18.8. Rad error is 0.738. TPU is 18.8. Rad error is 0.738. is 0.747. Rad error is 0.738. Tritium Indicates analyte/nuclide was analyzed for, but not detected. T is 0.747. Rad error is 0.738. Tritium Indicates analyte/nuclide was analyzed for, but not detected. T is 0.747. Rad error is 0.738. Tritium Indicates analyte/nuclide was analyzed for, but not detected. T is 0.747. Rad error is 0.738. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Tantalum Gross beta U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.14. Rad error is 0.746. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T <t< td=""><td>8004-4818 MW370</td><td>) MW370UG1-18</td><td>Chloride</td><td>W</td><td>Post-digestion spike recovery out of control limits.</td></t<>	8004-4818 MW370) MW370UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
is 2.18. Rad error is 2.18. Gross beta TPU is 13.1. Rad error is 6.3. Iddine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.673. Rad error is 0.629. Strontium-99 Tori Is 1.8. Rad error is 1.4.9. Technetium-99 TPU is 18.8. Rad error is 1.4.9. Thorium-230 U Indicates analytechnicide was analyzed for, but not detected. T is 0.477. Rad error is 0.738. Tritium U Indicates analytechnicide was analyzed for, but not detected. T is 0.478. Rad error is 14.9. two372 MW372 UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tartalum N Gross beta TPU is 0.472. Rad error is 0.446. Idoine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.472. Rad error is 0.446. Strontium-99 TPU is 2.77. Rad error is 0.446. Notime-300 U Indicates analytechnicide was analyzed for, but not detected. T is 0.465. Rad error is 0.446. Trotium-199 Trotium-90 U Indicates analytechnicide was analyzed for,			Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.673. Rad error is 0.629. Strontium-90 U Indicates analyte/huclide was analyzed for, but not detected. T is 1.88. Rad error is 1.88. Technetium-99 TPU is 18.8. Rad error is 1.49. Thorium-230 U Indicates analyte/huclide was analyzed for, but not detected. T is 149. 1004-4808 MW372 MW372UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Gross alpha U Indicates analyte/huclide was analyzed for, but not detected. T is 3.14. Rad error is 3.09. Gross beta TPU is 0.472. Rad error is 0.472. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.472. Rad error is 0.476. Strontium-90 U Indicates analyte/huclide was analyzed for, but not detected. T is 2.76. Rad error is 0.446. Strontium-90 U Indicates analyte/huclide was analyzed for, but not detected. T is 0.446. Strontium-90 U Indicates analyte/huclide was analyzed for, but not det				U	
Radium-226 TPU is 0.673. Rad error is 0.629. Strontium-90 U indicates analyte/nuclide was analyzed for, but not detected. T is 1.88. Rad error is 1.88. Technetium-99 TPU is 18.8. Rad error is 1.49. Thorium-230 U indicates analyte/nuclide was analyzed for, but not detected. T is 0.747. Rad error is 0.738. Tritium U indicates analyte/nuclide was analyzed for, but not detected. T is 149. Rad error is 0.738. Tritium U indicates analyte/nuclide was analyzed for, but not detected. T is 149. Rad error is 149. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Gross alpha U indicates analyte/nuclide was analyzed for, but not detected. T Gross beta TPU is 0.472. Rad error is 3.09. TPU is 2.76. Rad error is 2.76. Radium-226 TPU is 0.472. Rad error is 0.446. TPU is 2.76. Rad error is 2.75. Technetium-99 TPU is 0.486. Rad error is 1.72. Thorium-230 thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 2.76. Rad error is 2.75. Technetium-99 TPU is 0.472. Rad error is 0.446. TPU is 0.472. stontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 2.76. R					
Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 1.88. Rad error is 1.88. Technetium-99 TPU is 15.8. Rad error is 0.743. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.747. Rad error is 0.738. M004-4808 MW372 MW372UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Gross beta TPU is 2.1. Rad error is 3.72. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.472. Rad error is 0.446. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.74. Rad error is 0.446. M004-4792 MW373 MW373UG1-18 Chloride W Post-digestion spike recovery out of control limits. M04-4792 MW373 MW373UG1-18 Chloride W Post-digestion spike recovery out of control limits. Gross beta TPU is 0.428. Rad error is 148. Chloride W M04-4792 MW373 MW373UG1-18 Chloride W Post-digestion spike recovery out of control limits. Gross beta TPU is 0.428. Rad error is 148. Chloride V M04-4792 MW373 MW373UG					
is 1.88. Rad error is 1.88. Technetium-99 TPU is 18.8. Rad error is 14.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.74. Rad error is 0.738. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 149. Rad error is 149. 5004-4808 MW372 MW372 MW372UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.14. Rad error is 0.9. Gross beta TPU is 0.472. Rad error is 0.46. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 2.76. Rad error is 0.446. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.486. Rad error is 149. w004-4792 MW373 MW373UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery out within control limits. Tantalum					
Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.77. Rad error is 0.738. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 149. Rad error is 149. N004-4808 MW372 MW372UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.14. Rad error is 0.90. Gross beta TPU is 0.472. Rad error is 0.72. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.472. Rad error is 0.446. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 2.76. Technetium-99 TPU is 0.472. Rad error is 0.446. Strontium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.86. Rad error is 0.449. N004-4792 MW373 MW373UG1-18 Chloride W Post-digestion spike recovery out of control limits. Gross selpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.38. Rad error is 1.48. N004-4792 MW373 MW373UG1-18 Chloride W Post-digestion spike recovery out of control limits. <td></td> <td></td> <td></td> <td>U</td> <td>is 1.88. Rad error is 1.88.</td>				U	is 1.88. Rad error is 1.88.
is 0.74. Rad error is 0.738. is 0.74. Rad error is 0.738. is 0.74. Rad error is 0.738. is 140. Rad error is 149. 0004-4808 MW372 MW372UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.14. Rad error is 3.09. Gross beta TPU is 23.1. Rad error is 8.72. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.472. Rad error is 0.446. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.866. Rad error is 0.849. V004-4792 MW373 MW373UG1-18 Chloride Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Tantalum N <					
is 149. Rad error is 149. is 0004-4808 MW372 MW372UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery out of control limits. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.14. Rad error is 0.309. Gross beta TPU is 2.3.1. Rad error is 0.446. Radium-226 TPU is 0.472. Rad error is 0.446. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 2.76. Rad error is 0.446. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.865. Rad error is 0.449. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.865. Rad error is 0.849. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.849. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.849. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.849. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.849. Gross alpha U <tr< td=""><td></td><td></td><td>Thorium-230</td><td>U</td><td></td></tr<>			Thorium-230	U	
Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.14. Rad error is 3.09. Gross beta TPU is 2.31. Rad error is 0.46. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.472. Rad error is 0.446. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.865. Rad error is 0.76. Technetium-99 TPU is 2.76. Rad error is 0.446. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.865. Rad error is 0.849. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.865. Rad error is 0.849. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.865. Rad error is 0.849. Tantalum N Sample spike (MS/MSD) recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Gross beta Indicates analyte/nuclide was analyzed for, but not detected. T is 3.29. Rad error is 3.20. Gross beta TPU is 0.498. Rad error is 3.245. Iodine-131 </td <td></td> <td></td> <td>Tritium</td> <td>U</td> <td>Indicates analyte/nuclide was analyzed for, but not detected. TPI is 149. Rad error is 149.</td>			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 149. Rad error is 149.
Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.14. Rad error is 3.09. Gross beta TPU is 231. Rad error is 8.72. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.472. Rad error is 0.446. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 2.76. Rad error is 0.72. Technetium-99 TPU is 27.7. Rad error is 17.2. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.865. Rad error is 0.849. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 148. Rad error is 148. 8004-4792 MW373 MW373UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross beta TPU is 4.82. Rad error is 3.45. Iodine-131 Iodine-131 Analysis of constituent not required and not performed. Ts 3.98. Rad error is 0.465. Radium-226 TPU is 4.82. Rad error is 0.465. TPU is 4.82. Rad error is 0.465. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 1.94. Rad error is 1.92.	8004-4808 MW372	2 MW372UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
is 3.14. Rad error is 3.09. is 3.14. Rad error is 8.72. Iodine-131 Radium-226 Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 2.76. Rad error is 0.446. Strontium-99 TPU is 0.472. Rad error is 0.446. Strontium-99 TPU is 2.77. Rad error is 17.2. Technetium-99 Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.865. Rad error is 0.849. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 148. Rad error is 17.2. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 148. Rad error is 148. 1004-4792 MW373 MW373UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.29. Rad error is 3.45. Iodine-131 Radium-226 Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 1.94. Rad error is 1.46. Strontium-90 TPU is 0.498. Rad error is 0.465. Strontium-90 TPU is 12.4. Rad error is 1.2. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 1.94. Rad error is 1.2. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 1.2. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.901. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.901. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.901.			Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.472. Rad error is 0.446. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 2.76. Rad error is 2.75. Technetium-99 TPU is 27.7. Rad error is 17.2. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.865. Rad error is 0.849. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.849. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.849. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.849. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.849. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.865. Tantalum N Sample spike (MS/MSD) recovery not within control limits. Gross beta Indicates analyte/nuclide was analyzed for, but not detected. T is 3.29. Rad error is 3.45. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.498. Rad error is 1.92.			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 3.14. Rad error is 3.09.
Radium-226TPU is 0.472. Rad error is 0.466.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. T is 2.76. Rad error is 1.72.Technetium-99TPU is 27.7. Rad error is 17.2.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. T is 0.865. Rad error is 0.849.W373 MW373 UG1-18ChlorideWPost-digestion spike recovery out of control limits.TantalumNSample spike (MS/MSD) recovery not within control limitsGross alphaUIndicates analyte/nuclide was analyzed for, but not detected. T is 1.82. Rad error is 3.45.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.498. Rad error is 1.92.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. T is 3.29. Rad error is 1.92.Technetium-99TPU is 0.498. Rad error is 1.92.Technetium-90UIndicates analyte/nuclide was analyzed for, but not detected. T is 1.94. Rad error is 1.92.Technetium-90UIndicates analyte/nuclide was analyzed for, but not detected. T is 1.94. Rad error is 1.92.Technetium-90UIndicates analyte/nuclide was analyzed for, but not detected. T is 0.941.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 1.92.Technetium-99TPU is 12.4. Rad error is 1.94.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941.TritiumUIndicates analyte/nuclide was analyzed for,			Gross beta		TPU is 23.1. Rad error is 8.72.
Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. T is 2.76. Rad error is 2.75. TPU is 27.7. Rad error is 17.2.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. T is 0.865. Rad error is 0.849.W004-4792 MW373 MW373UG1-18ChlorideWPost-digestion spike recovery out of control limits. TantalumNSample spike (MS/MSD) recovery not within control limits. Gross alphaUIndicates analyte/nuclide was analyzed for, but not detected. T is 1.48. Rad error is 3.45.Iodine-131Analysis of constituent not required and not performed. Radium-226Radium-226TPU is 0.498. Rad error is 1.46.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. T is 3.29. Rad error is 1.46.Iodine-131Analysis of constituent not required and not performed. rest. TPU is 0.498. Rad error is 1.46.Radium-226TPU is 0.498. Rad error is 1.46.Technetium-99TPU is 1.24. Rad error is 1.2.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941.			lodine-131		Analysis of constituent not required and not performed.
 is 2.76. Rad error is 2.75. TPU is 27.7. Rad error is 17.2. Thorium-230 Indicates analyte/nuclide was analyzed for, but not detected. T is 0.865. Rad error is 0.849. Tritium Indicates analyte/nuclide was analyzed for, but not detected. T is 148. Rad error is 148. Rad error is 3.45. Iodine-131 Radium-226 Strontium-90 Indicates analyte/nuclide was analyzed for, but not detected. T is 1.94. Rad error is 1.92. Technetium-99 TPU is 12.4. Rad error is 12. Thorium-230 Indicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941. Tritium Indicates analyte/nuclide was analyzed for, but not detected. T 			Radium-226		TPU is 0.472. Rad error is 0.446.
Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. T is 0.865. Rad error is 0.849.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. T is 148. Rad error is 148.8004-4792 MW373 MW373UG1-18ChlorideWPost-digestion spike recovery out of control limits.TantalumNSample spike (MS/MSD) recovery not within control limitsGross alphaUIndicates analyte/nuclide was analyzed for, but not detected. T is 3.29. Rad error is 3.23.Gross betaTPU is 4.82. Rad error is 3.45.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.498. Rad error is 0.465.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. T is 1.94. Rad error is 1.92.Technetium-99TPU is 12.4. Rad error is 12.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941.			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 2.76. Rad error is 2.75.
is 0.865. Rad error is 0.849.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. T is 148. Rad error is 148.8004-4792 MW373 MW373UG1-18ChlorideWPost-digestion spike recovery out of control limits.TantalumNSample spike (MS/MSD) recovery not within control limitsGross alphaUIndicates analyte/nuclide was analyzed for, but not detected. T is 3.29. Rad error is 3.23.Gross betaTPU is 4.82. Rad error is 3.45.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.498. Rad error is 0.465.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. T is 1.94. Rad error is 1.92.Technetium-99TPU is 12.4. Rad error is 1.92.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941.			Technetium-99		TPU is 27.7. Rad error is 17.2.
is 148. Rad error is 148. 8004-4792 MW373 MW373UG1-18 Chloride W Post-digestion spike recovery out of control limits. Tantalum N Sample spike (MS/MSD) recovery not within control limits Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected. T is 3.29. Rad error is 3.23. Gross beta TPU is 4.82. Rad error is 3.45. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.498. Rad error is 0.465. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 1.94. Rad error is 1.92. Technetium-99 TPU is 12.4. Rad error is 1.92. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 0.865. Rad error is 0.849.
TantalumNSample spike (MS/MSD) recovery not within control limitsGross alphaUIndicates analyte/nuclide was analyzed for, but not detected. T is 3.29. Rad error is 3.23. Gross betaGross betaTPU is 4.82. Rad error is 3.45.Iodine-131Analysis of constituent not required and not performed. Radium-226Radium-226TPU is 0.498. Rad error is 0.465.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. T is 1.94. Rad error is 1.92. TPU is 12.4. Rad error is 1.92.Technetium-99TPU is 12.4. Rad error is 1.92. TPU is 0.951. Rad error is 0.941.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941.			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 148. Rad error is 148.
Gross alphaUIndicates analyte/nuclide was analyzed for, but not detected. T is 3.29. Rad error is 3.23.Gross betaTPU is 4.82. Rad error is 3.45.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.498. Rad error is 0.465.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. T is 1.94. Rad error is 1.92.Technetium-99TPU is 12.4. Rad error is 1.92.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941.	8004-4792 MW373	3 MW373UG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
is 3.29. Rad error is 3.23.Gross betaTPU is 4.82. Rad error is 3.45.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.498. Rad error is 0.465.Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. TTechnetium-99TPU is 12.4. Rad error is 1.92.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. Tis 0.951. Rad error is 0.941.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. T			Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.498. Rad error is 0.465. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 1.94. Rad error is 1.92. Technetium-99 TPU is 12.4. Rad error is 1.2. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941. Tritium U			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 3.29. Rad error is 3.23.
Radium-226 TPU is 0.498. Rad error is 0.465. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected. T is 1.94. Rad error is 1.92. Technetium-99 TPU is 12.4. Rad error is 1.92. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941.			Gross beta		TPU is 4.82. Rad error is 3.45.
Strontium-90UIndicates analyte/nuclide was analyzed for, but not detected. T is 1.94. Rad error is 1.92.Technetium-99TPU is 12.4. Rad error is 12.Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941.			lodine-131		Analysis of constituent not required and not performed.
Technetium-99 is 1.94. Rad error is 1.92. Technetium-99 TPU is 12.4. Rad error is 12. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T			Radium-226		TPU is 0.498. Rad error is 0.465.
Thorium-230UIndicates analyte/nuclide was analyzed for, but not detected. T is 0.951. Rad error is 0.941.TritiumUIndicates analyte/nuclide was analyzed for, but not detected. T			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 1.94. Rad error is 1.92.
is 0.951. Rad error is 0.941. Tritium U Indicates analyte/nuclide was analyzed for, but not detected. T			Technetium-99		TPU is 12.4. Rad error is 12.
			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 0.951. Rad error is 0.941.
			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 151. Rad error is 151.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Facil Point Sam	lity ple ID	Constituent	Flag	Description
3004-4809 MW384 MW384	4SG1-18	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.98. Rad error is 1.96.
		Gross beta		TPU is 20.6. Rad error is 7.27.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.715. Rad error is 0.711.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 1.65. Rad error is 1.65.
		Technetium-99		TPU is 25.8. Rad error is 15.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.402. Rad error is 0.395.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 131. Rad error is 131.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
8004-4810 MW385 MW385	5SG1-18	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.14. Rad error is 2.14.
		Gross beta		TPU is 18.4. Rad error is 7.46.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.841. Rad error is 0.832.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.11. Rad error is 2.11.
		Technetium-99		TPU is 23.2. Rad error is 14.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.21. Rad error is 0.21.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 142. Rad error is 142.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
004-4804 MW386 MW386	6SG1-18	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.61. Rad error is 2.61.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.77. Rad error is 1.77.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.541. Rad error is 0.538.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.07. Rad error is 2.07.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 11.4. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.45. Rad error is 0.446.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 138. Rad error is 138.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4815 MW38	7 MW387SG1-18	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.63. Rad error is 2.61.
		Gross beta		TPU is 31.8. Rad error is 10.5.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.658. Rad error is 0.65.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.5. Rad error is 1.5.
		Technetium-99		TPU is 36.6. Rad error is 17.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.475. Rad error is 0.464.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 143. Rad error is 141.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
004-4816 MW38	88 MW388SG1-18	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.81. Rad error is 2.79.
		Gross beta		TPU is 13.5. Rad error is 7.02.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.794. Rad error is 0.763.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.49. Rad error is 1.49.
		Technetium-99		TPU is 18.4. Rad error is 12.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.278. Rad error is 0.277.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 139. Rad error is 139.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample was collected.
		Chloride		During sampling, the well was dry; therefore, no sample was collected.
		Fluoride		During sampling, the well was dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample was collected.
		Sulfate		During sampling, the well was dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample was collected.
		рН		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample was collected.
		Temperature		During sampling, the well was dry; therefore, no sample was collected.
		Aluminum		During sampling, the well was dry; therefore, no sample was collected.
		Antimony		During sampling, the well was dry; therefore, no sample was collected.
		Arsenic		During sampling, the well was dry; therefore, no sample was collected.
		Barium		During sampling, the well was dry; therefore, no sample was collected.
		Beryllium		During sampling, the well was dry; therefore, no sample was collected.
		Boron		During sampling, the well was dry; therefore, no sample was collected.
		Cadmium		During sampling, the well was dry; therefore, no sample was collected.
		Calcium		During sampling, the well was dry; therefore, no sample was collected.
		Chromium		During sampling, the well was dry; therefore, no sample was collected.
		Cobalt		During sampling, the well was dry; therefore, no sample was collected.
		Copper		During sampling, the well was dry; therefore, no sample was collected.
		Iron		During sampling, the well was dry; therefore, no sample was collected.
		Lead		During sampling, the well was dry; therefore, no sample was collected.
		Magnesium		During sampling, the well was dry; therefore, no sample was collected.
		Manganese		During sampling, the well was dry; therefore, no sample was collected.
		Mercury		During sampling, the well was dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description		
004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample was collected.		
		Nickel		During sampling, the well was dry; therefore, no sample was collected.		
		Potassium		During sampling, the well was dry; therefore, no sample was collected.		
		Rhodium		During sampling, the well was dry; therefore, no sample was collected.		
		Selenium		During sampling, the well was dry; therefore, no sample was collected.		
		Silver		During sampling, the well was dry; therefore, no sample was collected.		
					Sodium	
		Tantalum		During sampling, the well was dry; therefore, no sample was collected.		
		Thallium		During sampling, the well was dry; therefore, no sample was collected.		
		Uranium		During sampling, the well was dry; therefore, no sample was collected.		
		Vanadium		During sampling, the well was dry; therefore, no sample was collected.		
		Zinc		During sampling, the well was dry; therefore, no sample was collected.		
		Vinyl acetate		During sampling, the well was dry; therefore, no sample wa collected.		
		Acetone		During sampling, the well was dry; therefore, no sample wa collected.		
		Acrolein		During sampling, the well was dry; therefore, no sample was collected.		
		Acrylonitrile		During sampling, the well was dry; therefore, no sample was collected.		
		Benzene		During sampling, the well was dry; therefore, no sample was collected.		
		Chlorobenzene		During sampling, the well was dry; therefore, no sample was collected.		
		Xylenes		During sampling, the well was dry; therefore, no sample was collected.		
		Styrene		During sampling, the well was dry; therefore, no sample was collected.		
		Toluene		During sampling, the well was dry; therefore, no sample was collected.		
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample was collected.		
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample was collected.		
		Tribromomethane		During sampling, the well was dry; therefore, no sample was collected.		
		Methyl bromide		During sampling, the well was dry; therefore, no sample was collected.		
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample was collected.		
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample was collected.		
		Carbon disulfide		During sampling, the well was dry; therefore, no sample was collected.		
		Chloroethane		During sampling, the well was dry; therefore, no sample was collected.		

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Chloroform		During sampling, the well was dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample was collected.
		Gross beta		During sampling, the well was dry; therefore, no sample was collected.
		lodine-131		During sampling, the well was dry; therefore, no sample was collected.
		Radium-226		During sampling, the well was dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample was collected.
		Tritium		During sampling, the well was dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample was collected.
		Cyanide		During sampling, the well was dry; therefore, no sample was collected.
		lodide		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4811 MW390	0 MW390SG1-18	PCB-1016	L	LCS or LCSD recovery outside of control limits
		PCB-1260	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.26. Rad error is 3.22.
		Gross beta		TPU is 8. Rad error is 4.99.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 0.453. Rad error is 0.451.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 1.5. Rad error is 1.5.
		Technetium-99		TPU is 10.8. Rad error is 9.95.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.34. Rad error is 0.338.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 144. Rad error is 144.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
8004-4805 MW39	1 MW391SG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.63. Rad error is 2.62.
		Gross beta		TPU is 2.18. Rad error is 2.03.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 0.715. Rad error is 0.715.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 2.79. Rad error is 2.79.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 8.92. Rad error is 8.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 0.308. Rad error is 0.307.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 121. Rad error is 121.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
3004-4806 MW392	2 MW392SG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.87. Rad error is 1.86.
		Gross beta		TPU is 1.82. Rad error is 1.73.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 0.621. Rad error is 0.62.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 1.58. Rad error is 1.55.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 12.7. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.32. Rad error is 0.319.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 135. Rad error is 135.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

5	acility ample ID	Constituent	Flag	Description
3004-4807 MW393 MW393SG1-18		Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.21. Rad error is 2.2.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 is 2.02. Rad error is 2.02.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.458. Rad error is 0.458.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. Tis 1.85. Rad error is 1.85.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 8.66. Rad error is 8.66.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.34. Rad error is 0.34.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 136. Rad error is 135.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
004-4802 MW394 MW3	394SG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 is 1.71. Rad error is 1.69.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.39. Rad error is 2.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. ⁻ is 0.527. Rad error is 0.526.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. ⁻ is 1.56. Rad error is 1.56.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 8.54. Rad error is 8.54.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.273. Rad error is 0.273.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 136. Rad error is 136.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4801 MW395	/395 MW395SG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.4. Rad error is 2.35.
		Gross beta		TPU is 2.76. Rad error is 2.42.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.604. Rad error is 0.601.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.06. Rad error is 2.06.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 10.6. Rad error is 10.6.
		Thorium-230		TPU is 0.509. Rad error is 0.492.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 142. Rad error is 141.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits
04-4803 MW	/396 MW396SG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total	S	Sample surrogate recovery outside acceptance criteria
		PCB-1016	S	Sample surrogate recovery outside acceptance criteria
		PCB-1221	S	Sample surrogate recovery outside acceptance criteria
		PCB-1232	S	Sample surrogate recovery outside acceptance criteria
		PCB-1242	S	Sample surrogate recovery outside acceptance criteria
		PCB-1248	S	Sample surrogate recovery outside acceptance criteria
		PCB-1254	S	Sample surrogate recovery outside acceptance criteria
		PCB-1260	S	Sample surrogate recovery outside acceptance criteria
		PCB-1268	S	Sample surrogate recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. ⁻ is 2.8. Rad error is 2.78.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.2. Rad error is 1.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.586. Rad error is 0.584.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.77. Rad error is 1.77.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.98. Rad error is 7.98.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.512. Rad error is 0.502.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4817 MW39	97 MW397SG1-18	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.66. Rad error is 2.65.
		Gross beta		TPU is 3.63. Rad error is 3.03.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.453. Rad error is 0.452.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.51. Rad error is 1.51.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.5. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.337. Rad error is 0.336.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 140. Rad error is 139.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG1-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB-1016	L	LCS or LCSD recovery outside of control limits
		PCB-1260	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.07. Rad error is 2.07.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.67. Rad error is 1.67.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.785. Rad error is 0.752.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.56. Rad error is 1.56.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.73. Rad error is 5.73.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.164. Rad error is 0.164.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 140. Rad error is 140.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1SG1-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB-1016	L	LCS or LCSD recovery outside of control limits
		PCB-1260	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.64. Rad error is 2.58.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.66. Rad error is 1.66.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.445. Rad error is 0.442.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.83. Rad error is 1.83.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 8.07. Rad error is 8.07.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.376. Rad error is 0.375.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 140. Rad error is 140.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG1-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG1-18	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG1-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG1-18	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG1-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Finds/Unit: KY8-890-008-982 / 1

Permit Numbers: 073-00014 and 073-00015

LAB ID:None For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG1-18	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
004-4804 MW386	6 MW386DSG1-18	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.57. Rad error is 2.56.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 2.29. Rad error is 2.23.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 0.5. Rad error is 0.499.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 1.1. Rad error is 1.09.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 8.24. Rad error is 8.24.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.329. Rad error is 0.325.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 133. Rad error is 133.
		Chemical Oxygen Demand	Ν	Sample spike (MS/MSD) recovery not within control limits

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT—QUARTERLY, 4th CY 2017 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the fourth quarter 2017 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The fourth quarter 2017 data used to conduct the statistical analyses were collected in October 2017. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that exceeded the historical background, using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the

current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation: TL = $X + (K \times S)$
- 2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, fourth quarter 2017. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondect if it has a "U" validation code.

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
MW390 ¹	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

Exhibit D.1. Station Identification for Monitoring
Wells Analyzed

¹**NOTE:** The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

Parameters	
Aluminum	
Beta Activity	
Boron	
Bromide	
Calcium	
Chemical Oxygen Demand (COD)	
Chloride	
cis-1,2-Dichloroethene	
Cobalt	
Conductivity	
Copper	
Cyanide	
Dissolved Oxygen	
Dissolved Solids	
Iodide	
Iron	
Magnesium	
Manganese	
Molybdenum	
Nickel	
Oxidation-Reduction Potential	
PCB, Total	
PCB-1242	
pH*	
Potassium	
Radium-226	
Sodium	
Sulfate	
Technetium-99	
Total Organic Carbon (TOC)	
Total Organic Halides (TOX)	
Trichloroethene	
Vanadium	
Zinc	

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

•

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	0	4	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Boron	4	1	3	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	2	2	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
	4	4	3	
Cobalt Construction	4 4	0	<u> </u>	Yes
Conductivity				Yes
Copper	4	0	4	Yes
Cyanide Dibromochlonomothere	4	3	1	Yes
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No
Iodide	4	2	2	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	0	4	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	0	4	Yes
Nickel	4	1	3	Yes
Oxidation-Reduction Potential	4	0	4	Yes
PCB, Total	4	4	0	No
PCB-1016	4	4	0	No
PCB-1221	4	4	0	No
PCB-1232	4	4	0	No
PCB-1242	4	4	0	No
PCB-1248	4	4	0	No
PCB-1254	4	4	0	No
PCB-1260	4	4	0	No
PCB-1268	4	4	0	No
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Vanadium	4	2	2	Yes
Vinyl Acetate	4	4	0	No
Zinc	4	0	4	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	2	9	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Beta activity	11	2	9	Yes
Boron	11	1	10	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	5	6	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	10	1	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	2	9	Yes
Conductivity	11	0	11	Yes
Copper	11	0	11	Yes
Cyanide	11	9	2	Yes
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Oxygen Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	1	10	Yes
Magnesium	11	0	11	Yes
Manganese	11	0	11	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	3	8	Yes
Nickel	11	0	11	Yes
Oxidation-Reduction Potential	11	0	11	Yes
PCB, Total	11	10	1	Yes
PCB-1016	11	11	0	No
PCB-1221	11	11	0	No
PCB-1232	11	11	0	No
PCB-1242	11	10	1	Yes
PCB-1248	11	11	0	No
PCB-1254	11	11	0	No
PCB-1260	11	11	0	No
PCB-1268	11	11	0	No
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	5	6	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	1	10	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	5	6	Yes
Trichlorofluoromethane	11	11	0	No
Vanadium	11	10	1	Yes
Vinyl Acetate	11	11	0	No
Zinc	11	1	10	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

7	7	1	Analysis?
	/	0	No
7	7	0	No
7	7	0	No
7	7	0	No
7	7	0	No
7	7	0	No
7	7	0	No
7	7	0	No
7	7	0	No
7	7	0	No
7	7	0	No
7	7	0	No
7	7	0	No
7	7	0	No
7	7	0	No
7	0	7	Yes
7	7	0	No
7	7	0	No
7		7	Yes
7	1	6	Yes
7		7	Yes
7	7	0	No
	7		No
7	7		No
7	7		No
			Yes
			No
			Yes
			Yes
			No
			Yes
			No
			Yes
			Yes
			Yes
			No
			Yes
			Yes
			No
			No
			No
7	0	7	Yes
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 <tr td=""> <t< td=""><td>7 7 0 7 7 0</td></t<></tr>	7 7 0 7 7 0
7 7 0 7 7 0			

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Magnesium	7	0	7	Yes
Manganese	7	0	7	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	4	3	Yes
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	7	0	No
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	7	0	No
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	5	2	Yes
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	3	4	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	0	7	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	2	5	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	5	2	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	1	6	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 28, 32, and 30 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background UTL for oxidation-reduction potential and technetium-99.

<u>URGA</u>

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, chemical oxygen demand, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for aluminum, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential		
MW390: Oxidation-reduction potential, technetium-99	MW221: Chemical oxygen demand, oxidation-reduction potential	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate
MW393: Oxidation-reduction potential	MW222: Oxidation-reduction potential	MW385: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW223: Oxidation-reduction potential	MW388: Beta activity, oxidation-reduction potential, radium-226, sulfate, technetium-99
	MW224: Oxidation-reduction potential	MW392: Oxidation-reduction potential
	MW369: Oxidation-reduction potential, technetium-99	MW395: Oxidation-reduction potential
	MW372: Beta activity, calcium, dissolved solids, magnesium, sulfate, technetium-99	MW397: Aluminum, oxidation-reduction potential
	MW384: Beta activity, oxidation- reduction potential, sulfate, technetium-99	
	MW387: Beta activity, oxidation- reduction potential, sulfate, technetium-99	
	MW391: Oxidation-reduction potential, sulfate	

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	No exceedance of statistically derived historica background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historica background concentration.
Cyanide	Tolerance Interval	0.00	No exceedance of statistically derived historica background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historica background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historica background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background–UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentration in MW372, MW384, and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentration in MW221.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Cyanide	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220, MW221, MW222, MW223, MW224, MW369, MW384, MW387, and MW391.
PCB, Total	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
pH	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW220, MW372, MW384, MW387, and MW391.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW372, MW384, and MW387.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.08	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

CV: coefficient of variation * If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW397.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, MW395, and MW397.
pH	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.74	Current results exceed statistically derived historical background concentration in MW370 and MW388.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the upper TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 2, 8, and 10 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

URGA	LRGA
MW369: Technetium-99	MW370: Beta activity, radium-226, sulfate, technetium-99
MW372: Beta activity, calcium, magnesium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
MW387: Beta activity, sulfate, technetium-99	MW388: Beta activity, sulfate, technetium-99
MW391: Sulfate	

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

<u>UCRS</u>

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the technetium-99 concentration in one UCRS well (i.e., MW390) was higher than the current TL this quarter.

<u>URGA</u>

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, magnesium, sulfate, and technetium-99.

<u>LRGA</u>

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, radium-226, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.32	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	-2.95	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.57	MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.16	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand	Tolerance Interval	0.47	MW221 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.28	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Magnesium	Tolerance Interval	0.16	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-reduction potential	Tolerance Interval	0.25	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.32	MW372, MW387, and MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.62	MW369, MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.37	MW397 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Beta Activity	Tolerance Interval	0.68	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.22	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.09	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.12	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.22	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.23	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Radium-226	Tolerance Interval	0.55	MW370 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.07	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.54	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

CV: coefficient of variation * If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.320	S = 0.182	CV(1)= 0.567	K factor**= 3.188	TL(1)= 0.900	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.259	S= 0.503	CV(2) =-0.400	K factor**= 3.188	TL(2)= 0.345	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result		
W/-11 NI1	MW206	

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.393	-0.934
9/16/2002	0.2	-1.609
10/16/2002	0.2	-1.609
1/13/2003	0.501	-0.691
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.668	-0.403

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW386	Sidegradient	Yes	0.0872	NO	-2.440	N/A		
MW390	Downgradien	t Yes	0.58	NO	-0.545	N/A		
MW393	Downgradien	t Yes	0.0525	NO	-2.947	N/A		
MW396	Upgradient	Yes	0.232	NO	-1.461	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.650	S = 0.833	CV(1)= 1.282	K factor**= 3.188	TL(1)= 3.306	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.034	S= 1.066	CV(2)= -1.031	K factor**= 3.188	TL(2)= 2.364	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

	Dry/Partially Dry Wells						
,	Well No.	Gradient					
	MW389	Downgradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW386	Sidegradient	Yes	0.00558	N/A	-5.189	NO		
MW390	Downgradien	t Yes	0.00739	N/A	-4.908	NO		
MW393	Downgradien	t Yes	0.02	N/A	-3.912	NO		
MW396	Upgradient	No	0.00866	N/A	-4.749	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.388	S = 0.327	CV(1)= 0.236	K factor**= 3.188	TL(1)= 2.430	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.301	S= 0.252	CV(2)= 0.838	K factor**= 3.188	TL(2)= 1.105	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result
10

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Par	tially Dry	Wells
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW386	Sidegradient	Yes	0.162	NO	-1.820	N/A		
MW390	Downgradien	t Yes	0.654	NO	-0.425	N/A		
MW393	Downgradien	t Yes	0.173	NO	-1.754	N/A		
MW396	Upgradient	Yes	1.1	NO	0.095	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =41.825	S = 8.445	CV(1)= 0.202	K factor**= 3.188	TL(1)= 68.748	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.711	S= 0.241	CV(2)= 0.065	K factor**= 3.188	TL(2)= 4.479	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result
10

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Partially Dry Wells					
Well No.	Gradient				

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	20.9	NO	3.040	N/A
MW390	Downgradien	t Yes	30.5	NO	3.418	N/A
MW393	Downgradien	t Yes	11.5	NO	2.442	N/A
MW396	Upgradient	Yes	35.3	NO	3.564	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =35.375 S = 0.744	CV(1)= 0.021	K factor**= 3.188	TL(1)= 37.747	LL(1)=N/A
Statistics-Transformed Background Data	X =3.566 S = 0.021	CV(2) =0.006	K factor**= 3.188	TL(2)= 3.632	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW396			

Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient	-			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	22.2	NO	3.100	N/A
MW390	Downgradien	t No	20	N/A	2.996	N/A
MW393	Downgradien	t No	15.8	N/A	2.760	N/A
MW396	Upgradient	Yes	27.1	NO	3.300	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=101.725 S= 5.245
 CV(1)=0.052
 K factor**= 3.188
 TL(1)=118.447
 LL(1)=N/A

 Statistics-Transformed Background
 X=4.621
 S= 0.053
 CV(2)=0.011
 K factor**= 3.188
 TL(2)= 4.789
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Par	tially Dry Wells
Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	13.7	NO	2.617	N/A
MW390	Downgradien	t Yes	69.7	NO	4.244	N/A
MW393	Downgradien	t Yes	14.4	NO	2.667	N/A
MW396	Upgradient	Yes	73.6	NO	4.299	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.008	S = 0.011	CV(1)= 1.340	K factor**= 3.188	TL(1)= 0.042	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.645	S = 1.339	CV(2) =-0.237	K factor**= 3.188	TL(2)= -1.377	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells		
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	0.0103	N/A	-4.576	NO
MW390	Downgradien	t Yes	0.00068	8 N/A	-7.282	NO
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
MW396	Upgradient	Yes	0.00359	N/A	-5.630	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 922.500 S= 107.616 CV(1)=0.117
 K factor**= 3.188
 TL(1)= 1265.579
 LL(1)=N/A

Statistics-Transformed Background X=6.822 S= 0.111 CV(2)=0.016 Data

Historical Bac	kground Data from
Upgradient W	ells with Transformed Result
W/-11 NI1	MW207

Well Number:	MW 396	
Date Collected	Result	LN(Result)
8/13/2002	784	6.664
9/30/2002	871	6.770
10/16/2002	868	6.766
1/13/2003	912	6.816
4/8/2003	942	6.848
7/16/2003	910	6.813
10/14/2003	935	6.841
1/14/2004	1158	7.054

Dry/Par	tially Dry Wells
Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 7.175

LL(2)=N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	592	NO	6.384	N/A
MW390	Downgradien	t Yes	704	NO	6.557	N/A
MW393	Downgradien	t Yes	389	NO	5.964	N/A
MW396	Upgradient	Yes	767	NO	6.642	N/A

K factor=** 3.188

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.028 S = 0.014 CV(1) = 0.481 K factor**= 3.188 TL(1) = 0.072 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.650 S = 0.414 CV(2) = -0.113 K factor**= 3.188 TL(2) = -2.331 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells					
Well No.	Gradient				

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	0.00198	NO	-6.225	N/A
MW390	Downgradien	t Yes	0.00192	NO	-6.255	N/A
MW393	Downgradien	t Yes	0.00249	NO	-5.995	N/A
MW396	Upgradient	Yes	0.00238	NO	-6.041	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Cyanide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.020	S= 0.000	CV(1)= 0.000	K factor**= 3.188	TL(1)= 0.020	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.912	S = 0.000	CV(2)= 0.000	K factor**= 3.188	TL(2)= -3.912	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number: MW396						
Date Collected	Result	LN(Result)				
8/13/2002	0.02	-3.912				
9/16/2002	0.02	-3.912				
10/16/2002	0.02	-3.912				
1/13/2003	0.02	-3.912				
4/8/2003	0.02	-3.912				
7/16/2003	0.02	-3.912				

0.02

0.02

10/14/2003

1/14/2004

Dry/Partially Dry Wells				
Well No.	Gradient			

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	0.00215	NO	-6.142	N/A
MW390	Downgradien	t No	0.2	N/A	-1.609	N/A
MW393	Downgradien	t No	0.2	N/A	-1.609	N/A
MW396	Upgradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =1.395	S = 1.677	CV(1)=1.202	K factor**= 3.188	TL(1)= 6.743	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.043	S= 0.814	CV(2) =-18.867	K factor**= 3.188	TL(2)= 2.553	LL(2)=N/A

Historical Bac Upgradient W	kground Da ells with Tr	ta from ansformed Result
Well Number:	MW396	
Date Collected	Result	LN(Result)
8/12/2002	5 4 5	1 606

8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Par	tially Dry Wells
Well No.	Gradient
MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	4.71	N/A	1.550	NO
MW390	Downgradien	t Yes	4.68	N/A	1.543	NO
MW393	Downgradien	t Yes	1.76	N/A	0.565	NO
MW396	Upgradient	Yes	0.72	N/A	-0.329	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X= 550.375 **S**= 104.330 **CV(1)**=0.190

Statistics-Transformed Background X=6.298 S= 0.162 CV(2)=0.026 Data

K factor**= 3.188	TL(2)= 6.815	LL(2)=N/A

TL(1)= 882.980 LL(1)=N/A

Upgradient Wells with Transformed Result
--

MW396	
Result	LN(Result)
502	6.219
506	6.227
543	6.297
521	6.256
504	6.223
532	6.277
490	6.194
805	6.691
	Result 502 506 543 521 504 532 490

Dry/Par	tially Dry Wells
Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	344	NO	5.841	N/A
MW390	Downgradien	t Yes	384	NO	5.951	N/A
MW393	Downgradien	t Yes	169	NO	5.130	N/A
MW396	Upgradient	Yes	380	NO	5.940	N/A

K factor=** 3.188

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.150	S= 0.283	CV(1)= 0.132	K factor**= 3.188	TL(1)= 3.052	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.759	S= 0.123	CV(2)= 0.162	K factor**= 3.188	TL(2)= 1.150	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	2	0.693
1/13/2003	2	0.693
4/8/2003	2	0.693
7/16/2003	2.7	0.993
10/14/2003	2.5	0.916
1/14/2004	2	0.693

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	0.183	NO	-1.698	N/A
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A
MW396	Upgradient	Yes	0.604	NO	-0.504	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.796	S= 3.723	CV(1)= 0.478	K factor**= 3.188	TL(1)= 19.666	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.880	S = 0.723	CV(2)= 0.384	K factor**= 3.188	TL(2)= 4.184	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.8	0.588
9/16/2002	9.53	2.254
10/16/2002	7.43	2.006
1/13/2003	9.93	2.296
4/8/2003	10.2	2.322
7/16/2003	9.16	2.215
10/14/2003	11.9	2.477
1/14/2004	2.42	0.884

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	1.1	NO	0.095	N/A
MW390	Downgradien	t Yes	0.538	NO	-0.620	N/A
MW393	Downgradien	t Yes	1.49	NO	0.399	N/A
MW396	Upgradient	Yes	1.58	NO	0.457	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 16.876	S = 3.313	CV(1)= 0.196	K factor**= 3.188	TL(1)= 27.438	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.804	S= 0.240	CV(2)= 0.086	K factor**= 3.188	TL(2)= 3.569	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result			
Well Number:	MW396		

Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	9.06	NO	2.204	N/A
MW390	Downgradien	t Yes	13.1	NO	2.573	N/A
MW393	Downgradien	t Yes	3.39	NO	1.221	N/A
MW396	Upgradient	Yes	16.1	NO	2.779	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.774	S = 0.353	CV(1)= 0.456	K factor**= 3.188	TL(1)= 1.900	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.566	S= 1.192	CV(2) =-2.105	K factor**= 3.188	TL(2)= 3.235	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				
Date Collected	Result	LN(Result)			

		(
8/13/2002	0.57	-0.562	
9/16/2002	0.647	-0.435	
10/16/2002	0.88	-0.128	
1/13/2003	1.132	0.124	
4/8/2003	0.965	-0.036	
7/16/2003	0.983	-0.017	
10/14/2003	0.984	-0.016	
1/14/2004	0.0314	-3.461	

Dry/Par	tially Dry Wells
Well No.	Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	1.34	NO	0.293	N/A
MW390	Downgradien	t Yes	0.0044	NO	-5.426	N/A
MW393	Downgradien	t Yes	0.0467	NO	-3.064	N/A
MW396	Upgradient	Yes	0.496	NO	-0.701	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.007	S = 0.011	CV(1)= 1.507	K factor**= 3.188	TL(1)= 0.042	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.928	S= 1.420	CV(2) =-0.240	K factor**= 3.188	TL(2)= -1.400	LL(2)=N/A

oppraatente a ens arten Fransformen Result	Historical Background Data from Upgradient Wells with Transformed Result
--	---

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00128	-6.661
4/8/2003	0.00271	-5.911
7/16/2003	0.00117	-6.751
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	0.00073	1 N/A	-7.221	NO
MW390	Downgradien	t Yes	0.00079	1 N/A	-7.142	NO
MW393	Downgradien	t Yes	0.00027	2 N/A	-8.210	NO
MW396	Upgradient	Yes	0.00049	4 N/A	-7.613	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.016	S = 0.021	CV(1)= 1.272	K factor**= 3.188	TL(1)= 0.083	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.706	S= 1.057	CV(2) =-0.225	K factor**= 3.188	TL(2)= -1.338	LL(2)= N/A

Upgradient Wells with Transformed Result
--

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	0.00269	N/A	-5.918	NO
MW390	Downgradien	t Yes	0.00237	N/A	-6.045	NO
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A
MW396	Upgradient	Yes	0.00176	N/A	-6.342	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =13.000	S = 61.952	CV(1)= 4.766	K factor**= 3.188	TL(1)= 210.502	LL(1)=N/A
Statistics-Transformed Background	X = 4.364	S= 0.333	CV(2)= 0.076	K factor**= 3.188	TL(2)= 4.736	LL(2)=N/A

Statistics-Transformed Background X=4.364 S= 0.333 CV(2)=0.076 Data

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				

wen rumber.	101 00 570	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	214	N/A	5.366	YES
MW390	Downgradien	t Yes	444	N/A	6.096	YES
MW393	Downgradien	t Yes	331	N/A	5.802	YES
MW396	Upgradient	Yes	217	N/A	5.380	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW386 MW390 MW393 MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.460	S = 0.350	CV(1)= 0.054	K factor**= 3.736	TL(1)= 7.766	LL(1)= 5.1541
Statistics-Transformed Background Data	X= 1.864	S= 0.054	CV(2)= 0.029	K factor**= 3.736	TL(2)= 2.067	LL(2)= 1.6621

Historical Background Data from Upgradient Wells with Transformed Result					
Wall Number	MW206				

well Number:	M W 396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Partially Dry Wells

wen no.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	7.03	NO	1.950	N/A
MW390	Downgradien	t Yes	6.7	NO	1.902	N/A
MW393	Downgradien	t Yes	5.95	NO	1.783	N/A
MW396	Upgradient	Yes	5.92	NO	1.778	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.411	S = 0.399	CV(1)= 0.282	K factor**= 3.188	TL(1)= 2.682	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.311	S = 0.271	CV(2)= 0.870	K factor**= 3.188	TL(2)= 1.175	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Par	tially Dry Wel	ls
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	0.305	NO	-1.187	N/A
MW390	Downgradien	t Yes	0.424	NO	-0.858	N/A
MW393	Downgradien	t Yes	0.383	NO	-0.960	N/A
MW396	Upgradient	Yes	0.814	NO	-0.206	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=106.825 S= 32.041 CV(1)=0.300 **K factor**=** 3.188 **Statistics-Background Data** TL(1)= 208.973 LL(1)=N/A **K factor**=** 3.188 TL(2)= 6.163 LL(2)=N/A

Statistics-Transformed Background X=4.595 S= 0.492 CV(2)=0.107 Data

Historical Background Data from Upgradient Wells with Transformed Result	Dry/Partially

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	115	4.745
9/16/2002	116	4.754
10/16/2002	117	4.762
1/13/2003	122	4.804
4/8/2003	106	4.663
7/16/2003	117	4.762
10/14/2003	132	4.883
1/14/2004	29.6	3.388

Dry/Par	tially Dry Wells
Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	107	NO	4.673	N/A
MW390	Downgradien	t Yes	94.6	NO	4.550	N/A
MW393	Downgradien	t Yes	68.7	NO	4.230	N/A
MW396	Upgradient	Yes	102	NO	4.625	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 0.395	K factor**= 3.188	TL(1)= 50.759	LL(1)=N/A	-
Statistics-Transformed Background	X= 3.054	S= 0.351	CV(2)=0.115	K factor**= 3.188	TL(2)= 4.173	LL(2)=N/A	

Historical Bac	kground Data from
Upgradient W	ells with Transformed Result
Well Number:	MW396

Data

Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Partially Dry Wells					
Well No.	Gradient				
MW389	Downgradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	46.3	NO	3.835	N/A
MW390	Downgradien	t Yes	35.9	NO	3.581	N/A
MW393	Downgradien	t Yes	13	NO	2.565	N/A
MW396	Upgradient	Yes	23.5	NO	3.157	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.624	S = 6.558	CV(1)= 0.860	K factor**= 3.188	TL(1)= 28.531	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.498	S = 1.321	CV(2)= 0.882	K factor**= 3.188	TL(2)= 5.710	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	'ells with Transformed Result
Well Number:	MW396

wen rumber.	101 00 500	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	No	0.749	N/A	-0.289	N/A
MW390	Downgradien	t Yes	36.7	YES	3.603	N/A
MW393	Downgradien	t No	-5.48	N/A	#Error	N/A
MW396	Upgradient	No	-11.3	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 9.988	S = 4.696	CV(1)= 0.470	K factor**= 3.188	TL(1)= 24.959	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.210	S = 0.454	CV(2)= 0.205	K factor**= 3.188	TL(2)= 3.657	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	19	2.944
9/16/2002	14.6	2.681
10/16/2002	10.4	2.342
1/13/2003	4.4	1.482
4/8/2003	7	1.946
7/16/2003	7.3	1.988
10/14/2003	9.1	2.208
1/14/2004	8.1	2.092

Dry/Partially Dry Wells					
Well No.	Gradient				

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	7.16	NO	1.969	N/A
MW390	Downgradien	t Yes	2.66	NO	0.978	N/A
MW393	Downgradien	t Yes	3.01	NO	1.102	N/A
MW396	Upgradient	Yes	6.14	NO	1.815	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 142.650 S = 53.533 CV(1) = 0.375 K factor ** = 3.188 TL(1) = 313.314 LL(1) = N/A

 Statistics-Background Data
 X = 142.650 S = 53.533 CV(1) = 0.375 K factor ** = 3.188 TL(1) = 313.314 LL(1) = N/A

Statistics-Transformed Background X=4.896 S= 0.390 CV(2)=0.080 Data

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number: MW396					
Date Collected	Result	LN(Result)			

8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Partially Dry Wells	
Well No. Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 6.138

LL(2)=N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	138	NO	4.927	N/A
MW390	Downgradien	t Yes	12.8	NO	2.549	N/A
MW393	Downgradien	t Yes	19.6	NO	2.976	N/A
MW396	Upgradient	Yes	43.1	NO	3.764	N/A

K factor=** 3.188

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.021	S = 0.002	CV(1)= 0.109	K factor**= 3.188	TL(1)= 0.029	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.856	S = 0.103	CV(2) =-0.027	K factor**= 3.188	TL(2)= -3.527	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW396					
Date Collected	Result	LN(Result)				
8/13/2002	0.025	-3.689				
9/16/2002	0.025	-3.689				
10/16/2002	0.02	-3.912				
1/13/2003	0.02	-3.912				

0.02

0.02

0.02

0.02

4/8/2003

7/16/2003

10/14/2003

1/14/2004

Dry/Partially Dry Wells					
Well No.	Gradient				

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	0.00338	NO	-5.690	N/A
MW390	Downgradien	t Yes	0.00392	NO	-5.542	N/A
MW393	Downgradien	t No	0.01	N/A	-4.605	N/A
MW396	Upgradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.044	S = 0.035	CV(1)= 0.786	K factor**= 3.188	TL(1)= 0.156	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.342	S = 0.682	CV(2) =-0.204	K factor**= 3.188	TL(2)= -1.168	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				
Date Collected	Result	LN(Result)			
0/12/2002	0.1	2 202			

8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/8/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW386	Sidegradient	Yes	0.00692	NO	-4.973	N/A
MW390	Downgradien	t Yes	0.00483	NO	-5.333	N/A
MW393	Downgradien	t Yes	0.00365	NO	-5.613	N/A
MW396	Upgradient	Yes	0.00903	NO	-4.707	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.221	S= 0.061	CV(1)=0.277	K factor**= 2.523	TL(1)= 0.376	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.534	S = 0.212	CV(2) =-0.138	K factor**= 2.523	TL(2)= -0.999	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						

Result	LN(Result)
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.427	-0.851
0.309	-1.174
0.2	-1.609
0.202	-1.599
MW394	
Result	LN(Result)
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.2 0.2	-1.609 -1.609
	0.2 0.2 0.2 0.2 0.427 0.309 0.2 0.202 MW394 Result 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0203	NO	-3.897	N/A
MW221	Sidegradient	No	0.05	N/A	-2.996	N/A
MW222	Sidegradient	Yes	0.0516	NO	-2.964	N/A
MW223	Sidegradient	No	0.05	N/A	-2.996	N/A
MW224	Sidegradient	Yes	0.0209	NO	-3.868	N/A
MW369	Downgradien	t Yes	0.13	NO	-2.040	N/A
MW372	Downgradien	t Yes	0.0196	NO	-3.932	N/A
MW384	Sidegradient	Yes	0.0271	NO	-3.608	N/A
MW387	Downgradien	t Yes	0.107	NO	-2.235	N/A
MW391	Downgradien	t Yes	0.127	NO	-2.064	N/A
MW394	Upgradient	Yes	0.167	NO	-1.790	N/A
	Its identified as N	Jon Dotoota	during lab	oratory analysis or	data validatio	n and wara not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =14.273	S = 13.883	CV(1)= 0.973	K factor**= 2.523	TL(1)= 49.300	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.213	S= 1.033	CV(2)= 0.467	K factor**= 2.523	TL(2)= 4.819	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	15.2	2.721			
1/15/2003	42.5	3.750			
4/10/2003	45.4	3.816			
7/14/2003	8.53	2.144			
10/13/2003	11.7	2.460			
1/13/2004	13.5	2.603			
4/13/2004	33.5	3.512			

7/21/2004	13.7	2.617
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	5.03	1.615
9/16/2002	5.57	1.717
10/16/2002	12.8	2.549
1/13/2003	4.3	1.459
4/10/2003	9.52	2.253
7/16/2003	3.92	1.366
10/14/2003	1.06	0.058
1/13/2004	2.14	0.761

....

7/01/0004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW220	Upgradient	Yes	13.1	N/A	2.573	N/A
MW221	Sidegradient	Yes	8.91	N/A	2.187	N/A
MW222	Sidegradient	Yes	5.8	N/A	1.758	N/A
MW223	Sidegradient	Yes	7.49	N/A	2.014	N/A
MW224	Sidegradient	No	2.95	N/A	1.082	N/A
MW369	Downgradien	t Yes	40.7	N/A	3.706	N/A
MW372	Downgradien	t Yes	132	YES	4.883	N/A
MW384	Sidegradient	Yes	114	YES	4.736	N/A
MW387	Downgradien	t Yes	186	YES	5.226	N/A
MW391	Downgradien	t Yes	4.59	N/A	1.524	N/A
MW394	Upgradient	No	-0.603	N/A	#Error	N/A
N/A Pesu	Its identified as N	Jon Detects	during lab	oratory analysis or	data validatio	n and ware not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0 (17

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	5
MW372	
MW384	
MW387	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.425	S= 0.615	CV(1)= 1.447	K factor**= 2.523	TL(1)= 1.976	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.322	S= 0.786	CV(2) =-0.595	K factor**= 2.523	TL(2)= 0.663	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				

wen runber.	101 00 220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.2	-1.609
1/13/2004	0.2	-1.609
4/13/2004	0.2	-1.609
7/21/2004	0.2	-1.609
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.693
Date Collected	Result	()
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 2. 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 2 2. 0.2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW220	Upgradient	No	0.0127	N/A	-4.366	N/A
MW221	Sidegradient	Yes	0.0151	N/A	-4.193	NO
MW222	Sidegradient	Yes	0.00918	N/A	-4.691	NO
MW223	Sidegradient	Yes	0.00707	N/A	-4.952	NO
MW224	Sidegradient	Yes	0.0135	N/A	-4.305	NO
MW369	Downgradien	t Yes	0.0166	N/A	-4.098	NO
MW372	Downgradien	t Yes	0.716	N/A	-0.334	NO
MW384	Sidegradient	Yes	0.0298	N/A	-3.513	NO
MW387	Downgradien	t Yes	0.032	N/A	-3.442	NO
MW391	Downgradien	t Yes	0.16	N/A	-1.833	NO
MW394	Upgradient	Yes	0.0205	N/A	-3.887	NO
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				

Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
wen number.		
Date Collected	Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW220	Upgradient	Yes	0.198	NO	-1.619	N/A
MW221	Sidegradient	Yes	0.419	NO	-0.870	N/A
MW222	Sidegradient	Yes	0.421	NO	-0.865	N/A
MW223	Sidegradient	Yes	0.414	NO	-0.882	N/A
MW224	Sidegradient	Yes	0.4	NO	-0.916	N/A
MW369	Downgradien	t Yes	0.353	NO	-1.041	N/A
MW372	Downgradien	t Yes	0.568	NO	-0.566	N/A
MW384	Sidegradient	Yes	0.322	NO	-1.133	N/A
MW387	Downgradien	t Yes	0.463	NO	-0.770	N/A
MW391	Downgradien	t Yes	0.546	NO	-0.605	N/A
MW394	Upgradient	Yes	0.672	NO	-0.397	N/A
N/A Decu	Its identified as N	Ion Detects	during lab	oratory analysis or	data validatio	n and ware not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 27.638	S = 4.743	CV(1)= 0.172	K factor**= 2.523	TL(1)= 39.604	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.304	S = 0.183	CV(2) =0.055	K factor**= 2.523	TL(2)= 3.765	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	23.6	3.161				
1/15/2003	25.9	3.254				
4/10/2003	30.4	3.414				
7/14/2003	33.9	3.523				
10/13/2003	21.3	3.059				
1/13/2004	20.3	3.011				
4/13/2004	23.8	3.170				
7/21/2004	19	2.944				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
8/13/2002	29.5	3.384				
9/16/2002	29.9	3.398				
10/16/2002	31.2	3.440				
1/13/2003	30.7	3.424				
4/10/2003	34.4	3.538				
7/16/2003	29.6	3.388				
10/14/2003	30.3	3.411				

28.4

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW220	Upgradient	Yes	19.9	NO	2.991	N/A
MW221	Sidegradient	Yes	20	NO	2.996	N/A
MW222	Sidegradient	Yes	17.3	NO	2.851	N/A
MW223	Sidegradient	Yes	20.9	NO	3.040	N/A
MW224	Sidegradient	Yes	21.7	NO	3.077	N/A
MW369	Downgradien	t Yes	15.9	NO	2.766	N/A
MW372	Downgradien	t Yes	46.5	YES	3.839	N/A
MW384	Sidegradient	Yes	24.4	NO	3.195	N/A
MW387	Downgradien	t Yes	33.7	NO	3.517	N/A
MW391	Downgradien	t Yes	34.1	NO	3.529	N/A
MW394	Upgradient	Yes	25.7	NO	3.246	N/A
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.346

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 35.000	S= 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 35.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.555	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 3.555	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	35	3.555				
1/15/2003	35	3.555				
4/10/2003	35	3.555				
7/14/2003	35	3.555				
10/13/2003	35	3.555				
1/13/2004	35	3.555				
4/13/2004	35	3.555				
7/21/2004	35	3.555				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
8/13/2002	35	3.555				
9/16/2002	35	3.555				
10/16/2002	35	3.555				
1/13/2003	35	3.555				
4/10/2003	35	3.555				

35

35

35

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW220	Upgradient	No	14.2	N/A	2.653	N/A
MW221	Sidegradient	Yes	46.4	YES	3.837	N/A
MW222	Sidegradient	No	20	N/A	2.996	N/A
MW223	Sidegradient	No	20	N/A	2.996	N/A
MW224	Sidegradient	Yes	9.26	NO	2.226	N/A
MW369	Downgradien	t Yes	9.71	NO	2.273	N/A
MW372	Downgradien	t Yes	21.5	NO	3.068	N/A
MW384	Sidegradient	Yes	9.26	NO	2.226	N/A
MW387	Downgradien	t Yes	17.3	NO	2.851	N/A
MW391	Downgradien	t No	14.2	N/A	2.653	N/A
MW394	Upgradient	No	12.5	N/A	2.526	N/A
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

3.555

3.555

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW221

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 49.044	S= 11.278	CV(1)= 0.230	K factor**= 2.523	TL(1)= 77.499	LL(1)=N/A
Statistics-Transformed Background Data	X= 3.866	S= 0.244	CV(2)= 0.063	K factor**= 2.523	TL(2)= 4.482	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	44.6	3.798				
1/15/2003	43.2	3.766				
4/10/2003	31.5	3.450				
7/14/2003	30.8	3.428				
10/13/2003	40.9	3.711				
1/13/2004	40.8	3.709				
4/13/2004	37.5	3.624				
7/21/2004	40.8	3.709				

Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	60.4	4.101
9/16/2002	60.3	4.099
10/16/2002	58	4.060
1/13/2003	60.7	4.106
4/10/2003	62.9	4.142
7/16/2003	58.1	4.062
10/14/2003	58.2	4.064
1/13/2004	56	4.025

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW220	Upgradient	Yes	20.2	NO	3.006	N/A
MW221	Sidegradient	Yes	32.1	NO	3.469	N/A
MW222	Sidegradient	Yes	30.1	NO	3.405	N/A
MW223	Sidegradient	Yes	29.4	NO	3.381	N/A
MW224	Sidegradient	Yes	29.5	NO	3.384	N/A
MW369	Downgradien	t Yes	30.4	NO	3.414	N/A
MW372	Downgradien	t Yes	48.3	NO	3.877	N/A
MW384	Sidegradient	Yes	33.4	NO	3.509	N/A
MW387	Downgradien	t Yes	40.8	NO	3.709	N/A
MW391	Downgradien	t Yes	42.6	NO	3.752	N/A
MW394	Upgradient	Yes	49.3	NO	3.898	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.609	S = 0.000	CV(2)= 0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Date Collected	Result	LN(Result)					

Date Collected	Result	LN(Result)
10/14/2002	5	1.609
1/15/2003	5	1.609
4/10/2003	5	1.609
7/14/2003	5	1.609
10/13/2003	5	1.609
1/13/2004	5	1.609
4/13/2004	5	1.609
7/21/2004	5	1.609
Well Number:	MW394	
wen rumber.	101 00 5 7 4	
Date Collected	Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t No	1	N/A	0.000	N/A
MW372	Downgradien	t No	1	N/A	0.000	N/A
MW384	Sidegradient	No	1	N/A	0.000	N/A
MW387	Downgradien	t No	1	N/A	0.000	N/A
MW391	Downgradien	t Yes	0.36	NO	-1.022	N/A
MW394	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.016	S= 0.040	CV(1)= 2.440	K factor**= 2.523	TL(1)= 0.116	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.582	S = 1.573	CV(2)=-0.282	K factor**= 2.523	TL(2)= -1.613	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW220

wen runnoer.	101 00 220	
Date Collected	Result	LN(Result)
10/14/2002	0.0041	-5.497
1/15/2003	0.00496	-5.306
4/10/2003	0.00289	-5.846
7/14/2003	0.161	-1.826
10/13/2003	0.0226	-3.790
1/13/2004	0.00464	-5.373
4/13/2004	0.001	-6.908
7/21/2004	0.00264	-5.937
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW220	Upgradient	No	0.001	N/A	-6.908	N/A		
MW221	Sidegradient	No	0.001	N/A	-6.908	N/A		
MW222	Sidegradient	Yes	0.00055	2 N/A	-7.502	NO		
MW223	Sidegradient	Yes	0.00074	5 N/A	-7.202	NO		
MW224	Sidegradient	Yes	0.00033	3 N/A	-8.007	NO		
MW369	Downgradien	t Yes	0.00741	N/A	-4.905	NO		
MW372	Downgradien	t Yes	0.00039	9 N/A	-7.827	NO		
MW384	Sidegradient	Yes	0.00058	4 N/A	-7.446	NO		
MW387	Downgradien	t Yes	0.00032	1 N/A	-8.044	NO		
MW391	Downgradien	t Yes	0.00063	N/A	-7.370	NO		
MW394	Upgradient	Yes	0.00035	8 N/A	-7.935	NO		
N/A - Resu	lts identified as N	Non-Detects	during labo	oratory analysis or	data validation	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 382.132 S = 107.134 CV(1) =0.280	K factor**= 2.523	TL(1)= 652.432 LL(1)=N/A
Statistics-Transformed Background	X = 5.716 S = 1.164 CV(2) = 0.204	K factor**= 2.523	TL(2)= 8.652 LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	368	5.908			
1/15/2003	433.2	6.071			
4/10/2003	489	6.192			
7/14/2003	430	6.064			
10/13/2003	346	5.846			
1/13/2004	365	5.900			
4/13/2004	416	6.031			
7/21/2004	353	5.866			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	406	6.006			
9/16/2002	418	6.035			
10/16/2002	411	6.019			
1/13/2003	422	6.045			
4/10/2003	420	6.040			
7/16/2003	438	6.082			

3.91

395

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW220	Upgradient	Yes	343	NO	5.838	N/A
MW221	Sidegradient	Yes	382	NO	5.945	N/A
MW222	Sidegradient	Yes	354	NO	5.869	N/A
MW223	Sidegradient	Yes	378	NO	5.935	N/A
MW224	Sidegradient	Yes	418	NO	6.035	N/A
MW369	Downgradien	t Yes	370	NO	5.914	N/A
MW372	Downgradien	t Yes	622	NO	6.433	N/A
MW384	Sidegradient	Yes	439	NO	6.084	N/A
MW387	Downgradien	t Yes	511	NO	6.236	N/A
MW391	Downgradien	t Yes	506	NO	6.227	N/A
MW394	Upgradient	Yes	405	NO	6.004	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1 364

5.979

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.010	CV(1)= 0.429	K factor**= 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.794	S= 0.312	CV(2) =-0.082	K factor**= 2.523	TL(2)= -3.007	LL(2)=N/A

Historical Bac		ta from insformed Result
Opgradient w	ens with 112	distormed Kesuit
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0211	-3.858
1/15/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/14/2003	0.02	-3.912
10/13/2003	0.02	-3.912
1/13/2004	0.02	-3.912
4/13/2004	0.02	-3.912
7/21/2004	0.02	-3.912
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW220	Upgradient	Yes	0.0011	NO	-6.812	N/A		
MW221	Sidegradient	Yes	0.00132	NO	-6.630	N/A		
MW222	Sidegradient	Yes	0.00071	NO	-7.250	N/A		
MW223	Sidegradient	Yes	0.00077	3 NO	-7.165	N/A		
MW224	Sidegradient	Yes	0.00035	4 NO	-7.946	N/A		
MW369	Downgradien	t Yes	0.00131	NO	-6.638	N/A		
MW372	Downgradien	t Yes	0.00063	5 NO	-7.362	N/A		
MW384	Sidegradient	Yes	0.00063	9 NO	-7.356	N/A		
MW387	Downgradien	t Yes	0.00121	NO	-6.717	N/A		
MW391	Downgradien	t Yes	0.00192	NO	-6.255	N/A		
MW394	Upgradient	Yes	0.00151	NO	-6.496	N/A		
N/A - Resu	lts identified as N	Ion-Detects	during labo	oratory analysis or	data validation	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Cyanide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S= 0.010	CV(1)= 0.431	K factor**= 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.797	S= 0.313	CV(2) =-0.082	K factor**= 2.523	TL(2)= -3.008	LL(2)=N/A

kground Da	
ens with 1ra	ansiormed Kesuit
MW220	
Result	LN(Result)
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.05	-2.996
0.05	-2.996
MW394	
Result	LN(Result)
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.02	-3.912
	with Tra MW220 Result 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.05 MW394 Result 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.2	N/A	-1.609	N/A	
MW221	Sidegradient	No	0.2	N/A	-1.609	N/A	
MW222	Sidegradient	Yes	0.00242	NO	-6.024	N/A	
MW223	Sidegradient	No	0.2	N/A	-1.609	N/A	
MW224	Sidegradient	No	0.2	N/A	-1.609	N/A	
MW369	Downgradien	t No	0.2	N/A	-1.609	N/A	
MW372	Downgradien	t No	0.2	N/A	-1.609	N/A	
MW384	Sidegradient	Yes	0.00293	NO	-5.833	N/A	
MW387	Downgradien	t No	0.2	N/A	-1.609	N/A	
MW391	Downgradien	t No	0.2	N/A	-1.609	N/A	
MW394	Upgradient	No	0.2	N/A	-1.609	N/A	
MW391 MW394	Downgradien Upgradient	t No No	0.2 0.2	N/A	-1.609 -1.609	N/A N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.784	S= 1.887	CV(1)= 0.499	K factor**= 2.523	TL(1)= 8.545	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.182	S= 0.612	CV(2)= 0.518	K factor**= 2.523	TL(2)= 2.727	LL(2)=N/A

1		
Historical Bac		
Upgradient W	ells with Tra	ansformed Result
TTT 11 ST 1	1.00000	
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.79	1.915
1/15/2003	7.25	1.981
4/10/2003	3.6	1.281
7/14/2003	0.94	-0.062
10/13/2003	1.65	0.501
1/13/2004	3.48	1.247
4/13/2004	1.05	0.049
7/21/2004	4.46	1.495
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	6.09	1.807
9/16/2002	3.85	1.348
10/16/2002	5.11	1.631
1/13/2003	3.83	1.343
4/10/2003	4.15	1.423
7/16/2003	1.83	0.604
10/14/2003	3.33	1.203
1/13/2004	3.14	1.144

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW220	Upgradient	Yes	4.37	NO	1.475	N/A
MW221	Sidegradient	Yes	3.87	NO	1.353	N/A
MW222	Sidegradient	Yes	4.64	NO	1.535	N/A
MW223	Sidegradient	Yes	3.65	NO	1.295	N/A
MW224	Sidegradient	Yes	3.57	NO	1.273	N/A
MW369	Downgradien	t Yes	2.02	NO	0.703	N/A
MW372	Downgradien	t Yes	1.54	NO	0.432	N/A
MW384	Sidegradient	Yes	3.09	NO	1.128	N/A
MW387	Downgradien	t Yes	4.42	NO	1.486	N/A
MW391	Downgradien	t Yes	3.3	NO	1.194	N/A
MW394	Upgradient	Yes	5.53	NO	1.710	N/A
MW391 MW394	Downgradien Upgradient	t Yes Yes	3.3 5.53	NO	1.194 1.710	N/A N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 232.68	8 S= 27.490	CV(1)= 0.118	K factor**= 2.523	TL(1)= 302.045	LL(1)= N/A
Statistics-Transformed Background Data	X= 5.443	S = 0.118	CV(2)= 0.022	K factor**= 2.523	TL(2)= 5.740	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	208	5.338			
1/15/2003	257	5.549			
4/10/2003	288	5.663			
7/14/2003	262	5.568			

197

198

245

204

MW394

Result

247

259

201

228

249

240

230

210

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW220	Upgradient	Yes	147	NO	4.990	N/A
MW221	Sidegradient	Yes	203	NO	5.313	N/A
MW222	Sidegradient	Yes	210	NO	5.347	N/A
MW223	Sidegradient	Yes	207	NO	5.333	N/A
MW224	Sidegradient	Yes	240	NO	5.481	N/A
MW369	Downgradien	t Yes	180	NO	5.193	N/A
MW372	Downgradien	t Yes	304	YES	5.717	N/A
MW384	Sidegradient	Yes	259	NO	5.557	N/A
MW387	Downgradien	t Yes	276	NO	5.620	N/A
MW391	Downgradien	t Yes	211	NO	5.352	N/A
MW394	Upgradient	Yes	170	NO	5.136	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

5.283

5.288

5.501

5.318

5.509

5.557

5.303

5.429 5.517

5.481

5.438

5.347

LN(Result)

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.897	S= 1.050	CV(1)= 1.170	K factor**= 2.523	TL(1)= 3.545	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.565	S = 0.951	CV(2) =-1.683	K factor**= 2.523	TL(2)= 1.834	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				

Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.429	-0.846
7/14/2003	4.33	1.466
10/13/2003	1.81	0.593
1/13/2004	0.793	-0.232
4/13/2004	0.13	-2.040
7/21/2004	0.382	-0.962
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.293
Date Collected	Result	<pre> /</pre>
Date Collected 8/13/2002	Result 1.34	0.293
Date Collected 8/13/2002 9/16/2002	Result 1.34 0.328	0.293 -1.115
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.34 0.328 1.38	0.293 -1.115 0.322
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.34 0.328 1.38 1.3	0.293 -1.115 0.322 0.262
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.34 0.328 1.38 1.3 0.494	0.293 -1.115 0.322 0.262 -0.705
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.34 0.328 1.38 1.3 0.494 0.62	0.293 -1.115 0.322 0.262 -0.705 -0.478

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW220	Upgradient	Yes	0.0482	N/A	-3.032	NO
MW221	Sidegradient	Yes	0.0856	N/A	-2.458	NO
MW222	Sidegradient	Yes	0.0616	N/A	-2.787	NO
MW223	Sidegradient	No	0.1	N/A	-2.303	N/A
MW224	Sidegradient	Yes	0.051	N/A	-2.976	NO
MW369	Downgradien	t Yes	0.291	N/A	-1.234	NO
MW372	Downgradien	t Yes	0.432	N/A	-0.839	NO
MW384	Sidegradient	Yes	0.648	N/A	-0.434	NO
MW387	Downgradien	t Yes	1.6	N/A	0.470	NO
MW391	Downgradien	t Yes	0.828	N/A	-0.189	NO
MW394	Upgradient	Yes	1.11	N/A	0.104	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Magnesium URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.796	S = 1.703	CV(1)= 0.158	K factor**= 2.523	TL(1)= 15.092	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.368	S = 0.158	CV(2)= 0.067	K factor**= 2.523	TL(2)= 2.766	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	9.16	2.215			
1/15/2003	10	2.303			
4/10/2003	10.8	2.380			
7/14/2003	14.7	2.688			
10/13/2003	9.03	2.201			
1/13/2004	8.49	2.139			
4/13/2004	9.7	2.272			
7/21/2004	8.06	2.087			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	11.8	2.468			
9/16/2002	12.1	2.493			
10/16/2002	11.3	2.425			
1/13/2003	10.3	2.332			
4/10/2003	11.7	2.460			
7/16/2003	12	2.485			

12.2

11.4

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW220	Upgradient	Yes	8.67	NO	2.160	N/A	
MW221	Sidegradient	Yes	9.39	NO	2.240	N/A	
MW222	Sidegradient	Yes	7.97	NO	2.076	N/A	
MW223	Sidegradient	Yes	8.96	NO	2.193	N/A	
MW224	Sidegradient	Yes	9.67	NO	2.269	N/A	
MW369	Downgradien	t Yes	6.72	NO	1.905	N/A	
MW372	Downgradien	t Yes	17.7	YES	2.874	N/A	
MW384	Sidegradient	Yes	10.2	NO	2.322	N/A	
MW387	Downgradien	t Yes	14.1	NO	2.646	N/A	
MW391	Downgradien	t Yes	15	NO	2.708	N/A	
MW394	Upgradient	Yes	11.4	NO	2.434	N/A	
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not							

Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.501

2.434

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.287	S= 0.619	CV(1)= 2.156	K factor**= 2.523	TL(1)= 1.848	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.455	S = 1.619	CV(2) =-0.659	K factor**= 2.523	TL(2)= 1.630	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Date Collected	Result	LN(Result)					
10/14/2002	0.0306	-3.487					
1/15/2003	0.0291	-3.537					
4/10/2003	0.0137	-4.290					
7/14/2003	2.54	0.932					
10/13/2003	0.378	-0.973					
1/13/2004	0.159	-1.839					
4/13/2004	0.00707	-4.952					
7/21/2004	0.0841	-2.476					
Well Number:	MW394						
Date Collected	Result	LN(Result)					
8/13/2002	0.542	-0.612					
9/16/2002	0.155	-1.864					
10/16/2002	0.103	-2.273					
1/13/2003	0.128	-2.056					
4/10/2003	0.005	-5.298					
7/16/2003	0.272	-1.302					
10/14/2003	0.0795	-2.532					

0.0658

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW220	Upgradient	Yes	0.00146	N/A	-6.529	NO		
MW221	Sidegradient	Yes	0.0034	N/A	-5.684	NO		
MW222	Sidegradient	Yes	0.00343	N/A	-5.675	NO		
MW223	Sidegradient	Yes	0.0199	N/A	-3.917	NO		
MW224	Sidegradient	Yes	0.00643	N/A	-5.047	NO		
MW369	Downgradien	t Yes	0.0413	N/A	-3.187	NO		
MW372	Downgradien	t Yes	0.0058	N/A	-5.150	NO		
MW384	Sidegradient	Yes	0.151	N/A	-1.890	NO		
MW387	Downgradien	t Yes	0.106	N/A	-2.244	NO		
MW391	Downgradien	t Yes	0.0261	N/A	-3.646	NO		
MW394	Upgradient	Yes	0.0295	N/A	-3.523	NO		
V/A - Results identified as Non-Detects during laboratory analysis or data validation and were not								

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.721

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.006	S = 0.008	CV(1)= 1.261	K factor**= 2.523	TL(1)= 0.026	LL(1)=N/A
Statistics-Transformed Background Data	X =-5.747	S = 1.205	CV(2) =-0.210	K factor**= 2.523	TL(2)= -2.708	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Date Collected	Result	LN(Result)					
10/14/2002	0.00558	-5.189					
1/15/2003	0.00983	-4.622					
4/10/2003	0.0109	-4.519					
7/14/2003	0.00245	-6.012					
10/13/2003	0.00566	-5.174					
1/13/2004	0.00572	-5.164					
4/13/2004	0.001	-6.908					
7/21/2004	0.00392	-5.542					
Well Number:	MW394						
Date Collected	Result	LN(Result)					
8/13/2002	0.025	-3.689					
9/16/2002	0.025	-3.689					
10/16/2002	0.001	-6.908					
1/13/2003	0.001	-6.908					
4/10/2003	0.001	-6.908					

0.001

0.001

0.001

7/16/2003

1/13/2004

10/14/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW220	Upgradient	Yes	0.00061	2 N/A	-7.399	NO		
MW221	Sidegradient	Yes	0.0013	N/A	-6.645	NO		
MW222	Sidegradient	Yes	0.00023	4 N/A	-8.360	NO		
MW223	Sidegradient	Yes	0.0042	N/A	-5.473	NO		
MW224	Sidegradient	Yes	0.00043	8 N/A	-7.733	NO		
MW369	Downgradien	t No	0.0005	N/A	-7.601	N/A		
MW372	Downgradien	t Yes	0.00024	1 N/A	-8.331	NO		
MW384	Sidegradient	No	0.0005	N/A	-7.601	N/A		
MW387	Downgradien	t No	0.0005	N/A	-7.601	N/A		
MW391	Downgradien	t Yes	0.00023	7 N/A	-8.347	NO		
MW394	Upgradient	Yes	0.00035	N/A	-7.958	NO		
	10			N/A pratory analysis or				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-6.908

-6.908

-6.908

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.127	S= 0.228	CV(1)= 1.790	K factor**= 2.523	TL(1)= 0.701	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.617	S = 1.837	CV(2) =-0.508	K factor**= 2.523	TL(2)= 1.019	LL(2)=N/A

Historical Bac Ungradient W		ta from insformed Result
opgruutent ()		instormed result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.418	-0.872
1/15/2003	0.738	-0.304
4/10/2003	0.544	-0.609
7/14/2003	0.106	-2.244
10/13/2003	0.0529	-2.939
1/13/2004	0.0209	-3.868
4/13/2004	0.005	-5.298
7/21/2004	0.0192	-3.953
Well Number:	MW394	
Date Collected	Result	LN(Result)

0.05

0.05

0.005

0.005

0.005

0.005

0.005

0.005

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003 7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0163	N/A	-4.117	NO
MW221	Sidegradient	Yes	0.00604	N/A	-5.109	NO
MW222	Sidegradient	Yes	0.0514	N/A	-2.968	NO
MW223	Sidegradient	Yes	0.105	N/A	-2.254	NO
MW224	Sidegradient	Yes	0.00537	N/A	-5.227	NO
MW369	Downgradien	t Yes	0.00562	N/A	-5.181	NO
MW372	Downgradien	t Yes	0.00078	7 N/A	-7.147	NO
MW384	Sidegradient	Yes	0.00101	N/A	-6.898	NO
MW387	Downgradien	t Yes	0.00083	1 N/A	-7.093	NO
MW391	Downgradien	t Yes	0.00145	N/A	-6.536	NO
MW394	Upgradient	Yes	0.00486	N/A	-5.327	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.996

-2.996

-5.298

-5.298

-5.298

-5.298

-5.298

-5.298

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 179.87	2 S= 86.318	CV(1)= 0.480	K factor**= 2.523	TL(1)= 397.652	LL(1)=N/A
Statistics-Transformed Background Data	X= 4.861	S = 1.252	CV(2)= 0.258	K factor**= 2.523	TL(2)= 8.021	LL(2)= N/A

kground Da ells with Tra	ta from ansformed Re
MW220	
Result	LN(Result)
205	5.323
1.95	0.668
203	5.313
30	3.401
107	4.673
295	5.687
190	5.247
319	5.765
MW394	
Result	LN(Result)
90	4.500
240	5.481
185	5.220
220	5.394
196	5.278
172	5.147
175	5.165
	ells with Tra MW220 Result 205 1.95 203 30 107 295 190 319 MW394 Result 90 240 185 220 196 172

249

5.517

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	436	YES	6.078	N/A
MW221	Sidegradient	Yes	442	YES	6.091	N/A
MW222	Sidegradient	Yes	444	YES	6.096	N/A
MW223	Sidegradient	Yes	444	YES	6.096	N/A
MW224	Sidegradient	Yes	434	YES	6.073	N/A
MW369	Downgradien	t Yes	399	YES	5.989	N/A
MW372	Downgradien	t Yes	358	NO	5.881	N/A
MW384	Sidegradient	Yes	424	YES	6.050	N/A
MW387	Downgradien	t Yes	398	YES	5.986	N/A
MW391	Downgradien	t Yes	413	YES	6.023	N/A
MW394	Upgradient	Yes	337	NO	5.820	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW220 MW221 MW222 MW223 MW224 MW369 MW384 MW387 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison PCB, Total UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.212	S= 0.152	CV(1)= 0.715	K factor**= 2.523	TL(1)= 0.594	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.655	S = 0.376	CV(2) =-0.227	K factor**= 2.523	TL(2)= -0.706	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
7/14/2003	0.78	-0.248
10/13/2003	0.17	-1.772
7/21/2004	0.18	-1.715
7/14/2005	0.18	-1.715
7/17/2006	0.18	-1.715

0.17

0.17

0.17

MW394

Result

0.17

0.17

0.17

0.17

0.18

0.18

0.18

0.17

7/18/2007

10/24/2007

1/24/2008

8/13/2002

9/16/2002

7/16/2003

7/20/2004

7/11/2005

7/17/2006

7/17/2007

10/14/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.0952	N/A	-2.352	N/A
MW221	Sidegradient	No	0.0943	N/A	-2.361	N/A
MW222	Sidegradient	No	0.0952	N/A	-2.352	N/A
MW223	Sidegradient	No	0.0943	N/A	-2.361	N/A
MW224	Sidegradient	No	0.0943	N/A	-2.361	N/A
MW369	Downgradien	t Yes	0.0475	NO	-3.047	N/A
MW372	Downgradien	t No	0.0952	N/A	-2.352	N/A
MW384	Sidegradient	No	0.0943	N/A	-2.361	N/A
MW387	Downgradien	t No	0.0962	N/A	-2.341	N/A
MW391	Downgradien	t No	0.0952	N/A	-2.352	N/A
MW394	Upgradient	No	0.0952	N/A	-2.352	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.772

-1.772

-1.772

-1.772

-1.772 -1.772

-1.772

-1.715

-1.715

-1.715

-1.772

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison PCB-1242 UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.146	S= 0.170	CV(1)= 1.164	K factor**= 2.523	TL(1)= 0.573	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.149	S= 0.517	CV(2) =-0.241	K factor**= 2.523	TL(2)= -0.844	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW220

wen runnoer.	101 00 220	
Date Collected	Result	LN(Result)
7/14/2003	0.78	-0.248
10/13/2003	0.09	-2.408
7/21/2004	0.1	-2.303
7/14/2005	0.1	-2.303
7/17/2006	0.1	-2.303
7/18/2007	0.1	-2.303
10/24/2007	0.1	-2.303
1/24/2008	0.1	-2.303
*** ** *		
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) -2.207
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 0.11	-2.207
Date Collected 8/13/2002 9/16/2002	Result 0.11 0.13	-2.207 -2.040
Date Collected 8/13/2002 9/16/2002 7/16/2003	Result 0.11 0.13 0.13	-2.207 -2.040 -2.040
Date Collected 8/13/2002 9/16/2002 7/16/2003 10/14/2003	Result 0.11 0.13 0.13 0.09	-2.207 -2.040 -2.040 -2.408
Date Collected 8/13/2002 9/16/2002 7/16/2003 10/14/2003 7/20/2004	Result 0.11 0.13 0.13 0.09 0.1	-2.207 -2.040 -2.040 -2.408 -2.303
Date Collected 8/13/2002 9/16/2002 7/16/2003 10/14/2003 7/20/2004 7/11/2005	Result 0.11 0.13 0.13 0.09 0.1 0.1	-2.207 -2.040 -2.040 -2.408 -2.303 -2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW220	Upgradient	No	0.0952	N/A	-2.352	N/A
MW221	Sidegradient	No	0.0943	N/A	-2.361	N/A
MW222	Sidegradient	No	0.0952	N/A	-2.352	N/A
MW223	Sidegradient	No	0.0943	N/A	-2.361	N/A
MW224	Sidegradient	No	0.0943	N/A	-2.361	N/A
MW369	Downgradien	t Yes	0.0475	N/A	-3.047	NO
MW372	Downgradien	t No	0.0952	N/A	-2.352	N/A
MW384	Sidegradient	No	0.0943	N/A	-2.361	N/A
MW387	Downgradien	t No	0.0962	N/A	-2.341	N/A
MW391	Downgradien	t No	0.0952	N/A	-2.352	N/A
MW394	Upgradient	No	0.0952	N/A	-2.352	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.138	S= 0.282	CV(1)= 0.046	K factor**= 2.904	TL(1)= 6.957	LL(1)=5.3179
Statistics-Transformed Background Data	X= 1.813	S = 0.047	CV(2)= 0.026	K factor**= 2.904	TL(2)= 1.950	LL(2)=1.6765

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW220							
Date Collected	Result	LN(Result)						
10/14/2002	6.04	1.798						
1/15/2003	6.31	1.842						
4/10/2003	6.5	1.872						
7/14/2003	6.3	1.841						
10/13/2003	6.34	1.847						
1/13/2004	6.33	1.845						
4/13/2004	6.3	1.841						
7/21/2004	5.9	1.775						
Well Number:	MW394							
Date Collected	Result	LN(Result)						
8/13/2002	5.8	1.758						
9/30/2002	5.93	1.780						
10/16/2002	5.42	1.690						
1/13/2003	6	1.792						
4/10/2003	6.04	1.798						
7/16/2003	6.2	1.825						
10/14/2003	6.4	1.856						
1/13/2004	6.39	1.855						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2) LN(Result) <ll(2)< th=""></ll(2)<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2) LN(Result) <ll(2)< th=""></ll(2)<>
MW220	Upgradient	Yes	5.46	NO	1.697	N/A
MW221	Sidegradient	Yes	6.09	NO	1.807	N/A
MW222	Sidegradient	Yes	6.3	NO	1.841	N/A
MW223	Sidegradient	Yes	6.17	NO	1.820	N/A
MW224	Sidegradient	Yes	6.2	NO	1.825	N/A
MW369	Downgradien	t Yes	6.12	NO	1.812	N/A
MW372	Downgradien	t Yes	6.22	NO	1.828	N/A
MW384	Sidegradient	Yes	6.15	NO	1.816	N/A
MW387	Downgradien	t Yes	6.54	NO	1.878	N/A
MW391	Downgradien	t Yes	5.36	NO	1.679	N/A
MW394	Upgradient	Yes	6.37	NO	1.852	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.654	S= 9.310	CV(1)= 1.399	K factor**= 2.523	TL(1)= 30.144	LL(1)= N/A	
Statistics-Transformed Background Data	X= 1.130	S= 1.208	CV(2)= 1.069	K factor**= 2.523	TL(2)= 4.178	LL(2)=N/A	

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Date Collected	Result	LN(Result)					
10/14/2002	6.7	1.902					
1/15/2003	29.7	3.391					
4/10/2003	24.9	3.215					
7/14/2003	1.13	0.122					
10/13/2003	3.43	1.233					
1/13/2004	6.71	1.904					
4/13/2004	19.3	2.960					
7/21/2004	3.97	1.379					
Well Number:	MW394						
Date Collected	Result	LN(Result)					
8/13/2002	2	0.693					
9/16/2002	2	0.693					
10/16/2002	1.03	0.030					
1/13/2003	1.1	0.095					
4/10/2003	1.24	0.215					

1.14

1.05

1.07

7/16/2003

1/13/2004

10/14/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW220	Upgradient	Yes	1.5	N/A	0.405	NO
MW221	Sidegradient	Yes	1.17	N/A	0.157	NO
MW222	Sidegradient	Yes	0.608	N/A	-0.498	NO
MW223	Sidegradient	Yes	1.69	N/A	0.525	NO
MW224	Sidegradient	Yes	0.886	N/A	-0.121	NO
MW369	Downgradien	t Yes	0.515	N/A	-0.664	NO
MW372	Downgradien	t Yes	2.1	N/A	0.742	NO
MW384	Sidegradient	Yes	1.48	N/A	0.392	NO
MW387	Downgradien	t Yes	1.75	N/A	0.560	NO
MW391	Downgradien	t Yes	1.77	N/A	0.571	NO
MW394	Upgradient	Yes	1.19	N/A	0.174	NO
	10					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.131

0.049

0.068

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 36.363	S= 8.666	CV(1)= 0.238	K factor**= 2.523	TL(1)= 58.227	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.570	S= 0.222	CV(2)= 0.062	K factor**= 2.523	TL(2)= 4.129	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Date Collected	Result	LN(Result)					
10/14/2002	35.4	3.567					
1/15/2003	40.6	3.704					
4/10/2003	51	3.932					
7/14/2003	58.2	4.064					
10/13/2003	38.1	3.640					
1/13/2004	37	3.611					
4/13/2004	43.2	3.766					
7/21/2004	33.8	3.520					
Well Number:	MW394						
Date Collected	Result	LN(Result)					
8/13/2002	32.9	3.493					
9/16/2002	29.9	3.398					

29

27.1

24.8

35.6

33.9

31.3

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW220	Upgradient	Yes	40.9	NO	3.711	N/A
MW221	Sidegradient	Yes	43.9	NO	3.782	N/A
MW222	Sidegradient	Yes	46.5	NO	3.839	N/A
MW223	Sidegradient	Yes	46.5	NO	3.839	N/A
MW224	Sidegradient	Yes	54.7	NO	4.002	N/A
MW369	Downgradien	t Yes	50.3	NO	3.918	N/A
MW372	Downgradien	t Yes	47.5	NO	3.861	N/A
MW384	Sidegradient	Yes	50.5	NO	3.922	N/A
MW387	Downgradien	t Yes	51.1	NO	3.934	N/A
MW391	Downgradien	t Yes	36.6	NO	3.600	N/A
MW394	Upgradient	Yes	33.6	NO	3.515	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.367

3.300

3.211

3.572

3.523

3.444

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.481	S= 2.648	CV(1)= 0.253	K factor**= 2.523	TL(1)= 17.161	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.322	S = 0.239	CV(2) =0.103	K factor**= 2.523	TL(2)= 2.925	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW220							
Date Collected	Result	LN(Result)						
10/14/2002	10.4	2.342						
1/15/2003	9.8	2.282						
4/10/2003	15.4	2.734						
7/14/2003	14.9	2.701						
10/13/2003	13.5	2.603						
1/13/2004	10.3	2.332						
4/13/2004	14.3	2.660						
7/21/2004	10.5	2.351						
Well Number:	MW394							
Date Collected	Result	LN(Result)						

Date Collected	Result	LN(Result)
8/13/2002	11.2	2.416
9/16/2002	8.3	2.116
10/16/2002	8	2.079
1/13/2003	8.5	2.140
4/10/2003	7.9	2.067
7/16/2003	8.4	2.128
10/14/2003	8.2	2.104
1/13/2004	8.1	2.092

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	17.6	YES	2.868	N/A	
MW221	Sidegradient	Yes	14.8	NO	2.695	N/A	
MW222	Sidegradient	Yes	12.6	NO	2.534	N/A	
MW223	Sidegradient	Yes	15	NO	2.708	N/A	
MW224	Sidegradient	Yes	12.8	NO	2.549	N/A	
MW369	Downgradien	t Yes	7.01	NO	1.947	N/A	
MW372	Downgradien	t Yes	57.7	YES	4.055	N/A	
MW384	Sidegradient	Yes	22.6	YES	3.118	N/A	
MW387	Downgradien	t Yes	29.7	YES	3.391	N/A	
MW391	Downgradien	t Yes	46.4	YES	3.837	N/A	
MW394	Upgradient	Yes	10.5	NO	2.351	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW220	
MW372	
MW384	
MW387	
MW391	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.354	S= 9.280	CV(1)= 0.992	K factor**= 2.523	TL(1)= 32.768	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.270	S = 0.849	CV(2)= 0.374	K factor**= 2.523	TL(2)= 3.262	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Date Collected	Result	LN(Result)					
10/14/2002	19.7	2.981					
1/15/2003	26.1	3.262					
4/10/2003	3.56	1.270					
7/14/2003	0	#Func!					
10/13/2003	21	3.045					
1/13/2004	6.32	1.844					
4/13/2004	3	1.099					
7/21/2004	14.6	2.681					
Well Number:	MW394						
Date Collected	Result	LN(Result)					
8/13/2002	14	2.639					
9/16/2002	5.45	1.696					
10/16/2002	2.49	0.912					
1/13/2003	18.3	2.907					
4/10/2003	-1.45	#Func!					
7/16/2003	-1.71	#Func!					
10/14/2003	18.3	2.907					
1/13/2004	0	#Func!					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW220	Upgradient	Yes	18.3	NO	2.907	N/A
MW221	Sidegradient	Yes	17.8	NO	2.879	N/A
MW222	Sidegradient	No	5.88	N/A	1.772	N/A
MW223	Sidegradient	No	8.84	N/A	2.179	N/A
MW224	Sidegradient	No	5.36	N/A	1.679	N/A
MW369	Downgradien	t Yes	70.8	YES	4.260	N/A
MW372	Downgradien	t Yes	195	YES	5.273	N/A
MW384	Sidegradient	Yes	189	YES	5.242	N/A
MW387	Downgradien	t Yes	291	YES	5.673	N/A
MW391	Downgradien	t No	5.19	N/A	1.647	N/A
MW394	Upgradient	No	1.99	N/A	0.688	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW369	
MW372	
MW384	
MW387	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.494	S = 0.737	CV(1)= 0.493	K factor**= 2.523	TL(1)= 3.353	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.315	S= 0.402	CV(2)= 1.279	K factor**= 2.523	TL(2)= 1.330	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW220

wen rumber.	101 10 220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1.1	0.095
4/10/2003	1	0.000
7/14/2003	3.3	1.194
10/13/2003	1.8	0.588
1/13/2004	1	0.000
4/13/2004	2	0.693
7/21/2004	3.1	1.131
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.262
Date Collected	Result	()
Date Collected 8/13/2002	Result 1.3	0.262
Date Collected 8/13/2002 9/16/2002	Result 1.3 1	0.262 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.3 1 1	0.262 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.3 1 1.6	0.262 0.000 0.000 0.470
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.3 1 1.6 1	0.262 0.000 0.000 0.470 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.3 1 1.6 1 1.4	0.262 0.000 0.000 0.470 0.000 0.336

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW220	Upgradient	Yes	1.29	NO	0.255	N/A	
MW221	Sidegradient	Yes	1.43	NO	0.358	N/A	
MW222	Sidegradient	Yes	1.36	NO	0.307	N/A	
MW223	Sidegradient	Yes	1.33	NO	0.285	N/A	
MW224	Sidegradient	Yes	1.43	NO	0.358	N/A	
MW369	Downgradien	t Yes	1.6	NO	0.470	N/A	
MW372	Downgradien	t Yes	1.42	NO	0.351	N/A	
MW384	Sidegradient	Yes	1.71	NO	0.536	N/A	
MW387	Downgradien	t Yes	1.85	NO	0.615	N/A	
MW391	Downgradien	t Yes	1.31	NO	0.270	N/A	
MW394	Upgradient	Yes	1.25	NO	0.223	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 63.475	S= 163.13	5 CV(1)=2.570	K factor**= 2.523	TL(1)= 475.063	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.103	S= 1.145	CV(2)= 0.369	K factor**= 2.523	TL(2)= 5.992	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW220			
Date Collected	Result	LN(Result)		
10/14/2002	50	3.912		
1/15/2003	10	2.303		
4/10/2003	10	2.303		
7/14/2003	10	2.303		
10/13/2003	10	2.303		
1/13/2004	10	2.303		
4/13/2004	10	2.303		
7/21/2004	10	2.303		
Well Number:	MW394			
Date Collected	Result	LN(Result)		
8/13/2002	50	3.912		
9/16/2002	672	6.510		
10/16/2002	50	3.912		
1/13/2003	36.1	3.586		
4/10/2003	10	2.303		
7/16/2003	42.7	3.754		

22

12.8

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the
natural logarithm of background and
test well results were calculated
utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	10	N/A	2.303	N/A
MW221	Sidegradient	Yes	8	N/A	2.079	NO
MW222	Sidegradient	Yes	6.2	N/A	1.825	NO
MW223	Sidegradient	Yes	7.16	N/A	1.969	NO
MW224	Sidegradient	Yes	6.88	N/A	1.929	NO
MW369	Downgradien	t Yes	16.2	N/A	2.785	NO
MW372	Downgradien	t Yes	13	N/A	2.565	NO
MW384	Sidegradient	Yes	12	N/A	2.485	NO
MW387	Downgradien	t Yes	4.14	N/A	1.421	NO
MW391	Downgradien	t Yes	10.9	N/A	2.389	NO
MW394	Upgradient	Yes	9.34	N/A	2.234	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.091

2.549

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 8.813	S= 8.376	CV(1)= 0.951	K factor**= 2.523	TL(1)= 29.946	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.395	S= 1.449	CV(2)= 1.039	K factor**= 2.523	TL(2)= 5.052	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1411/220

W-11 Manual and

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.773
Date Collected	Result	
Date Collected 8/13/2002	Result 16	2.773
Date Collected 8/13/2002 9/30/2002	Result 16 20	2.773 2.996
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 16 20 17	2.773 2.996 2.833
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 16 20 17 15	2.773 2.996 2.833 2.708
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 16 20 17 15 10	2.773 2.996 2.833 2.708 2.303
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 16 20 17 15 10 19	2.773 2.996 2.833 2.708 2.303 2.944

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t Yes	5.51	NO	1.707	N/A
MW372	Downgradien	t Yes	4.49	N/A	1.502	N/A
MW384	Sidegradient	Yes	0.44	N/A	-0.821	N/A
MW387	Downgradien	t Yes	1.44	N/A	0.365	N/A
MW391	Downgradien	t Yes	9.03	NO	2.201	N/A
MW394	Upgradient	Yes	4.94	N/A	1.597	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.021	S= 0.002	CV(1)= 0.083	K factor**= 2.523	TL(1)= 0.025	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.884	S= 0.076	CV(2) =-0.020	K factor**= 2.523	TL(2)= -3.692	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	0.02	-3.912				
1/15/2003	0.02	-3.912				
4/10/2003	0.02	-3.912				
7/14/2003	0.02	-3.912				
10/13/2003	0.02	-3.912				
1/13/2004	0.02	-3.912				
4/13/2004	0.02	-3.912				
7/21/2004	0.02	-3.912				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
8/13/2002	0.025	-3.689				
9/16/2002	0.025	-3.689				
10/16/2002	0.02	-3.912				
1/13/2003	0.02	-3.912				
4/10/2003	0.02	-3.912				
7/16/2003	0.02	-3.912				
10/14/2003	0.02	-3.912				
1/13/2004	0.02	-3.912				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW220	Upgradient	No	0.01	N/A	-4.605	N/A
MW221	Sidegradient	No	0.01	N/A	-4.605	N/A
MW222	Sidegradient	No	0.01	N/A	-4.605	N/A
MW223	Sidegradient	No	0.01	N/A	-4.605	N/A
MW224	Sidegradient	No	0.01	N/A	-4.605	N/A
MW369	Downgradien	t Yes	0.00373	NO	-5.591	N/A
MW372	Downgradien	t No	0.01	N/A	-4.605	N/A
MW384	Sidegradient	No	0.01	N/A	-4.605	N/A
MW387	Downgradien	t No	0.01	N/A	-4.605	N/A
MW391	Downgradien	t No	0.01	N/A	-4.605	N/A
MW394	Upgradient	No	0.01	N/A	-4.605	N/A
N/A - Resu	lts identified as N	Jon-Detects	during lah	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.036	S= 0.026	CV(1)= 0.722	K factor**= 2.523	TL(1)= 0.101	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.485	S= 0.525	CV(2)=-0.151	K factor**= 2.523	TL(2)= -2.162	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Opgradient w		ansiormed Result				
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	0.025	-3.689				
1/15/2003	0.035	-3.352				
4/10/2003	0.035	-3.352				
7/14/2003	0.0389	-3.247				
10/13/2003	0.026	-3.650				
1/13/2004	0.02	-3.912				
4/13/2004	0.02	-3.912				
7/21/2004	0.02	-3.912				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
8/13/2002	0.1	-2.303				
9/16/2002	0.1	-2.303				
10/16/2002	0.025	-3.689				
1/13/2003	0.035	-3.352				
4/10/2003	0.035	-3.352				
7/16/2003	0.02	-3.912				
10/14/2003	0.02	-3.912				
1/13/2004	0.02	-3.912				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW220	Upgradient	Yes	0.00345	NO	-5.669	N/A		
MW221	Sidegradient	Yes	0.00434	NO	-5.440	N/A		
MW222	Sidegradient	Yes	0.00462	NO	-5.377	N/A		
MW223	Sidegradient	Yes	0.00495	NO	-5.308	N/A		
MW224	Sidegradient	Yes	0.00341	NO	-5.681	N/A		
MW369	Downgradien	t Yes	0.00362	NO	-5.621	N/A		
MW372	Downgradien	t No	0.01	N/A	-4.605	N/A		
MW384	Sidegradient	Yes	0.00437	NO	-5.433	N/A		
MW387	Downgradien	t Yes	0.00457	NO	-5.388	N/A		
MW391	Downgradien	t Yes	0.00513	NO	-5.273	N/A		
MW394	Upgradient	Yes	0.0052	NO	-5.259	N/A		
N/A - Resu	lts identified as N	Ion-Detects	luring lab	oratorv analysis or	data validatio	n and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.258	S= 0.221	CV(1)= 0.856	K factor**= 2.523	TL(1)= 0.815	LL(1)=N/A
Statistics-Transformed Background Data	X= -2.266	S= 2.485	CV(2) =-1.097	K factor**= 2.523	TL(2)= 4.003	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW395							
Date Collected	Result	LN(Result)						
8/13/2002	0.2	-1.609						
9/16/2002	0.2	-1.609						
10/16/2002	0.0002	-8.517						
1/13/2003	0.737	-0.305						
4/10/2003	0.2	-1.609						
7/16/2003	0.2	-1.609						
10/14/2003	0.2	-1.609						
1/13/2004	0.2	-1.609						
Well Number:	MW397							
Date Collected	Result	LN(Result)						

0.824

0.363

0.2

0.2

0.2

0.2

0.2 0.0002

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW370	Downgradient	Yes	0.0805	NO	-2.519	N/A		
MW373	Downgradient	Yes	0.0967	NO	-2.336	N/A		
MW385	Sidegradient	Yes	0.547	NO	-0.603	N/A		
MW388	Downgradient	Yes	0.329	NO	-1.112	N/A		
MW392	Downgradient	Yes	0.0769	NO	-2.565	N/A		
MW395	Upgradient	Yes	0.603	NO	-0.506	N/A		
MW397	Upgradient	Yes	0.899	YES	-0.106	N/A		
N/A - Resu	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not							

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-0.194

-1.609

-8.517

-1.013

-1.609

-1.609

-1.609

-1.609

Wells with Exceedances MW397

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.183	S= 2.612	CV(1)= 0.364	K factor**= 2.523	TL(1)= 13.773	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.870	S= 0.552	CV(2)= 0.295	K factor**= 2.523	TL(2)= 3.261	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW395							
Date Collected	Result	LN(Result)						
8/13/2002	1.09	0.086						
9/16/2002	5.79	1.756						
10/16/2002	6.82	1.920						
1/13/2003	5.01	1.611						
4/10/2003	6.1	1.808						
7/16/2003	8.51	2.141						
10/14/2003	4.99	1.607						

1/13/2004	6.58	1.884
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	9.57	2.259
9/16/2002	11	2.398
10/17/2002	9.3	2.230
1/13/2003	8.63	2.155
4/8/2003	10	2.303
7/16/2003	6.89	1.930
10/14/2003	10.1	2.313
1/13/2004	4.55	1.515

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW370	Downgradien	t Yes	69	YES	4.234	N/A		
MW373	Downgradien	t Yes	20.6	N/A	3.025	N/A		
MW385	Sidegradient	Yes	101	YES	4.615	N/A		
MW388	Downgradien	t Yes	69.3	YES	4.238	N/A		
MW392	Downgradien	t Yes	3.5	N/A	1.253	N/A		
MW395	Upgradient	Yes	8.17	N/A	2.100	N/A		
MW397	Upgradient	Yes	11.9	N/A	2.477	N/A		
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.								

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.650	S = 0.805	CV(1)= 1.238	K factor**= 2.523	TL(1)= 2.681	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.034	S = 1.030	CV(2) =-0.996	K factor**= 2.523	TL(2)= 1.564	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul								
Well Number:	MW395							
Date Collected	Result	LN(Result)						
8/13/2002	2	0.693						

9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.6094/10/2003 -1.6090.2 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/17/2002 0.2 -1.6091/13/2003 0.2 -1.609 0.2 4/8/2003 -1.609 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.6091/13/2004 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW370	Downgradient	Yes	0.0341	N/A	-3.378	NO		
MW373	Downgradient	Yes	1.38	N/A	0.322	NO		
MW385	Sidegradient	Yes	0.0146	N/A	-4.227	NO		
MW388	Downgradient	Yes	0.0292	N/A	-3.534	NO		
MW392	Downgradient	Yes	0.0281	N/A	-3.572	NO		
MW395	Upgradient	Yes	0.0225	N/A	-3.794	NO		
MW397	Upgradient	No	0.00934	N/A	-4.673	N/A		
N/A - Resul	lts identified as N	on-Detects	luring lab	oratory analysis or	data validation	n and were not		

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S= 0.000	CV(1)=0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2)= #Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	ells with Transformed Result
Well Number:	MW395

Date Collected	Result	LN(Result)
8/13/2002	1	0.000
9/16/2002	1	0.000
10/16/2002	1	0.000
1/13/2003	1	0.000
4/10/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW207	
wen number:	MW397	
Date Collected	Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW370	Downgradient	Yes	0.413	NO	-0.884	N/A		
MW373	Downgradient	Yes	0.578	NO	-0.548	N/A		
MW385	Sidegradient	Yes	0.245	NO	-1.406	N/A		
MW388	Downgradient	Yes	0.371	NO	-0.992	N/A		
MW392	Downgradient	Yes	0.6	NO	-0.511	N/A		
MW395	Upgradient	Yes	0.519	NO	-0.656	N/A		
MW397	Upgradient	Yes	0.447	NO	-0.805	N/A		
N/A - Resu	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not							

N/A - Results identified as Non-Defects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 23.103	S= 11.538	CV(1)= 0.499	K factor**= 2.523	TL(1)= 52.213	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.357	S = 2.411	CV(2)=1.023	K factor**= 2.523	TL(2)= 8.439	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	32.2	3.472				
9/16/2002	33	3.497				
10/16/2002	0.0295	-3.523				
1/13/2003	32.1	3.469				
4/10/2003	40.2	3.694				
7/16/2003	32.4	3.478				
10/14/2003	33.9	3.523				
1/13/2004	31.2	3.440				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	19.4	2.965				
9/16/2002	19	2.944				
10/17/2002	0.0179	-4.023				
1/13/2003	17.8	2.879				

20.3

19.4

19.9

18.8

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?			
MW370	Downgradient	t Yes	27.9	NO	3.329	N/A			
MW373	Downgradient	t Yes	58.5	YES	4.069	N/A			
MW385	Sidegradient	Yes	35	NO	3.555	N/A			
MW388	Downgradient	t Yes	27.9	NO	3.329	N/A			
MW392	Downgradient	t Yes	28.8	NO	3.360	N/A			
MW395	Upgradient	Yes	25.3	NO	3.231	N/A			
MW397	Upgradient	Yes	18.7	NO	2.929	N/A			
N/A - Resu	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not								

N/A - Results identified as Non-Defects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.011

2.965

2.991

2.934

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =35.313	S= 1.250	CV(1)= 0.035	K factor**= 2.523	TL(1)= 38.466	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.564	S = 0.033	CV(2) =0.009	K factor**= 2.523	TL(2)= 3.648	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
MW395						
Result	LN(Result)					
35	3.555					
35	3.555					
35	3.555					
35	3.555					
35	3.555					
35	3.555					
35	3.555					
35	3.555					
MW397						
Result	LN(Result)					
40	3.689					
35	3.555					
35	3.555					
	MW395 Result 35					

35

35

35

35

35

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW370	Downgradient	Yes	17.5	NO	2.862	N/A	
MW373	Downgradient	Yes	15.6	NO	2.747	N/A	
MW385	Sidegradient	No	20	N/A	2.996	N/A	
MW388	Downgradient	t No	20	N/A	2.996	N/A	
MW392	Downgradient	t No	14.2	N/A	2.653	N/A	
MW395	Upgradient	No	14.2	N/A	2.653	N/A	
MW397	Upgradient	No	14.2	N/A	2.653	N/A	
N/A - Result	ts identified as N	on-Detects	luring lab	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

3.555

3.555

3.555

3.555

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 51.844	S= 11.652	CV(1)= 0.225	K factor**= 2.523	TL(1)= 81.242	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.924	S = 0.229	CV(2)= 0.058	K factor**= 2.523	TL(2)= 4.501	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
8/13/2002	62.2	4.130					
9/16/2002	64.7	4.170					
10/16/2002	62.2	4.130					
1/13/2003	63.5	4.151					
4/10/2003	64.1	4.160					
7/16/2003	64	4.159					
10/14/2003	63.2	4.146					
1/13/2004	60.6	4.104					
Well Number:	MW397						
Date Collected	Result	LN(Result)					
8/13/2002	38.9	3.661					
9/16/2002	39.8	3.684					
10/17/2002	39.3	3.671					
1/13/2003	40.5	3.701					
4/8/2003	42.1	3.740					
7/16/2003	42	3.738					
10/14/2003	40.8	3.709					

41.6

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW370	Downgradien	t Yes	33.8	NO	3.520	N/A	
MW373	Downgradien	t Yes	45.6	NO	3.820	N/A	
MW385	Sidegradient	Yes	26.8	NO	3.288	N/A	
MW388	Downgradien	t Yes	31.4	NO	3.447	N/A	
MW392	Downgradien	t Yes	48.9	NO	3.890	N/A	
MW395	Upgradient	Yes	43	NO	3.761	N/A	
MW397	Upgradient	Yes	37.6	NO	3.627	N/A	
N/A - Resul	lts identified as N	Ion-Detects	luring lah	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.728

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 5.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.609	S = 0.000	CV(2)=0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				

Date Collected	Result	LN(Result)
8/13/2002	5	1.609
9/30/2002	5	1.609
10/16/2002	5	1.609
1/13/2003	5	1.609
4/10/2003	5	1.609
7/16/2003	5	1.609
10/14/2003	5	1.609
1/13/2004	5	1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	()
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW370	Downgradient	t No	1	N/A	0.000	N/A
MW373	Downgradient	t No	1	N/A	0.000	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradient	t No	1	N/A	0.000	N/A
MW392	Downgradient	Yes	0.58	NO	-0.545	N/A
MW395	Upgradient	No	1	N/A	0.000	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A
N/A - Resu	lts identified as N	on-Detects	luring lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.007	S= 0.011	CV(1)= 1.515	K factor**= 2.523	TL(1)= 0.034	LL(1)=N/A
Statistics-Transformed Background Data	X= -6.053	S= 1.416	CV(2) =-0.234	K factor**= 2.523	TL(2)= -2.480	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				

Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
X7 11 X7 1	100007	
Well Number:	MW397	
Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	· · · ·
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW370	Downgradien	t Yes	0.00237	N/A	-6.045	NO		
MW373	Downgradient	t Yes	0.00464	N/A	-5.373	NO		
MW385	Sidegradient	Yes	0.00049	3 N/A	-7.615	NO		
MW388	Downgradient	t Yes	0.00033	4 N/A	-8.004	NO		
MW392	Downgradient	t Yes	0.00034	1 N/A	-7.984	NO		
MW395	Upgradient	No	0.001	N/A	-6.908	N/A		
MW397	Upgradient	Yes	0.00079	1 N/A	-7.142	NO		
	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a							

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =377.875 S = 52.101	CV(1)= 0.138	K factor**= 2.523	TL(1)= 509.326	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.926 S = 0.136	CV(2) =0.023	K factor**= 2.523	TL(2)= 6.270	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	405	6.004			
9/16/2002	401	5.994			

5.971

6.001

6.190

6.109

6.016

6.023

5.775

5.753

5.759

5.768

5.966

5.869

5.802

5.811

LN(Result)

392

404

488

450

410

413

MW397

Result

322

315

317

320

390

354

331

334

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Wells with Exceedances

MW373

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW370	Downgradien	t Yes	438	NO	6.082	N/A	
MW373	Downgradien	t Yes	742	YES	6.609	N/A	
MW385	Sidegradient	Yes	453	NO	6.116	N/A	
MW388	Downgradien	t Yes	463	NO	6.138	N/A	
MW392	Downgradien	t Yes	414	NO	6.026	N/A	
MW395	Upgradient	Yes	378	NO	5.935	N/A	
MW397	Upgradient	Yes	333	NO	5.808	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.028	S= 0.013	CV(1)= 0.474	K factor**= 2.523	TL(1)= 0.061	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.662	S= 0.406	CV(2)=- 0.111	K factor**= 2.523	TL(2)= -2.638	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	0.05	-2.996			
9/16/2002	0.05	-2.996			
10/16/2002	0.0281	-3.572			
1/13/2003	0.02	-3.912			
4/10/2003	0.02	-3.912			
7/16/2003	0.02	-3.912			
10/14/2003	0.02	-3.912			
1/13/2004	0.02	-3.912			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
9/12/2002	0.05	2.000			

Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/17/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?		
MW370	Downgradien	t Yes	0.00135	NO	-6.608	N/A		
MW373	Downgradien	t Yes	0.00138	NO	-6.586	N/A		
MW385	Sidegradient	Yes	0.00142	NO	-6.557	N/A		
MW388	Downgradien	t Yes	0.00144	NO	-6.543	N/A		
MW392	Downgradien	t Yes	0.00179	NO	-6.326	N/A		
MW395	Upgradient	Yes	0.00115	NO	-6.768	N/A		
MW397	Upgradient	Yes	0.00144	NO	-6.543	N/A		
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.								

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 4.678	S= 2.431	CV(1)= 0.520	K factor**= 2.523	TL(1)= 10.812	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.414	S = 0.550	CV(2) =0.389	K factor**= 2.523	TL(2)= 2.802	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	7.29	1.987				
9/30/2002	4.03	1.394				
10/16/2002	3.85	1.348				
1/13/2003	2.36	0.859				
4/10/2003	1.14	0.131				
7/16/2003	1.76	0.565				
10/14/2003	4.05	1.399				
1/13/2004	4.26	1.449				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	11.56	2.448				
9/16/2002	5.86	1.768				
10/17/2002	5.94	1.782				
1/13/2003	4.66	1.539				
4/8/2003	3.77	1.327				
7/16/2003	3.47	1.244				
10/14/2003	5.34	1.675				

5.51

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW370	Downgradient	Yes	3.78	NO	1.330	N/A	
MW373	Downgradient	Yes	1.82	NO	0.599	N/A	
MW385	Sidegradient	Yes	2.06	NO	0.723	N/A	
MW388	Downgradient	Yes	3.71	NO	1.311	N/A	
MW392	Downgradient	Yes	1.26	NO	0.231	N/A	
MW395	Upgradient	Yes	4.93	NO	1.595	N/A	
MW397	Upgradient	Yes	4.58	NO	1.522	N/A	
N/A - Resu	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.707

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 219.250) S= 34.107	CV(1)= 0.156	K factor**= 2.523	TL(1)= 305.301	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.379	S = 0.152	CV(2)= 0.028	K factor**= 2.523	TL(2)= 5.762	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number: MW395						
Date Collected	Result	LN(Result)				
8/13/2002	249	5.517				
9/16/2002	272	5.606				

5.541

5.352

5.666

5.464

5.412

5.460

5.231

5.283

5.209

5.204

5.380

5.278

5.288

5.176

LN(Result)

255

211

289

236

224

235

MW397

Result

187

197

183

182

217

196

198

177

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Wells with Exceedances

MW373

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	216	NO	5.375	N/A
MW373	Downgradien	t Yes	444	YES	6.096	N/A
MW385	Sidegradient	Yes	246	NO	5.505	N/A
MW388	Downgradien	t Yes	257	NO	5.549	N/A
MW392	Downgradien	t Yes	183	NO	5.209	N/A
MW395	Upgradient	Yes	163	NO	5.094	N/A
MW397	Upgradient	Yes	156	NO	5.050	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.400	S= 0.514	CV(1)= 1.286	K factor**= 2.523	TL(1)= 1.698	LL(1)=N/A
Statistics-Transformed Background Data	X= -2.197	S= 2.634	CV(2) =-1.199	K factor**= 2.523	TL(2)= 4.449	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	0.294	-1.224				
9/16/2002	0.2	-1.609				
10/16/2002	0.0002	-8.517				
1/13/2003	1.33	0.285				
4/10/2003	1.31	0.270				
7/16/2003	0.2	-1.609				
10/14/2003	0.1	-2.303				
1/13/2004	0.1	-2.303				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	1.58	0.457				
9/16/2002	0.232	-1.461				
10/17/2002	0.0002	-8.517				
1/13/2003	0.453	-0.792				
4/8/2003	0.2	-1.609				
7/16/2003	0.2	-1.609				

0.1

0.1

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW370	Downgradien	t Yes	0.49	N/A	-0.713	NO
MW373	Downgradient	t Yes	0.839	N/A	-0.176	NO
MW385	Sidegradient	Yes	1.11	N/A	0.104	NO
MW388	Downgradient	t Yes	1.15	N/A	0.140	NO
MW392	Downgradient	t Yes	1.46	N/A	0.378	NO
MW395	Upgradient	Yes	1.36	N/A	0.307	NO
MW397	Upgradient	Yes	2.06	N/A	0.723	NO
N/A - Resul	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.303

-2.303

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.102	S = 4.685	CV(1)= 0.515	K factor**= 2.523	TL(1)= 20.922	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.423	S= 2.408	CV(2)= 1.692	K factor**= 2.523	TL(2)= 7.500	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	12.5	2.526
9/16/2002	13	2.565
10/16/2002	0.0127	-4.366
1/13/2003	11.2	2.416
4/10/2003	17.5	2.862
7/16/2003	12.9	2.557
10/14/2003	13.4	2.595
1/13/2004	12.4	2.518
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	7.83	2.058
9/16/2002	7.64	2.033
10/17/2002	0.00658	-5.024
1/13/2003	6.69	1.901
4/8/2003	7.28	1.985
7/16/2003	7.82	2.057
10/14/2003	7.94	2.072

7.51

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW370	Downgradient	t Yes	12	NO	2.485	N/A
MW373	Downgradient	t Yes	22.3	YES	3.105	N/A
MW385	Sidegradient	Yes	12.9	NO	2.557	N/A
MW388	Downgradient	t Yes	12.9	NO	2.557	N/A
MW392	Downgradient	t Yes	10.8	NO	2.380	N/A
MW395	Upgradient	Yes	11.4	NO	2.434	N/A
MW397	Upgradient	Yes	8.41	NO	2.129	N/A
N/A - Resu	lts identified as N	lon-Detects	during lab	oratory analysis or	data validatio	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.016

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.131	S = 0.195	CV(1)= 1.487	K factor**= 2.523	TL(1)= 0.624	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.104	S = 1.529	CV(2) =-0.493	K factor**= 2.523	TL(2)= 0.755	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.466	-0.764
9/16/2002	0.077	-2.564
10/17/2002	0.028	-3.576
1/13/2003	0.0164	-4.110
4/8/2003	0.0407	-3.202
7/16/2003	0.0167	-4.092
10/14/2003	0.00555	-5.194

0.005

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW370	Downgradient	Yes	0.174	N/A	-1.749	NO
MW373	Downgradient	Yes	0.215	N/A	-1.537	NO
MW385	Sidegradient	Yes	0.0169	N/A	-4.080	NO
MW388	Downgradient	Yes	0.0071	N/A	-4.948	NO
MW392	Downgradient	Yes	0.147	N/A	-1.917	NO
MW395	Upgradient	Yes	0.00991	N/A	-4.614	NO
MW397	Upgradient	Yes	0.0434	N/A	-3.137	NO
N/A - Resul	lts identified as N	on-Detects	during lab	oratory analysis or	data validatio	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-5.298

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.007	S= 0.011	CV(1)= 1.451	K factor**= 2.523	TL(1)= 0.034	LL(1)=N/A
Statistics-Transformed Background Data	X= -5.990	S = 1.443	CV(2) =-0.241	K factor**= 2.523	TL(2)= -2.349	LL(2)=N/A

Historical Bac Upgradient W	kground Da ells with Tr	ta from ansformed Result
Well Number:	MW395	
Date Collected 8/13/2002	Result 0.025	LN(Result) -3.689

-3.689

-6.908

-5.101 -6.908

-6.908

-6.908

-6.908

-3.689

-3.689

-6.908

-6.908

-6.908

-6.908

-6.908 -6.908

LN(Result)

0.025

0.001

0.001

0.001

0.001

0.001

MW397

Result

0.025

0.025

0.001

0.001

0.001

0.001

0.001

0.001

0.00609

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW370	Downgradient	Yes	0.00068	7 N/A	-7.283	NO
MW373	Downgradient	t No	0.0005	N/A	-7.601	N/A
MW385	Sidegradient	Yes	0.00052	7 N/A	-7.548	NO
MW388	Downgradient	Yes	0.00024	N/A	-8.335	NO
MW392	Downgradient	t No	0.0005	N/A	-7.601	N/A
MW395	Upgradient	No	0.0005	N/A	-7.601	N/A
MW397	Upgradient	No	0.0005	N/A	-7.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.018	S = 0.020	CV(1)= 1.089	K factor**= 2.523	TL(1)= 0.068	LL(1)=N/A
Statistics-Transformed Background Data	X= -4.540	S = 1.020	CV(2) =-0.225	K factor**= 2.523	TL(2)= -1.965	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW395

wen number.	101 00 395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.005 0.00502	-2.996 -2.996 -5.298 -5.294
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.005 0.00502 0.005	-2.996 -2.996 -5.298 -5.294 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.05 0.05 0.005 0.00502 0.005 0.005	-2.996 -2.996 -5.298 -5.294 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW370	Downgradient	Yes	0.00143	N/A	-6.550	NO
MW373	Downgradient	Yes	0.00307	N/A	-5.786	NO
MW385	Sidegradient	Yes	0.0017	N/A	-6.377	NO
MW388	Downgradient	Yes	0.00155	N/A	-6.470	NO
MW392	Downgradient	Yes	0.00133	N/A	-6.623	NO
MW395	Upgradient	Yes	0.00131	N/A	-6.638	NO
MW397	Upgradient	Yes	0.00193	N/A	-6.250	NO
N/A - Resul	lts identified as N	on-Detects	luring lab	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =157.250 S = 52.3	376 CV(1)=0.333	K factor**= 2.523	TL(1)= 289.395	LL(1)=N/A
Statistics-Transformed Background Data	X =5.003 S = 0.34	48 CV(2)=0.069	K factor**= 2.523	TL(2)= 5.880	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	80	4.382			
9/16/2002	145	4.977			
10/16/2002	125	4.828			
1/13/2003	85	4.443			
4/10/2003	159	5.069			
7/16/2003	98	4.585			
10/14/2003	138	4.927			
1/13/2004	233	5.451			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	115	4.745			
9/30/2002	140	4.942			

185

230

155

188

187

253

5.220

5.438

5.043

5.236

5.231

5.533

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?	
MW370	Downgradien	t Yes	392	YES	5.971	N/A	
MW373	Downgradien	t Yes	347	YES	5.849	N/A	
MW385	Sidegradient	Yes	406	YES	6.006	N/A	
MW388	Downgradient	t Yes	385	YES	5.953	N/A	
MW392	Downgradient	t Yes	367	YES	5.905	N/A	
MW395	Upgradient	Yes	385	YES	5.953	N/A	
MW397	Upgradient	Yes	362	YES	5.892	N/A	
N/A - Result	s identified as N	lon-Detects of	during lab	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Defects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.	MW370 MW373 MW385
	MW388 MW392 MW395 MW397
	M w 397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.048	S= 0.248	CV(1)= 0.041	K factor**= 2.904	TL(1)= 6.767	LL(1)=5.3289
Statistics-Transformed Background Data	X= 1.799	S = 0.042	CV(2)= 0.023	K factor**= 2.904	TL(2)= 1.920	LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	5.8	1.758				
9/16/2002	6	1.792				
10/16/2002	5.47	1.699				
1/13/2003	6	1.792				
4/10/2003	6.18	1.821				
7/16/2003	6	1.792				
10/14/2003	6.31	1.842				
1/13/2004	6.24	1.831				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	5.84	1.765				
9/30/2002	6	1.792				
10/17/2002	5.75	1.749				
1/13/2003	6	1.792				
4/8/2003	6.3	1.841				
7/16/2003	6.2	1.825				
10/14/2003	6.36	1.850				

6.32

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW370	Downgradient	Yes	6.13	NO	1.813	N/A
MW373	Downgradient	Yes	6.24	NO	1.831	N/A
MW385	Sidegradient	Yes	6.41	NO	1.858	N/A
MW388	Downgradient	Yes	6.41	NO	1.858	N/A
MW392	Downgradient	Yes	6.29	NO	1.839	N/A
MW395	Upgradient	Yes	6.33	NO	1.845	N/A
MW397	Upgradient	Yes	6.48	NO	1.869	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.844

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.590	S= 0.642	CV(1)= 0.404	K factor**= 2.523	TL(1)= 3.208	LL(1)=N/A
Statistics-Transformed Background Data	X= -0.306	S= 2.457	CV(2) =-8.028	K factor**= 2.523	TL(2)= 5.892	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
opgradient w	chi with 11	ansiormed Result			
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	2	0.693			
9/16/2002	2	0.693			
10/16/2002	0.00129	-6.653			
1/13/2003	1.51	0.412			
4/10/2003	1.67	0.513			
7/16/2003	1.73	0.548			
10/14/2003	1.7	0.531			
1/13/2004	1.58	0.457			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	2.03	0.708			
9/16/2002	2	0.693			
10/17/2002	0.00145	-6.536			
1/13/2003	1.69	0.525			
4/8/2003	1.73	0.548			
7/16/2003	2	0.693			
10/14/2003	1.92	0.652			

1.87

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW370	Downgradien	t Yes	2.57	NO	0.944	N/A
MW373	Downgradient	t Yes	2.61	NO	0.959	N/A
MW385	Sidegradient	Yes	1.83	NO	0.604	N/A
MW388	Downgradient	t Yes	2.19	NO	0.784	N/A
MW392	Downgradient	t Yes	1.76	NO	0.565	N/A
MW395	Upgradient	Yes	1.58	NO	0.457	N/A
MW397	Upgradient	Yes	1.94	NO	0.663	N/A
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.626

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.039	S= 0.419	CV(1)= 10.740	K factor**= 2.523	TL(1)= 1.096	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.695	S= 1.043	CV(2) =-0.615	K factor**= 2.523	TL(2)= -0.414	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
10/16/2002	0.661	-0.414			
1/13/2003	-0.839	#Func!			
10/14/2003	0.0266	-3.627			
1/13/2004	-0.0777	#Func!			
4/12/2004	-0.115	#Func!			
7/20/2004	0.105	-2.254			
10/12/2004	0.408	-0.896			

Г

1/18/2005	0.0564	-2.875
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/17/2002	0.576	-0.552
1/13/2003	-0.841	#Func!
10/14/2003	-0.179	#Func!
1/13/2004	-0.0564	#Func!
4/12/2004	0.174	-1.749
7/21/2004	0.227	-1.483
10/12/2004	0.379	-0.970
1/20/2005	0.119	-2.129

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW370	Downgradient	Yes	1.36	N/A	0.307	YES
MW373	Downgradient	t No	0.68	N/A	-0.386	N/A
MW385	Sidegradient	No	0.687	N/A	-0.375	N/A
MW388	Downgradient	Yes	0.753	N/A	-0.284	YES
MW392	Downgradient	t No	0.356	N/A	-1.033	N/A
MW395	Upgradient	No	0.345	N/A	-1.064	N/A
MW397	Upgradient	No	0.123	N/A	-2.096	N/A
N/A - Resul	lts identified as N	on-Detects	luring lah	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW370 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 29.560	S= 13.894	CV(1)= 0.470	K factor**= 2.523	TL(1)= 64.616	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.615	S = 2.411	CV(2)= 0.922	K factor**= 2.523	TL(2)= 8.699	LL(2)=N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
0/12/2002	27	2 206

Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
wen number.	101 00 377	
Date Collected		LN(Result)
		LN(Result) 3.561
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 35.2 34.3 0.0336 31.3 46.1 38.4	3.561 3.535 -3.393 3.444 3.831 3.648

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW370	Downgradient	Yes	40.6	NO	3.704	N/A
MW373	Downgradient	Yes	52.7	NO	3.965	N/A
MW385	Sidegradient	Yes	33.7	NO	3.517	N/A
MW388	Downgradient	Yes	48.8	NO	3.888	N/A
MW392	Downgradient	Yes	36.5	NO	3.597	N/A
MW395	Upgradient	Yes	29.4	NO	3.381	N/A
MW397	Upgradient	Yes	33.4	NO	3.509	N/A
N/A - Resul	ts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Defects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.756	S= 2.147	CV(1)= 0.200	K factor**= 2.523	TL(1)= 16.173	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.356	S = 0.203	CV(2)= 0.086	K factor**= 2.523	TL(2)= 2.869	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	10.3	2.332			
9/16/2002	9.1	2.208			
10/16/2002	8.8	2.175			
1/13/2003	9	2.197			
4/10/2003	8.3	2.116			
7/16/2003	8.2	2.104			
10/14/2003	8.3	2.116			
1/13/2004	8.2	2.104			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	14	2.639			
9/16/2002	12.8	2.549			
10/17/2002	12.3	2.510			
1/13/2003	12.7	2.542			
4/8/2003	12.8	2.549			
7/16/2003	13.1	2.573			

12.1

12.1

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW370	Downgradien	t Yes	18.8	YES	2.934	N/A
MW373	Downgradien	t Yes	118	YES	4.771	N/A
MW385	Sidegradient	Yes	19.8	YES	2.986	N/A
MW388	Downgradien	t Yes	26.3	YES	3.270	N/A
MW392	Downgradien	t Yes	7.41	NO	2.003	N/A
MW395	Upgradient	Yes	10.1	NO	2.313	N/A
MW397	Upgradient	Yes	11.1	NO	2.407	N/A
			-	oratory analysis or for parameters tha		n and were not where the result for a

well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.493

2.493

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW370
MW373
MW385
MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 11.359 S=	9.138	CV(1)= 0.805	K factor**= 2.523	TL(1)= 34.414	LL(1)=N/A
Statistics-Transformed Background Data	X =2.398 S =	0.859	CV(2)= 0.358	K factor**= 2.523	TL(2)= 3.246	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
8/13/2002	20.8	3.035					
9/16/2002	16.2	2.785					
10/16/2002	8.28	2.114					
1/13/2003	13	2.565					
4/10/2003	-9.37	#Func!					
7/16/2003	0.826	-0.191					
10/14/2003	14.1	2.646					
1/13/2004	0	#Func!					
Well Number:	MW397						
Date Collected	Result	LN(Result)					
8/13/2002	6.06	1.802					
9/16/2002	17.3	2.851					
10/17/2002	25.7	3.246					
1/13/2003	20.9	3.040					
4/8/2003	20.1	3.001					
7/16/2003	9.2	2.219					
10/14/2003	10.1	2.313					
1/13/2004	8.54	2.145					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW370	Downgradien	t Yes	103	YES	4.635	N/A
MW373	Downgradien	t Yes	29.6	NO	3.388	N/A
MW385	Sidegradient	Yes	166	YES	5.112	N/A
MW388	Downgradien	t Yes	119	YES	4.779	N/A
MW392	Downgradien	t No	2.58	N/A	0.948	N/A
MW395	Upgradient	No	3.67	N/A	1.300	N/A
MW397	Upgradient	No	13	N/A	2.565	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.544	S= 0.856	CV(1)= 0.554	K factor**= 2.523	TL(1)= 3.702	LL(1)=N/A
Statistics-Transformed Background Data	X= 0.325	S= 0.452	CV(2)= 1.393	K factor**= 2.523	TL(2)= 1.465	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				

Date Collected	Result	LN(Result)
8/13/2002	1.6	0.470
9/16/2002	1.1	0.095
10/16/2002	1	0.000
1/13/2003	2	0.693
4/10/2003	3.4	1.224
7/16/2003	2	0.693
10/14/2003	1	0.000
1/13/2004	1	0.000
XX7 11 X7 1		
Well Number:	MW397	
Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 3.6	0.000 0.000 0.000 1.281
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 3.6 1.9	0.000 0.000 0.000 1.281 0.642
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 1 1 3.6 1.9 1.1	0.000 0.000 0.000 1.281 0.642 0.095

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW370	Downgradien	t Yes	1.26	NO	0.231	N/A
MW373	Downgradien	t Yes	1.46	NO	0.378	N/A
MW385	Sidegradient	Yes	1.62	NO	0.482	N/A
MW388	Downgradien	t Yes	1.93	NO	0.658	N/A
MW392	Downgradien	t Yes	1.62	NO	0.482	N/A
MW395	Upgradient	Yes	1.25	NO	0.223	N/A
MW397	Upgradient	Yes	1.17	NO	0.157	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 31.513	S= 18.609	CV(1)= 0.591	K factor**= 2.523	TL(1)= 78.462	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.240	S= 0.707	CV(2)= 0.218	K factor**= 2.523	TL(2)= 5.024	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
8/13/2002	50	3.912				
9/16/2002	50	3.912				
10/16/2002	50	3.912				
1/13/2003	18.3	2.907				
4/10/2003	51.2	3.936				
7/16/2003	42.6	3.752				
10/14/2003	12.3	2.510				
1/13/2004	10	2.303				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
8/13/2002	50	3.912				
9/16/2002	50	3.912				
10/17/2002	50	3.912				
1/13/2003	12	2.485				
4/8/2003	19.9	2.991				
7/16/2003	17.9	2.885				
10/14/2003	10	2.303				

10

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?
MW370	Downgradien	t Yes	6.84	NO	1.923	N/A
MW373	Downgradien	t Yes	12.2	NO	2.501	N/A
MW385	Sidegradient	Yes	7.06	NO	1.954	N/A
MW388	Downgradient	t Yes	4.4	NO	1.482	N/A
MW392	Downgradient	t Yes	33.2	NO	3.503	N/A
MW395	Upgradient	Yes	14.8	NO	2.695	N/A
MW397	Upgradient	Yes	10.3	NO	2.332	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Defects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.303

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.313	S= 5.701	CV(1)= 0.780	K factor**= 2.523	TL(1)= 21.695	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.467	S = 1.213	CV(2)= 0.827	K factor**= 2.523	TL(2)= 4.528	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	11	2.398			

Date Conceted	Result	Li ((icesuit)
8/13/2002	11	2.398
9/30/2002	14	2.639
10/16/2002	12	2.485
1/13/2003	14	2.639
4/10/2003	14	2.639
7/16/2003	13	2.565
10/14/2003	12	2.485
1/13/2004	11	2.398
Well Number:	MW397	
	111	
Date Collected		LN(Result)
Date Collected 8/13/2002		LN(Result) 1.609
	Result	· /
8/13/2002	Result 5	1.609
8/13/2002 9/30/2002	Result 5 5	1.609 1.609
8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000
8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1	1.609 1.609 0.000 0.000
8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1	1.609 1.609 0.000 0.000 0.000
8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5 5 1 1 1 1 1	1.609 1.609 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?			
MW370	Downgradient	t Yes	3	N/A	1.099	N/A			
MW373	Downgradient	t Yes	6.93	NO	1.936	N/A			
MW385	Sidegradient	No	1	N/A	0.000	N/A			
MW388	Downgradient	t Yes	0.78	N/A	-0.248	N/A			
MW392	Downgradient	t Yes	14	NO	2.639	N/A			
MW395	Upgradient	Yes	3.32	N/A	1.200	N/A			
MW397	Upgradient	No	1	N/A	0.000	N/A			
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not			

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.021	S= 0.002	CV(1)= 0.105	K factor**= 2.523	TL(1)= 0.027	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.856	S= 0.100	CV(2) =-0.026	K factor**= 2.523	TL(2)= -3.604	LL(2)= N/A

Historical Bac	kground Da	ta from
		ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
4/12/2004	0.02	-3.912
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/17/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?			
MW370	Downgradien	t No	0.01	N/A	-4.605	N/A			
MW373	Downgradient	t No	0.01	N/A	-4.605	N/A			
MW385	Sidegradient	Yes	0.00348	NO	-5.661	N/A			
MW388	Downgradient	t No	0.01	N/A	-4.605	N/A			
MW392	Downgradient	t No	0.01	N/A	-4.605	N/A			
MW395	Upgradient	No	0.01	N/A	-4.605	N/A			
MW397	Upgradient	Yes	0.00338	NO	-5.690	N/A			
			0	oratory analysis or		n and were not			

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Zinc LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.044	S= 0.034	CV(1)= 0.760	K factor**= 2.523	TL(1)= 0.129	LL(1)=N/A
Statistics-Transformed Background Data	X= -3.342	S= 0.659	CV(2) =-0.197	K factor**= 2.523	TL(2)= -1.679	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result									
Well Number:	MW395								
Date Collected	Result	LN(Result)							
8/13/2002	0.1	-2.303							
9/16/2002	0.1	-2.303							
10/16/2002	0.025	-3.689							
1/13/2003	0.035	-3.352							
4/10/2003	0.035	-3.352							
7/16/2003	0.02	-3.912							
10/14/2003	0.02	-3.912							
1/13/2004	0.02	-3.912							
Well Number:	MW397								
Date Collected	Result	LN(Result)							
8/13/2002	0.1	-2.303							
9/16/2002	0.1	-2.303							

0.025

0.035

0.035

0.02

0.02

0.02

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)?			
MW370	Downgradient	Yes	0.00736	NO	-4.912	N/A			
MW373	Downgradient	Yes	0.0041	NO	-5.497	N/A			
MW385	Sidegradient	Yes	0.00614	NO	-5.093	N/A			
MW388	Downgradient	Yes	0.0045	NO	-5.404	N/A			
MW392	Downgradient	t No	0.01	N/A	-4.605	N/A			
MW395	Upgradient	Yes	0.0044	NO	-5.426	N/A			
MW397	Upgradient	Yes	0.00708	NO	-4.950	N/A			
			-	oratory analysis or		n and were not			

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.689

-3.352

-3.352

-3.912

-3.912 -3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Х Mean, X = (sum of background results)/(count of background results)

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T Fourth Quarter 2017 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =249.750 S = 80.333	CV(1)= 0.322	K factor**= 3.188	TL(1)= 505.851 L	L(1)= N/A
Statistics-Transformed Background Data	X = 5.477 S = 0.314	CV(2)= 0.057	K factor**= 3.188	TL(2)= 6.477 L	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW396	
Date Collected	Result	LN(Result)
10/22/2015	159	5.069
1/5/2016	223	5.407
4/18/2016	384	5.951
7/19/2016	339	5.826
10/12/2016	221	5.398
1/17/2017	209	5.342
4/20/2017	172	5.147
7/19/2017	291	5.673

Current Background Data from Upgradient

Wells with Transformed Result

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	214	NO	5.366	N/A		
MW390	Downgradient	Yes	444	NO	6.096	N/A		
MW393	Downgradient	Yes	331	NO	5.802	N/A		
MW396	Upgradient	Yes	217	NO	5.380	N/A		

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Backg	ground Dat	a	X= -2.263	S= 6.677	CV(1)= -2.9	951 K	factor'	**= 3.188 T	L(1)= 19.02	4 LL(1)=N/A
Statistics-Trans Data	formed Ba	ckground	X= 1.169	S = 0.704	CV(2)= 0.6	02 K	factor*	**=3.188 T	L(2)= 1.831	LL(2)=N/A
Current Backs Wells with Tra Well Number:	2		adient				1 c	Because CV(1 , assume nor ontinue with tilizing TL(1	mal distril statistical	
Date Collected 10/22/2015 1/5/2016 4/18/2016 7/19/2016	Result -7.28 6.24 -7.52 2.80	LN(Resul #Func! 1.831 #Func! 1.258	t)				р Т	Because the ossbile for al 'L was consi- naximum ba-	ll backgrou dered equa	and values, the ll to the
7/19/2016 10/12/2016	3.89 -10.9	1.358 #Func!		Current	Quarter Data					
1/17/2017 4/20/2017	3.72 -7.44	1.314 #Func!		-				()	· · ·	LN(Result) >TL(2)
7/19/2017	1.19	0.174		MW390	Downgradient	Yes	36.7	YES	3.603	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =11.661 S = 6.619	CV(1)= 0.568	K factor**= 2.523	TL(1)= 28.360	LL(1)=N/A
Statistics-Transformed Background Data	X =2.277 S = 0.653	CV(2)= 0.287	K factor**= 2.523	TL(2)= 3.925	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result MW220 Well Number: Date Collected Result LN(Result) 10/15/2015 17 2.833 1/5/2016 18.1 2.896 4/12/2016 14.2 2.653 7/19/2016 6.61 1.889 10/10/2016 21.7 3.077 1/11/2017 13.6 2.610 4/19/2017 20.13.001 7/19/2017 22.5 3.114 Well Number: MW394 Date Collected Result LN(Result) 10/22/2015 2.451 11.6 1/5/2016 6.13 1.813 4/18/2016 7.54 2.020 7/19/2016 4.04 1.396 10/12/2016 2.510.920 1/17/2017 5.57 1.717 4/20/2017 9.09 2.207 7/19/2017 6.29 1.839

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	132	YES	4.883	N/A
MW384	Sidegradient	Yes	114	YES	4.736	N/A
MW387	Downgradient	Yes	186	YES	5.226	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW372 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis **Current Background Comparison** URGA Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =24.300 S = 4.00	CV(1)= 0.165	K factor**= 2.523	TL(1)= 34.414	LL(1)=N/A
Statistics-Transformed Background Data	X =3.177 S = 0.17	CV(2)= 0.054	K factor**= 2.523	TL(2)= 3.606	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and

Date Collected	Result	LN(Result)
10/15/2015	18.5	2.918
1/5/2016	19.3	2.960
4/12/2016	25.7	3.246
7/19/2016	19.5	2.970
10/10/2016	20.5	3.020
1/11/2017	19.6	2.976
4/19/2017	20.8	3.035
7/19/2017	22.7	3.122
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.292
Date Collected	Result	
Date Collected 10/22/2015	Result 26.9	3.292
Date Collected 10/22/2015 1/5/2016	Result 26.9 27.7	3.292 3.321
Date Collected 10/22/2015 1/5/2016 4/18/2016	Result 26.9 27.7 29.5	3.292 3.321 3.384
Date Collected 10/22/2015 1/5/2016 4/18/2016 7/19/2016	Result 26.9 27.7 29.5 28.8	3.292 3.321 3.384 3.360
Date Collected 10/22/2015 1/5/2016 4/18/2016 7/19/2016 10/12/2016	Result 26.9 27.7 29.5 28.8 28.6	3.292 3.321 3.384 3.360 3.353
Date Collected 10/22/2015 1/5/2016 4/18/2016 7/19/2016 10/12/2016 1/17/2017	Result 26.9 27.7 29.5 28.8 28.6 26.7	3.292 3.321 3.384 3.360 3.353 3.285

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW220

continue with statistical analysis
utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	t Yes	46.5	YES	3.839	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis **Current Background Comparison Chemical Oxygen Demand (COD)** URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 20.859 S=	= 9.770	CV(1)= 0.468	K factor**= 2.523	TL(1)= 45.509	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.952 S =	= 0.413	CV(2)= 0.140	K factor**= 2.523	TL(2)= 3.994	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Date Collected	Result	LN(Result)
10/15/2015	20	2.996
1/5/2016	20	2.996
4/12/2016	15.8	2.760
7/19/2016	33.1	3.500
10/10/2016	13.9	2.632
1/11/2017	12.7	2.542
4/19/2017	24	3.178
7/19/2017	46.8	3.846
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.557
Date Collected	Result	· · · · ·
Date Collected 10/22/2015	Result 12.9	2.557
Date Collected 10/22/2015 1/5/2016	Result 12.9 20	2.557 2.996
Date Collected 10/22/2015 1/5/2016 4/18/2016	Result 12.9 20 20	2.557 2.996 2.996
Date Collected 10/22/2015 1/5/2016 4/18/2016 7/19/2016	Result 12.9 20 20 34.9	2.557 2.996 2.996 3.552
Date Collected 10/22/2015 1/5/2016 4/18/2016 7/19/2016 10/12/2016	Result 12.9 20 20 34.9 13.6	2.557 2.996 2.996 3.552 2.610

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW220

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW221	Sidegradient	Yes	46.4	YES	3.837	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW221

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =228.375 S = 62.891	CV(1)= 0.275	K factor**= 2.523	TL(1)= 387.050 LL	(1)=N/A
Statistics-Transformed Background	X = 5406 $S = 0209$	CV(2) = 0.039	K factor**= 2 523	TL(2) = 5.934 LL	(?)= N/A

Current Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/15/2015	236	5.464			
1/5/2016	209	5.342			
4/12/2016	273	5.609			
7/19/2016	200	5.298			
10/10/2016	187	5.231			
1/11/2017	201	5.303			
4/19/2017	193	5.263			
7/19/2017	451	6.111			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
10/22/2015	210	5.347			
1/5/2016	226	5.421			
4/18/2016	199	5.293			
7/19/2016	231	5.442			
10/12/2016	219	5.389			
1/17/2017	213	5.361			
4/20/2017	203	5.313			
7/19/2017	203	5.313			

Data

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW372	Downgradient	t Yes	304	NO	5.717	N/A		

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis **Current Background Comparison URGA** Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.303	S= 1.661	CV(1)= 0.161	K factor**= 2.523	TL(1)= 14.493	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.320	S= 0.167	CV(2)= 0.072	K factor**= 2.523	TL(2)= 2.740	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

2.351							
2.078 2.163	Current	Quarter Data					
2.138 2.209	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
2.236	MW372	Downgradient	t Yes	17.7	YES	2.874	N/A
LN(Result)							

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

2.062

2.133

2.493

2.477

2.477

2.460

2.493

2.460

2.451

2.434

MW220

Result

7.86

8.44

10.5

7.99

8.7

8.48

9.11

9.36

MW394

Result

12.1

11.9

11.9

11.7

12.1

11.7

11.6

11.4

Wells with Transformed Result

Well Number:

Date Collected

10/15/2015

1/5/2016

4/12/2016

7/19/2016

10/10/2016

1/11/2017

4/19/2017

7/19/2017

Well Number:

Date Collected

10/22/2015

1/5/2016

4/18/2016

7/19/2016

10/12/2016

1/17/2017

4/20/2017

7/19/2017

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =406.750 S = 101.302	2 CV(1)=0.249	K factor**= 2.523	TL(1)= 662.335	LL(1)=N/A
Statistics-Transformed Background Data	X = 5.984 S = 0.217	CV(2)= 0.036	K factor**= 2.523	TL(2)= 6.531	LL(2)= N/A

Current Background Data from Upgradien Wells with Transformed Result								
Well Number:	MW220							
Date Collected	Result	LN(Result)						
10/15/2015	728	6.590						
1/5/2016	449	6.107						
4/12/2016	438	6.082						
7/19/2016	425	6.052						
10/10/2016	414	6.026						
1/11/2017	417	6.033						
4/19/2017	283	5.645						
7/19/2017	350	5.858						
Well Number:	MW394							
Date Collected	Result	LN(Result)						
10/22/2015	411	6.019						
1/5/2016	351	5.861						
4/18/2016	484	6.182						
7/19/2016	348	5.852						
10/12/2016	369	5.911						
1/17/2017	397	5.984						
4/20/2017	306	5.724						
7/19/2017	338	5.823						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	436	NO	6.078	N/A	
MW221	Sidegradient	Yes	442	NO	6.091	N/A	
MW222	Sidegradient	Yes	444	NO	6.096	N/A	
MW223	Sidegradient	Yes	444	NO	6.096	N/A	
MW224	Sidegradient	Yes	434	NO	6.073	N/A	
MW369	Downgradient	t Yes	399	NO	5.989	N/A	
MW384	Sidegradient	Yes	424	NO	6.050	N/A	
MW387	Downgradient	t Yes	398	NO	5.986	N/A	
MW391	Downgradient	t Yes	413	NO	6.023	N/A	

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =14.603 S = 4.722	CV(1)= 0.323	K factor**= 2.523	TL(1)= 26.516	LL(1)=N/A
Statistics-Transformed Background Data	X =2.633 S = 0.319	CV(2)=0.121	K factor**= 2.523	TL(2)= 3.438	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Date Collected	Result	LN(Result)					
10/15/2015	14.7	2.688					
1/5/2016	16.5	2.803					
4/12/2016	21.8	3.082					
7/19/2016	17.9	2.885					
10/10/2016	18.7	2.929					
1/11/2017	18.4	2.912					
4/19/2017	19.9	2.991					
7/19/2017	22.7	3.122					
Well Number:	MW394						
Date Collected	Result	LN(Result)					
10/22/2015	10.7	2.370					
1/5/2016	10.1	2.313					
4/18/2016	9.84	2.286					
7/19/2016	10.5	2.351					
10/12/2016	10.4	2.342					
1/17/2017	10.8	2.380					
4/20/2017	10.5	2.351					
7/19/2017	10.2	2.322					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	17.6	NO	2.868	N/A		
MW372	Downgradient	Yes	57.7	YES	4.055	N/A		
MW384	Sidegradient	Yes	22.6	NO	3.118	N/A		
MW387	Downgradient	Yes	29.7	YES	3.391	N/A		
MW391	Downgradient	Yes	46.4	YES	3.837	N/A		

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW372 MW387 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.974 S = 7.993	CV(1)= 0.616	K factor**= 2.523	TL(1)= 33.141	LL(1)=N/A
Statistics-Transformed Background Data	X =2.292 S = 0.908	CV(2)= 0.396	K factor**= 2.523	TL(2)= 4.584	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/15/2015	11.6	2.451				
1/5/2016	18.4	2.912				
4/12/2016	13	2.565				
7/19/2016	28.9	3.364				
10/10/2016	12.3	2.510				
1/11/2017	23.2	3.144				
4/19/2017	20.7	3.030				
7/19/2017	22.7	3.122				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
10/22/2015	0.742	-0.298				
1/5/2016	4.07	1.404				
4/18/2016	15	2.708				
7/19/2016	5.87	1.770				
10/12/2016	4.39	1.479				
1/17/2017	7.79	2.053				
4/20/2017	7.82	2.057				
7/19/2017	11.1	2.407				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW369	Downgradient	Yes	70.8	YES	4.260	N/A		
MW372	Downgradient	Yes	195	YES	5.273	N/A		
MW384	Sidegradient	Yes	189	YES	5.242	N/A		
MW387	Downgradient	Yes	291	YES	5.673	N/A		

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW369 MW372 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Current Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.047	S= 0.017	CV(1)= 0.368	K factor**= 2.523	TL(1)= 0.091	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.128	S = 0.409	CV(2) =-0.131	K factor**= 2.523	TL(2)= -2.096	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW397	Upgradient	Yes	0.899	YES	-0.106	N/A	

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

-2.996

-3.229

-2.996 -2.996

-2.996

-2.996

-2.996

-2.996

-3.713

-3.963

-3.863

-2.411

-3.275

-2.746

-3.079

-2.794

LN(Result)

MW395

Result

0.0396

0.05

0.05

0.05

0.05

0.05

0.05

0.05

MW397

Result

0.0244

0.019

0.021

0.0897

0.0378

0.0642

0.046

0.0612

Wells with Transformed Result

Well Number:

Date Collected

10/22/2015

1/5/2016

4/18/2016

7/19/2016

10/12/2016

1/17/2017

4/20/2017

7/19/2017

Well Number:

Date Collected

10/22/2015

1/5/2016

4/14/2016

7/19/2016

10/11/2016

1/11/2017

4/20/2017 7/19/2017

> Wells with Exceedances MW397

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.007	S = 4.735	CV(1)= 0.676	K factor**= 2.523	TL(1)= 18.954	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.019	S = 0.431	CV(2)= 0.213	K factor**= 2.523	TL(2)= 2.845	LL(2)= N/A

Current Background Data from Upgradie Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
10/22/2015	10.7	2.370				
1/5/2016	17.2	2.845				
4/18/2016	6.43	1.861				
7/19/2016	-1.87	#Func!				
10/12/2016	3.62	1.286				
1/17/2017	5.31	1.670				
4/20/2017	7.61	2.029				
7/19/2017	5.16	1.641				
Well Number:	MW397					
Date Collected	Result	LN(Result)				
10/22/2015	-1.02	#Func!				
1/5/2016	9.49	2.250				
4/14/2016	10.2	2.322				
7/19/2016	7.53	2.019				
10/11/2016	5.73	1.746				
1/11/2017	4.42	1.486				
4/20/2017	12.1	2.493				
7/19/2017	9.5	2.251				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	69	YES	4.234	N/A		
MW385	Sidegradient	Yes	101	YES	4.615	N/A		
MW388	Downgradient	Yes	69.3	YES	4.238	N/A		

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Current Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 23.850 S= 5.171	CV(1)= 0.217	K factor**= 2.523	TL(1)= 36.897	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.150 S= 0.217	CV(2) =0.069	K factor**= 2.523	TL(2)= 3.696	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

10/22/2015	27	3.296	
1/5/2016	27.4	3.311	
4/18/2016	27.6	3.318	
7/19/2016	26.3	3.270	
10/12/2016	27.2	3.303	Cu
1/17/2017	25.9	3.254	
4/20/2017	28.2	3.339	Well
7/19/2017	26.2	3.266	MW
Well Number:	MW397		
$\mathbf{D} \leftarrow \mathbf{C} \parallel 1 \leftarrow 1$	D 14	$\mathbf{L}\mathbf{N}(\mathbf{D} = 1)$	
Date Collected	Result	LN(Result)	
10/22/2015	Result 19.2	2.955	
		,	
10/22/2015	19.2	2.955	
10/22/2015 1/5/2016	19.2 19.2	2.955 2.955	
10/22/2015 1/5/2016 4/14/2016	19.2 19.2 18.1	2.955 2.955 2.896	
10/22/2015 1/5/2016 4/14/2016 7/19/2016	19.2 19.2 18.1 35.1	2.955 2.955 2.896 3.558	
10/22/2015 1/5/2016 4/14/2016 7/19/2016 10/11/2016	19.2 19.2 18.1 35.1 19.3	2.955 2.955 2.896 3.558 2.960	
10/22/2015 1/5/2016 4/14/2016 7/19/2016 10/11/2016 1/11/2017	19.2 19.2 18.1 35.1 19.3 19.5	2.955 2.955 2.896 3.558 2.960 2.970	

LN(Result)

3 206

Current Background Data from Upgradient

MW395

Result

27

Wells with Transformed Result

Well Number:

Date Collected

10/22/2015

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW373	Downgradier	nt Yes	58.5	YES	4.069	N/A		

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis **Current Background Comparison LRGA** Conductivity **UNITS: umho/cm**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =359.875 S = 33.150	CV(1)= 0.092	K factor**= 2.523	TL(1)= 443.512	LL(1)=N/A
Statistics-Transformed Background Data	X= 5.882 S= 0.092	CV(2)= 0.016	K factor**= 2.523	TL(2)= 6.115	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

wen Rumber.	101 00 575	
Date Collected	Result	LN(Result)
10/22/2015	372	5.919
1/5/2016	408	6.011
4/18/2016	399	5.989
7/19/2016	394	5.976
10/12/2016	377	5.932
1/17/2017	386	5.956
4/20/2017	392	5.971
7/19/2017	392	5.971
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.778
Date Collected	Result	· · · · ·
Date Collected 10/22/2015	Result 323	5.778
Date Collected 10/22/2015 1/5/2016	Result 323 353	5.778 5.866
Date Collected 10/22/2015 1/5/2016 4/14/2016	Result 323 353 323	5.778 5.866 5.778
Date Collected 10/22/2015 1/5/2016 4/14/2016 7/19/2016	Result 323 353 323 333	5.778 5.866 5.778 5.808
Date Collected 10/22/2015 1/5/2016 4/14/2016 7/19/2016 10/11/2016	Result 323 353 323 333 334	5.778 5.866 5.778 5.808 5.811

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW395

Current	Quarter Data	1			
Well No.	Gradient	Detected?	Result	Result >TL(1)? LN(Result)	LN(Result) >TL(2)

wen no.	Oradiciti	Dettettu	Result	$\operatorname{Result} > \operatorname{IL}(1)$:	LIN(ICCSUIT)	EIV(Result) > IE(2)
MW373	Downgradient	Yes	742	YES	6.609	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =195.063 S = 23.800	CV(1)= 0.122	K factor**= 2.523	TL(1)= 255.111	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.266 S = 0.124	CV(2)= 0.023	K factor**= 2.523	TL(2)= 5.578	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/22/2015	194	5.268
1/5/2016	229	5.434
4/18/2016	224	5.412
7/19/2016	219	5.389
10/12/2016	214	5.366
1/17/2017	223	5.407
4/20/2017	204	5.318
7/19/2017	210	5.347
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.075
Date Collected	Result	
Date Collected 10/22/2015	Result 160	5.075
Date Collected 10/22/2015 1/5/2016	Result 160 204	5.075 5.318
Date Collected 10/22/2015 1/5/2016 4/14/2016	Result 160 204 167	5.075 5.318 5.118
Date Collected 10/22/2015 1/5/2016 4/14/2016 7/19/2016	Result 160 204 167 169	5.075 5.318 5.118 5.130
Date Collected 10/22/2015 1/5/2016 4/14/2016 7/19/2016 10/11/2016	Result 160 204 167 169 166	5.075 5.318 5.118 5.130 5.112

Current Background Data from Upgradient

Wells with Transformed Result

Current	Quarter Data	l					
ell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)

ii en rio.	oradient	Detterteu.	reesure	Result IE(I).	El ((Itesalt)	En (Rebuilt)	1 D(2
MW373	Downgradient	t Yes	444	YES	6.096	N/A	

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

С

We

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Current Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.271 S	= 2.226	CV(1)= 0.217	K factor**= 2.523	TL(1)= 15.888	LL(1)= N/A
Statistics-Transformed Background Data	X =2.308 S =	= 0.216	CV(2)= 0.094	K factor**= 2.523	TL(2)= 2.852	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Date Collected	Result	LN(Result)
10/22/2015	12.3	2.510
1/5/2016	11.8	2.468
4/18/2016	11.5	2.442
7/19/2016	11.1	2.407
10/12/2016	12	2.485
1/17/2017	11.4	2.434
4/20/2017	11.6	2.451
7/19/2017	10.9	2.389
Well Number:	MW397	
		LN(Result)
Date Collected		LN(Result) 2.156
Date Collected 10/22/2015	Result	· · · · · ·
Date Collected 10/22/2015 1/5/2016	Result 8.64	2.156
Well Number: Date Collected 10/22/2015 1/5/2016 4/14/2016 7/19/2016	Result 8.64 8.18	2.156 2.102
Date Collected 10/22/2015 1/5/2016 4/14/2016 7/19/2016	Result 8.64 8.18 7.72	2.156 2.102 2.044
Date Collected 10/22/2015 1/5/2016 4/14/2016	Result 8.64 8.18 7.72 15.2	2.156 2.102 2.044 2.721
Date Collected 10/22/2015 1/5/2016 4/14/2016 7/19/2016 10/11/2016	Result 8.64 8.18 7.72 15.2 8.26	2.156 2.102 2.044 2.721 2.111

Current Background Data from Upgradient

Wells with Transformed Result

MW395

Well Number:

-			
Current Quarter Data			

····· (····· · · · · · · · · · · · · ·							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW373	Downgradient	Yes	22.3	YES	3.105	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =381.500 S = 88.554	CV(1)= 0.232	K factor**= 2.523	TL(1)= 604.923	LL(1)=N/A
Statistics-Transformed Background Data	X =5.916 S = 0.251	CV(2)= 0.042	K factor**= 2.523	TL(2)= 6.551	LL(2)=N/A

Current Background Data from Upgradier Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
10/22/2015	378	5.935					
1/5/2016	380	5.940					
4/18/2016	325	5.784					
7/19/2016	428	6.059					
10/12/2016	357	5.878					
1/17/2017	299	5.700					
4/20/2017	190	5.247					
7/19/2017	392	5.971					
Well Number:	MW397						
Date Collected	Result	LN(Result)					
10/22/2015	448	6.105					
1/5/2016	473	6.159					
4/14/2016	586	6.373					
7/19/2016	420	6.040					
10/11/2016	378	5.935					
1/11/2017	416	6.031					
4/20/2017	282	5.642					
7/19/2017	352	5.864					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)					
MW370	Downgradient	Yes	392	NO	5.971	N/A					
MW373	Downgradient	Yes	347	NO	5.849	N/A					
MW385	Sidegradient	Yes	406	NO	6.006	N/A					
MW388	Downgradient	Yes	385	NO	5.953	N/A					
MW392	Downgradient	Yes	367	NO	5.905	N/A					
MW395	Upgradient	Yes	385	NO	5.953	N/A					
MW397	Upgradient	Yes	362	NO	5.892	N/A					

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Current Background Comparison Radium-226 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.474	S= 0.260	CV(1)= 0.548	K factor**= 2.523	TL(1)= 1.130	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.788	S = 0.528	CV(2) =-0.670	K factor**= 2.523	TL(2)= 0.010	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
10/22/2015	1.01	0.010					
1/5/2016	0.707	-0.347					
4/18/2016	0.13	-2.040					
7/19/2016	0.654	-0.425					
10/12/2016	0.669	-0.402					
1/17/2017	0.347	-1.058					
4/20/2017	0.198	-1.619					
7/19/2017	0.437	-0.828					
Well Number:	MW397						
Date Collected	Result	LN(Result)					
10/22/2015	0.356	-1.033					
1/5/2016	0.748	-0.290					
4/14/2016	-0.0439	#Func!					
7/19/2016	0.464	-0.768					
10/11/2016	0.575	-0.553					
1/11/2017	0.374	-0.983					
4/20/2017	0.41	-0.892					
7/19/2017	0.555	-0.589					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	t Yes	1.36	YES	0.307	N/A	
MW388	Downgradient	t Yes	0.753	NO	-0.284	N/A	

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.371 S = 0.7	CV(1)= 0.069	K factor**= 2.523	TL(1)= 12.167	LL(1)=N/A
Statistics-Transformed Background Data	X =2.337 S = 0.0	067 CV(2)=0.029	K factor**= 2.523	TL(2)= 2.506	LL(2)= N/A

Current Background Data from Upgradien Wells with Transformed Result								
Well Number:	MW395							
Date Collected	Result	LN(Result)						
10/22/2015	10	2.303						
1/5/2016	9.84	2.286						
4/18/2016	9.73	2.275						
7/19/2016	9.9	2.293						
10/12/2016	9.86	2.288						
1/17/2017	10.1	2.313						
4/20/2017	10.4	2.342						
7/19/2017	10	2.303						
Well Number:	MW397							
Date Collected	Result	LN(Result)						
10/22/2015	11.6	2.451						
1/5/2016	11.2	2.416						
4/14/2016	9.61	2.263						
7/19/2016	11	2.398						
10/11/2016	11.3	2.425						
1/11/2017	11.6	2.451						
4/20/2017	9.7	2.272						
7/19/2017	10.1	2.313						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	18.8	YES	2.934	N/A	
MW373	Downgradient	Yes	118	YES	4.771	N/A	
MW385	Sidegradient	Yes	19.8	YES	2.986	N/A	
MW388	Downgradient	Yes	26.3	YES	3.270	N/A	

Conclusion	of Statistical	Analysis on	Current Data
Conclusion	or statistical	1 xmary sis on	Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW370 MW373 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2017 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =11.973 S = 6.436	CV(1)= 0.538	K factor**= 2.523	TL(1)= 28.211	LL(1)=N/A
Statistics-Transformed Background Data	X =2.342 S = 0.585	CV(2)= 0.250	K factor**= 2.523	TL(2)= 3.819	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW395 Date Collected Result LN(Result) 10/22/2015 9.39 2.240 1/5/2016 5.69 1.739 4/18/2016 8.36 2.123 7/19/2016 13.2 2.58010/12/2016 2.15 0.765 1/17/2017 11.4 2.434 4/20/2017 9.95 2.298 7/19/2017 19.2 2.955 Well Number: MW397 Date Collected Result LN(Result) 10/22/2015 9.83 2.285 1/5/2016 17.4 2.856 4/14/2016 7.44 2.007 7/19/2016 14.9 2.701 9.1 10/11/2016 2.208 1/11/2017 8.85 2.180 4/20/2017 14.9 2.701 7/19/2017 29.8 3.395

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	t Yes	103	YES	4.635	N/A	
MW385	Sidegradient	Yes	166	YES	5.112	N/A	
MW388	Downgradient	t Yes	119	YES	4.779	N/A	

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

21 February 2018

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5501 Hobbs Road Kevil, KY 42053

Subject: Fourth Quarter Statistical Analysis for the C-746-S&T and C-746-U Landfills

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed Mann-Kendall statistical analysis I performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an environmental microbiologist, with a Ph.D. in Engineering Science, I have over 10 years of experience reviewing and analyzing geochemical results associated with environmental sampling and investigation activities. For this project, statistical analysis was performed on historical background and current background data using a coded database provided by FRNP, LLC. Additionally, Mann-Kendall trend tests were conducted using XL Stat, a publically available and widely used commercial product. In the production of the Mann-Kendall Results, XL Stat provides values for alpha, p-value, the Mann-Kendall Statistic (S), variance of S, Sen's slope, and Kendall's correction. For the generation of the Historical Background Comparison Report, Current Background Comparison Report, and the Mann-Kendall statistical analyses, my work was observed and reviewed by a Senior Principal with Geosyntec Consultants.

Statistical analyses conducted on the fourth quarter 2017 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Andra Roche

Andrea Rocha, Ph.D. Senior Staff Scientist

engineers | scientists | innovators

21 February 2018

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5501 Hobbs Road Kevil, KY 42053

Subject: Fourth Quarter Statistical Analysis for the C-746-S&T and C-746-U Landfills

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed Mann-Kendall statistical analysis that I checked and on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an environmental scientist, with a Ph.D. in Life Sciences, I have over 35 years of experience reviewing and analyzing environmental chemistry data associated with environmental sampling, investigation, and remediation activities. For the generation of the Historical Background Comparison Report, Current Background Comparison Report, and the Mann-Kendall statistical analyses, I have experience with the method and other parametric and nonparametric statistical methods to a level of expertise that allows me to provide peer and senior review of the analysis.

For this project, the statistical analyses conducted on the fourth quarter 2017 monitoring well data collected from the C-746-S&T and C-746-U Landfills were in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Deare Haves

Duane Graves, Ph.D., BCES Senior Principal

APPENDIX E

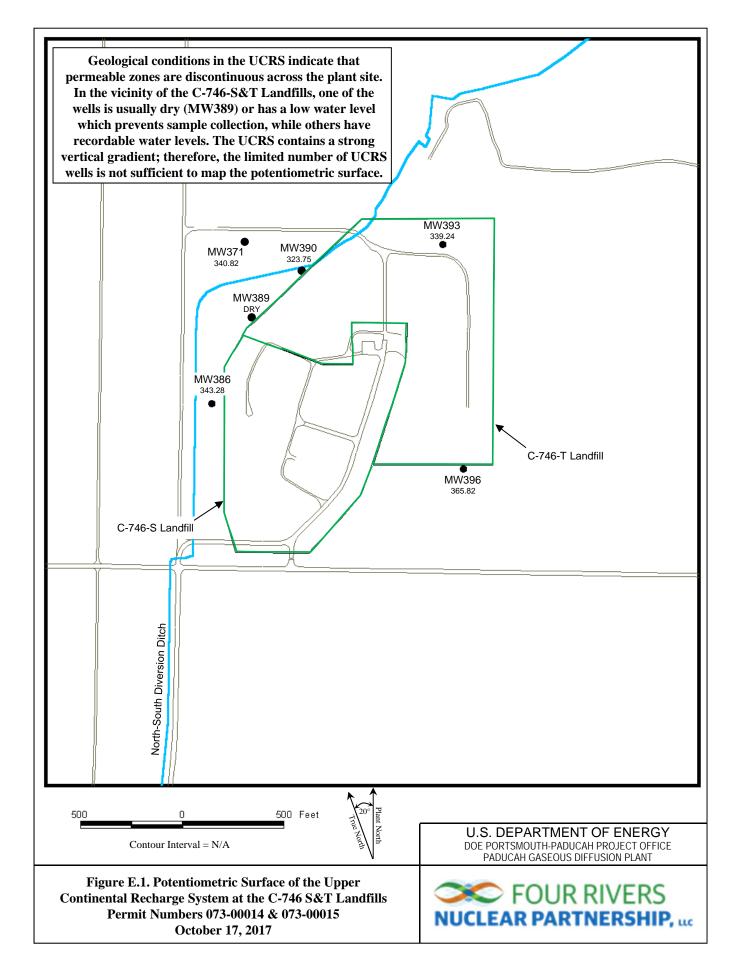
GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/INERT—QUARTERLY, 4th CY 2017 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u> LAB ID: <u>None</u> For Official Use Only

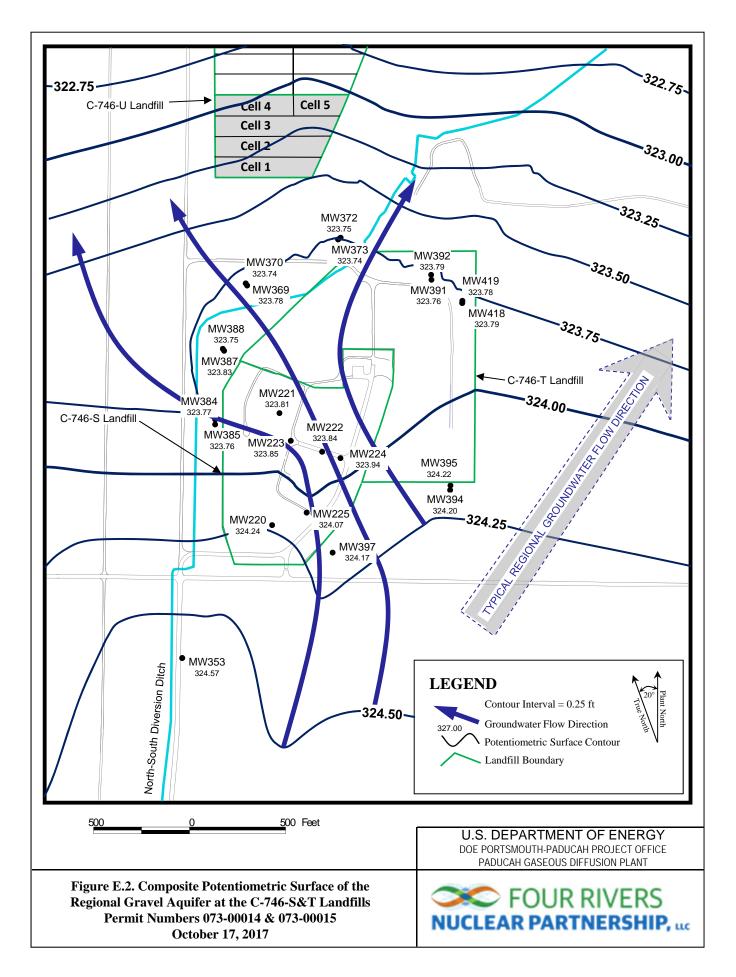
GROUNDWATER FLOW RATE AND DIRECTION

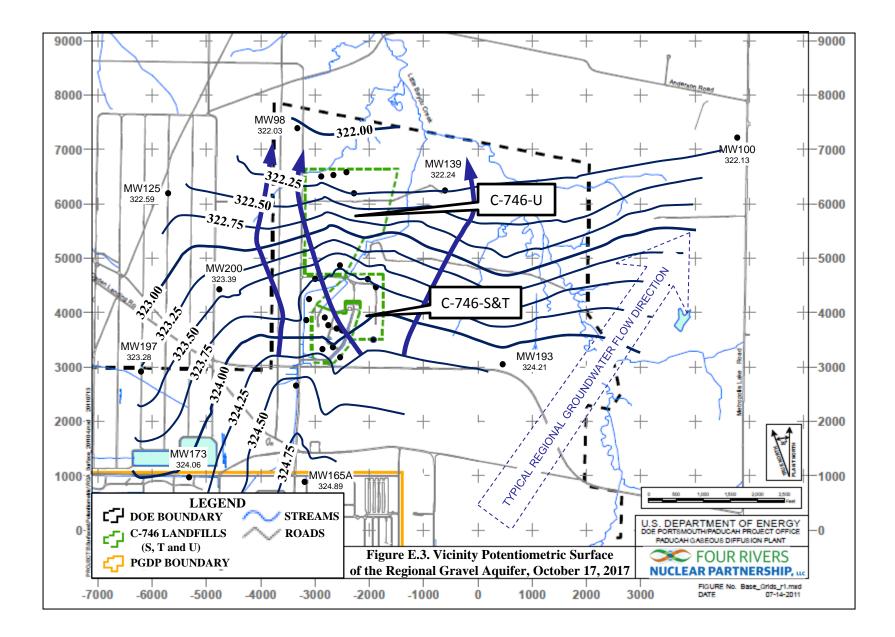
Whenever monitoring wells (MWs) are sampled, 401 *KAR* 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the fourth quarter 2017 and to determine the groundwater flow rate and direction.


Water levels during this reporting period were measured on October 17, 2017. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters.¹ Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 3.71×10^{-4} feet (ft)/ft. Additional water level measurements in October (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 5.88×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.


Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for October 2017, the groundwater flow direction in the immediate area of the landfill was oriented primarily northward.


¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

			C-746-S&	T Landfills (O	ctober 201	7) Water Le	vels			
							Rav	w Data	*Corre	ected Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
10/17/2017	8:19	MW220	URGA	382.27	30.36	0.00	58.03	324.24	58.03	324.24
10/17/2017	8:26	MW221	URGA	391.51	30.36	0.00	67.70	323.81	67.70	323.81
10/17/2017	8:23	MW222	URGA	395.39	30.36	0.00	71.55	323.84	71.55	323.84
10/17/2017	13:36	MW223	URGA	394.49	30.31	0.06	70.58	323.91	70.64	323.85
10/17/2017	8:22	MW224	URGA	395.82	30.36	0.00	71.88	323.94	71.88	323.94
10/17/2017	8:20	MW225	URGA	385.88	30.36	0.00	61.81	324.07	61.81	324.07
10/17/2017	8:30	MW353	LRGA	375.12	30.36	0.00	50.55	324.57	50.55	324.57
10/17/2017	8:15	MW384	URGA	365.42	30.36	0.00	41.65	323.77	41.65	323.77
10/17/2017	8:17	MW385	LRGA	365.86	30.36	0.00	42.10	323.76	42.10	323.76
10/17/2017	8:16	MW386	UCRS	365.47	30.36	0.00	22.19	343.28	22.19	343.28
10/17/2017	8:13	MW387	URGA	363.65	30.36	0.00	39.82	323.83	39.82	323.83
10/17/2017	8:14	MW388	LRGA	363.64	30.36	0.00	39.89	323.75	39.89	323.75
10/17/2017	NA	MW389	UCRS	364.26	ND		ND		DRY	
10/17/2017	8:12	MW390	UCRS	360.60	30.36	0.00	36.85	323.75	36.85	323.75
10/17/2017	13:26	MW391	URGA	366.83	30.31	0.06	43.01	323.82	43.07	323.76
10/17/2017	13:28	MW392	LRGA	366.07	30.31	0.06	42.22	323.85	42.28	323.79
10/17/2017	8:01	MW393	UCRS	366.81	30.36	0.00	27.57	339.24	27.57	339.24
10/17/2017	13:30	MW394	URGA	378.64	30.31	0.06	54.38	324.26	54.44	324.20
10/17/2017	13:29	MW395	LRGA	379.34	30.31	0.06	55.06	324.28	55.12	324.22
10/17/2017	8:08	MW396	UCRS	378.84	30.36	0.00	13.02	365.82	13.02	365.82
10/17/2017	8:10	MW397	LRGA	387.12	30.36	0.00	62.95	324.17	62.95	324.17
10/17/2017	8:04	MW418	URGA	367.37	30.36	0.00	43.58	323.79	43.58	323.79
10/17/2017	8:05	MW419	LRGA	367.22	30.36	0.00	43.44	323.78	43.44	323.78
Initial Barome	tric Pros	suro.	30.36							
Elev = elevati		suic	50.50							
amsl = above		a level								
BP = baromet										
DT = barometerDTW = depth	-		ow datum							
URGA = Upp										
LRGA = Low	0									
UCRS = Uppe	-		-							
ND = no data			ange bystein							
*Assumes a b			v of 1.0							
Assumes a D	arometri	e enterency	01 1.0							

 Table E.1. C-746-S&T Landfills Fourth Quarter 2017 (October) Water Levels

	ft/ft
Beneath Landfill Mound	3.71×10^{-4}
Vicinity	$5.88 imes 10^{-4}$

Table E.2. C-746-S&T Landfills Hydraulic Gradients

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific 1	Discharge (q)	Average Linear Velocity (
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s					
Beneath Landfill	Mound									
725	0.256	0.269	$9.49 imes 10^{-5}$	1.08	$3.80 imes 10^{-4}$					
425	0.150	0.158	$5.56 imes 10^{-5}$	0.630	$2.22 imes 10^{-4}$					
<u>Vicinity</u>										
725	0.256	0.427	$1.51 imes 10^{-4}$	1.71	$6.03 imes 10^{-4}$					
425	0.150	0.250	$8.83 imes 10^{-5}$	1.00	$3.53 imes 10^{-4}$					

APPENDIX F

NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the fourth quarter 2017 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	Parameter	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Technetium-99	MW369, MW372, MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW370, MW385, MW388
NOTE: Although technetium-99 is not cited	in AO CER 8 302 A A	ppendix A this radionuclide is being

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

11/13/2017

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S and -T LANDFILLS PERMIT NUMBERS 073-00014 and 073-00015 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4820	MW369	Trichloroethene	8260B	5.51	ug/L	5
8004-4818	MW370	Beta activity	9310	69	pCi/L	50
8004-4808	MW372	Beta activity	9310	132	pCi/L	50
8004-4792	MW373	Trichloroethene	8260B	6.93	ug/L	5
8004-4809	MW384	Beta activity	9310	114	pCi/L	50
8004-4810	MW385	Beta activity	9310	101	pCi/L	50
8004-4815	MW387	Beta activity	9310	186	pCi/L	50
8004-4816	MW388	Beta activity	9310	69.3	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	9.03	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	14	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

Groundwater Flow System	1		UCRS	S		1				τ	JRGA	ł							j	LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396		222	223	224	384	369	372	387	391	220	394	385	370	373	388	392		
ACETONE								-															
Quarter 3, 2003	1						*					*											
Quarter 4, 2003	1										*								*				
Quarter 1, 2005									*														
ALPHA ACTIVITY																							
Quarter 4, 2002									_	_		_				_							
Quarter 4, 2002				_	-								_						├──				
Quarter 4, 2000																			<u> </u>			-	
ALUMINUM										-													
Quarter 1, 2003	-		*				*					*	*	*					-				
Quarter 2, 2003	-		*				*					Ŧ	*	*					<u> </u>		-		
Quarter 3, 2003	-		*				*	*					*	*					<u> </u>		<u> </u>		
	-		Ť				*	*			*		Ť	*					<u> </u>		-	l	
Quarter 4, 2003			*				*	*			*			*					<u> </u>			——	
Quarter 1, 2004			*				*	*			Ŧ			*					<u> </u>			——	
Quarter 2, 2004	-																		<u> </u>				
Quarter 3, 2004	 		ىك				*							*					┣──	┣—	\vdash	\vdash	┣
Quarter 4, 2004	I		*																<u> </u>				
Quarter 1, 2005			*																				
Quarter 2, 2005			*				*																
Quarter 3, 2005			*				*			*											*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006	1	1	1	1		1	*	1					*		1								
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
Quarter 1, 2000							*										*		<u> </u>				
							*										*		<u> </u>			<u> </u>	
Quarter 2, 2007																	*		<u> </u>	<u> </u>			
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												
Quarter 1, 2010			*				*				*												
Quarter 2, 2010			*								*												
Quarter 3, 2010			*								*			*			*			*			
Quarter 1, 2011	-						*				*												
Quarter 2, 2011			*								*								├──	<u> </u>	┝──┤		<u> </u>
	<u> </u>	<u> </u>	*						<u> </u>		Ŧ			<u> </u>					┣—				<u> </u>
Quarter 2, 2012	I		*	L			ىئو	L							L				┣—	┣	\vdash	\vdash	Ļ
Quarter 3, 2012	<u> </u>	<u> </u>					*				<i>.</i> .								┣—	<u> </u>			<u> </u>
Quarter 1, 2013	I						*				*								<u> </u>				
Quarter 3, 2013			*																				
Quarter 1, 2014							*																
Quarter 2, 2014											*								[
Quarter 4, 2014	Ĭ	1	*			I																	
Quarter 1, 2016	İ.	1					*																
Quarter 2, 2016	1	1				1								*									1
Quarter 1, 2017	1					1	*																
Quarter 4, 2017	1																						*
BARIUM																							
Quarter 3, 2003	1																						1
Quarter 4, 2003	1	1																	<u> </u>	1			<u> </u>
BETA ACTIVITY																							
Quarter 4, 2002																							-
Quarter 1, 2002	1												-						├──	<u> </u>	┢──┤		<u> </u>
Quarter 1, 2003 Quarter 2, 2003		<u> </u>																	├──			<u> </u>	├
Qualter 2, 2003	1	1			I									l	1				L		1		<u> </u>
Quarter 3, 2003																							

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills

Groundwater Flow System Gradient Monitoring Well BETA ACTIVITY Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006	S 386	D 389	UCRS D 390	D 393	U 396	S 221	S 222	S 223	S 224	S 384	URGA D 369	D 372	D 387	D 391	U 220	U 394	S 385	D 370	D 373	LRGA D 388	D 392	U 395	U 397
Monitoring Well BETA ACTIVITY Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2005			390 																				
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2005 Quarter 4, 2005 Quarter 1, 2005																							
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2005																							
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2005																							
Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006																							
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006																							
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006																							
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006																							
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006																							
Quarter 4, 2005 Quarter 1, 2006																							
Quarter 1, 2006																							
		1																					
Quarter 2, 2006																							
X																							
Quarter 3, 2006																							
Quarter 4, 2006																							
Quarter 1, 2007																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																							
Quarter 2, 2014		l	1																				
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015		l	1																				
Quarter 2, 2015																							
Quarter 3, 2015																							
Quarter 4, 2015																							
Quarter 1, 2016																							
Quarter 2, 2016																							
Quarter 3, 2016																							
Quarter 4, 2016																							
Quarter 1, 2017																							
Quarter 2, 2017																							
Quarter 3, 2017																							
Quarter 4, 2017																							
BROMIDE																							
Quarter 1, 2003			*			_																	
Quarter 4, 2003			*																				
Quarter 1, 2003	-	-	*												-				-			-	
		-			_					-			-		-				-			-	

Groundwater Flow System			UCRS	5						1	URGA	ł]	LRGA	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BROMIDE																							
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003			*																				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005	1											*							*				
Quarter 4, 2005	1											*							*				<u> </u>
Quarter 1, 2006	1											*							*				
Quarter 2, 2006	+											*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006	-											*							*				
												*							*				
Quarter 1, 2007	_											*							*				
Quarter 2, 2007																							
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012	-											*							*				
												*							*				
Quarter 3, 2012	_																						
Quarter 4, 2012				<u> </u>			<u> </u>					*					<u> </u>		*				
Quarter 1, 2013																							┣
Quarter 2, 2013	_											*							*				<u> </u>
Quarter 3, 2013												*							*				<u> </u>
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*						*	*				
Quarter 4, 2014												*							*				
Quarter 1, 2015		ſ	ſ								ſ	*	*						*				
		•	•		•	-					•					· · · ·	-						_

Groundwater Flow System	1		UCRS	2		1				1	URGA	1					ľ			LRG	Δ		—
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384		372	387	391	220	394	385	370	373	388	392		397
CALCIUM	500	507	370	375	570	221	LLL	225	224	504	307	572	507	371	220	374	565	570	515	500	372	375	371
Quarter 2, 2015												*							*				-
Quarter 3, 2015												*							*			┢──┤	<u> </u>
Quarter 4, 2015												*							*			┝──┤	<u> </u>
Quarter 1, 2015												*							*			┝──┦	├──
												• *		*					*			┝──┤	<u> </u>
Quarter 2, 2016												* *		*					* *				<u> </u>
Quarter 3, 2016																							┝──
Quarter 4, 2016												*							* *		<u> </u>		
Quarter 1, 2017												* :							*				
Quarter 2, 2017												*							*				
Quarter 3, 2017												*							*				
Quarter 4, 2017												*							*				
CARBON DISULFIDE																							
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		
Quarter 2, 2017													*										
CHEMICAL OXYGEN DEMAN	D																						
Quarter 1, 2003				*																			
Quarter 2, 2003				*																			
Quarter 3, 2003				*			*			*													
Quarter 4, 2003				*																			
Quarter 1, 2004	*			*																	1	┝──┦	
Quarter 4, 2004	*																				1	┝──┦	
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*									*		*									*	┢──┤	<u> </u>
	*									*												┝──┤	├──
Quarter 4, 2005	*									Ť													<u> </u>
Quarter 1, 2006																							┝──
Quarter 2, 2006	*																				<u> </u>		
Quarter 3, 2006	*																_						
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																						
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																			*		┝──┦	⊢
	*																			*		──┦	┣—
Quarter 3, 2009																					 	\square	┣—
Quarter 4, 2009	*								<u> </u>			<u> </u>									┣—		┣—
Quarter 1, 2010	*		ļ	ļ			ļ						ļ	ļ						<u> </u>	—	\square	┣
Quarter 2, 2010	*																				Ļ		<u> </u>
Quarter 3, 2010	*																				L	\square	
Quarter 4, 2010	*																						
Quarter 3, 2011	*																			L			L
Quarter 4, 2011	*																						
Quarter 1, 2012	*																						
Quarter 1, 2013	*																						
Quarter 3, 2013	*	1	1	1			1						1	1						l			
Quarter 3, 2014	*								*				*					*					
Quarter 4, 2014							*						-	-							t		<u> </u>
Quarter 2, 2015							<u> </u>									*					<u> </u>	┝──┦	├──
Quarter 3, 2015															*	-					<u> </u>	┢──┦	├──
	<u> </u>		*								*				Ŧ							──┦	┣—
Quarter 3, 2016	<u> </u>		*						<u> </u>		*	<u> </u>					J.				┣—		┣—
Quarter 4, 2016		<u> </u>	L										L	L			*			<u> </u>	└──	\vdash	<u> </u>
Quarter 2, 2017							*																
Oursetse 2, 2017	*	1	1	_			_						1	_	*					1	1	1	
Quarter 3, 2017	<u> </u>				_																<u> </u>		
Quarter 3, 2017 Quarter 4, 2017						*																	

Gradient S D D D D </th <th>Groundwater Flow System</th> <th><u> </u></th> <th></th> <th>UCRS</th> <th>3</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th>URGA</th> <th>4</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1</th> <th>LRGA</th> <th></th> <th></th> <th></th>	Groundwater Flow System	<u> </u>		UCRS	3						1	URGA	4							1	LRGA			
Noninormy Went 368 397 397 397 397 397 387 397 397 387 397		S		-		U	S	S	S	S				D	D	U	U	S	D	-	-	-	U	U
CHLORDE Image: ChlorDe in the image: Chlor																								397
Durter 3. 2003 Image: Second Sec	CHLORIDE	-																						
Outer 1, 2003 Image: Section of the secti				*																				
Outer 1, 2003 Image: Solution of the s	Quarter 2, 2003			*																				
Outrer 2, 2001 •	Quarter 3, 2003			*																				
Outrer 2, 2004 •	Quarter 4, 2003			*																				
Ounter 4. 2004 *	Quarter 1, 2004			*																				
Quarter 1, 2004 •	Quarter 2, 2004			*																				
Quarter 1. 2005 Image: Constraint of the second secon	Quarter 3, 2004			*																				
Quarter 2, 2005 Image: Constraint of the second secon	Quarter 4, 2004			*																				
Quarter 3, 2005 *	Quarter 1, 2005			*																				
Quarter 1, 2005 • <td>Quarter 2, 2005</td> <td></td> <td></td> <td>*</td> <td></td>	Quarter 2, 2005			*																				
Quarter 1, 2006 •	Quarter 3, 2005			*																				
Quarter 2, 2006 * <	Quarter 4, 2005			*																				
Quarter 1, 2006 * <td< td=""><td>Quarter 1, 2006</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td></td<>	Quarter 1, 2006																		*					
Quarter 1, 2007 * <td< td=""><td>Quarter 2, 2006</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Quarter 2, 2006			*																				
Quarter 1, 2007 * <td< td=""><td>Quarter 3, 2006</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Quarter 3, 2006			*																				
Quarter 2, 2007 * <td< td=""><td>Quarter 4, 2006</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Quarter 4, 2006			*																				
Quarter 4, 2007 * <td< td=""><td>Quarter 1, 2007</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Quarter 1, 2007			*																				
Quarter 1, 2008 * <td< td=""><td>Quarter 2, 2007</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Quarter 2, 2007			*																				
Quarter 1, 2008 * <td< td=""><td>Quarter 3, 2007</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Quarter 3, 2007			*																				
Quarter 1, 2008 * <td< td=""><td></td><td><u> </u></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		<u> </u>		*																				
Quarter 2, 2008 * <td< td=""><td></td><td><u> </u></td><td>1</td><td>*</td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		<u> </u>	1	*																				
Quarter 3, 2008 * <td< td=""><td></td><td><u> </u></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		<u> </u>		*																				
Quarter 4, 2008 * <td< td=""><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		<u> </u>																						
Quarter 1, 2009 * <td< td=""><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				*																				
Quarter 2, 2009 * <td< td=""><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				*																				
Quarter 3, 2009 * <td< td=""><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				*																				
Quarter 4, 2009 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td></td<>																							<u> </u>	
Quarter 1, 2010 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td></td<>																							<u> </u>	
Quarter 2, 2010 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>┝──┤</td></td<>																								┝──┤
Quarter 3, 2010 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>																								-
Quarter 4, 2010 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>┝──┤</td></td<>																								┝──┤
Quarter 3, 2011 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>┝──┤</td></td<>																								┝──┤
Quarter 3, 2011 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td></td<>																							<u> </u>	
Quarter 4, 2011 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td></td<>																							<u> </u>	
Quarter 3, 2012 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td></td<>																							<u> </u>	
Quarter 3, 2013 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td></td<>																							<u> </u>	
Quarter 4, 2013 * <td< td=""><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\vdash</td><td></td></td<>		<u> </u>																					\vdash	
Quarter 4, 2014 * <td< td=""><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\vdash</td><td></td></td<>		<u> </u>																					\vdash	
CHROMIUM Image: Constraint of the cons		<u> </u>																					<u> </u>	
Quarter 4, 2002 Image: Constraint of the constraint of t		<u> </u>		*			_																-	
Quarter 1, 2003 Image: Constraint of the second									-															
Quarter 2, 2003 Image: Constraint of the constraint of t	a 1.0000	<u> </u>																						
Quarter 3, 2009 Image: Constraint of the constraint of t		<u> </u>																						
COBALT Image: Comparison of the image: Comparison																								\vdash
Quarter 3, 2003 * <td< td=""><td>-</td><td></td><td></td><td></td><td>L</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-				L		-																	
CONDUCTIVITY							_	*																
Quarter 4, 2002 * * * * * * * * * * * * * * * * * * * <			I	L	L																			
Quarter 1, 2003 * * * * * * *			1				_				*									*				
Quarter 2, 2003 *		<u> </u>		*																				
Quarter 3, 2003 * <td></td> <td><u> </u></td> <td></td>		<u> </u>																						
Quarter 4, 2003 * * * * Quarter 1, 2004 <									*															
Quarter 1, 2004 Image: Constraint of the con	-	<u> </u>																						
Quarter 2, 2004 *	-	 	1																					
Quarter 3, 2004 * *		<u> </u>									*									*				
		<u> </u>									*									*				
Quarter 4, 2004 * * *		<u> </u>		*							*									*				
Quarter 1, 2005		<u> </u>									*		*							*				
Quarter 2, 2005													*							*				
Quarter 3, 2005																				*				
Quarter 4, 2005 * * * * *		<u> </u>		l	1						*		*							*				
Quarter 1, 2006 * * *													*							*				
							-											-						

Groundwater Flow System			UCRS	S						۱	URGA	ł								LRG	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																				L			
Quarter 2, 2006		Γ										*	Γ						*	I			
Quarter 3, 2006												*							*				
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007												*					*		*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*					-1-		*				
Quarter 1, 2008												*							*				
Quarter 2, 2009												*							*				
												*							*				
Quarter 3, 2009												*					*		*				
Quarter 4, 2009	I				ļ												*				ļ		<u> </u>
Quarter 1, 2010	<u> </u>											* *					ļ		* *				<u> </u>
Quarter 2, 2010	1		L	ļ			ļ				L	* *					L		* *	<u> </u>		L	<u> </u>
Quarter 3, 2010	1											* *							* *				
Quarter 4, 2010	I		L	L			L		L	<u> </u>	L	*							*			L	
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*							*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*							*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2015												*							*				
												Ť							*				
Quarter 2, 2016	1				<u> </u>							*					—		* *	<u> </u>	<u> </u>		<u> </u>
Quarter 3, 2016	1				<u> </u>							*					—		* *	<u> </u>	<u> </u>		<u> </u>
Quarter 4, 2016	1																		* *	<u> </u>			<u> </u>
Quarter 1, 2017	1																		* *	<u> </u>			<u> </u>
Quarter 2, 2017	1																				-		<u> </u>
Quarter 3, 2017	I																		* *				L
Quarter 4, 2017						_													*				
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004		ſ	*								[*	ſ						*			[
Quarter 2, 2004	l									*		*							*				
Quarter 3, 2004	Í		1	1			1			*	1	*							*			1	
		1	1				-			*		*	1						*	1			
Quarter 4, 2004										T									Ŧ				

Groundwater Flow System			UCRS	3						١	URGA	1								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS																							
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006	-																*	*	*	*	*		
Quarter 4, 2006	-									*		*					*		*				
Quarter 1, 2007	_																		*				
Quarter 1, 2007 Quarter 2, 2007	_									*		*							*				
	_																						I
Quarter 3, 2007										*		*							* *				└──
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008	1									*		*							*				[
Quarter 1, 2009	1											*					I		*				
Quarter 2, 2009	1											*	*						*				
Quarter 3, 2009	1				1	1						*	*			1			*				
Quarter 4, 2009												*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010	-									*		*							*				
Quarter 4, 2010										*		*							*				-
Quarter 1, 2011										*		*							*				-
Quarter 2, 2011												*	*						*				<u> </u>
Quarter 3, 2011	-											*							*				
Quarter 4, 2011	-											*							*				
Quarter 1, 2012	-										*	*	*						*				
Quarter 2, 2012												*							*				<u> </u>
Quarter 3, 2012										*		*	*						*				<u> </u>
Quarter 4, 2012												*	*						*				<u> </u>
Quarter 1, 2012	_									*		*	Ť						*				
Quarter 2, 2013	_									Ŧ		*							*				
Quarter 3, 2013	_											*							*				
												*							*				
Quarter 4, 2013													*						*				
Quarter 1, 2014	_											*	*										I
Quarter 2, 2014	_								J.			*	J.						* *				
Quarter 3, 2014									*			*	*						* *				└──
Quarter 4, 2014												*	*						*				└──
Quarter 1, 2015	-	L				 						*	L						* *	<u> </u>			┡
Quarter 2, 2015	-	L										*	L						* *				┣
Quarter 3, 2015	1	L	<u> </u>									*	L						* *	<u> </u>			⊨_
Quarter 4, 2015	1	L		L					*			* *	L	L			I	*	* *			L	<u> </u>
Quarter 1, 2016	1											*		<u> </u>			I		*				<u> </u>
Quarter 2, 2016												*	*	*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				
Quarter 2, 2017												*							*				
Quarter 3, 2017												*		*	*				*				
Quarter 4, 2017												*							*				
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003	1		I			*											I			I			
Quarter 3, 2003	1												*				I						
Quarter 1, 2004	1	1		*	1								1			1	1						
Quarter 3, 2010	1		1																		*		
Quarter 2, 2013	1	1	l			1				*			1				1			1			<u> </u>
		•																					

Groundwater Flow System			UCR	s							URG	A								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*											
											*	Ŧ											
Quarter 2, 2007	_										*	يلو											
Quarter 2, 2008	_						L					*							L				
Quarter 3, 2008												*											
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007																							
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*	*						*				
Quarter 3, 2010												*	*						*				-
-	_																I						<u> </u>
Quarter 4, 2010	_											* *					I		*				
Quarter 1, 2011												*					I		*				<u> </u>
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012	1											*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*	*				1		*				t
Quarter 4, 2012	+											*	*						*				-
		1	1	1	1		1	1	1	1	1	1 .	1 .	1	i i	i i		i i		1	i i	1	

Groundwater Flow System			UCRS	s						1	URGA	ł					1			LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
MAGNESIUM																							
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				┢──┘
Quarter 1, 2013												-1-						*	*				<u> </u>
Quarter 2, 2014												*	*						*				<u> </u>
Quarter 3, 2014 Quarter 3, 2014												*	Ť						*				
Quarter 4, 2014 Quarter 4, 2014												* *	*						*				<u> </u>
Quarter 1, 2015												* *	*						*				<u> </u>
Quarter 1, 2015 Quarter 2, 2015												* *	*						*				<u> </u>
Quarter 3, 2015												*							*				<u> </u>
-												*							*				<u> </u>
Quarter 4, 2015 Quarter 1, 2016												*							*				<u> </u>
Quarter 2, 2016												*		*					*				<u> </u>
-												*		Ŧ					*				<u> </u>
Quarter 3, 2016												*		*					*				<u> </u>
Quarter 4, 2016												* *		* *		-			*				<u> </u>
Quarter 1, 2017												* *		*					*				┣──
Quarter 2, 2017					<u> </u>									*									<u> </u>
Quarter 3, 2017		<u> </u>										*		*			I		يدر				<u> </u>
Quarter 4, 2017	_	-										*							*				
MANGANESE																							
Quarter 4, 2002							يىر	يور													*		
Quarter 3, 2003							*	*															
Quarter 4, 2003					<u> </u>		*	*											<u> </u>		<u> </u>		<u> </u>
Quarter 1, 2004			L				*	L	L	L	L		L					L			<u> </u>	L	
Quarter 2, 2004		<u> </u>					*										I						
Quarter 4, 2004					L		*	*	L							<u> </u>			L	ļ	<u> </u>	L	
Quarter 1, 2005							*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
OXIDATION-REDUCTION POT	ENT	IAL																					
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*			L																	
Quarter 3, 2006			*															*					
Quarter 4, 2006			*		L	L						L			L				L		L		
Quarter 1, 2007			*																				
Quarter 2, 2007			*				*																
Quarter 3, 2007			*				*																
Quarter 4, 2007		1	*	I													I						
Quarter 1, 2008			*			*			*												1		
Quarter 2, 2008	*	1	*	*		*							*				*		*	*	1		
Quarter 3, 2008		1	*	*		*							*				*		*	*	1		
Quarter 4, 2008		1	*	*		*	*	*	*				*				*	*		*			
Quarter 1, 2009		1	*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*											*	*	*	*			
Quarter 4, 2009		1	*	l		*			*								1	*		*	1		
Quarter 1, 2010	*	1	*																	*			
Quarter 2, 2010	*	1	*	*					*				*			-	*	*		*	-		
Quarter 3, 2010	*		*	*		*						-			-		*	*	*	*			
Quarter 4, 2010			*					*			*	-		*	-		*	*	*	*			
	*	-	-	*	-	*	*	*	*		*		*	*			*	*	<u> </u>	*	*		┝──┘
Ouarter 1, 2011		1	1	· ·		<u> </u>				<u> </u>		l				<u> </u>			<u> </u>				<u> </u>
Quarter 1, 2011 Ouarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011	*		*	* *			*	*	*	*	*		*	*	*		*	*	*	*	*		

Groundwater Flow System Gradient Monitoring Well OXIDATION-REDUCTION POT Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016	* * * * * * * * * * * * * * * *	D 389	UCRS D 3900 ** * * * * * * * * * * * * * * * * *	D 393 * * * * * * * * * * * * * * * * * *	U 396	S 221 * * * * * * * * * *	S 2222 * * * * * * * * * * * *	\$ 223 * * * * * * *	S 224 * * * * * * * * * * *	S 384 * * * *	URGA D 369 * * * *	D 372	D 387 * * * * * *	D 391 * * * *	U 220	U 394	S 385 * * * * * *	D 370 * * * * * * * * * * *	D 373 * * * * *	LRGA D 388 * * * * * * * * * *	D 392 * * * * *	U 395	U 397
Monitoring Well OXIDATION-REDUCTION POT Quarter 4, 2011 Quarter 1, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016	386 T * * * * * * * * * * * * * * * * * * *	389	390 * * * * * * * * * * * * * * * * *	393 ** * * * * * * * * * * * * * * * * *	396	221 * * * * * *	222 * * * * * * *	223 * * * * * *	224 * * * * * * * * * * * * * * * * * *	384 * * *	369 * * *		387 * * * *	391 * * * * *			385 * * * *	370 * * * * * * *	373 * * * * * * *	388 * * * * * * *	392 * * * * * * *		
OXIDATION-REDUCTION POT Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2013 Quarter 4, 2013 Quarter 5, 2014 Quarter 1, 2014 Quarter 4, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016	<u> </u>		* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *		* * * * * * * * *	* * * * * * * *	* * * *	* * * * * * *	* * *	* * * *		* * * * *	* * * *			* * * * *	* * * * * *	* * * *	* * * * * * *	* * * * * *		
Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 7, 2013 Quarter 7, 2014 Quarter 7, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 7, 2015 Quarter 1, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016	* * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * *	* * * * * * * *		* * * * *	* * * * * * *	* * *	* * * * * *	* * *	* * * *		* * * *	* * *			* * *	* * * * *	* * * *	* * * * *	* * * * *		
Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016	* * * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * *	* * * * * * * *		* * * * *	* * * * * * *	* * *	* * * * * *	* * *	* * * *		* * * *	* * *			* * *	* * * * *	* * * *	* * * * *	* * * * *		
Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 1, 2015 Quarter 4, 2015 Quarter 4, 2016	* * * * * * * * * * * * * * *		* * * * * * * * *	* * * * * * * *		* * * * *	* * * * *	* * *	* * * * * *	* * *	* * *		* * * *	* * *			* * *	* * * *	* * * *	* * * * *	* * * * *		
Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 3, 2016 Quarter 4, 2016	* * * * * * * * * * * * * * *		* * * * * * * *	* * * * * * *		* * * *	* * * *	* * *	* * * * * *	* *	* * *		* *	*			*	* *	* * *	* * * *	* * * *		
Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 3, 2016 Quarter 4, 2016	* * * * * * * * * * * * * *		* * * * * * *	* * * * * * *		* * * *	* * * *	* * *	* * * * *	* *	* *		*	*			*	*	*	* * *	* * *		
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 7, 2015 Quarter 3, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 1, 2016 Quarter 3, 2016 Quarter 4, 2016	* * * * * * * * * * * * *		* * * * * *	* * * * * * *		* * * *	* * *	* *	* * * *	*	* *		*					*	*	*	*		
Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016	* * * * * * * * * * * * *		* * * * * *	* * * * * *		* * *	* * *	*	* * *		*			Ŧ			*			*	*		
Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016	* * * * * * * * * * * * *		* * * * * *	* * * * *		* * *	* * *		*				Ŧ				T	T					
Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 7, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016	* * * * * * * * * * * *		* * * * * *	* * * * *		* * *	*		*				*		ſ		*	*	*				
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016	* * * * * * * * * * * *		* * * * *	* * * *		*	*	Ŧ		Ŧ	*	*	*	*			*	*	*	*	*		
Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 4, 2016	* * * * * * * * * * * *		* * * * *	* * *		*			f		*	*	*	*			*	*	*	*	*		
Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016	* * * * * * * * * *		* * * *	* *	ىلەر		Ť		*		*	Ť	*	Ť			*	*	*	*	*		
Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 3, 2016 Quarter 4, 2016	* * * * * * * * *		* * *	*	ىلو	*			*		*		Ŧ				*	*	*	*	*		
Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 4, 2016	* * * * * * * * *		* *	*	ىلىر						*		*				*				*		
Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016	* * * * * * * *		*			<u>ч</u>	÷	÷	Ŧ			÷	*	÷	J.	÷		*	* *	* *	* *	÷	.
Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016	* * * * * * *		*	*	*	*	* *	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016	* * * * * *				*	*	*				*		<i>.</i>	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016	* * * * *		*	*	*	*	* *	* -	*	* *	*		* *	*	*	*	*	* *	*	* *	*	*	*
Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016	* * * *			*	*	*	*	*	*	*			*		*	*	*	*	*	*	*	*	*
Quarter 3, 2016 Quarter 4, 2016	* * *	1	*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 4, 2016	* *	I	*	*	*	*		*	*	*			*	*	*	*	*	*		*	*	*	*
-	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
		L	*	*	*		*	*		*			*		*		*	*	*	*	*	*	*
Quarter 1, 2017			*	*	*			*	*						*			*		*		*	*
Quarter 2, 2017	*		*	*	*												*			*	*		
Quarter 3, 2017	*		*	*	*												*	*	*	*	*	*	*
Quarter 4, 2017	*		*	*	*	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*	*
PCB-1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												
Quarter 3, 2005							*				*												
Quarter 1, 2006											*												
Quarter 2, 2006											*												
											*												
Quarter 4, 2006											*	*											
Quarter 1, 2007											*												
Quarter 2, 2007											Ł	*											
Quarter 3, 2007											*	-											
Quarter 2, 2008											*	*											
Quarter 3, 2008											*												
Quarter 4, 2008											*												
Quarter 1, 2009											*												
Quarter 2, 2009											*												
Quarter 3, 2009		1	1	1	1	1					*												
Quarter 4, 2009											*												
Quarter 1, 2010		<u> </u>	<u> </u>								*												
Quarter 2, 2010											*												
		<u> </u>									*				ļ								
Quarter 3, 2010																							
Quarter 4, 2010	_										*												
PCB-1232																							
Quarter 1, 2011											*												
PCB-1248																							
Quarter 2, 2008												*											
PCB-1260																							
Quarter 2, 2006		1																*					
pH																							
Quarter 4, 2002																	*						
Quarter 2, 2003																	*						
Quarter 3, 2003								-		-							*			-			
Quarter 4, 2003		<u> </u>	<u> </u>				*										*						
Quarter 1, 2003							*										*						
							Ť										*						
Quarter 2, 2004		<u> </u>						<u> </u>		<u> </u>				1	1		*	1					
Quarter 3, 2004	L	L																-					1 1
							L	_									*						

Chart of MCL and Historical UTI	Exceedances for the C-74	46-S and T Landfills (Continued)
---------------------------------	--------------------------	----------------------------------

Groundwater Flow System			UCRS	5						1	URGA	ł]	LRGA	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
pH																							
Quarter 4, 2004																	*						
Quarter 3, 2005										*							*				*		
Quarter 4, 2005										*							*						
Quarter 1, 2006																	*						
Quarter 2, 2006																	*						
Quarter 3, 2006																	*						
Quarter 3, 2007																	*						
Quarter 4, 2007																	*						
Quarter 4, 2008																	*						
Quarter 1, 2009																	*						
Quarter 1, 2009																	*						
Quarter 2, 2011											*						*						
											*												
Quarter 3, 2011 Quarter 1, 2012											Ť			*									
Quarter 1, 2012 Quarter 1, 2013										*			*	Ť			*						
										Ť			Ť				Ť				*		
Quarter 4, 2014																		*	*		*		
Quarter 2, 2016																		*	*				_
POTASSIUM																		يلو	يلو				
Quarter 4, 2002																		*	*				
Quarter 3, 2004			L				L	L			L			L					* *		L		
Quarter 2, 2005																			* *				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				
Quarter 3, 2013																			*				
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004																			*				
Quarter 2, 2005									*														
Quarter 1, 2009											*												
Quarter 3, 2014									*			*											
Quarter 4, 2014			*								*							*					
Quarter 1, 2015			*				*			*		*						*					
Quarter 2, 2015			*				*			*		*						*					
Quarter 3, 2015			*				1	1			1			1							1		
Quarter 4, 2015		1			*	*									*		*				*	*	
Quarter 2, 2016			*						*		*	*	*	*	*	*		*					
Quarter 3, 2016	1	l	1			1	1	1		1	1			1				*			1		
Quarter 4, 2016	*		*			*			*				*		*					*		*	
Quarter 1, 2017			*							*	*							*					
Quarter 2, 2017																	*	*		*	*		
Quarter 3, 2017					*				*	*	*									*			
Quarter 4, 2017																		*		*			
RADIUM-228																							
Quarter 2, 2005																							
Quarter 3, 2005							<u> </u>			-	<u> </u>												
Quarter 4, 2005					-								-		-			-	-				
Quarter 1, 2005							<u> </u>		_														
SELENIUM																							
Quarter 4, 2002																							
Quarter 1, 2002 Quarter 1, 2003																							
																						-	
Quarter 2, 2003																							
Quarter 3, 2003										ļ						ļ				ļ			
Quarter 4, 2003																							_

Groundwater Flow System			UCRS	S						1	URG	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SODIUM																							
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*												
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*		*													
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005	-									*									*				
	_																		*				
Quarter 2, 2005									-	*													
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006									*														
Quarter 3, 2006									*	*		*							*				
Quarter 4, 2006									*	*							*						
Quarter 1, 2007									*			*											
Quarter 2, 2007									*	*													
									*	т													
Quarter 3, 2007																							
Quarter 4, 2007									*														
Quarter 1, 2008									*														
Quarter 3, 2008												*											
Quarter 4, 2008									*	*													
Quarter 1, 2009									*			*							*				
Quarter 3, 2009												*											1
Quarter 4, 2009									*			*											
Quarter 1, 2010												*											
Quarter 2, 2010	-									*		*											
	_									*		Ŧ											
Quarter 3, 2010																							<u> </u>
Quarter 4, 2010									*	*													
Quarter 1, 2011										*													
Quarter 2, 2011									*														
Quarter 4, 2011																			*				
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
												*											
Quarter 2, 2013																			÷				
Quarter 3, 2013												*							*				<u> </u>
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
Quarter 2, 2014									*		*	*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014	1								*	*		*	*	1									
Quarter 1, 2015	1							1	1				*		1					1			
Quarter 2, 2015												*											
Quarter 3, 2015	1					-				*		*											1
Quarter 4, 2015			<u> </u>	<u> </u>			<u> </u>		*	*		*											+
Quarter 2, 2015	-										*							-	-				-
	+					<u> </u>					*												*
Quarter 3, 2016	-					L		ļ	ļ	<u>.</u>	*		*		ļ			34	<u> </u>	ļ	ļ		-
Quarter 1, 2017	-								L.	*			*					*					
Quarter 2, 2017									*	*	*												⊢
STRONTIUM-90										_							_						
Quarter 2, 2003																							
Quarter 1, 2004		1	1	1			1				1	1	1	1		1				1		1	1

Gradient S D D D D U S S S S D D U<	Groundwater Flow System	T		UCRS	ŝ						1	URGA	4					1			LRGA	4		
Noniner (well 36/ 36/ 39/ 39/ 29/ 29/ 29/ <t< th=""><th>Gradient</th><th>S</th><th></th><th></th><th></th><th>U</th><th>S</th><th>S</th><th>S</th><th>S</th><th>-</th><th>r</th><th>r</th><th>D</th><th>D</th><th>U</th><th>U</th><th>S</th><th>D</th><th>-</th><th></th><th>-</th><th>U</th><th>U</th></t<>	Gradient	S				U	S	S	S	S	-	r	r	D	D	U	U	S	D	-		-	U	U
Quarter 1. 2000: QUARTER 1. 2000:<	Monitoring Well	-	389	390	393							369		387	391		394		370		388			397
Damer 1. 2003 D	SULFATE																							
Dame Dame <th< td=""><td>Quarter 4, 2002</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td></th<>	Quarter 4, 2002																			*				
Quarter 3.2003 D	Quarter 1, 2003												*	*				*		*				
Damer 4. 2003 Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	Quarter 2, 2003										*		*	*					*	*				
Damer Damer Damer Description	Quarter 3, 2003										*		*	*						*				
Quarter 2.2004DDD <thd< th="">D<t< td=""><td>Quarter 4, 2003</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td>*</td><td>*</td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td></t<></thd<>	Quarter 4, 2003										*		*	*						*				
Damer A Sold Description Desc	Quarter 1, 2004																							1
Quarter 1.2004Quarter 1.2005Quarter 1.2007QUARTER 1.2007QUARTE	Quarter 2, 2004																	*			*			1
	Quarter 3, 2004									*														
Dameter 2. 2005 I <td>Quarter 4, 2004</td> <td></td>	Quarter 4, 2004																							
Damber 3. 2005 Damber 4. 2005 Damber	Quarter 1, 2005																	*						
Duriter 4, 2005 Description	Quarter 2, 2005																							
Auter 1, 2006 Auter 2, 2006 Auter 2, 2006 Auter 3, 2007 Auter 3,																		*						
Durity 2, 2006 Durity 2, 2007 Durity 2, 2008 Durity	Quarter 4, 2005																							1
Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2007 QUARTER 4,	Quarter 1, 2006										*		*	*				*	*	*	*			1
Quarter 4. 2006 Quarter 4. 2007 Quarter 4. 2008 Quarter 4. 2008 Quarter 4. 2008 Quarter 4. 2008 QUARTER 4. 2007 QUARTER 4. 2007 QUARTER 4. 2008 QUARTER 4.	Quarter 2, 2006													*					*					
Durter 1, 2007 Durter 2, 2008 Durter 2, 2009 Durter	Quarter 3, 2006																				*			
Numer Numer <th< td=""><td>Quarter 4, 2006</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Quarter 4, 2006																							
Quarter 3, 2007 I	Quarter 1, 2007									*	*		*	*				*		*	*			
Quinter 4, 2007 Quinter 4, 2007 Quinter 4, 2008 Quinter 4, 2009 Quinter 4, 2010 Quinter 4, 2012 Quinter 4,	Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 1, 2008 Image: Constraint of the second	Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 1, 2008 Image: Control of the second se	Quarter 4, 2007	Ĩ									*		*	*				*	*	*	*			
Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 <td< td=""><td>Quarter 1, 2008</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td>*</td><td>*</td><td></td><td></td><td></td><td>*</td><td>*</td><td>*</td><td>*</td><td></td><td></td><td></td></td<>	Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 1, 2009 Image: Constraint of the second	Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2009 Quarter 1, 2010 Quarter 4, 2011 QUARTER 4, 2014 QUARTER 4, 2014	Quarter 3, 2008										*		*	*				*	*	*	*			
NameNa	Quarter 4, 2008										*		*	*				*		*				
Quarter 3, 2009 * <td>Quarter 1, 2009</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td></td>	Quarter 1, 2009										*		*	*				*	*	*				
Quarter 4, 2009 *	Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 4, 2009 * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td>										*	*		*	*				*	*	*	*			
Quarter 1, 2010 * <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td></td>		*									*		*	*				*	*	*				
Quarter 2, 2010 Image: Constraint of the second		*								*	*		*	*				*		*				
Quarter 3, 2010 *		-								*	*		*	*				*	*	*	*			
Quarter 4, 2010 *														*				*						
Quarter 1, 2011 *		*																*						
Quarter 2, 2011 *	-																							
Quarter 3, 2011 *															*						*			
Quarter 4, 2011 *																								
Quarter 1, 2012 *																								
Quarter 2,2012 * * <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-																							
Quarter 3, 2012 *																								
Quarter 4, 2012 Image: Constraint of the second																								
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 QUARTER 4, 2016		Ť																-						
Quarter 2, 2013 Image: Constraint of the constraint of t		-									444		*	-				*	*	-	*			
Quarter 3, 2013 Image: Constraint of the second		<u> </u>											*		*			*	*		*			I
Quarter 4, 2013 Image: Constraint of the second		-																						
Quarter 1, 2014 Image: Constraint of the second	· ,	1													*									
Quarter 2, 2014 Image: Construction of the second seco			<u> </u>						*						<u> </u>							<u> </u>		
Quarter 3, 2014 Image: Constraint of the second		-							*						*									
Quarter 4, 2014 Image: Construction of the second seco		1		<u> </u>								<u> </u>					<u> </u>							
Quarter 1, 2015 Image: Constraint of the constraint of t		-	-												ボ									
Quarter 2, 2015 Image: Constraint of the system of the		1																						
Quarter 3, 2015 *	•	<u> </u>										<u>ب</u> لا			*	*								
Quarter 4, 2015 * <		-							*			*												
Quarter 1, 2016 * <td></td> <td>1</td> <td></td> <td> </td> <td></td> <td></td> <td> </td> <td> </td> <td>*</td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td>*</td> <td> </td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td>		1							*							*			*					
Quarter 2, 2016 * <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td>¥</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td>		-							¥										*					
Quarter 3, 2016 *		1														*								
Quarter 4, 2016 * <td></td> <td>1</td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1																						
Quarter 1, 2017 * <td></td> <td>1</td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1																						
Quarter 2, 2017 * <td></td> <td>1</td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td>		1																						
Quarter 3, 2017 *		1							*															
		1					-																	
		1							-															
		1					-				<u> </u>			<u> </u>		<u> </u>		<u> </u>		<u> </u>	. ·			

Groundwater Flow System			UCRS	5						۱	URGA	4]	LRGA	1		
Gradient	s	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				<u> </u>
Quarter 2, 2003	*		*							*			*				*			4			
Quarter 3, 2003			*							*		*	*				*		*	*		—	
Quarter 4, 2003 Quarter 1, 2004			*							Ŧ		*	*				*		• *	•		<u> </u>	
Quarter 2, 2004			*									*	*				*		*	*			
Quarter 3, 2004			*									*	-				*		*	-			
Quarter 4, 2004	-		*							*		*	*				*	*	*				
Quarter 1, 2005			*							*		*	*				*			*			
Quarter 2, 2005			*							*			*				*	*	*	*			
Quarter 3, 2005			*							*			*				*	*	*	*			
Quarter 4, 2005			*							*		*	*				*		*	*			
Quarter 1, 2006										*		*	*						*	*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006			*							*			*				*	*	*	*			
Quarter 4, 2006	*									*		*	*						*	*			
Quarter 1, 2007	1		*							*			*				*		*	*			
Quarter 2, 2007	1		*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 4, 2007	l		*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			1
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*						
Quarter 1, 2010			*							*		*	*				*						
Quarter 2, 2010			*							*			*				*	*		*			
Quarter 3, 2010			*							*	*	*	*				*						
Quarter 4, 2010			*							*		*	*				*						
Quarter 1, 2011										*			*				*						
Quarter 2, 2011			*							*			*				*			*			
Quarter 3, 2011			*							*			*				*			*			
Quarter 4, 2011			*							*	*	*	*				*						
Quarter 1, 2012			*							*			*				*			*			
Quarter 2, 2012			*							*			*				*		*	*			
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012										*		*	*				*		*	*			
Quarter 1, 2013										*			*				*		*	*			
Quarter 2, 2013	1				<u> </u>			<u> </u>		*		*	*		<u> </u>		*		*	*			l
Quarter 3, 2013			*							*		*	*				*		*	*			L
Quarter 4, 2013	<u> </u>		*							* *		*	*				* *		* *	*			
Quarter 1, 2014	 		*							*	* *		*				*		* *	*			
Quarter 2, 2014	<u> </u>		*							* *	*		*	*			*		*	*			
Quarter 3, 2014	<u> </u>		*							*		484	* *				* *			* *		<u> </u>	
Quarter 4, 2014	<u> </u>		*		<u> </u>					* *	* *	*	*				*		*	*		\vdash	<u> </u>
Quarter 1, 2015	<u> </u>		*							*	* *	*	*				*			*		<u> </u>	<u> </u>
Quarter 2, 2015	<u> </u>		*		<u> </u>					* *	* *	4	*				*	بەر	.	*		\vdash	<u> </u>
Quarter 3, 2015	1	<u> </u>	* *		<u> </u>		<u> </u>	<u> </u>		* *	* *	*	*	<u> </u>	<u> </u>		*	* *	*	*		\vdash	<u> </u>
Quarter 4, 2015			*							* *	* *	*	*				*	*	.	*			
Quarter 1, 2016	1	<u> </u>	*		<u> </u>	*	<u> </u>	<u> </u>		* *	*	<u> </u>	*	<u> </u>	<u> </u>		*	بلار	*	*		\vdash	<u> </u>
Quarter 2, 2016			*			*				*		<u>.</u>	*				*	*		* *			
Quarter 3, 2016			*								.	*					*	*		*			
Quarter 4, 2016	1	-	*				-			* *	*		*	-			*	بلار		*			
Quarter 1, 2017			*							* *			*				*	*		*			
Quarter 2, 2017	1		*							*	*		*				*	*		*			
Quarter 3, 2017	<u> </u>											<u>ب</u> لا					_					⊢	<u> </u>
Quarter 4, 2017	1		*			_				*	*	*	*				*	*		*			

Groundwater Flow System	1		UCR	S		1				1	URGA	4							1	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	s	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
THORIUM-230	380	309	390	393	390	221	222	223	224	364	309	512	367	391	220	394	365	370	373	300	392	395	391
Quarter 1, 2012	*								*					*									
Quarter 4, 2012	*		*						Ť					÷									
-	*		*						*	*			*		*								
Quarter 3, 2015	*		*						Ŧ	*			*		Ŧ		*						
Quarter 1, 2017			*							*							*						
THORIUM-234						*			J.					<u>ч</u>									
Quarter 2, 2003						*			* *					*									
Quarter 4, 2007									*														
TOLUENE																							
Quarter 2, 2014										*	*		*										
TOTAL ORGANIC CARBON																							
Quarter 4, 2002																					*		
Quarter 1, 2003				*						*	*							*	*		*		
Quarter 2, 2003										*	*		*								*		
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003							*		*	*													
Quarter 1, 2004		ſ					[[*	ſ		[[[[
Quarter 2, 2004		1								*	*												
Quarter 3, 2004	1	1		1		1	1	1		*	1	1	1	1					1	1			
Quarter 4, 2004	1					1				*													
Quarter 1, 2005							<u> </u>	<u> </u>		*			<u> </u>	<u> </u>					<u> </u>	<u> </u>			
				<u> </u>	<u> </u>		<u> </u>	<u> </u>		*		<u> </u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>	*	<u> </u>	
Quarter 2, 2005												يور									*		
Quarter 3, 2005										*		*											
Quarter 4, 2005										*											*		
Quarter 1, 2006										*													
Quarter 2, 2006										*		*											
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 3, 2007	*					*	*	*	*	*			*	*			*						
Quarter 2, 2007									-1-		*						-1-						
	*										*												
Quarter 3, 2012	*																						
Quarter 3, 2016																			*				
TOTAL ORGANIC HALIDES																							
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*														*			*		
Quarter 3, 2003				*																	*		
Quarter 2, 2004																					*		
Quarter 3, 2004	*																						
Quarter 1, 2005	*					1																	
Quarter 2, 2005	*		1			1																	
Quarter 3, 2005	*		İ	1		1	İ	İ				1	İ	İ					İ	İ			
Quarter 4, 2005	*																						
Quarter 1, 2006	*			 			<u> </u>	<u> </u>				 	<u> </u>	<u> </u>					<u> </u>	<u> </u>			
Quarter 2, 2006	*						<u> </u>	<u> </u>					<u> </u>	<u> </u>		-			<u> </u>	<u> </u>			
Quarter 3, 2006	*																						
Quarter 4, 2006	- ⁻			<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>			*		<u> </u>	<u> </u>		<u> </u>	
	*																*						
Quarter 1, 2007			L	L		I	L	L	<u> </u>			L	L	L					L	L	<u> </u>	<u> </u>	
Quarter 2, 2007	*																						
Quarter 3, 2007	*								L													L	
Quarter 4, 2007	*																				*		
Quarter 1, 2008	*																						
Quarter 4, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*		1			1															*		
Quarter 3, 2009	*					1																	
Quarter 4, 2009	*																						
Quarter 1, 2009	*																						
	*																						
Quarter 2, 2010																							
Quarter 3, 2010	*																						

Groundwater Flow System	I		UCRS	5						1	URGA	1]	LRGA	1		—
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TOTAL ORGANIC HALIDES																							
Quarter 4, 2010	*																						
Quarter 1, 2011	*																						
Quarter 3, 2013																					*		
TRICHLOROETHENE																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010										-													
Quarter 3, 2010										-													
Quarter 4, 2010										-													
Quarter 1, 2011										-													
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013	I																						
Quarter 1, 2014	I																						
Quarter 2, 2014	I																		L_				
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015	1	<u> </u>																					\square
Quarter 2, 2015	1	<u> </u>																					\square
Quarter 3, 2015	1	<u> </u>																					\square
Quarter 4, 2015	I																						
Quarter 1, 2016	I																						
Quarter 2, 2016	I																						
Quarter 3, 2016	I																						
Quarter 4, 2016	1																						
Quarter 1, 2017	1	<u> </u>																					
Quarter 2, 2017	1																						
Quarter 3, 2017	I																					\vdash	
Quarter 4, 2017																							

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S	URGA												LRGA						
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														
* Statistical test results indicate	an eleva	ted co	oncent	tratior	ı (i.e	a sta	tistica	illy si	nific	ant in	crease	e)											
 MCL Exceedance 					(,							/											
UCRS Upper Continental Rechar	ge Syste	m																					
URGA Upper Regional Gravel A	quifer																						
LRGA Lower Regional Gravel A	quifer																						
S Sidegradient; D Downgradient;	; U Upgr	adien	t																				

APPENDIX H

METHANE MONITORING DATA

C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	11/28/2	/28/2017						ne:	10:05 am						Monitor: Tai				ammy Smith			
Weather Conditions: Sunny with 59 degrees																						
Monitoring Equipment:																						
RAE System, Multi-RAE, Serial# 7970 Menitoring Leastion Reading																						
	Monitoring Location Ogden Landing															(% LE						
Ogden Landing Road Entrance Checked at ground level													0									
North Landfil	h Landfill Gate Checked at ground level													0								
West Side of	West Side of																					
North 37°	Landfill: North 37° 07.652' West 88° 48.029' Checked at ground level									0												
East Side of Landfill: North 37°																						
West 88°		Checked at ground level													0	,						
Cell 1 Gas Ve	ent (17)	1 0	2 0	3 0	4 0	5 0	6 0	7 0	8 0	9 0	10 0	11 0	12 0	13 0	14 0	15 0	16 0	17 0	0			
Cell 2 Gas V	ent (3)	1 0													0							
Cell 3 Gas V	ent (7)	1 2 3 4 5 6 7 0 0 0 0 0 0												0								
	Landfill Office Checked at floor level														0							
Suspect or P	Suspect or Problem Areas No areas noted									N/A												
Remarks:																						
ALL VENTS	S CHEC	CKE	D 1"	FRO	DM -	THE	MOL	JTH	H OF	= TH	IE VI	ΞΝΤ										
Performed k	oy:					/			<u> </u>)												
	Performed by: <u>Ammy</u> Suith 11/2 Signature											28/2017										
	Signature												Date									

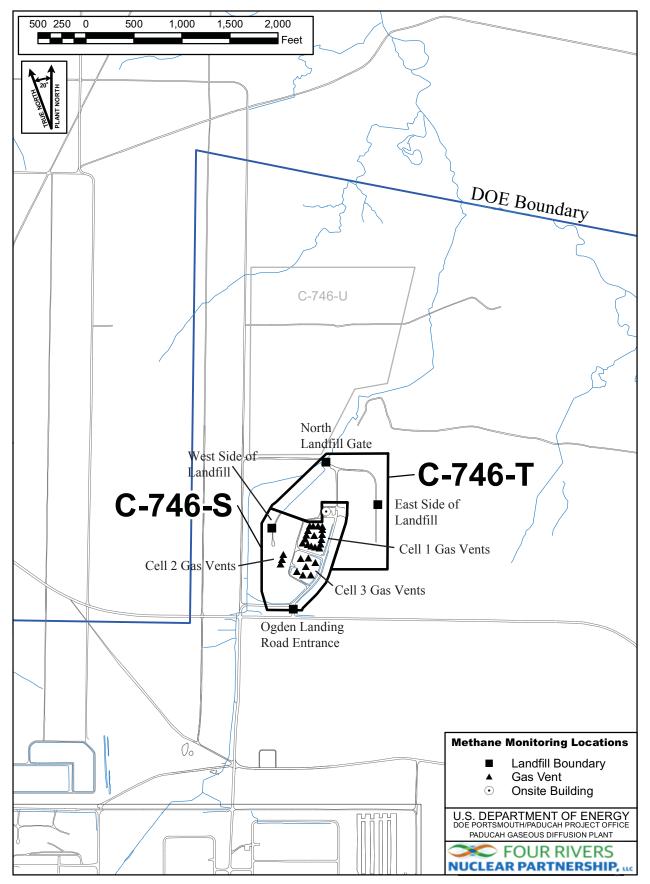


Figure H.1. C-746-S&T Methane Monitoring Locations