

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

AUG 2 9 2017

Ms. Robin Green
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Ms. Green and Mr. Hendricks:

C-746-S&T LANDFILLS SECOND QUARTER CALENDAR YEAR 2017 (APRIL–JUNE) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FPDP-RPT-0088/V1, PERMIT NUMBER SW07300014, SW07300015, SW07300045

Enclosed is the subject report for second quarter calendar year 2017. This report is required in accordance with Condition ACTV0006, Special Condition Number 3, of C-746-S&T Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The report includes groundwater and surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the second quarter 2017 monitoring well data collected from the C-746-S&T Landfills were performed in accordance with Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical increase notification for the second quarter calendar year 2017, in accordance with Condition GSTR0003, Standard Requirement 8, of the C-746-S&T Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

PPPO-02-4371687-17A

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely, Smifu Wordard

Jennifer Woodard
Paducah Site Lead

Portsmouth/Paducah Project Office

Enclosure:

C-746-S&T Landfills 2nd Qtr CY 2017 (April–June) Compliance Monitoring Report

e-copy w/enclosure: april.webb@ky.gov, KDEP brian.begley@ky.gov, KDEP bruce.ford@ffspaducah.com, FFS christopher.jung@kv.gov, KDEP dave.dollins@lex.doe.gov, PPPO elizabeth.wyatt@ffspaducah.com, FFS ffscorrespondence@ffspaducah.com, FFS gaye.brewer@ky.gov, KDEP jennifer.blewett@ffspaducah.com, FFS jennifer.watson@ffspaducah.com, FFS jennifer.woodard@lex.doe.gov, PPPO joseph.towarnicky@ffspaducah.com, FFS karen.walker@ffspaducah.com, FFS kelly.layne@ffspaducah.com, FFS ken.davis@ffspaducah.com, FFS kim.knerr@lex.doe.gov, PPPO leo.williamson@ky.gov, KDEP lisa.crabtree@ffspaducah.com, FFS mike.guffey@kv.gov, KDEP myrna.redfield@ffspaducah.com, FFS pad.rmc@swiftstaley.com, SSI stephaniec.brock@ky.gov, KYRHB tracey.duncan@lex.doe.gov, PPPO

C-746-S&T Landfills
Second Quarter Calendar Year 2017
(April—June)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

FLUOR

This document is approved for public release per review by:

PDP Classification Support


Date

C-746-S&T Landfills
Second Quarter Calendar Year 2017
(April—June)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—August 2017


U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FLUOR FEDERAL SERVICES, INC.,
Paducah Deactivation Project
managing the
Deactivation Project at the
Paducah Gaseous Diffusion Plant
under Task Order DE-DT0007774


CONTENTS

FI	GURES		V
ΤA	ABLES		v
A(CRONYMS		vii
1.	INTRODUC	CTION	1
		KGROUND	
		ITORING PERIOD ACTIVITIES	
	1.2.1	Groundwater Monitoring	
	1.2.2	Methane Monitoring	
	1.2.3	Surface Water Monitoring	
	1.3 KEY I	RESULTS	5
2.	DATA EVA	LUATION/STATISTICAL SYNOPSIS	9
	2.1 STAT	ISTICAL ANALYSIS OF GROUNDWATER DATA	10
	2.1.1	Upper Continental Recharge System	10
	2.1.2	Upper Regional Gravel Aquifer	
	2.1.3	Lower Regional Gravel Aquifer	
	2.2 DATA	A VERIFICATION AND VALIDATION	
3.	PROFESSIO	ONAL GEOLOGIST AUTHORIZATION	13
4.	REFERENC	ES	15
Αŀ	PPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
Αŀ	PPENDIX B:	FACILITY INFORMATION SHEET	B-1
Αŀ	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
Αŀ	PPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑF	PPENDIX F:	NOTIFICATIONS	F-1
Αŀ	PPENDIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑF	PPENDIX H:	METHANE MONITORING DATA	H-1
ΔΙ	DENDIX I	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I _1

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	2
2.	C-746-S&T Landfills Surface Water Monitoring Locations	4
	TABLES	
1	Summary of MCL Exceedances	5
	Exceedances of Statistically Derived Historical Background Concentrations	
	Exceedances of Current Background UTL in Downgradient Wells	
	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters	
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations

CY calendar year

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level


MW monitoring well

PGDP Paducah Gaseous Diffusion Plant

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

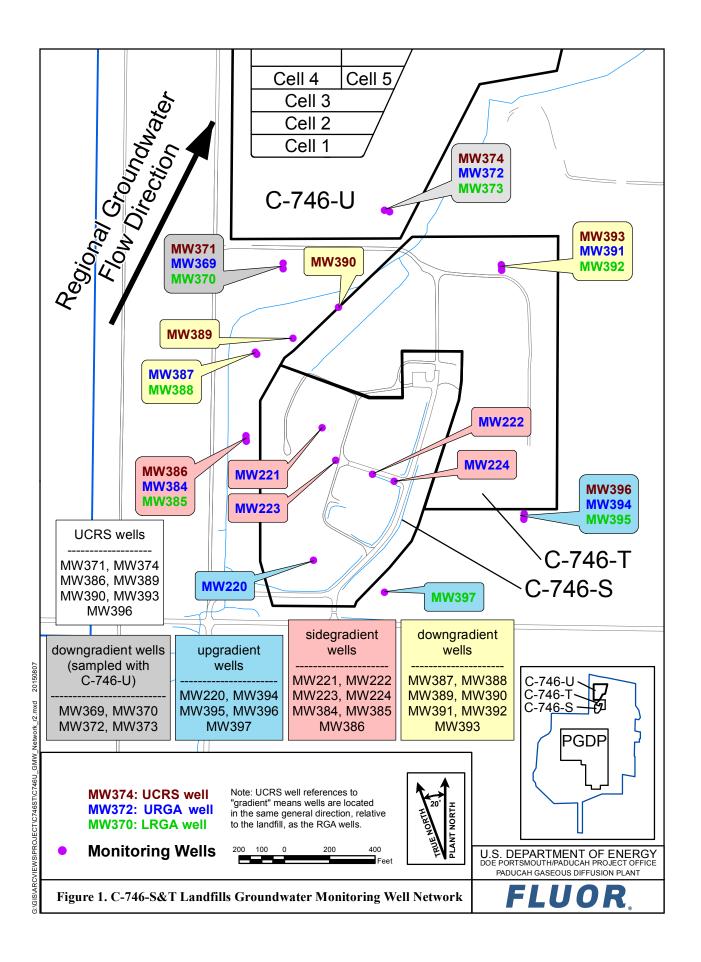
UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills Second Quarter Calendar Year 2017 (April—June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 4. Surface water results are provided in Appendix I.

1.1 BACKGROUND


The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Gaseous Diffusion Plant (PGDP) and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for PGDP. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from PGDP. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a water level measurement or sample; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for the UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the second quarter 2017 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using Fluor Federal Services, Inc., procedure CP4-ES-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on April 26 and 27, 2017, in MWs of the C-746-S&T Landfills (see Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is north to northeastward, toward the Ohio River. During April, RGA groundwater flow in the area of the landfill was oriented eastward to northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in April was 2.99×10^4 ft/ft, while the gradient beneath the C-746-S&T Landfills was 2.15×10^4 ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.365 to 0.622 ft/day (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 4 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application, Attachment 12, of the Solid Waste Landfill Permit. Landfill operations staff monitored for the occurrence of methane in 1 on-site building location, 4 locations along the landfill boundary, and 27 gas-passive vents located in Cells 1, 2, and 3 of the C-746-S Landfill on June 8, 2017. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the approved C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and KY-073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application Attachment 24, of the Solid Waste Landfill Permit. Sampling was performed at three locations (see Figure 2) monitored for the C-746-S&T Landfills. The landfills have an upstream location, L135; a downstream location, L154; and a location capturing runoff from the landfill surface, L136.

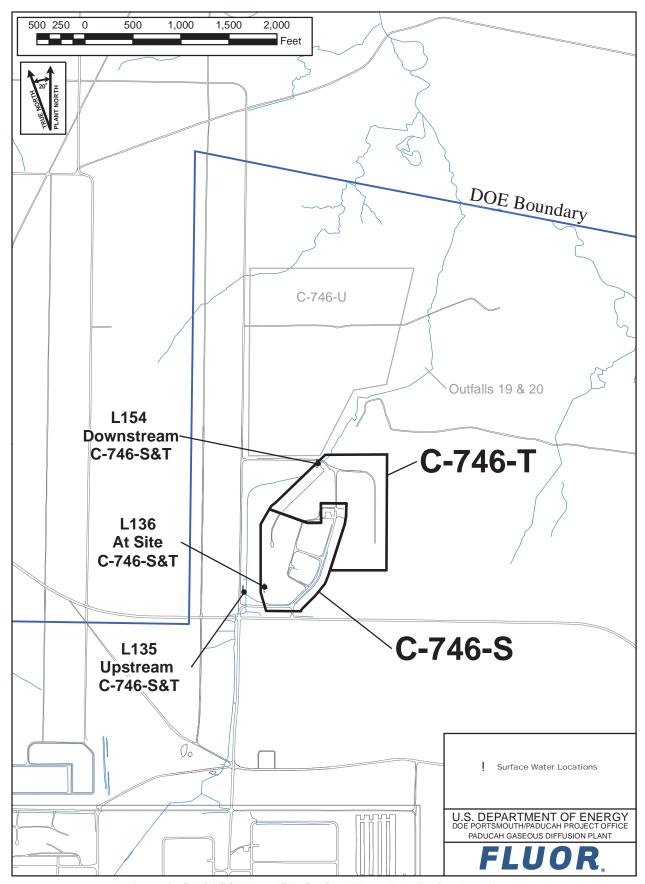


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

The parameters identified in the Solid Waste Landfill Permit were analyzed for report only format, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Gaseous Paducah, Landfill) at the Paducah Diffusion Plant, (LATA Kentucky 2014) which is Technical Application, Attachment 25, of the Solid Waste Landfill permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were further evaluated against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL during the second quarter 2017, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

UCRSURGALRGANoneMW372: TrichloroetheneMW370: Beta activityMW384: Beta activityMW373: TrichloroetheneMW387: Beta activityMW385: Beta activityMW391: TrichloroetheneMW388: Beta activityMW392: TrichloroetheneMW392: Trichloroethene

Table 1. Summary of MCL Exceedances

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW372, MW373, MW391, and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedances for beta activity in MW370, MW387, and MW388 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances because the source(s) of these exceedances is not determined. To evaluate these preliminary Type 2 exceedances further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. MW370, MW387, and MW388 had no increasing Mann-Kendall trend for beta activity and are considered to be Type 1 exceedances (not attributable to the landfill).

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 8, and 401 *KAR* 48:300 § 7.

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Oxidation-reduction	MW220: Sulfate	MW370: Beta activity, a radium-226,
potential		sulfate, technetium-99
MW390: Oxidation-reduction	MW222: Chemical oxygen demand	MW373: Calcium, conductivity,
potential, technetium-99		dissolved solids, sulfate
MW393: Oxidation-reduction	MW223: Sulfate	MW385: Beta activity, ^a
potential		oxidation-reduction potential,
		radium-226, sulfate, technetium-99
MW396: Oxidation-reduction	MW224: Sodium	MW388: Beta activity, ^a
potential		oxidation-reduction potential,
		radium-226, sulfate, technetium-99
	MW369: Sodium	MW392: Oxidation-reduction
		potential, radium-226
	MW372: Calcium, dissolved solids,	
	magnesium, sulfate	
	MW384: Beta activity, a sodium,	
	sulfate, technetium-99	
	MW387: Beta activity, a carbon	
	disulfide, sulfate, technetium-99	
	MW391: Sulfate	

^{*}Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393 Upgradient wells: MW220, MW394, MW395, MW396, bMW397

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW369: Sodium	MW370: Beta activity, sulfate, technetium-99
MW372: Calcium, dissolved solids, magnesium, sulfate	MW373: Calcium, conductivity, dissolved solids, sulfate
MW387: Beta activity, carbon disulfide, technetium-99	MW388: Beta activity, sulfate, technetium-99
MW391: Sulfate	

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

^a Beta activity has an MCL; the exceedances of the MCL were subjected to a comparison against the statistically derived historical background.

^b In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

7

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value 2	S^3	Var(S)4	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
	MW369	Sodium	8	0.05	0.133	10.00	65.33	1.430	0.357	No Trend
		Beta Activity	8	0.05	0.133	10.00	65.33	3.367	0.357	No Trend
	MW370	Sulfate	8	0.05	0.040	15.00	64.33	0.288	0.546	Positive Trend
		Technetium-99	8	0.05	0.193	8.000	65.33	4.646	0.286	No Trend
		Calcium	8	0.05	0.009	-20.00	65.33	-2.470	-0.714	Negative Trend
	MW372	Dissolved Solids	8	0.05	0.005	-22.00	65.33	-18.30	-0.786	Negative Trend
	WI W 3 / 2	Magnesium	8	0.05	0.001	-26.00	65.33	-1.013	-0.929	Negative Trend
		Sulfate	8	0.05	0.003	-23.00	64.33	-9.74	-0.837	Negative Trend
C-746-S&T		Calcium	8	0.05	0.087	-12.00	65.33	-1.650	-0.429	No Trend
Landfills Downgradient	MW373	Conductivity	8	0.05	0.133	-10.00	65.33	-13.18	-0.357	No Trend
Wells	IVI W 3 / 3	Dissolved Solids	8	0.05	0.133	-10.00	65.33	-14.50	-0.357	No Trend
		Sulfate	8	0.05	0.009	-20.00	65.33	-5.571	-0.714	Negative Trend
		Beta Activity	8	0.05	0.500	0.000	65.33	1.500	0.000	No Trend
	MW387	Carbon Disulfide	8	0.05	0.095	7.000	21.00	0.000	0.500	No Trend
		Technetium-99	8	0.05	0.268	6.000	65.33	5.000	0.214	No Trend
		Beta Activity	8	0.05	0.355	-4.000	65.33	-1.770	-0.143	No Trend
	MW388	Sulfate	8	0.05	0.227	7.000	64.33	0.192	0.255	No Trend
		Technetium-99	8	0.05	0.268	6.000	65.33	4.571	0.214	No Trend
	MW391	Sulfate	8	0.05	0.087	12.00	65.33	2.383	0.429	No Trend

Footnotes:

Note: Statistics generated using XLSTAT

¹An alpha of 0.05 represents a 95% confidence interval.

²The p-value represents the risk of acceptance the Hhypothesis of a trend, in terms of a percentage.

³The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

⁴VAR(S) represents the varience of S in the sample set and takes into account statistical ties.

⁵The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all $(sk_k)/(j-k)$, where x is a data point and j and k are values of time.

⁶Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is postive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend.

The Mann-Kendall decision operates on two hypothesis, the Hand H_b. H₀ assumes there is no trend in the data, whereas Hassumes either a positive or negative trend. Two different tests were ran to test for positive or negative trends. This table reports the test with the lowest p-value.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as upgradient, to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan. To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All but one of these preliminary Type 2 exceedances in downgradient wells—sulfate in MW370—did not have an increasing trend and are considered to be Type 1 exceedances (not attributable to the landfill).

The Mann-Kendall statistical test indicates that there is an increasing trend of sulfate in MW370 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, this is considered a Type 2 exceedance (source unknown). The source of the trend is believed to be unrelated to the C-746-S&T Landfills because the shallower, collocated (URGA) well, MW369, does not exceed the historical UTL for sulfate. In addition, the source of sulfate in this well may be associated with non-landfill alternative sources that simultaneously could increase sulfate, dissolved solids, specific conductivity, calcium, or magnesium—all of which have similar concentration fluctuations over the past eight quarters.

In accordance with Permit Condition GSTR0003, Variance 2, of the Solid Waste Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the Permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS well MW390 with a technetium-99 value that exceeds both the historical and current backgrounds (Table 5). Because this well is not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T sources and is considered to be a Type 1 exceedance.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells

UCRS
MW390: Technetium-99

All MCL and UTL exceedances, except for sulfate in MW370, reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills. The increasing trend for sulfate in MW370 does not appear to be landfill-related, given the data collected to date, the location of the well relative to the C-746-S&T Landfills, and the groundwater flow direction. Sulfate in MW370 will continue to be evaluated in the context of this observation.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the second quarter 2017 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the respective Kentucky solid waste facility MCL found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both the upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389***	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396**	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	, 10
	MW387	
	MW391	
	MW394 (upgradient)	

^{*}A map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 25 parameters, including those with MCLs, required statistical analysis in the UCRS. During the second quarter, oxidation-reduction potential and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Technetium-99 exceeded the current background UTL and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the URGA. During the second quarter, beta activity, calcium, carbon disulfide, chemical oxygen demand, dissolved solids, magnesium, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, carbon disulfide, dissolved solids, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

^{**}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^{***}MW389 had insufficient water to permit a water sample for laboratory analysis.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the LRGA. During the second quarter, beta activity, calcium, conductivity, dissolved solids, oxidation-reduction potential, radium-226, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices, and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills

Second Quarter Calendar Year 2017 (April–June)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FPDP-RPT-0088/V2)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

Registros Profession for Profession

Kenneth R. Davis

PG113927

13

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and KY-073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Paducal	n Gaseous Diffu on on DWM Permit		Activity:	C-746-S&T Landfills
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Un	it No:	Quarter & Yea	2nd Qtr. CY 2017
Please check the	e following as applicabl	'e:			
Characte	erization X Qu	arterly	_ Semiannual	Annua	Assessment
Please check ap	plicable submittal(s):	X Gr	oundwater	X	Surface Water
		Le	eachate	X	Methane Monitoring
jurisdiction of the lab rours of making the lab report is pages. I certify under per accordance with a Based on my inquired best of my knowled.	Division of Waste Manage the determination using HOT considered notification alty of law that the docsystem designed to assure the person or personal control of the person of the person or personal control of the person	ement. You must statistical analys on. Instructions for the sument and all at the that qualified post directly responsite, and complete.	report any indicates, direct comparisor completing the financial for completing the financial for completing the financial for completing in I am aware that the	tion of contamina son, or other sime form are attached. It epared under my ather and evaluate formation, the informetion are significant p	e water monitoring under the ation within forty-eight (48) ilar techniques. Submitting Do not submit the instruction direction or supervision in the information submitted. Formation submitted is, to the enalties for submitting false
Myrna E. Redfi	eld, Director			~~~~	391 (7 Date
Environmental l Fluor Federal So	-				
Jennifer Wooda V.S. Departmen	Woodard rd, Paducah Site Lead at of Energy	i		_9	29 17 Date

APPENDIX B FACILITY INFORMATION SHEET



FACILITY INFORMATION SHEET

Sampling Date: Facility Name: Site Address: Phone No:	Groundwater: April 201 Surface Water: April and Methane: June 2017 U.S. DOE—Paducah Ga: (As of 5501 Hobbs Road Street (270) 441-6800	d May 2017	unt	McCracken	Permit Nos Longitude:	SW07300014, SW07300015, SW07300045 42053 Zip W 88° 47' 55.41"
		OWNER 1	NFORMATION			
Facility Owner: Contact Person:	U.S. DOE, Robert E. Edd				Phone No:	(859) 227-5020 (270) 441-5113
Contact Person Ti Mailing Address:	Director, Environi 5511 Hobbs Road Street		t, Fluor Federal Se Kevil, Kentucky City/State			42053 Zip
	(IF C	SAMPLIN OTHER THAN LA	G PERSONNEL	ORATORY)		
Company:	GEO Consultants, LLC	2				
Contact Person: Mailing Address:	Sam Martin 199 Kentucky Avenue Street		Kevil, Kentucky	7	Phone No:	(270) 441-6755 42053 Zip
		LABORAT	ORY RECORD #	1		•
Laboratory:	GEL Laboratories, LLO	C	L	ab ID No: K	XY90129	
Contact Person:	Valerie Davis				Phone No:	(843) 769-7391
Mailing Address:	2040 Savage Road	Ch	arleston, South Ca	rolina		29407
	Street		City/State			Zip
		LABORAT	ORY RECORD #	2		
Laboratory:	N/A			Lab ID No:	N/A	
Contact Person:	N/A				Phone No:	N/A
Mailing Address:	N/A					
	Street		City/State			Zip
		LABORAT	ORY RECORD #	3		
Laboratory:	N/A			Lab ID No:	N/A	
Contact Person:	N/A				Phone No:	N/A
Mailing Address:	N/A					
-	Street		City/State			Zip

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8000-520 ⁻	1	8000-52	202	8000-52	42	8000-524	43		
Facility's Loc	al Well or Spring Number (e.g., 1	MW−1	, MW-2, etc	.)	220		221		222		223	
Sample Sequenc	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		4/19/2017 10):59	4/20/2017	12:08	4/19/2017	09:16	4/19/2017 (08:30
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW220SG3	-17	MW221S0	G3-17	MW222S0	93-17	MW223SG	3-17
Laboratory Sam	uple ID Number (if applicable)		42112500	3	421278	005	4211250	005	4211250	01		
Date of Analys	is (Month/Day/Year) For Volatile	ysis	4/25/2017	•	4/25/20	17	4/25/20	17	4/24/201	17		
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	respect to Monitored Unit (UP, DO CONSTITUENT		Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.217		0.421		0.446		0.384	
16887-00-6	Chloride(s)	т	mg/L	9056	20.8		32.4		31.5		27.5	
16984-48-8							0.195		0.303		0.221	
s0595	0595 Nitrate & Nitrite T mg/L			9056	1.01		0.987		0.883		0.918	
14808-79-8	Sulfate	Т	mg/L	9056	19.9		14.8		12.4		22.1	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.99		30.04		29.97		29.96	
s0145	Specific Conductance	Т	μ MH0/cm	Field	350		403		366		405	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	2	8000-5243	
Facility's Loc	cal Well or Spring Number (e.g., MW	I-1, 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	325.16		325.36		325.14		325.21	
N238	Dissolved Oxygen	т	mg/L	Field	4.35		4.18		3.35		3.11	
s0266	Total Dissolved Solids	Т	mg/L	160.1	193		213		213		229	
s0296	рН	Т	Units	Field	6.26		6.16		6.26		6.07	
NS215	Eh	Т	mV	Field	283		310		289		313	
s0907	Temperature	Т	°C	Field	17.28		20.06		17.72		17.44	
7429-90-5	Aluminum	Т	mg/L	6020	0.0372	J	<0.05		0.039	J	<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.203		0.215		0.299		0.246	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.00813	J	0.0133	J	0.00963	J	0.00789	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	20.8		22.5		19.5		24	
7440-47-3	Chromium	Т	mg/L	6020	0.00856	J	0.0137		<0.01		0.0189	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00116		0.00073	J	<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000688	J	0.00102		0.000535	J	0.000495	J
7439-89-6	Iron	т	mg/L	6020	0.0833	J	0.0547	J	0.0711	J	<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	9.11	*	9.51		9.24	*	10.4	*
7439-96-5	Manganese	т	mg/L	6020	0.0011	J	0.00349	J	0.0132		0.00125	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8000-520	01	8000-52	02	8000-524	42	8000-52	43
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.00106		0.00558	В	0.000305	J	0.00439	
7440-02-0	Nickel	Т	mg/L	6020	0.0202	В	0.116	В	0.15	В	0.154	В
7440-09-7	Potassium	Т	mg/L	6020	1.64		1.36		0.542		1.25	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	41.4		45.8		47.4		48.9	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005	*	<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520)2	8000-52	242	8000-52	243
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	, MW-2, et	c.)	220		221		222		223	j
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00048	J	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number			8000-520	1	8000-5202	2	8000-524	12	8000-52	43	
Facility's Lo	cal Well or Spring Number (e.g., 1	/W−1	L, MW-2, et	:c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.00002		<0.0000196		<0.0000197		<0.00002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.1		<0.0952		<0.1		<0.099	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.1		<0.0952		<0.1		<0.099	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.1		<0.0952		<0.1		<0.099	
11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.0952		<0.1		<0.099	
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.0952		<0.1		<0.099	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.1		<0.0952		<0.1		<0.099	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-5201		8000-5202	2	8000-524	2	8000-524	13
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.1		<0.0952		<0.1		<0.099	
11096-82-5	PCB-1260	т	ug/L	8082	<0.1		<0.0952		<0.1		<0.099	
11100-14-4	PCB-1268	т	ug/L	8082	<0.1		<0.0952		<0.1		<0.099	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.07	*	-0.254	*	-0.399	*	0.791	*
12587-47-2	Gross Beta	Т	pCi/L	9310	20.1	*	9.77	*	8.74	*	7.18	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.178	*	0.203	*	0.296	*	0.268	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.03	*	-0.315	*	-0.178	*	0.399	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	20.7	*	16	*	9.72	*	-0.985	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.0452	*	0.31	*	-0.063	*	0.00926	*
10028-17-8	Tritium	Т	pCi/L	906.0	13	*	-18.6	*	140	*	145	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	24		33.3		36.2		21.9	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.871	J	1.05	BJ	0.814	J	1.08	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00392	J	0.00418	J	<0.01		0.00346	J

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	4	8004-48	320	8004-48	18	8004-480	08
Facility's Loc	al Well or Spring Number (e.g., 1	ww−1	., MW-2, etc	.)	224		369		370		372	
Sample Sequence	e #				1		1		1		1	
If sample is a F	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/19/2017 10):13	4/18/2017	07:50	4/18/2017	09:09	4/18/2017 (9:52
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW224SG3	-17	MW369U0	G3-17	MW370U0	33-17	MW372UG	3-17
Laboratory Sam	uple ID Number (if applicable)		42112500	7	420977	003	4209770	005	4209770	09		
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analysis					,	4/20/20	17	4/20/20	17	4/20/201	7
Gradient with	respect to Monitored Unit (UP, Do	, NWC	SIDE, UNKN	OWN)	SIDE		DOW	N	DOWI	٧	DOWN	I
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.425		0.405		0.462		0.63	
16887-00-6	Chloride(s)	Т	mg/L	9056	30.8		35		36.4		48	
16984-48-8							0.214		0.178		0.183	
s0595	0595 Nitrate & Nitrite T mg/L		mg/L	9056	0.888		<0.1		1.19		<0.1	
14808-79-8	Sulfate	Т	mg/L	9056	13.8		5.59		20.8		73.2	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.98		30.1		30.11		30.11	
s0145	Specific Conductance	T	μ MH0/cm	Field	426		437		450		596	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.17		324.71		324.5		324.74	
N238	Dissolved Oxygen	т	mg/L	Field	2.97		2.03		3.99		1.51	
s0266	Total Dissolved Solids	т	mg/L	160.1	246		216		207		317	
s0296	Нд	т	Units	Field	6.29		6.01		6.31		6.25	
NS215	Eh	т	mV	Field	290		271		278		256	
s0907	Temperature	т	°C	Field	18.17		16.11		16.22		16.61	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0672		<0.05		0.0242	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.005	J	0.00214	J	0.00247	J
7440-39-3	Barium	т	mg/L	6020	0.232		0.464		0.205		0.0503	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0152		0.0168		0.0339		0.827	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	24.5		17.3		27.6		48.7	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.000512	J	0.0609		0.000355	J	0.000656	J
7440-50-8	Copper	Т	mg/L	6020	0.000358	J	0.00133	*	0.000434	J*	0.000318	J*
7439-89-6	Iron	т	mg/L	6020	0.0496	J	2.03		<0.1		0.647	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.6	*	7.2		11.7		18.1	
7439-96-5	Manganese	Т	mg/L	6020	0.0074		0.783		0.00255	J	0.0165	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		0.000112	J	<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	08
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	0.000632		0.00043	BJ	0.000322	BJ	0.000736	В
7440-02-0	Nickel	Т	mg/L	6020	0.0137	В	0.00947	В	0.00142	BJ	0.0014	BJ
7440-09-7	Potassium	Т	mg/L	6020	0.873		0.462		2.43		2.12	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	59.3		62		42.8		48	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		0.00538	J	<0.01		0.00389	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	20	8004-48	318	8004-48	308
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		0.00391		0.00188		0.00618	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	4	8004-4820)	8004-481	18	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., M	1 W−1	1, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000199		<0.0000197	*	<0.0000198	*	<0.0000197	*
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.1		0.0652	J	<0.099		<0.0952	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.1		<0.098		<0.099		<0.0952	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.1		<0.098		<0.099		<0.0952	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.1		<0.098		<0.099		<0.0952	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		0.0652	J	<0.099		<0.0952	
12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.098		<0.099		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244		8004-4820		8004-481	8	8004-480	8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.098		<0.099		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082	<0.1		<0.098		<0.099		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082	<0.1		<0.098		<0.099		<0.0952	
12587-46-1	Gross Alpha	т	pCi/L	9310	1.63	*	-1.02	*	1.55	*	1.53	*
12587-47-2	Gross Beta	т	pCi/L	9310	6.59	*	9.12	*	65.7	*	8.69	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.343	*	0.379	*	0.875	*	0.205	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.118	*	-0.342	*	3.37	*	1.96	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-2.54	*	9.22	*	99.1	*	9.55	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.0996	*	0.679	*	0.762	*	0.298	*
10028-17-8	Tritium	Т	pCi/L	906.0	106	*	30.1	*	44.4	*	75.9	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	28.1		<20		<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.978	J	2.17		1.1	J	1.26	J
s0586	Total Organic Halides	Т	mg/L	9020	<0.01		0.0445		0.0118		0.0119	
		\perp										<u> </u>
		+										-
		+										

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-48	309	8004-48	10	8004-480)4
Facility's Loca	al Well or Spring Number (e.g., D	1W−1	, MW-2, etc	.)	373		384		385		386	
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		4/18/2017 12	2:16	4/20/2017	10:41	4/20/2017	09:57	4/20/2017 0	9:12
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				MW373UG3	-17	MW384S0	G3-17	MW385S0	€3-17	MW386SG	3-17
Laboratory Samp	aboratory Sample ID Number (if applicable)					1	421278	007	4212780	009	4212780	11
Date of Analys:	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					,	4/27/20	17	4/27/20	17	4/27/201	7
Gradient with	radient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)						SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.625		0.413		0.264		0.146	J
16887-00-6	Chloride(s)	т	mg/L	9056	48.3		41.2		33		14	
16984-48-8	Fluoride	т	mg/L	9056	0.2		0.232		0.145		0.64	
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.17		1.16		0.896		0.0886	J
14808-79-8	Sulfate	т	mg/L	9056	106		20.9		22.3		46.2	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.09		30.06		30.06		30.06	
s0145	Specific Conductance	Т	μ M H0/cm	Field	708		492		415		597	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

 $^{^{6}}$ "<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-479	2	8004-480	9	8004-4810)	8004-4804		
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.73		324.94		324.88		346.16	
N238	Dissolved Oxygen	T	mg/L	Field	2.87		3.47		2.47		3.72	
s0266	Total Dissolved Solids	T	mg/L	160.1	393		257		230		361	
s0296	Нд	Т	Units	Field	6.21		6.19		6.17		6.85	
NS215	Eh	Т	mV	Field	260		315		300		309	
s0907	Temperature	т	°C	Field	19.28		17.67		18.72		18.22	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0195	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		0.00219	BJ
7440-39-3	Barium	Т	mg/L	6020	0.0257		0.129		0.205		0.137	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.725		0.0159		0.0165		0.00585	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	58.1		28.6		25.9		21.2	
7440-47-3	Chromium	T	mg/L	6020	<0.01		0.00473	J	<0.01		<0.01	
7440-48-4	Cobalt	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000485	J*	0.000407	J	0.0005	J	0.00073	J
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.0436	J	<0.1		0.0439	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	20.8		11.1		9.1		8.92	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.00182	J	0.00155	J	0.00951	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMB	ER ¹ ,	Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's	Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	373		384		385		386	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	Т	mg/L	6020	0.000265	BJ	0.000293	BJ	0.000244	BJ	0.000653	В
7440-02-0		Nickel	Т	mg/L	6020	0.00121	BJ	0.00126	BJ	0.00131	BJ	0.00106	BJ
7440-09-7		Potassium	Т	mg/L	6020	2.46		1.18		1.67		0.312	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		0.00241	J	<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6020	50.5		59		45.8		105	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005	*	<0.005	*	<0.005	*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		0.000118	J
7440-62-2		Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		0.00383	BJ
7440-66-6		Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-479	2	8004-480	09	8004-48	310	8004-4	804
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	373		384		385		386	;
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	0.00732		<0.001		0.00038	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809	9	8004-481	10	8004-480	04
Facility's Loc	al Well or Spring Number (e.g., M	1 W−1	1, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000199	*	<0.0000201		<0.0000198		<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0971		<0.0962		<0.0943		<0.0971	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0971		<0.0962		<0.0943		<0.0971	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0971		<0.0962		<0.0943		<0.0971	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0971		<0.0962		<0.0943		<0.0971	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0971		<0.0962		<0.0943		<0.0971	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0971		<0.0962		<0.0943		<0.0971	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-4809)	8004-481	0	8004-480)4
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0971		<0.0962		<0.0943		<0.0971	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0971		<0.0962		<0.0943		<0.0971	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0971		<0.0962		<0.0943		<0.0971	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.00084	*	-1.49	*	3.01	*	0.931	*
12587-47-2	Gross Beta	Т	pCi/L	9310	14.6	*	123	*	126	*	-0.056	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.329	*	0.429	*	0.707	*	0.212	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.67	*	1.82	*	2.81	*	-0.621	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	26.8	*	155	*	188	*	1.85	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	1.97	*	0.432	*	0.0424	*	0.442	*
10028-17-8	Tritium	Т	pCi/L	906.0	50.3	*	104	*	-13.2	*	62.9	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		17.8	J	<20		12.6	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.12	J	1.24	BJ	1.18	BJ	4.47	В
s0586	Total Organic Halides	Т	mg/L	9020	0.00942	J	0.0063	J	0.0049	J	0.127	

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Frankfort, KY 40601 (502)564-6716

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	5	8004-48	16	8004-48	12	8004-481	1
Facility's Loc	al Well or Spring Number (e.g.,	MW-1	L, MW-2, etc	:.)	387		388		389		390	
Sample Sequence	e #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	ites)		4/20/2017 08	3:30	4/20/2017	07:47	NA		4/20/2017 07	7:00
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW387SG3	-17	MW388S0	€3-17	NA		MW390SG3	3-17
Laboratory Sam	ple ID Number (if applicable)				42127801	3	4212780	015	NA		42127800)1
Date of Analys	e of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					7	4/27/20	17	NA		4/24/2017	7
Gradient with	lient with respect to Monitored Unit (UP,			IOWN)	DOWN		DOW	V	DOW	7	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.569		0.319			*	0.499	
16887-00-6	Chloride(s)	Т	mg/L	9056	48.2		33.8			*	45.8	
16984-48-8	Fluoride	Т	mg/L	9056	0.475		0.242			*	0.277	
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.99		1.06			*	2.09	
14808-79-8	Sulfate	Т	mg/L	9056	20.5		23.7			*	32.1	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.07		30.07			*	30.07	
s0145	Specific Conductance	Т	μ MH0/cm	Field	518		431			*	678	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved ⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

	·				1 00110	<u> </u>						
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.04		324.97			*	324.97	
N238	Dissolved Oxygen	т	mg/L	Field	3.37		4.41			*	4.12	
s0266	Total Dissolved Solids	Т	mg/L	160.1	277		240			*	383	
s0296	рн	т	Units	Field	6.14		6.09			*	6.12	
NS215	Eh	т	mV	Field	315		320			*	336	
s0907	Temperature	Т	°C	Field	17.61		17.06			*	17	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0232	J		*	0.0457	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	0.00295	BJ	0.00209	BJ		*	0.00203	BJ
7440-39-3	Barium	т	mg/L	6020	0.147		0.174			*	0.263	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0232		0.0204			*	0.0163	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	32.7		25.9			*	32.1	
7440-47-3	Chromium	т	mg/L	6020	0.00339	J	<0.01			*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00034	J	0.000402	J		*	0.000758	J
7439-89-6	Iron	т	mg/L	6020	0.0529	J	0.069	J		*	0.046	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	12.9		10.9			*	13.1	
7439-96-5	Manganese	Т	mg/L	6020	0.00344	J	0.00102	J		*	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		_	*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-48	15	8004-48	16	8004-48	12	8004-4811	
Facility's	Local Well or Spring Number (e.g.	, MW-	·1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.000217	BJ		*	0.000407	BJ
7440-02-0	Nickel	Т	mg/L	6020	0.00106	BJ	0.00149	BJ		*	0.00181	BJ
7440-09-7	Potassium	T	mg/L	6020	1.32		1.88			*	0.375	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	T	mg/L	6020	55.7		47.1			*	102	
7440-25-7	Tantalum	T	mg/L	6020	<0.005	*	<0.005	*		*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	0.00024	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		0.00381	J		*	<0.01	
108-05-4	Vinyl acetate	T	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	T	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	T	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	T	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	T	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	T	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	T	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	T	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-481	5	8004-48	16	8004-48	312	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	0.0152		<0.005			*	<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	0.00073	J	0.0005	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-4816	3	8004-48	12	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g., M	1 W−1	1, MW-2, et	:c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.00002		<0.0000198			*	<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0971		<0.0943			*	<0.098	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0971		<0.0943			*	<0.098	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0971		<0.0943			*	<0.098	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0971		<0.0943			*	<0.098	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0971		<0.0943			*	<0.098	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0971		<0.0943			*	<0.098	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815		8004-4816	6	8004-481	2	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0971		<0.0943			*	<0.098	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0971		<0.0943			*	<0.098	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0971		<0.0943			*	<0.098	
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.49	*	-2.09	*		*	-0.182	*
12587-47-2	Gross Beta	Т	pCi/L	9310	232	*	114	*		*	49.9	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.157	*	0.803	*		*	0.345	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.628	*	-1.92	*		*	2.66	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	314	*	172	*		*	70.9	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.556	*	0.0657	*		*	0.311	*
10028-17-8	Tritium	Т	pCi/L	906.0	129	*	148	*		*	39.6	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	10.9	J	10.9	J		*	17.8	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.29	BJ	1.16	BJ		*	0.896	BJ
s0586	Total Organic Halides	Т	mg/L	9020	0.0389		0.00994	J		*	0.00996	J

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-48	306	8004-48	07	8004-480	02
Facility's Loc	cal Well or Spring Number (e.g., 1	/W−1	, MW-2, etc	•)	391		392		393		394	
Sample Sequence	e #				1		1		1		1	
If sample is a F	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)						4/20/2017	07:45	4/20/2017	08:27	4/20/2017 0	09:53
Duplicate ("Y"	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or	Split ("Y" or "N") ³						N		N		N	
Facility Sampl	Facility Sample ID Number (if applicable)						MW392S0	G3-17	MW393S0	€3-17	MW394SG	3-17
Laboratory Sam	mple ID Number (if applicable)				42128200	1	421278	017	4212780	019	42128200	
Date of Analys	sis (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	4/27/2017	7	4/27/2017		4/27/2017		4/25/201	
Gradient with	respect to Monitored Unit (UP, Do	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	N	DOWI	٧	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.539		0.604		0.173	J	0.602	
16887-00-6	Chloride(s)	Т	mg/L	9056	41.6		51.4		13.6		51.9	
16984-48-8	16984-48-8 Fluoride T mg/L 9056				0.171		0.21		0.185		0.166	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.868		0.498		<0.1		1.6	
14808-79-8	Sulfate	Т	mg/L	9056	61.4		6.89		19		10.5	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.99		29.99		29.99		29.99	
s0145	Specific Conductance T µMH0/cm Fie.				488		409		448		391	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807	,	8004-4802	
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	324.85		324.83		339.49		324.91	
N238	Dissolved Oxygen	Т	mg/L	Field	3.17		2.88		2.45		5.2	
s0266	Total Dissolved Solids	Т	mg/L	160.1	271		207		276		203	
s0296	рн	Т	Units	Field	6.23		6.23		6.3		6.1	
NS215	Eh	Т	mV	Field	242		319		211		306	
s0907	Temperature	т	°C	Field	16.78		16.33		16.72		17.61	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0288	J	0.0499	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00522	В	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.152		0.199		0.133		0.267	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.176		0.0279		0.0221		0.0259	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	35.2		28.4		14.2		27.9	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00041	J	0.000511	J	0.00118		0.000463	J
7439-89-6	Iron	Т	mg/L	6020	0.0649	J	0.0859	J	1.9		0.0432	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	14.7		10.1		4.12		11.6	
7439-96-5	Manganese	Т	mg/L	6020	0.00216	J	0.051		0.054		0.00223	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-480	05	8004-48	06	8004-480	07	8004-48	02
Facility's	Local Well or Spring Number (e.g.	, MW-	·1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.000373	BJ	0.000548	В	0.000233	BJ
7440-02-0	Nickel	Т	mg/L	6020	0.00106	BJ	0.00173	BJ	0.000825	BJ	0.00395	В
7440-09-7	Potassium	Т	mg/L	6020	1.75		1.88		0.503		1.48	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	40.2		36.2		91.5		30.7	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		0.00587	BJ	<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	T	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-480	5	8004-480	06	8004-48	307	8004-48	302	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	391		392		393		394	
CAS RN⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		0.00075	J	<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	0.00725		0.0131		<0.001		0.00342	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	3	8004-480)7	8004-480	02
Facility's Loc	al Well or Spring Number (e.g., M	1 W−1	1, MW-2, et	:c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000197		<0.0000197		<0.0000198		<0.0000195	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.103	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.103	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.103	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.103	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.103	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.103	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4805		8004-4806	6	8004-480	7	8004-480)2
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.103	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.103	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.103	
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.988	*	2.21	*	0.416	*	1.91	*
12587-47-2	Gross Beta	Т	pCi/L	9310	6.73	*	4.7	*	2.12	*	9.09	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.28	*	0.916	*	0.242	*	0.0524	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.03	*	2.29	*	2.55	*	1.93	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	1.26	*	3.2	*	-0.958	*	7.82	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.188	*	0.338	*	0.0719	*	0.128	*
10028-17-8	Tritium	Т	pCi/L	906.0	96.9	*	19.2	*	36.8	*	108	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		19.5	J	26.4		16.1	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.05	BJ	1.18	BJ	2.91	В	0.937	BJ
s0586	Total Organic Halides	Т	mg/L	9020	0.00978	J	0.0269		0.0191		0.0058	J

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

Frankfort, KY 40601 (502)564-6716

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480°	1	8004-48	303	8004-48	17	0000-000)0
Facility's Loc	al Well or Spring Number (e.g., N	ſW−1	L, MW-2, etc	·)	395		396		397		E. BLAN	K
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)∈	ethod, or (E)	quipment	NA		NA		NA		Е	
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)						4/20/2017 10:29		4/20/2017	13:24	4/20/2017 0	6:05
Duplicate ("Y"	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or	Split ("Y" or "N") ³						N		N		N	
Facility Sampl	Facility Sample ID Number (if applicable)						MW396SG3-17		MW397SG3-17		RI1SG3-1	17
Laboratory Sam	ple ID Number (if applicable)		421282005		421282007		421282009		42128201	12		
Date of Analys	is (Month/Day/Year) For Volatile	e Or	ganics Anal	4/25/2017		4/25/2017		4/25/2017		4/25/201	7	
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN,				UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.603		1.24		0.438			*
16887-00-6	Chloride(s)	т	mg/L	9056	51.6		78.2		35.5			*
16984-48-8	Fluoride	т	mg/L	9056	0.161		0.523		0.158			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.61		<0.1		1.3			*
14808-79-8	Sulfate	т	mg/L	9056	10.4		23.3		9.7			*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.99		29.99		30.03			*
s0145	Specific Conductance	т	μ MHO /cm	Field	392		772	_	320		_	*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	,	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., MW	J-1, 1	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.28		371.41		324.9			*
N238	Dissolved Oxygen	т	mg/L	Field	3.05		2.04		5.14			*
s0266	Total Dissolved Solids	т	mg/L	160.1	204		431		180			*
s0296	рн	т	Units	Field	6.22		6.45		6.1			*
NS215	Eh	т	mV	Field	190		172		282			*
s0907	Temperature	т	°C	Field	17.56		17.28		19.83			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		0.046	J	<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.264		0.402		0.157		<0.002	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0261		0.00855	٦	0.00915	J	<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	28.2		39.1		18.2		<0.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.0024		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000442	J	0.000371	J	0.00058	J	<0.001	
7439-89-6	Iron	т	mg/L	6020	0.0355	J	1		0.0802	J	<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	11.6		17.2		7.83		<0.03	
7439-96-5	Manganese	Т	mg/L	6020	0.00119	J	0.441		0.00219	J	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUM	BER ¹ ,	Facility Well/Spring Number				8004-480	01	8004-48	03	8004-4817		0000-00	00
Facility'	s Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	395		396		397		E. BLAN	١K
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7		Molybdenum	Т	mg/L	6020	0.000394	BJ	0.000534	В	<0.0005		<0.0005	
7440-02-0		Nickel	т	mg/L	6020	0.00191	BJ	0.00477	В	0.00143	BJ	0.000744	BJ
7440-09-7		Potassium	т	mg/L	6020	1.67		0.869		1.66		<0.3	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6020	31		109		33.9		<0.25	
7440-25-7		Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	T	mg/L	6020	<0.0002		0.000092	J	<0.0002		<0.0002	
7440-62-2	1	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6		Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4		Vinyl acetate	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	T	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	03	8004-48	317	0000-00	000
Facility's Lo	cility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) CAS RN ⁴ CONSTITUENT T Unit M				395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0031		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

A	KGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-481	17	0000-000	00
F	acility's Loca	al Well or Spring Number (e.g., N	ſW−1	L, MW-2, et	:c.)	395		396		397		E. BLAN	K
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
1	00-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
5	91-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
7	4-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1	24-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
5	6-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
7	5-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1	08-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
و آڏ	5-12-8	Propane, 1,2-Dibromo-3-chloro	T	mg/L	8011	<0.0000197		<0.0000197		<0.0000198		<0.0000196	
7	8-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1	0061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1	0061-01-5	cis-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1	56-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
7.	5-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
9	5-18-4	1,2,3-Trichloropropane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
9	5-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1	06-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1	336-36-3	PCB,Total	Т	ug/L	8082	<0.1		<0.0943		<0.0962		<0.0962	
1	2674-11-2	PCB-1016	т	ug/L	8082	<0.1		<0.0943		<0.0962		<0.0962	
1	1104-28-2	PCB-1221	Т	ug/L	8082	<0.1		<0.0943		<0.0962		<0.0962	
1	1141-16-5	PCB-1232	Т	ug/L	8082	<0.1		<0.0943		<0.0962		<0.0962	
5	3469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.0943		<0.0962		<0.0962	
1	2672-29-6	PCB-1248	Т	ug/L	8082	<0.1		<0.0943		<0.0962		<0.0962	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4801		8004-4803		8004-481	7	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	395		396		397		E. BLAN	К
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.0943		<0.0962		<0.0962	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.1		<0.0943		<0.0962		<0.0962	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.1		<0.0943		<0.0962		<0.0962	
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.31	*	2.49	*	2.68	*	0.402	*
12587-47-2	Gross Beta	Т	pCi/L	9310	7.61	*	0.34	*	12.1	*	0.13	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.198	*	0.232	*	0.41	*	0.29	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	1.55	*	-0.0185	*	1.66	*	-0.244	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	9.95	*	-7.44	*	14.9	*	7.34	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.0731	*	0.0909	*	-0.0376	*	0.377	*
10028-17-8	Tritium	Т	pCi/L	906.0	80.1	*	-67.9	*	70.4	*	90.6	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	12.6	J	36.8		9.17	J		*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		0.758		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.944	BJ	5.76		0.813	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.00536	J	0.0488		0.0158			*

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

For Official Use Only

Frankfort, KY 40601 (502)564-6716

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000)0
Facility's Loc	al Well or Spring Number (e.g., N	1W−1	L, MW-2, etc	:.)	F. BLAN	K	T. BLAN	K 1	T. BLANK	(2	T. BLANK	(3
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	F		Т		Т		Т	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		4/20/2017 1	2:10	4/19/2017 (07:30	4/20/2017 0	6:00	4/20/2017 0	6:30
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				FB1SG3-	17	TB1SG3	-17	TB2SG3-	17	TB3SG3-	17
Laboratory Sam	ple ID Number (if applicable)				4212820°	11	4211250	09	4212820	13	42128201	14
Date of Analys	is (Month/Day/Year) For <u>Volatile</u>	e Or	rganics Anal	ysis	4/26/201	7	4/24/20	17	4/25/201	7	4/25/201	7
Gradient with	respect to Monitored Unit (UP, DO	NWC	, SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	μMH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-F	', etc.)	F. BLAN	<	T. BLANK	1	T. BLANK	2	T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	НФ	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	Т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	Т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	Т	mg/L	6020	<0.002			*		*		*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	Т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	Т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	Т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	Т	mg/L	6020	<0.001			*		*		*
7439-89-6	Iron	Т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	Т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	Т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	Т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	0000-00	00	0000-00	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	F. BLAN	1K	T. BLAN	K 1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	Т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	Т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*		*		*		*
7440-28-0	Thallium	Т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	Т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	Т	mg/L	6020	0.00419	BJ		*		*		*
7440-66-6	Zinc	Т	mg/L	6020	<0.01			*		*		*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005	*	<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			0000-000	0	0000-000	00	0000-00	000	0000-0	000
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	F. BLAN	<	T. BLAN	< 1	T. BLAN	NK 2	T. BLAN	VK 3
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g., M	IW-1	L, MW-2, et	c.)	F. BLAN	(T. BLANK	1	T. BLAN	< 2	T. BLAN	К 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005	*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000194		<0.0000197		<0.0000196		<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0971			*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0971			*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0971			*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0971			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0971			*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0971			*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	0	0000-0000		0000-0000)	0000-000	0
Facility's Loc	cal Well or Spring Number (e.g.,)	MW-1	1, MW-2, et	:c.)	F. BLAN	(T. BLANK 1		T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0971			*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0971			*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0971			*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.5	*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	0.695	*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	AN-1418	0.206	*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.0123	*		*		*		*
14133-76-7	Technetium-99	T	pCi/L	Tc-02-RC	1.04	*		*		*		*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	0.355	*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0	87.7	*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5			*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

GROUNDWATER SAMPLE ANALYSIS (S)

-					-		*					
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5202	2						
Facility's Loca	al Well or Spring Number (e.g., M	w−1	, MW-2, etc	.)	221							
Sample Sequence	e #				2							
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)∈	thod, or (E)	quipment	NA							
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		4/20/2017 12	2:08						
Duplicate ("Y"	or "N") ²				Υ							
Split ("Y" or	"N") ³				N							
Facility Sample	cility Sample ID Number (if applicable)									/		
Laboratory Samp	aboratory Sample ID Number (if applicable)					3						
Date of Analys:	ate of Analysis (Month/Day/Year) For Volatile Organics Analysis					7				/		
Gradient with	ate of Analysis (Month/Day/Year) For Volatile Organic				SIDE				X			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.417							
16887-00-6	Chloride(s)	т	mg/L	9056	32							
16984-48-8	Fluoride	т	mg/L	9056	0.179							
s0595	Nitrate & Nitrite	т	mg/L	9056	0.989							
14808-79-8	Sulfate	Т	mg/L	9056	14.9							
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.04							
s0145	Specific Conductance	т	μ MH0/cm	Field	403							

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

	Facility Well/Spring Number				8000-520		<u> </u>					
	cal Well or Spring Number (e.g., M	I-1, I	MW-2, BLANK-	F, etc.)	221							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DENECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.36							
N238	Dissolved Oxygen	Т	mg/L	Field	4.18							
s0266	Total Dissolved Solids	Т	mg/L	160.1	213							
s0296	рн	Т	Units	Field	6.16						/	
NS215	Eh	Т	mV	Field	310							
s0907	Temperature	Т	°C	Field	20.06							
7429-90-5	Aluminum	Т	mg/L	6020	<0.05							
7440-36-0	Antimony	Т	mg/L	6020	<0.003							
7440-38-2	Arsenic	Т	mg/L	6020	<0.005				X			
7440-39-3	Barium	Т	mg/L	6020	0.217							
7440-41-7	Beryllium	т	mg/L	6020	<0.0005							
7440-42-8	Boron	т	mg/L	6020	0.0131	J						
7440-43-9	Cadmium	Т	mg/L	6020	<0.001							
7440-70-2	Calcium	Т	mg/L	6020	21.9							
7440-47-3	Chromium	Т	mg/L	6020	0.0149							
7440-48-4	Cobalt	Т	mg/L	6020	0.00124							
7440-50-8	Copper	т	mg/L	6020	0.00252							
7439-89-6	Iron	Т	mg/L	6020	0.0649	J						
7439-92-1	Lead	т	mg/L	6020	<0.002							
7439-95-4	Magnesium	т	mg/L	6020	9.6							
7439-96-5	Manganese	т	mg/L	6020	0.00374	J						
7439-97-6	Mercury	Т	mg/L	7470	<0.0002							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	02	<u> </u>					
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	221							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	0.00578	В						
7440-02-0	Nickel	Т	mg/L	6020	0.12	В						
7440-09-7	Potassium	Т	mg/L	6020	1.38							
7440-16-6	Rhodium	Т	mg/L	6020	<0.005						/	
7782-49-2	Selenium	Т	mg/L	6020	<0.005							
7440-22-4	Silver	Т	mg/L	6020	<0.001							
7440-23-5	Sodium	Т	mg/L	6020	46.9					/		
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*						
7440-28-0	Thallium	Т	mg/L	6020	<0.002				Х			
7440-61-1	Uranium	Т	mg/L	6020	<0.0002							
7440-62-2	Vanadium	Т	mg/L	6020	<0.01							
7440-66-6	Zinc	Т	mg/L	6020	<0.01							
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005							
67-64-1	Acetone	Т	mg/L	8260	<0.005			/				
107-02-8	Acrolein	Т	mg/L	8260	<0.005							
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005							
71-43-2	Benzene	Т	mg/L	8260	<0.001							
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001							
1330-20-7	Xylenes	Т	mg/L	8260	<0.003							
100-42-5	Styrene	Т	mg/L	8260	<0.001							
108-88-3	Toluene	Т	mg/L	8260	<0.001							
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8000-520	2	\setminus					
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	221							$\overline{\mathcal{L}}$
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DE RECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001							
75-25-2	Tribromomethane	T mg/L	8260	<0.001		'					
74-83-9	Methyl bromide	T mg/L	8260	<0.001							
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005						/	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005					/		
75-15-0	Carbon disulfide	T mg/L	8260	<0.005							
75-00-3	Chloroethane	T mg/L	8260	<0.001							
67-66-3	Chloroform	T mg/L	8260	<0.001							
74-87-3	Methyl chloride	T mg/L	8260	<0.001				X			
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001							
74-95-3	Methylene bromide	T mg/L	8260	<0.001							
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001							
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001							
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001							
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001							
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		/					
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001							
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001							
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001							
75-01-4	Vinyl chloride	T mg/L	8260	<0.001							
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001							
79-01-6	Ethene, Trichloro-	T mg/L	8260	<0.001		V					

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number						\setminus					$\overline{}$
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)											
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001							
591-78-6	2-Hexanone	т	mg/L	8260	<0.005							
74-88-4	Iodomethane	Т	mg/L	8260	<0.005							
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001							
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001							
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005							
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005							
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198							
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001				X			
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001							
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001							
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001							
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001							
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001							
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001							
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0943							
12674-11-2	PCB-1016	т	ug/L	8082	<0.0943							
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0943							
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0943							
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0943							
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0943							

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ , Facility Well/Spring Number					8000-5202							
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)					221							
5 RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7-69-1	PCB-1254	Т	ug/L	8082	<0.0943							
6-82-5	PCB-1260	т	ug/L	8082	<0.0943							
0-14-4	PCB-1268	т	ug/L	8082	<0.0943							
7-46-1	Gross Alpha	Т	pCi/L	9310	1.65	*					/	
7-47-2	Gross Beta	т	pCi/L	9310	11.1	*						
3-66-0	Iodine-131	т	pCi/L			*						
2-63-3	Radium-226	Т	pCi/L	AN-1418	0.276	*						
8-97-2	Strontium-90	т	pCi/L	905.0	-0.761	*						
3-76-7	Technetium-99	т	pCi/L	Tc-02-RC	15.3	*						
9-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.142	*						
8-17-8	Tritium	т	pCi/L	906.0	19.4	*						
0	Chemical Oxygen Demand	т	mg/L	410.4	14.3	J						
2-5	Cyanide	Т	mg/L	9012	<0.2							
1-54-5	Iodide	т	mg/L	300.0	<0.5			$\overline{/}$				
8	Total Organic Carbon	Т	mg/L	9060	1.06	BJ	/					
6	Total Organic Halides	т	mg/L	9020	<0.01							
												$\overline{}$
	7-69-1 6-82-5 0-14-4 7-46-1 7-47-2 3-66-0 2-63-3 8-97-2 3-76-7 9-63-7 8-17-8 0 2-5 1-54-5	CONSTITUENT T-69-1 PCB-1254 6-82-5 PCB-1260 0-14-4 PCB-1268 7-46-1 Gross Alpha 7-47-2 Gross Beta 3-66-0 Todine-131 2-63-3 Radium-226 8-97-2 Strontium-90 3-76-7 Technetium-99 9-63-7 Thorium-230 8-17-8 Tritium 0 Chemical Oxygen Demand 2-5 Cyanide 1-54-5 Todide 8 Total Organic Carbon	CONSTITUENT TOUR PCB-1254 TOUR PCB-1260 TOUR PCB-1268 TOUR PCB-1269 TOUR PCB	CONSTITUENT	CONSTITUENT	1. 2. 2. 2. 2. 2. 2. 2.	Constituent T	CONSTITUENT		CONSTITUENT T	Constituent T	Lity's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) RN4 CONSTITUENT T OF OF MEASURE T Unit OF MEASURE D OF MEASURE T Ug/L 8082 <0.0943 PQL6 G

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

<u> </u>	acility ample ID	Constituent	Flag	Description
3000-5201 MW220 MW	220SG3-17	Magnesium	E	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.87. Rad error is 1.87.
		Gross beta		TPU is 4.53. Rad error is 3.03.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.338. Rad error is 0.338.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 2.41. Rad error is 2.41.
		Technetium-99		TPU is 11.6. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.327. Rad error is 0.324.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 121. Rad error is 121.
3000-5202 MW221 MW221SG3-17	221SG3-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.54. Rad error is 2.54.
		Gross beta		TPU is 2.56. Rad error is 2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.283. Rad error is 0.282.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.08. Rad error is 2.08.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 11.1. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.42. Rad error is 0.414.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 134. Rad error is 134.
3000-5242 MW222 MW	222SG3-17	Magnesium	E	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.03. Rad error is 2.03.
		Gross beta		TPU is 2.91. Rad error is 2.53.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.301. Rad error is 0.301.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.73. Rad error is 2.73.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 10.3. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.273. Rad error is 0.272.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 127. Rad error is 124.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Point	Sample ID	Constituent	Flag	Description
8000-5243 MW223	MW223SG3-17	Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.59. Rad error is 1.58.
		Gross beta		TPU is 2.18. Rad error is 1.84.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.376. Rad error is 0.376.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.03. Rad error is 2.03.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 9.94. Rad error is 9.94.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.367. Rad error is 0.366.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 129. Rad error is 126.
8000-5244 MW224	MW224SG3-17	Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.55. Rad error is 2.53.
		Gross beta		TPU is 2.45. Rad error is 2.19.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.368. Rad error is 0.367.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.79. Rad error is 1.79.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 9.6. Rad error is 9.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.208. Rad error is 0.207.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 127. Rad error is 125.
3004-4820 MW369	MW369UG3-17	Copper	*N	Duplicate analysis not within control limits. Sample spike recovery not within control limits.
		1,2-Dibromo-3-chloropropane	HX	Analysis performed outside holding time requirement. Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.16. Rad error is 2.16.
		Gross beta		TPU is 2.57. Rad error is 2.11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.371. Rad error is 0.371.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.5. Rad error is 2.5.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 10. Rad error is 9.96.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.21. Rad error is 1.19.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 122. Rad error is 122.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Gross alpha Gross alpha Gross beta Gross beta Gross beta Gross beta Gross beta Gross beta Iodine-131 Radium-226 Strontium-90 Technetium-99 Tribuis 11.6. Rad error is 2.36. TPU is 11.6. Rad error is 2.46. Technetium-99 Trebuis 17.6. Rad error is 2.46. Technetium-99 Tribuis 17.6. Rad error is 1.46. Tribuis 17.6. Rad error is 1.47. Tribuis 18.6. Rad error is 1.48. Tri	J	acility Sample ID	Constituent	Flag	Description
Gross alpha Gross alpha Gross beta Gross beta Iodine-131 Radium-226 Strontium-90 Tritium Triti	3004-4818 MW370 MW	/370UG3-17	Copper	*N	
is 2.38. Rad error is 2.36. Gross beta Iodine-131			1,2-Dibromo-3-chloropropane	НХ	Analysis performed outside holding time requirement. Other specific flags and footnotes may be required to properly define the results.
lodine-131 Radium-226 Strontium-90 U Indicates analyteriuclide was analyzed for, but not detecte is 2.51. Rad error is 0.466. Technetium-99 Thorium-230 U Indicates analyteriuclide was analyzed for, but not detecte is 9.983. Rad error is 0.965. Tritium U Indicates analyteriuclide was analyzed for, but not detecte is 9.983. Rad error is 0.965. Tritium U Indicates analyteriuclide was analyzed for, but not detecte is 10.983. Rad error is 0.965. Tritium U Indicates analyteriuclide was analyzed for, but not detecte is 120. Rad error is 120. Rogos alpha U Indicates analyteriuclide was analyzed for, but not detecte is 120. Rad error is 120. Gross alpha U Indicates analyteriuclide was analyzed for, but not detecte is 2.88. Rad error is 2.05. Radium-226 U Indicates analyteriuclide was analyzed for, but not detecte is 2.88. Rad error is 2.57. Radium-226 Strontium-90 U Indicates analyteriuclide was analyzed for, but not detecte is 0.938. Rad error is 0.328. Strontium-90 U Indicates analyteriuclide was analyzed for, but not detecte is 0.358. Rad error is 0.328. Tritium U Indicates analyteriuclide was analyzed for, but not detecte is 0.85. Rad error is 0.328. Tritium U Indicates analyteriuclide was analyzed for, but not detecte is 0.85. Rad error is 0.843. Tritium U Indicates analyteriuclide was analyzed for, but not detecte is 0.85. Rad error is 0.843. Tritium U Indicates analyteriuclide was analyzed for, but not detecte is 0.85. Rad error is 0.843. Tritium U Indicates analyteriuclide was analyzed for, but not detecte is 0.85. Rad error is 0.843. Tritium U Indicates analyteriuclide was analyzed for, but not detecte is 0.85. Rad error is 0.348. Tritium U Indicates analyteriuclide was analyzed for, but not detecte is 0.85. Rad error is 0.348. Tritium U Indicates analyteriuclide was analyzed for, but not detecte is 0.384. Rad error is 0.384. Tritium-226 U Indicates analyteriuclide was analyzed for, but not detecte is 0.394. Rad error is 0.394. Rad error is 0.394. Tritium-230 U Indicates analyteriuclide was analyzed for, but			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.38. Rad error is 2.36.
Radium-226 Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detecte is 2.51. Rad error is 0.466. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detecte is 2.51. Rad error is 13.8. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detecte is 0.938. Rad error is 0.965. Tritium U Indicates analyte/nuclide was analyzed for, but not detecte is 12.0. Rad error is 10.965. Tritium U Indicates analyte/nuclide was analyzed for, but not detecte is 12.0. Rad error is 12.0. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detecte is 2.68. Rad error is 2.57. Gross beta U Indicates analyte/nuclide was analyzed for, but not detecte is 2.68. Rad error is 2.51. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detecte is 2.08. Rad error is 2.38. TrU is 2.53. Rad error is 0.328. Indicates analyte/nuclide was analyzed for, but not detecte is 2.08. Rad error is 0.328. Indicates analyte/nuclide was analyzed for, but not detecte is 2.08. Rad error is 0.328. Indicates analyte/nuclide was analyzed for, but not detecte is 0.08. Rad error is 0.328. Indicates analyte/nuclide was analyzed for, but not detecte is 0.08. Rad error is 0.328. Indicates analyte/nuclide was analyzed for, but not detecte is 0.08. Rad error is 10. Indicates analyte/nuclide was analyzed for, but not detecte is 1.0.1. Rad error is 10. Indicates analyte/nuclide was analyzed for, but not detecte is 1.0.8. Rad error is 1.0. Indicates analyte/nuclide was analyzed for, but not detecte is 1.0.8. Rad error is 1.2.4. Indicates analyte/nuclide was analyzed for, but not detecte is 1.0.8. Rad error is 1.0.4. Indicates analyte/nuclide was analyzed for, but not detecte is 1.0.8. Rad error is 1.2.4. Indicates analyte/nuclide was analyzed for, but not detecte is 0.034. Rad error is 0.044. Indicates analyte/nuclide was analyzed for, but not detecte is 0.034. Rad error is 0.034. Indicates analyte/nuclide was analyzed for, but not detecte is 0.034. Rad error is 0.034. Indicate			Gross beta		TPU is 11.6. Rad error is 3.69.
Strontium-90 Technetium-99 Technetium-99 Technetium-99 Technetium-99 Thorium-230 Thorium-230 Tritium Undicates analyte/nuclide was analyzed for, but not detecte is 2.51. Rad error is 2.45. TPU is 17.6. Rad error is 13.8. Thorium-230 Undicates analyte/nuclide was analyzed for, but not detecte is 0.883. Rad error is 10.905. Tritium Undicates analyte/nuclide was analyzed for, but not detecte is 120. Rad error is 120. Rad error is 120. The arror is 120. Rad error is 2.65. Rad error is 2.03. Rad error is 0.328. Tritium Undicates analyte/nuclide was analyzed for, but not detecte is 10.65. Rad error is 0.043. Tritium Undicates analyte/nuclide was analyzed for, but not detecte is 10.65. Rad error is 0.043. Tritium Undicates analyte/nuclide was analyzed for, but not detecte is 12.5. Rad error is 12.4. Copper Northium-99 Undicates analyte/nuclide was analyzed for, but not detecte is 12.5. Rad error is 12.4. Copper Northium-90 Undicates analyte/nuclide was analyzed for, but not detecte is 12.5. Rad error is 2.38. Gross alpha Undicates analyte/nuclide was analyzed for, but not detecte is 12.5. Rad error is 12.4. Copper Northium-90 Undicates analyte/nuclide was analyzed for, but not detecte is 0.394. Rad error is 2.38. Tritium-10. Undicates analyte/nuclide was analyzed for, but not detecte is 0.394. Rad error is 2.38. Tritium-90 Undicates analyte/nuclide was analyzed for, but not detecte is 0.394. Rad error is 0.394. Tritium-90 Undicates			lodine-131		Analysis of constituent not required and not performed.
Technetium-99 Technetium-99 Torbinum-230 Torbinum-230 Tritium Torbinum-230			Radium-226		TPU is 0.468. Rad error is 0.466.
Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 0.983. Rad error is 0.965. Rad error is 120. Rad error is 120. Duplicate analysis not within control limits. Sample spike recovery not within control l			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.51. Rad error is 2.45.
Tritium Tritium U Indicates analyte/nuclicle was analyzed for, but not detecte is 120. Rad error is 20. 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane IV Gross alpha U Indicates analyte/nuclide was analyzed for, but not detecte is 2.5.8. Rad error is 2.5. TPU is 2.53. Rad error is 2.57. TPU is 2.53. Rad error is 0.328. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detecte is 0.328. Rad error is 0.328. Tritium U Indicates analyte/nuclide was analyzed for, but not detecte is 0.5.8. Rad error is 0.328. Tritium U Indicates analyte/nuclide was analyzed for, but not detecte is 0.5.8. Rad error is 0.328. Tritium U Indicates analyte/nuclide was analyzed for, but not detecte is 0.5.8. Rad error is 0.328. Tritium U Indicates analyte/nuclide was analyzed for, but not detecte is 0.5.8. Rad error is 0.328. Indicates analyte/nuclide was analyzed for, but not detecte is 0.5.8. Rad error is 0.4.3. Tritium U Indicates analyte/nuclide was analyzed for, but not detecte is 0.5.8. Rad error is 0.4.3. Indicates analyte/nuclide was analyzed for, but not detecte is 0.5.8. Rad error is 0.4.3. Indicates analyte/nuclide was analyzed for, but not detecte is 0.5.8. Rad error is 0.4.3. Indicates analyte/nuclide was analyzed for, but not detecte is 12.6. Rad error is 0.3.34. Indicates analyte/nuclide was analyzed for, but not detecte is 2.3.8. Rad error is 2.46. Analysis performed outside holding time requirement. Oth the pecific flags analyte for but not detecte is 2.3.8. Rad error is 2.46. Analysis performed outside holding time requirement. Oth the pecific flags analyte/nuclide was analyzed for, but not detecte is 2.3.8. Rad error is 2.46. Analysis of constituent not required and not performed. Indicates analyte/nuclide was analyzed for, but not detecte is 2.3.8. Rad error is 2.3. Indicates analyte/nuclide was analyzed for, but not detecte is 2.1. Rad error is 2.1. Indicates analyte/nuclide was analyzed for, but not detecte is 2.1. Rad error			Technetium-99		TPU is 17.6. Rad error is 13.8.
is 120. Pupicate analysis not within control limits. Sample spike recovery not within control limits. 1,2-Dibromo-3-chloropropane HX Analysis performed outside holding time requirement. Oth specific flags and footnotes may be required to properly de the results. Indicates analyte/nuclide was analyzed for, but not detecte is 2.58. Rad error is 2.57. 1			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.983. Rad error is 0.965.
Copper			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 120. Rad error is 120.
Sepecific flags and footnotes may be required to properly de the results. Gross alpha Gross beta Indicates analyte/nuclide was analyzed for, but not detected is 2.58. Rad error is 2.57. Gross beta Iodine-131 Radium-226 Strontium-90 Undicates analyte/nuclide was analyzed for, but not detected is 0.328. Rad error is 0.328. Strontium-99 Undicates analyte/nuclide was analyzed for, but not detected is 2.05. Rad error is 2.03. Technetium-99 Undicates analyte/nuclide was analyzed for, but not detected is 2.05. Rad error is 0.328. Tritium Undicates analyte/nuclide was analyzed for, but not detected is 0.85. Rad error is 0.843. Tritium Undicates analyte/nuclide was analyzed for, but not detected is 0.85. Rad error is 124. Duplicates analyte/nuclide was analyzed for, but not detected is 125. Rad error is 124. Undicates analyte/nuclide was analyzed for, but not detected is 125. Rad error is 124. Copper Nudicates analyte/nuclide was analyzed for, but not detected is 125. Rad error is 124. Undicates analyte/nuclide was analyzed for, but not detected is 125. Rad error is 124. Gross alpha Undicates analyte/nuclide was analyzed for, but not detected is 2.38. Rad error is 2.38. Gross beta Undicates analyte/nuclide was analyzed for, but not detected is 2.38. Rad error is 2.38. TPU is 3.42. Rad error is 2.46. Indicates analyte/nuclide was analyzed for, but not detected is 2.38. Rad error is 0.394. Radium-226 Undicates analyte/nuclide was analyzed for, but not detected is 2.394. Rad error is 0.394. Trechnetium-99 Thorium-230 Undicates analyte/nuclide was analyzed for, but not detected is 2.11. Technetium-99 Thorium-230 Undicates analyte/nuclide was analyzed for, but not detected is 2.11. TPU is 11.3. Rad error is 2.02. Tritium Undicates analyte/nuclide was analyzed for, but not detected is 2.11. Radium-220. Undicates analyte/nuclide was analyzed for, but not detected is 2.11. Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Indicates analyte/nuclide was analyzed for, b	8004-4808 MW372 MW372UG3-17	/372UG3-17	Copper	*N	Duplicate analysis not within control limits. Sample spike
is 2.58. Rad error is 2.57. Gross beta Iodine-131 Radium-226 Strontium-90 Strontium-99 Technetium-99 Tritium Topper 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane Gross beta Iodine-131 Radium-226 Undicates analyte/nuclide was analyzed for, but not detecte is 0.85. Rad error is 2.03. Technetium-99 Undicates analyte/nuclide was analyzed for, but not detecte is 0.85. Rad error is 2.03. Tritium Undicates analyte/nuclide was analyzed for, but not detecte is 0.85. Rad error is 10.1. Rad error is 10.1. Rad error is 10.1. Rad error is 10.1. Rad error is 10.24. Tritium Undicates analyte/nuclide was analyzed for, but not detecte is 1.25. Rad error is 1.24. Tritium Undicates analyte/nuclide was analyzed for, but not detecte is 1.25. Rad error is 1.24. Tritium Undicates analyte/nuclide was analyzed for, but not detecte is 1.25. Rad error is 1.24. Tritium Undicates analyte/nuclide was analyzed for, but not detecte is 2.38. Rad error is 2.38. Gross beta Undicates analyte/nuclide was analyzed for, but not detecte is 2.38. Rad error is 2.38. TPU is 3.42. Rad error is 2.38. TPU is 3.42. Rad error is 2.38. TPU is 3.42. Rad error is 0.394. Radium-226 Undicates analyte/nuclide was analyzed for, but not detecte is 0.394. Rad error is 0.394. Strontium-90 Undicates analyte/nuclide was analyzed for, but not detecte is 0.394. Rad error is 0.394. Tritium Undicates analyte/nuclide was analyzed for, but not detecte is 1.11. Rad error is 10.9. Thorium-230 Undicates analyte/nuclide was analyzed for, but not detecte is 2.1. Rad error is 2.02. Tritium Undicates analyte/nuclide was analyzed for, but not detecte is 2.1. Rad error is 2.02. Tritium Undicates analyte/nuclide was analyzed for, but not detecte is 2.1. Rad error is 2.02. Tritium Undicates analyte/nuclide was analyzed for, but not detecte is 2.1. Rad error is 2.02. Tritium Undicates analyte/nuclide was analyzed for, but not detecte is 2.1. Rad error is 2.02.			1,2-Dibromo-3-chloropropane	HX	Analysis performed outside holding time requirement. Other specific flags and footnotes may be required to properly define the results.
lodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected is 0.328. Rad error is 0.328. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 0.328. Rad error is 0.328. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected is 0.05. Rad error is 0.03. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected is 10.1. Rad error is 10. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 0.85. Rad error is 0.843. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 125. Rad error is 124. Copper *N Duplicate analyte/nuclide was analyzed for, but not detected is 1.2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromo-3-chloropropane 2,2-Dibromo-3-chloropropane 3,2-Dibromo-3-chloropropane 4,2-Dibromo-3-chloropropane 4,3-Dibromo-3-chloropropane 4,4-Topicates analyte/nuclide was analyzed for, but not detected is 2.38. Rad error is 2.34. TPU is 3.42. Rad error is 2.34. Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected is 0.394. Rad error is 0.394. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 0.2.01. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 2.02.			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 2.58. Rad error is 2.57.
Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected is 0.328. Rad error is 0.328. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 0.328. Rad error is 2.03. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected is 10.1. Rad error is 10. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 0.85. Rad error is 0.843. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 125. Rad error is 124. Copper N Duplicate analyte/nuclide was analyzed for, but not detected is 125. Rad error is 124. Analysis performed outside holding time requirement. Othe specific flags and footnotes may be required to properly deter esults. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected is 2.38. Rad error is 2.46. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected is 0.394. Rad error is 0.394. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 2.11. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 10.9. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 2.00.			Gross beta		TPU is 2.53. Rad error is 2.1.
is 0.328. Rad error is 0.328. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 2.05. Rad error is 2.03. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected is 10.1. Rad error is 10. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 0.85. Rad error is 0.843. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 125. Rad error is 0.843. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 125. Rad error is 124. Copper *N Duplicate analysis not within control limits. Sample spike recovery not within control limits. 1,2-Dibromo-3-chloropropane HX Analysis performed outside holding time requirement. Othe specific flags and footnotes may be required to properly detected is 2.38. Rad error is 2.38. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected is 2.38. Rad error is 2.46. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected is 0.394. Rad error is 0.394. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 2.11. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02.			lodine-131		Analysis of constituent not required and not performed.
is 2.05. Rad error is 2.03. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not detected is 1.1. Rad error is 10. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 0.85. Rad error is 0.843. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 1.25. Rad error is 1.24. Copper *N Duplicate analysis not within control limits. Sample spike recovery not within control limits. Sample spike recovery not within control limits. Sample spike recovery not within control limits. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected is 2.38. Rad error is 2.38. Gross beta Gross beta Indicates analyte/nuclide was analyzed for, but not detected is 2.38. Rad error is 2.46. Indicates analyte/nuclide was analyzed for, but not detected is 0.394. Rad error is 0.394. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 2.11. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 10.9. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02.			Radium-226	U	
is 10.1. Rad error is 10. Thorium-230 Thorium-230 Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 0.85. Rad error is 0.843. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 125. Rad error is 124. Copper *N Duplicate analysis not within control limits. Sample spike recovery not within control limits. 1,2-Dibromo-3-chloropropane HX Analysis performed outside holding time requirement. Othe specific flags and footnotes may be required to properly dethe results. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected is 2.38. Rad error is 2.38. Gross beta Ipu is 3.42. Rad error is 2.46. Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected is 0.394. Rad error is 0.394. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 2.11. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02.			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.05. Rad error is 2.03.
is 0.85. Rad error is 0.843. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 125. Rad error is 124. Copper *N Duplicate analysis not within control limits. Sample spike recovery not within control limits. 1,2-Dibromo-3-chloropropane HX Analysis performed outside holding time requirement. Other specific flags and footnotes may be required to properly detected is 2.38. Rad error is 2.38. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected is 2.38. Rad error is 2.38. Gross beta TPU is 3.42. Rad error is 2.46. Indicates analyte/nuclide was analyzed for, but not detected is 0.394. Rad error is 0.394. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 2.11. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02.			Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. The
Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 125. Rad error is 124. Copper *N Duplicate analysis not within control limits. Sample spike recovery not within control limits. Sample spike recovery not within control limits. 1,2-Dibromo-3-chloropropane HX Analysis performed outside holding time requirement. Othe specific flags and footnotes may be required to properly dethe results. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected is 2.38. Rad error is 2.38. Gross beta TPU is 3.42. Rad error is 2.46. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected is 0.394. Rad error is 0.394. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 2.11. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02.			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 0.85. Rad error is 0.843.
recovery not within control limits. 1,2-Dibromo-3-chloropropane HX Analysis performed outside holding time requirement. Othe specific flags and footnotes may be required to properly de the results. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected is 2.38. Rad error is 2.38. Gross beta TPU is 3.42. Rad error is 2.46. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected is 0.394. Rad error is 0.394. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 10.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02.			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF
1,2-Dibromo-3-chloropropane HX Analysis performed outside holding time requirement. Othe specific flags and footnotes may be required to properly de the results. Gross alpha U Indicates analyte/nuclide was analyzed for, but not detected is 2.38. Rad error is 2.38. Gross beta TPU is 3.42. Rad error is 2.46. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected is 0.394. Rad error is 0.394. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 2.11. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02.	3004-4792 MW373 MW	/373UG3-17	Copper	*N	
is 2.38. Rad error is 2.38. Gross beta Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected is 0.394. Rad error is 0.394. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 2.11. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02.			1,2-Dibromo-3-chloropropane	НХ	Analysis performed outside holding time requirement. Other specific flags and footnotes may be required to properly define
lodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected is 0.394. Rad error is 0.394. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 2.11. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 10.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02.			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.38. Rad error is 2.38.
Radium-226 U Indicates analyte/nuclide was analyzed for, but not detected is 0.394. Rad error is 0.394. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 2.11. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02.			Gross beta		TPU is 3.42. Rad error is 2.46.
is 0.394. Rad error is 0.394. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not detected is 2.11. Rad error is 2.11. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02.			lodine-131		Analysis of constituent not required and not performed.
is 2.11. Rad error is 2.11. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02.			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.394. Rad error is 0.394.
Thorium-230 U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected is 2.1. Rad error is 2.02.			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 2.11. Rad error is 2.11.
is 2.1. Rad error is 2.02. Tritium U Indicates analyte/nuclide was analyzed for, but not detected.			Technetium-99		TPU is 11.3. Rad error is 10.9.
			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.1. Rad error is 2.02.
			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 120. Rad error is 119.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4809 MW384 M	IW384SG3-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.3. Rad error is 2.3.
		Gross beta		TPU is 21.1. Rad error is 4.91.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.385. Rad error is 0.385.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.62. Rad error is 2.61.
		Technetium-99		TPU is 22.8. Rad error is 15.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.465. Rad error is 0.456.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 142. Rad error is 141.
3004-4810 MW385 MW385SG3-17	IW385SG3-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.57. Rad error is 3.43.
		Gross beta		TPU is 21.3. Rad error is 6.07.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.436. Rad error is 0.435.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.4. Rad error is 3.37.
		Technetium-99		TPU is 26.7. Rad error is 16.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.305. Rad error is 0.303.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 135. Rad error is 135.
004-4804 MW386 M	IW386SG3-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.68. Rad error is 2.68.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.999. Rad error is 0.999.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.275. Rad error is 0.275.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.38. Rad error is 2.38.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 11.1. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.505. Rad error is 0.496.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 139. Rad error is 139.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4815 MW38	7 MW387SG3-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.78. Rad error is 2.77.
		Gross beta		TPU is 38.2. Rad error is 5.74.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.279. Rad error is 0.279.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 1.68. Rad error is 1.67.
		Technetium-99		TPU is 39.7. Rad error is 19.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. This 0.468. Rad error is 0.455.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 141. Rad error is 139.
3004-4816 MW38	8 MW388SG3-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.27. Rad error is 2.27.
		Gross beta		TPU is 19.3. Rad error is 5.66.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.514. Rad error is 0.513.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. This 2.41. Rad error is 2.41.
		Technetium-99		TPU is 24.9. Rad error is 16.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.352. Rad error is 0.35.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 149. Rad error is 146.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well was dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well was dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample wa collected.
		рН		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample w collected.
		Temperature		During sampling, the well was dry; therefore, no sample w collected.
		Aluminum		During sampling, the well was dry; therefore, no sample was collected.
		Antimony		During sampling, the well was dry; therefore, no sample was collected.
		Arsenic		During sampling, the well was dry; therefore, no sample was collected.
		Barium		During sampling, the well was dry; therefore, no sample was collected.
		Beryllium		During sampling, the well was dry; therefore, no sample was collected.
		Boron		During sampling, the well was dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well was dry; therefore, no sample wa collected.
		Calcium		During sampling, the well was dry; therefore, no sample was collected.
		Chromium		During sampling, the well was dry; therefore, no sample was collected.
		Cobalt		During sampling, the well was dry; therefore, no sample was collected.
		Copper		During sampling, the well was dry; therefore, no sample was collected.
		Iron		During sampling, the well was dry; therefore, no sample was collected.
		Lead		During sampling, the well was dry; therefore, no sample was collected.
		Magnesium		During sampling, the well was dry; therefore, no sample was collected.
		Manganese		During sampling, the well was dry; therefore, no sample wa collected.
		Mercury		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample wa collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample wa collected.
		Selenium		During sampling, the well was dry; therefore, no sample wa collected.
		Silver		During sampling, the well was dry; therefore, no sample wa collected.
		Sodium		During sampling, the well was dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well was dry; therefore, no sample wa collected.
		Thallium		During sampling, the well was dry; therefore, no sample wa collected.
		Uranium		During sampling, the well was dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well was dry; therefore, no sample wa collected.
		Zinc		During sampling, the well was dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample was collected.
		Acetone		During sampling, the well was dry; therefore, no sample was collected.
		Acrolein		During sampling, the well was dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample was collected.
		Benzene		During sampling, the well was dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		Xylenes		During sampling, the well was dry; therefore, no sample wa collected.
		Styrene		During sampling, the well was dry; therefore, no sample was collected.
		Toluene		During sampling, the well was dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample wa collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Chloroform		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample w collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample w collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample w collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample w collected.
		lodomethane		During sampling, the well was dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample w collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample we collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well was dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well was dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well was dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample wa collected.
		Tritium		During sampling, the well was dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well was dry; therefore, no sample wa collected.
		lodide		During sampling, the well was dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

•	acility Sample ID	Constituent	Flag	Description
3004-4811 MW390 MW	/390SG3-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.43. Rad error is 2.43.
		Gross beta		TPU is 9.26. Rad error is 4.01.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.396. Rad error is 0.396.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.13. Rad error is 2.08.
		Technetium-99		TPU is 14.7. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.262. Rad error is 0.255.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 132. Rad error is 132.
3004-4805 MW391 MW391SG3-17	/391SG3-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.69. Rad error is 1.68.
		Gross beta		TPU is 2.37. Rad error is 2.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.364. Rad error is 0.364.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.02. Rad error is 2.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.361. Rad error is 0.356.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 142. Rad error is 141.
004-4806 MW392 MW	/392SG3-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.96. Rad error is 2.93.
		Gross beta		TPU is 2.13. Rad error is 1.98.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.508. Rad error is 0.507.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.4. Rad error is 2.37.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 11.2. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.47. Rad error is 0.463.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 137. Rad error is 137.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

<u> </u>	Facility Sample ID	Constituent	Flag	Description
	W393SG3-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.58. Rad error is 2.58.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.71. Rad error is 1.67.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.286. Rad error is 0.286.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.25. Rad error is 2.21.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.5. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.331. Rad error is 0.328.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 136. Rad error is 136.
004-4802 MW394 MV	W394SG3-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.09. Rad error is 2.06.
		Gross beta		TPU is 2.83. Rad error is 2.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.261. Rad error is 0.261.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.27. Rad error is 2.25.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 10.7. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.339. Rad error is 0.336.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 142. Rad error is 140.
004-4801 MW395 MV	W395SG3-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.41. Rad error is 2.4.
		Gross beta		TPU is 2.81. Rad error is 2.52.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.294. Rad error is 0.293.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.78. Rad error is 1.76.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11.8. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.284. Rad error is 0.283.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 140. Rad error is 139.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4803 MW396 MW396SG3-17		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TI is 2.96. Rad error is 2.93.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 1.87. Rad error is 1.87.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 0.484. Rad error is 0.484.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 1.39. Rad error is 1.39.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 10.4. Rad error is 10.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 0.354. Rad error is 0.351.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 136. Rad error is 136.
8004-4817 MW39	7 MW397SG3-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. This 2.72. Rad error is 2.68.
		Gross beta		TPU is 3.51. Rad error is 2.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.401. Rad error is 0.401.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TI is 1.71. Rad error is 1.69.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. This 11.2. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 0.267. Rad error is 0.265.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 137. Rad error is 137.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG3-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.29. Rad error is 1.29.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.51. Rad error is 1.51.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.33. Rad error is 0.33.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.82. Rad error is 1.82.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 11.1. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.411. Rad error is 0.403.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 137. Rad error is 136.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG3-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Acetone	L	LCS or LCSD recovery outside of control limits
		2-Hexanone	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.29. Rad error is 1.29.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.05. Rad error is 2.05.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.359. Rad error is 0.359.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.2. Rad error is 2.2.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 10.6. Rad error is 10.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.409. Rad error is 0.402.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 145. Rad error is 144.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG3-17	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG3-17	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG3-17	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG3-17	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG3-17	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG3-17	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
000-5202 MW221	MW221DSG3-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.84. Rad error is 2.83.
		Gross beta		TPU is 2.81. Rad error is 2.08.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.388. Rad error is 0.388.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.04. Rad error is 2.04.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 11.5. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.339. Rad error is 0.335.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 138. Rad error is 138.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/INERT—QUARTERLY, 2nd CY 2017

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-980-008-982/1</u>

Lab ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the second quarter 2017 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The second quarter 2017 data used to conduct the statistical analyses were collected in April 2017. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that exceeded the historical background, using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the

current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

lower $TL = X - (K \times S)$

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, second quarter 2017. The observations are representative of the current quarter data. Background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondect if it has a "U" validation code.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
$MW390^1$	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

¹NOTE: The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters Aluminum Beta Activity Boron Bromide Calcium Carbon Disulfide Chemical Oxygen Demand (COD) Chloride cis-1,2-Dichloroethene Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iodide Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Radium-226 Sodium Sulfate Technetium-99 Total Organic Carbon (TOC)

Total Organic Halides (TOX) Trichloroethene Uranium

Zinc
*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	2	2	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Boron	4	0	4	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	0	4	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	3	1	Yes
Conductivity	4	0	4	Yes
Copper	4	0	4	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No
Iodide	4	3	1	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	1	3	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	4	0	No
Nickel	4	3	1	Yes
Oxidation-Reduction Potential	4	0	4	Yes
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	2	2	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Uranium	4	1	3	Yes
Vanadium	4	4	0	No
Vinyl Acetate	4	4	0	No
Zinc	4	4	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	7	4	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Beta activity	11	0	11	Yes
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	10	1	Yes
Chemical Oxygen Demand (COD)	11	3	8	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	11	0	No
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	6	5	Yes
Conductivity	11	0	11	Yes
Copper	11	0	11	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	1	10	Yes
Magnesium	11	0	11	Yes
Manganese	11	0	11	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	6	5	Yes
Nickel	11	4	7	Yes
Oxidation-Reduction Potential	11	0	11	Yes
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	8	3	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	5	6	Yes
Total Organic Halides (TOX)	12	3	9	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	5	6	Yes
Trichlorofluoromethane	11	11	0	No
Uranium	11	11	0	No
Vanadium	11	11	0	No
Vinyl Acetate	11	11	0	No
Zinc	11	9	2	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acrolein Acrylonitrile Aluminum Antimony Beryllium Beta activity Boron Bromide	7 7 7 7 7 7 7	7 7 7 7 7	0 0 0 0	No No No
1,1,2-Trichloroethane 1,1-Dichloroethane 1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Acrolein Acrylonitrile Aluminum Antimony Beryllium Beta activity Boron Bromide	7 7 7 7 7	7 7 7	0	
1,1-Dichloroethane 1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Acrolein Acrylonitrile Aluminum Antimony Beryllium Beta activity Boron Bromide	7 7 7 7	7		No
1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Acrolein Acrylonitrile Aluminum Antimony Beryllium Beta activity Boron Bromide	7 7 7	7	0	
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Acrolein Acrylonitrile Aluminum Antimony Beryllium Beta activity Boron Bromide	7 7			No
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Acrolein Acrylonitrile Aluminum Antimony Beryllium Beta activity Boron Bromide	7		0	No
1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropropane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Acrolein Acrylonitrile Aluminum Antimony Beryllium Beta activity Boron Bromide	7	7	0	No
1,2-Dichlorobenzene 1,2-Dichloropropane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Acrolein Acrylonitrile Aluminum Antimony Beryllium Beta activity Boron Bromide		7	0	No
1,2-Dichloropropane 2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Acrolein Acrylonitrile Aluminum Antimony Beryllium Beta activity Boron Bromide	7	7	0	No
2-Butanone 2-Hexanone 4-Methyl-2-pentanone Acetone Acrolein Acrylonitrile Aluminum Antimony Beryllium Beta activity Boron Bromide	7	7	0	No
2-Hexanone 4-Methyl-2-pentanone Acetone Acrolein Acrylonitrile Aluminum Antimony Beryllium Beta activity Boron Bromide	7	7	0	No
4-Methyl-2-pentanone Acetone Acrolein Acrylonitrile Aluminum Antimony Beryllium Beta activity Boron Bromide	7	7	0	No
Acetone Acrolein Acrylonitrile Aluminum Antimony Beryllium Beta activity Boron Bromide	7	7	0	No
Acrolein Acrylonitrile Aluminum Antimony Beryllium Beta activity Boron Bromide	7	7	0	No
Acrylonitrile Aluminum Antimony Beryllium Beta activity Boron Bromide	7	7	0	No
Aluminum Antimony Beryllium Beta activity Boron Bromide	7	7	0	No
Antimony Beryllium Beta activity Boron Bromide	7	3	4	Yes
Beryllium Beta activity Boron Bromide				
Beta activity Boron Bromide	7	7	0	No
Boron Bromide	7	7	0	No
Bromide	7	0	7	Yes
	7	0	7	Yes
D 1.1	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	3	4	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	6	1	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen				
Dissolved Oxygen Dissolved Solids	7	0	7	
	7	0	7	Yes
Ethylbenzene	7	0	7	Yes
Iodide	7 7	0 7	7 0	Yes No
Iodomethane Iron	7	0	7	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Magnesium	7	0	7	Yes
Manganese	7	1	6	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	7	0	No
Nickel	7	7	0	No
Oxidation-Reduction Potential	7	0	7	Yes
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	3	4	Yes
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	3	4	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	4	3	Yes
Total Organic Halides (TOX)	7	0	7	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	1	6	Yes
Trichlorofluoromethane	7	7	0	No
Uranium	7	7	0	No
Vanadium	7	7	0	No
Vinyl Acetate	7	7	0	No
Zinc	7	6	1	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 25, 28, and 27 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background UTL for oxidation-reduction potential and technetium-99.

<u>URGA</u>

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, carbon disulfide, chemical oxygen demand, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, oxidation-reduction potential, radium-226, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: Sulfate	MW370: Beta activity, radium-226, sulfate, technetium-99
MW390: Oxidation-reduction potential, technetium-99	MW222: Chemical oxygen demand	MW373: Calcium, conductivity, dissolved solids, sulfate
MW393: Oxidation-reduction potential	MW223: Sulfate	MW385: Beta activity, oxidation-reduction potential, radium-226, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW224: Sodium	MW388: Beta activity, oxidation-reduction potential, radium-226, sulfate, technetium-99
	MW369: Sodium	MW392: Oxidation-reduction potential, radium-226
	MW372: Calcium, dissolved solids, magnesium, sulfate	potential, radialii 220
	MW384: Beta activity, sodium, sulfate, technetium-99	
	MW387: Beta activity, carbon disulfide, sulfate, technetium-99	
	MW391: Sulfate	

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COB)	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentration in MW384 and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentration in MW372.
Carbon Disulfide	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentration in MW387.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentration in MW222.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
pН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW224, MW369, and MW384.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW220, MW223, MW372, MW384, MW387, and MW391.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW384 and MW387.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Zinc (V) coefficient of varieties	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation * If CV > 1.0, used log-transformed data. 1 Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW385, MW388, and MW392.
pН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.74	Current results exceed statistically derived historical background concentration in MW370, MW385, MW388, and MW392.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation

^{*}If CV > 1.0, used log-transformed data.

Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 2, 9, and 8 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10, presented by well number.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW369: Sodium	MW370: Beta activity, sulfate, technetium-99
MW372: Calcium, dissolved solids, magnesium, sulfate	MW373: Calcium, conductivity, dissolved solids, sulfate
MW387: Beta activity, carbon disulfide, technetium-99	MW388: Beta activity, sulfate, technetium-99
MW391: Sulfate	

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted, however, that the technetium-99 concentration in one UCRS well (i.e., MW390) was higher than the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, carbon disulfide, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.36	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	-5.87	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill. However, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.53	MW384 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.16	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Carbon disulfide	Tolerance Interval	0.00	MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand	Tolerance Interval	0.98	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Solids	Tolerance Interval	0.10	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.16	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sodium	Tolerance Interval	0.15	MW224, MW369, and MW384 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.30	MW372 and MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.64	MW384 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.83	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.21	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.09	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.14	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.19	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Radium-226	Tolerance Interval	0.54	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.07	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.38	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.320

S = 0.182

CV(1) = 0.567

K factor=** 3.188

TL(1)= 0.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.259

S= 0.503

CV(2) = -0.400

K factor**= 3.188

TL(2)= 0.345

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.393 -0.9349/16/2002 0.2 -1.60910/16/2002 0.2 -1.6091/13/2003 0.501 -0.691-1.609 4/8/2003 0.2 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/14/2004 0.668 -0.403

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A		
MW390	Downgradien	t Yes	0.0457	NO	-3.086	N/A		
MW393	Downgradien	t Yes	0.0499	NO	-2.998	N/A		
MW396	Upgradient	No	0.05	N/A	-2.996	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.833 CV(1) = 1.282

K factor=** 3.188

TL(1) = 3.306

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.034 **S**= 1.066

CV(2)=-1.031

K factor=** 3.188

TL(2) = 2.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.00585	N/A	-5.141	NO		
MW390	Downgradien	t Yes	0.0163	N/A	-4.117	NO		
MW393	Downgradien	t Yes	0.0221	N/A	-3.812	NO		
MW396	Upgradient	Yes	0.00855	N/A	-4.762	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.388

CV(1)=0.236

K factor=** 3.188

TL(1) = 2.430

LL(1)=N/A

Statistics-Transformed Background Data

X= 0.301 **S**=

S = 0.252

S = 0.327

CV(2) = 0.838

K factor=** 3.188

TL(2) = 1.105

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.146	NO	-1.924	N/A		
MW390	Downgradien	t Yes	0.499	NO	-0.695	N/A		
MW393	Downgradien	t Yes	0.173	NO	-1.754	N/A		
MW396	Upgradient	Yes	1.24	NO	0.215	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.825 S = 8.445 CV(1) = 0.202

K factor=** 3.188

TL(1)= 68.748

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.711 **S**= 0.241

CV(2)=0.065

K factor=** 3.188

TL(2) = 4.479

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	21.2	NO	3.054	N/A		
MW390	Downgradien	t Yes	32.1	NO	3.469	N/A		
MW393	Downgradien	t Yes	14.2	NO	2.653	N/A		
MW396	Upgradient	Yes	39.1	NO	3.666	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.375 S = 0.744 CV(1) = 0.021

K factor=** 3.188

TL(1)= 37.747

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.566

S= 0.021

CV(2)=0.006

K factor=** 3.188

TL(2) = 3.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	12.6	NO	2.534	N/A	
MW390	Downgradien	t Yes	17.8	NO	2.879	N/A	
MW393	Downgradien	t Yes	26.4	NO	3.273	N/A	
MW396	Upgradient	Yes	36.8	NO	3.605	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 101.725 S = 5.245

CV(1)=0.052 K factor**= 3.188

TL(1)= 118.447

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.621

S = 0.053 CV(2) = 0.011

K factor=** 3.188

TL(2)= 4.789

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	14	NO	2.639	N/A		
MW390	Downgradien	t Yes	45.8	NO	3.824	N/A		
MW393	Downgradien	t Yes	13.6	NO	2.610	N/A		
MW396	Upgradient	Yes	78.2	NO	4.359	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.008

S= 0.011 **CV(1)**=1.340

K factor=** 3.188

TL(1)= 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.645 S = 1.339

CV(2) = -0.237

K factor=** 3.188

TL(2) = -1.377

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	0.001	N/A	-6.908	N/A		
MW390	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW396	Upgradient	Yes	0.0024	N/A	-6.032	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 922.500 S = 107.616 CV(1) = 0.117

K factor=** 3.188

TL(1)= 1265.579 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.822

 $S = 0.111 \quad CV(2) = 0.016$

K factor=** 3.188

TL(2) = 7.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:		MW396				
	Date Collected	Result	LN(Result)			
	8/13/2002	784	6.664			
	9/30/2002	871	6.770			
	10/16/2002	868	6.766			
	1/13/2003	912	6.816			
	4/8/2003	942	6.848			
	7/16/2003	910	6.813			
	10/14/2003	935	6.841			
	1/14/2004	1158	7.054			

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	597	NO	6.392	N/A	
MW390	Downgradien	t Yes	678	NO	6.519	N/A	
MW393	Downgradien	t Yes	448	NO	6.105	N/A	
MW396	Upgradient	Yes	772	NO	6.649	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

S = 0.014 CV(1) = 0.481

K factor=** 3.188

TL(1)= 0.072

LL(1)=N/A

Statistics-Transformed Background Data

X= -3.650 **S**= 0.414

.414 **CV(2)=**-0.113

K factor=** 3.188

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.00073	NO	-7.222	N/A	
MW390	Downgradien	t Yes	0.000758	8 NO	-7.185	N/A	
MW393	Downgradien	t Yes	0.00118	NO	-6.742	N/A	
MW396	Upgradient	Yes	0.00037	1 NO	-7.899	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.395

S = 1.677CV(1) = 1.202 **K factor**=** 3.188

TL(1) = 6.743

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.043 S = 0.814

CV(2) = -18.867

K factor=** 3.188

TL(2) = 2.553

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 5.45 1.696 9/16/2002 0.4 -0.91610/16/2002 0.54 -0.6161/13/2003 0.72 -0.3294/8/2003 0.69 -0.3717/16/2003 1.1 0.095 10/14/2003 0.71 -0.3421/14/2004 1.55 0.438

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	3.72	N/A	1.314	NO		
MW390	Downgradien	t Yes	4.12	N/A	1.416	NO		
MW393	Downgradien	t Yes	2.45	N/A	0.896	NO		
MW396	Ungradient	Yes	2.04	N/A	0.713	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-12

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

K factor=** 3.188 **TL(1)=**

TL(1)= 882.980 **LL(1)**=N/A

Statistics-Transformed Background Data

X= 6.298 **S**=

S = 0.162 CV(2) = 0.026

K factor=** 3.188

TL(2) = 6.815

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	361	NO	5.889	N/A
MW390	Downgradien	t Yes	383	NO	5.948	N/A
MW393	Downgradien	t Yes	276	NO	5.620	N/A
MW396	Upgradient	Yes	431	NO	6.066	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.150

CV(1)=0.132

K factor=** 3.188

TL(1)= 3.052

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.759

CV(2)=0.162

K factor=** 3.188

TL(2)=1.150

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	2	0.693
1/13/2003	2	0.693
4/8/2003	2	0.693
7/16/2003	2.7	0.993
10/14/2003	2.5	0.916
1/14/2004	2	0.693

Dry/Partially Dry Wells

Well No. Gradient

S = 0.283

S = 0.123

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A
MW396	Upgradient	Yes	0.758	NO	-0.277	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.796

S= 3.723 **CV(1)**=0.478

K factor=** 3.188

TL(1)= 19.666

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.880 S =

S= 0.723

CV(2) = 0.384

K factor=** 3.188

TL(2) = 4.184

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number	: MW396	
Date Collecte	d Result	LN(Result)
8/13/2002	1.8	0.588
9/16/2002	9.53	2.254
10/16/2002	7.43	2.006
1/13/2003	9.93	2.296
4/8/2003	10.2	2.322
7/16/2003	9.16	2.215
10/14/2003	11.9	2.477
1/14/2004	2.42	0.884

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0439	NO	-3.126	N/A
MW390	Downgradien	t Yes	0.046	NO	-3.079	N/A
MW393	Downgradien	t Yes	1.9	NO	0.642	N/A
MW396	Upgradient	Yes	1	NO	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 16.876 S = 3.313

CV(1)=0.196

K factor=** 3.188

TL(1)= 27.438

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.804

S= 0.240

CV(2)=0.086

K factor=** 3.188

TL(2) = 3.569

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	8.92	NO	2.188	N/A
MW390	Downgradien	t Yes	13.1	NO	2.573	N/A
MW393	Downgradien	t Yes	4.12	NO	1.416	N/A
MW396	Upgradient	Yes	17.2	NO	2.845	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.774

S = 0.353 C

CV(1)=0.456 **K factor****= 3.188

8 **TL(1)=** 1.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.566 S = 1.192

CV(2) = -2.105

K factor=** 3.188

TL(2) = 3.235

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00951	NO	-4.655	N/A
MW390	Downgradien	t No	0.005	N/A	-5.298	N/A
MW393	Downgradien	t Yes	0.054	NO	-2.919	N/A
MW396	Upgradient	Yes	0.441	NO	-0.819	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

S = 0.021

CV(1) = 1.272

K factor=** 3.188

TL(1)= 0.083

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.706 S = 1.057

CV(2) = -0.225

K factor=** 3.188

TL(2) = -1.338

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Cu	Current Quarter Data						
Wel	l No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MV	V386	Sidegradient	No	0.00106	N/A	-6.849	N/A
MV	V390	Downgradien	t No	0.00181	N/A	-6.314	N/A
MV	V393	Downgradien	t No	0.00082	5 N/A	-7.100	N/A
MV	V396	Upgradient	Yes	0.00477	N/A	-5.345	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.000 S = 61.952 CV(1) = 4.766

K factor=** 3.188

TL(1)= 210.502 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.364

S = 0.333

CV(2) = 0.076

K factor=** 3.188

TL(2) = 4.736

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Curi	Current Quarter Data						
Well l	No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW3	386	Sidegradient	Yes	309	N/A	5.733	YES
MW3	390	Downgradien	t Yes	336	N/A	5.817	YES
MW3	393	Downgradien	t Yes	211	N/A	5.352	YES
MW3	396	Upgradient	Yes	172	N/A	5.147	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390

MW393

MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-19

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.460

S= 0.350 **CV(1)**=0.054

K factor=** 3.736

TL(1) = 7.766

LL(1)=5.1541

Statistics-Transformed Background Data

X= 1.864

S= 0.054 **CV(2)**= 0.029

K factor=** 3.736

TL(2) = 2.067

LL(2)=1.6621

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 6.17 1.820 9/16/2002 6.4 1.856 10/16/2002 5.9 1.775 1/13/2003 6.4 1.856 4/8/2003 6.65 1.895 7/16/2003 6.4 1.856 10/14/2003 1.904 6.71 1/14/2004 7.05 1.953

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>` /</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	` /	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	6.85	NO	1.924	N/A
MW390	Downgradien	t Yes	6.12	NO	1.812	N/A
MW393	Downgradien	t Yes	6.3	NO	1.841	N/A
MW396	Upgradient	Yes	6.45	NO	1.864	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.411

S = 0.399 CV(1) = 0.282

K factor=** 3.188

TL(1) = 2.682

LL(1)=N/A

Statistics-Transformed Background Data

X= 0.311

S = 0.271

CV(2)=0.870

K factor=** 3.188

TL(2) = 1.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.312	NO	-1.165	N/A
MW390	Downgradien	t Yes	0.375	NO	-0.981	N/A
MW393	Downgradien	t Yes	0.503	NO	-0.687	N/A
MW396	Upgradient	Yes	0.869	NO	-0.140	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

K factor=** 3.188

TL(1)= 208.973 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.595 S = 0.492

CV(2) = 0.107

K factor=** 3.188

TL(2)= 6.163

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	115	4.745
9/16/2002	116	4.754
10/16/2002	117	4.762
1/13/2003	122	4.804
4/8/2003	106	4.663
7/16/2003	117	4.762
10/14/2003	132	4.883
1/14/2004	29.6	3.388

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	105	NO	4.654	N/A
MW390	Downgradien	t Yes	102	NO	4.625	N/A
MW393	Downgradien	t Yes	91.5	NO	4.516	N/A
MW396	Upgradient	Yes	109	NO	4.691	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.463 **S**= 8.876

CV(1)=0.395

K factor=** 3.188

TL(1) = 50.759

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.054

S= 0.351

CV(2) = 0.115

K factor=** 3.188

TL(2) = 4.173

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	46.2	NO	3.833	N/A
MW390	Downgradien	t Yes	32.1	NO	3.469	N/A
MW393	Downgradien	t Yes	19	NO	2.944	N/A
MW396	Upgradient	Yes	23.3	NO	3.148	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.624

CV(1)=0.860

K factor=** 3.188

TL(1)= 28.531

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.498

 $S= 1.321 \quad CV(2)=0.882$

S = 6.558

K factor=** 3.188

TL(2) = 5.710

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No	. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	5 Sidegradient	No	1.85	N/A	0.615	N/A
MW390) Downgradien	t Yes	70.9	YES	4.261	N/A
MW393	B Downgradien	t No	-0.958	N/A	#Error	N/A
MW396	5 Upgradient	No	-7.44	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.988

S= 4.696 **CV(1)**=0.470

K factor=** 3.188

TL(1)= 24.959

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.210

S = 0.454

CV(2) = 0.205

K factor=** 3.188

TL(2)= 3.657

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	19	2.944
9/16/2002	14.6	2.681
10/16/2002	10.4	2.342
1/13/2003	4.4	1.482
4/8/2003	7	1.946
7/16/2003	7.3	1.988
10/14/2003	9.1	2.208
1/14/2004	8.1	2.092

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	4.47	NO	1.497	N/A
MW390	Downgradien	t No	0.896	N/A	-0.110	N/A
MW393	Downgradien	t No	2.91	N/A	1.068	N/A
MW396	Upgradient	Yes	5.76	NO	1.751	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 142.650 S = 53.533 CV(1) = 0.375

K factor=** 3.188

TL(1)= 313.314 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.896 S = 0.390

CV(2) = 0.080

K factor=** 3.188

TL(2) = 6.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	127	NO	4.844	N/A
MW390	Downgradien	t Yes	9.96	NO	2.299	N/A
MW393	Downgradien	t Yes	19.1	NO	2.950	N/A
MW396	Upgradient	Yes	48.8	NO	3.888	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Uranium

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.001

CV(1)=0.314 S = 0.000

K factor=** 3.188

TL(1) = 0.002

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.821 S = 0.245

CV(2) = -0.036

K factor=** 3.188

TL(2) = -6.040

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.002	-6.215
9/16/2002	0.001	-6.908
10/16/2002	0.001	-6.908
1/13/2003	0.001	-6.908
4/8/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	0.00011	8 NO	-9.045	N/A			
MW390	Downgradien	t Yes	0.00024	NO	-8.335	N/A			
MW393	Downgradien	t No	0.0002	N/A	-8.517	N/A			
MW396	Upgradient	Yes	0.00009	2 NO	-9.294	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-27

C-746-S/T Second Quarter 2017 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Aluminum **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 0.221S = 0.061CV(1)=0.277TL(1) = 0.376LL(1)=N/A **Statistics-Transformed Background**

Data

X = -1.534 S = 0.212CV(2) = -0.138 **K factor**=** 2.523

TL(2) = -0.999

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.2 -1.6097/14/2003 0.2 -1.609-0.85110/13/2003 0.427 1/13/2004 0.309 -1.1744/13/2004 0.2 -1.609 7/21/2004 0.202 -1.599Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.2 -1.6099/16/2002 0.2 -1.609 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.0372	NO	-3.291	N/A	
MW221	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW222	Sidegradient	Yes	0.039	NO	-3.244	N/A	
MW223	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW224	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW369	Downgradien	t Yes	0.0672	NO	-2.700	N/A	
MW372	Downgradien	t Yes	0.0242	NO	-3.721	N/A	
MW384	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW387	Downgradien	t No	0.05	N/A	-2.996	N/A	
MW391	Downgradien	t No	0.05	N/A	-2.996	N/A	
MW394	Upgradient	No	0.05	N/A	-2.996	N/A	
NT/A D	1, 11 1 N	T D	1 ' 11		1 . 1:1 .:	1 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-28

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 14.273 **S**= 13.883 **CV(1)**=0.973

K factor=** 2.523

TL(1)= 49.300

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.213 **S**= 1.033

CV(2) = 0.467

K factor**= 2.523

TL(2) = 4.819

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 15.2 2.721 1/15/2003 42.5 3.750 4/10/2003 45.4 3.816 7/14/2003 8.53 2.144 10/13/2003 11.7 2.460 1/13/2004 13.5 2.603 4/13/2004 33.5 3.512 7/21/2004 13.7 2.617 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 5.03 1.615 9/16/2002 5.57 1.717 10/16/2002 12.8 2.549 1/13/2003 4.3 1.459 4/10/2003 9.52 2.253 7/16/2003 3.92 1.366 10/14/2003 0.058 1.06 1/13/2004 2.14 0.761

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
•	MW220	Upgradient	Yes	20.1	N/A	3.001	N/A
	MW221	Sidegradient	Yes	11.1	N/A	2.407	N/A
	MW222	Sidegradient	Yes	8.74	N/A	2.168	N/A
	MW223	Sidegradient	Yes	7.18	N/A	1.971	N/A
	MW224	Sidegradient	Yes	6.59	N/A	1.886	N/A
	MW369	Downgradien	t Yes	9.12	N/A	2.210	N/A
	MW372	Downgradien	t Yes	8.69	N/A	2.162	N/A
	MW384	Sidegradient	Yes	123	YES	4.812	N/A
	MW387	Downgradien	t Yes	232	YES	5.447	N/A
	MW391	Downgradien	t Yes	6.73	N/A	1.907	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

9.09

Yes

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

N/A

MW384 MW387

2.207

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW394 Upgradient

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.425 S = 0.615 CV(1) = 1.447 K factor**= 2.523
 TL(1) = 1.976 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.322 S = 0.786 CV(2) = -0.595 K factor**= 2.523
 TL(2) = 0.663 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.2 -1.6097/14/2003 0.2 -1.609-1.609 10/13/2003 0.2 1/13/2004 0.2 -1.609

7/21/2004 0.2 -1.609 Well Number: MW394

0.2

4/13/2004

1/13/2004

Well Nullibel.	IVI VV 354	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609

0.2

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00813	N/A	-4.812	NO	
MW221	Sidegradient	Yes	0.0133	N/A	-4.320	NO	
MW222	Sidegradient	Yes	0.00963	N/A	-4.643	NO	
MW223	Sidegradient	Yes	0.00789	N/A	-4.842	NO	
MW224	Sidegradient	Yes	0.0152	N/A	-4.186	NO	
MW369	Downgradien	t Yes	0.0168	N/A	-4.086	NO	
MW372	Downgradien	t Yes	0.827	N/A	-0.190	NO	
MW384	Sidegradient	Yes	0.0159	N/A	-4.141	NO	
MW387	Downgradien	t Yes	0.0232	N/A	-3.764	NO	
MW391	Downgradien	t Yes	0.176	N/A	-1.737	NO	
MW394	Upgradient	Yes	0.0259	N/A	-3.654	NO	
N/A Dogu	lts identified as N	Ion Datasta	during lab	protory analyzaia or	data validation	and ware not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

-1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1 0.000 0.000 4/10/2003 7/14/2003 1 0.000 1 0.000 10/13/2003 1/13/2004 1 0.000 4/13/2004 1 0.000 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/16/2002 1 0.000 1/13/2003 0.000 4/10/2003 0.000 7/16/2003 1 0.000 10/14/2003 0.000 1 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.217	NO	-1.528	N/A		
MW221	Sidegradient	Yes	0.421	NO	-0.865	N/A		
MW222	Sidegradient	Yes	0.446	NO	-0.807	N/A		
MW223	Sidegradient	Yes	0.384	NO	-0.957	N/A		
MW224	Sidegradient	Yes	0.425	NO	-0.856	N/A		
MW369	Downgradien	t Yes	0.405	NO	-0.904	N/A		
MW372	Downgradien	t Yes	0.63	NO	-0.462	N/A		
MW384	Sidegradient	Yes	0.413	NO	-0.884	N/A		
MW387	Downgradien	t Yes	0.569	NO	-0.564	N/A		
MW391	Downgradien	t Yes	0.539	NO	-0.618	N/A		
MW394	Upgradient	Yes	0.602	NO	-0.507	N/A		
N/A - Recu	Its identified as N	Ion-Detects	luring lah	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 27.638 S = 4.743 CV(1) = 0.172 K factor**= 2.523
 TL(1) = 39.604 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.304 X = 0.183 X

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 23.6 3.161 1/15/2003 25.9 3.254 4/10/2003 30.4 3.414 7/14/2003 33.9 3.523 10/13/2003 21.3 3.059 1/13/2004 20.3 3.011 4/13/2004 23.8 3.170 7/21/2004 19 2.944 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 29.5 3.384 9/16/2002 29.9 3.398 10/16/2002 31.2 3.440 1/13/2003 30.7 3.424 4/10/2003 34.4 3.538 7/16/2003 29.6 3.388 10/14/2003 30.3 3.411 1/13/2004 28.4 3.346

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW220	Upgradient	Yes	20.8	NO	3.035	N/A		
MW221	Sidegradient	Yes	22.5	NO	3.114	N/A		
MW222	Sidegradient	Yes	19.5	NO	2.970	N/A		
MW223	Sidegradient	Yes	24	NO	3.178	N/A		
MW224	Sidegradient	Yes	24.5	NO	3.199	N/A		
MW369	Downgradien	t Yes	17.3	NO	2.851	N/A		
MW372	Downgradien	t Yes	48.7	YES	3.886	N/A		
MW384	Sidegradient	Yes	28.6	NO	3.353	N/A		
MW387	Downgradien	t Yes	32.7	NO	3.487	N/A		
MW391	Downgradien	t Yes	35.2	NO	3.561	N/A		
MW394	Upgradient	Yes	27.9	NO	3.329	N/A		
N/A Pagu	Ite identified as N	Ion Detects of	luring lab	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Carbon disulfide UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor**= 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 5 1.609 1/15/2003 5 1.609 4/10/2003 5 1.609 7/14/2003 5 1.609 5 10/13/2003 1.609 1/13/2004 5 1.609 4/13/2004 5 1.609 5 7/21/2004 1.609 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	5	N/A	1.609	N/A	
MW221	Sidegradient	No	5	N/A	1.609	N/A	
MW222	Sidegradient	No	5	N/A	1.609	N/A	
MW223	Sidegradient	No	5	N/A	1.609	N/A	
MW224	Sidegradient	No	5	N/A	1.609	N/A	
MW369	Downgradien	t No	5	N/A	1.609	N/A	
MW372	Downgradien	t No	5	N/A	1.609	N/A	
MW384	Sidegradient	No	5	N/A	1.609	N/A	
MW387	Downgradien	t Yes	15.2	YES	2.721	N/A	
MW391	Downgradien	t No	5	N/A	1.609	N/A	
MW394	Upgradient	No	5	N/A	1.609	N/A	
N/A Pagu	Ite identified as N	Ion Detects	luring lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.609

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 35.000
 S= 0.000
 CV(1)=0.000
 K factor**= 2.523
 TL(1)= 35.000
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.555
 S= 0.000
 CV(2)=0.000
 K factor**= 2.523
 TL(2)= 3.555
 LL(2)=N/A

Data

landfill.

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35 3.555 1/15/2003 35 3.555 4/10/2003 35 3.555 7/14/2003 35 3.555 10/13/2003 35 3.555 1/13/2004 35 3.555 4/13/2004 35 3.555 7/21/2004 35 3.555 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 4/10/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555 1/13/2004 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	24	NO	3.178	N/A
MW221	Sidegradient	Yes	33.3	NO	3.506	N/A
MW222	Sidegradient	Yes	36.2	YES	3.589	N/A
MW223	Sidegradient	Yes	21.9	NO	3.086	N/A
MW224	Sidegradient	Yes	28.1	NO	3.336	N/A
MW369	Downgradien	t No	20	N/A	2.996	N/A
MW372	Downgradien	t No	20	N/A	2.996	N/A
MW384	Sidegradient	Yes	17.8	NO	2.879	N/A
MW387	Downgradien	t Yes	10.9	NO	2.389	N/A
MW391	Downgradien	t No	20	N/A	2.996	N/A
MW394	Upgradient	Yes	16.1	NO	2.779	N/A
N/A - Resu	lts identified as N	Ion-Detects o	lurino lah	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW222

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.044 S = 11.278 CV(1) = 0.230

K factor=** 2.523

TL(1)= 77.499 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 3.866 **S**= 0.244

CV(2)=0.063

K factor**= 2.523

TL(2) = 4.482

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	44.6	3.798
1/15/2003	43.2	3.766
4/10/2003	31.5	3.450
7/14/2003	30.8	3.428
10/13/2003	40.9	3.711
1/13/2004	40.8	3.709
4/13/2004	37.5	3.624
7/21/2004	40.8	3.709
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.101
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 60.4	4.101
Date Collected 8/13/2002 9/16/2002	Result 60.4 60.3	4.101 4.099
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 60.4 60.3 58	4.101 4.099 4.060
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 60.4 60.3 58 60.7	4.101 4.099 4.060 4.106
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 60.4 60.3 58 60.7 62.9	4.101 4.099 4.060 4.106 4.142

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	20.8	NO	3.035	N/A	
MW221	Sidegradient	Yes	32.4	NO	3.478	N/A	
MW222	Sidegradient	Yes	31.5	NO	3.450	N/A	
MW223	Sidegradient	Yes	27.5	NO	3.314	N/A	
MW224	Sidegradient	Yes	30.8	NO	3.428	N/A	
MW369	Downgradien	t Yes	35	NO	3.555	N/A	
MW372	Downgradien	t Yes	48	NO	3.871	N/A	
MW384	Sidegradient	Yes	41.2	NO	3.718	N/A	
MW387	Downgradien	t Yes	48.2	NO	3.875	N/A	
MW391	Downgradien	t Yes	41.6	NO	3.728	N/A	
MW394	Upgradient	Yes	51.9	NO	3.949	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Cobalt **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 0.016S = 0.040CV(1)=2.440TL(1) = 0.116LL(1)=N/A **Statistics-Transformed Background** X = -5.582 S = 1.573

Data

CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.613

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0041 -5.4971/15/2003 0.00496 -5.3060.00289 4/10/2003 -5.8467/14/2003 0.161 -1.8260.0226 -3.79010/13/2003 1/13/2004 0.00464 -5.3734/13/2004 0.001 -6.908 7/21/2004 0.00264 -5.937Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/16/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/10/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.001	N/A	-6.908	N/A	
MW221	Sidegradient	Yes	0.00124	N/A	-6.693	NO	
MW222	Sidegradient	Yes	0.00073	N/A	-7.222	NO	
MW223	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW224	Sidegradient	Yes	0.000512	2 N/A	-7.577	NO	
MW369	Downgradien	t Yes	0.0609	N/A	-2.799	NO	
MW372	Downgradien	t Yes	0.00065	6 N/A	-7.329	NO	
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW394	Upgradient	No	0.001	N/A	-6.908	N/A	
NI/A D	14- : +: -: N	T D-44-	1		4-41:4-4:		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-36

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 382.132 S = 107.134 CV(1) = 0.280

K factor=** 2.523

TL(1)= 652.432 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.716 S = 1.164 CV(2) = 0.204

K factor=** 2.523

TL(2)= 8.652

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 5.908 368 1/15/2003 433.2 6.071 489 4/10/2003 6.192 7/14/2003 430 6.064 10/13/2003 346 5.846 1/13/2004 365 5.900 4/13/2004 416 6.031 7/21/2004 353 5.866 Well Number: MW394 Date Collected LN(Result) Result 406 8/13/2002 6.006 9/16/2002 418 6.035 10/16/2002 411 6.019 1/13/2003 422 6.045 4/10/2003 420 6.040 7/16/2003 438 6.082 10/14/2003 3.91 1.364 5.979 1/13/2004 395

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	350	NO	5.858	N/A	
MW221	Sidegradient	Yes	403	NO	5.999	N/A	
MW222	Sidegradient	Yes	366	NO	5.903	N/A	
MW223	Sidegradient	Yes	405	NO	6.004	N/A	
MW224	Sidegradient	Yes	426	NO	6.054	N/A	
MW369	Downgradien	t Yes	437	NO	6.080	N/A	
MW372	Downgradien	t Yes	596	NO	6.390	N/A	
MW384	Sidegradient	Yes	492	NO	6.198	N/A	
MW387	Downgradien	t Yes	518	NO	6.250	N/A	
MW391	Downgradien	t Yes	488	NO	6.190	N/A	
MW394	Upgradient	Yes	391	NO	5.969	N/A	
37/4 5						•	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.010 CV(1) = 0.429 K factor** = 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.794 S = 0.312 CV(2) = -0.082 K factor** = 2.523
 TL(2) = -3.007 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0211 -3.8581/15/2003 0.02 -3.9120.02 -3.912 4/10/2003 7/14/2003 0.02 -3.912 0.02 -3.912 10/13/2003 1/13/2004 0.02 -3.912 4/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.99610/16/2002 0.02 -3.9121/13/2003 0.02 -3.912 4/10/2003 0.02 -3.912 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW220	Upgradient	Yes	0.00068	8 NO	-7.282	N/A		
MW221	Sidegradient	Yes	0.00252	NO	-5.983	N/A		
MW222	Sidegradient	Yes	0.00053	5 NO	-7.533	N/A		
MW223	Sidegradient	Yes	0.00049	5 NO	-7.611	N/A		
MW224	Sidegradient	Yes	0.00035	8 NO	-7.935	N/A		
MW369	Downgradien	t Yes	0.00133	NO	-6.623	N/A		
MW372	Downgradien	t Yes	0.00031	8 NO	-8.053	N/A		
MW384	Sidegradient	Yes	0.00040	7 NO	-7.807	N/A		
MW387	Downgradien	t Yes	0.00034	NO	-7.987	N/A		
MW391	Downgradien	t Yes	0.00041	NO	-7.799	N/A		
MW394	Upgradient	Yes	0.00046	3 NO	-7.678	N/A		
N/A - Recu	Its identified as N	Ion-Detects	luring labo	ratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 3.784 S = 1.887 CV(1) = 0.499 K factor**= 2.523 TL(1) = 8.545 LL(1) = N/A Statistics-Transformed Background X = 1.182 S = 0.612 CV(2) = 0.518 K factor**= 2.523 TL(2) = 2.727 LL(2) = N/A

Data

Historical Background Data from

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.79	1.915
1/15/2003	7.25	1.981
4/10/2003	3.6	1.281
7/14/2003	0.94	-0.062
10/13/2003	1.65	0.501
1/13/2004	3.48	1.247
4/13/2004	1.05	0.049
7/21/2004	4.46	1.495
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.807
Date Collected	Result	
Date Collected 8/13/2002	Result 6.09	1.807
Date Collected 8/13/2002 9/16/2002	Result 6.09 3.85	1.807 1.348
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 6.09 3.85 5.11	1.807 1.348 1.631
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 6.09 3.85 5.11 3.83	1.807 1.348 1.631 1.343
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 6.09 3.85 5.11 3.83 4.15	1.807 1.348 1.631 1.343 1.423

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW220	Upgradient	Yes	4.35	NO	1.470	N/A		
MW221	Sidegradient	Yes	4.18	NO	1.430	N/A		
MW222	Sidegradient	Yes	3.35	NO	1.209	N/A		
MW223	Sidegradient	Yes	3.11	NO	1.135	N/A		
MW224	Sidegradient	Yes	2.97	NO	1.089	N/A		
MW369	Downgradien	t Yes	2.03	NO	0.708	N/A		
MW372	Downgradien	t Yes	1.51	NO	0.412	N/A		
MW384	Sidegradient	Yes	3.47	NO	1.244	N/A		
MW387	Downgradien	t Yes	3.37	NO	1.215	N/A		
MW391	Downgradien	t Yes	3.17	NO	1.154	N/A		
MW394	Upgradient	Yes	5.2	NO	1.649	N/A		
NI/A Dagu	lta idantified on N	Ion Dotooto	lumin a lah	orotory analysis or	data validation	and woman a		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 232.688 S = 27.490 CV(1) = 0.118

K factor=** 2.523

TL(1)= 302.045 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.443 S = 0.118 CV(2) = 0.022

K factor=** 2.523

TL(2) = 5.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW220	Upgradient	Yes	193	NO	5.263	N/A		
MW221	Sidegradient	Yes	213	NO	5.361	N/A		
MW222	Sidegradient	Yes	213	NO	5.361	N/A		
MW223	Sidegradient	Yes	229	NO	5.434	N/A		
MW224	Sidegradient	Yes	246	NO	5.505	N/A		
MW369	Downgradien	t Yes	216	NO	5.375	N/A		
MW372	Downgradien	t Yes	317	YES	5.759	N/A		
MW384	Sidegradient	Yes	257	NO	5.549	N/A		
MW387	Downgradien	t Yes	277	NO	5.624	N/A		
MW391	Downgradien	t Yes	271	NO	5.602	N/A		
MW394	Upgradient	Yes	203	NO	5.313	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-40

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.897 S = 1.050 CV(1) = 1.170 K factor** = 2.523
 TL(1) = 3.545 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.565 S = 0.951 CV(2) = -1.683 K factor** = 2.523
 TL(2) = 1.834 LL(2) = N/A

Data

7/16/2003

10/14/2003

1/13/2004

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.429 -0.8467/14/2003 4.33 1.466 0.593 10/13/2003 1.81 1/13/2004 0.793 -0.2324/13/2004 0.13 -2.040 7/21/2004 0.382 -0.962Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 1.34 0.293 9/16/2002 0.328 -1.115 0.322 10/16/2002 1.38 1/13/2003 0.262 1.3 4/10/2003 0.494 -0.705

0.62

0.37

0.251

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.0833	N/A	-2.485	NO		
MW221	Sidegradient	Yes	0.0649	N/A	-2.735	NO		
MW222	Sidegradient	Yes	0.0711	N/A	-2.644	NO		
MW223	Sidegradient	No	0.1	N/A	-2.303	N/A		
MW224	Sidegradient	Yes	0.0496	N/A	-3.004	NO		
MW369	Downgradien	t Yes	2.03	N/A	0.708	NO		
MW372	Downgradien	t Yes	0.647	N/A	-0.435	NO		
MW384	Sidegradient	Yes	0.0436	N/A	-3.133	NO		
MW387	Downgradien	t Yes	0.0529	N/A	-2.939	NO		
MW391	Downgradien	t Yes	0.0649	N/A	-2.735	NO		
MW394	Upgradient	Yes	0.0432	N/A	-3.142	NO		
N/A Pagu	Ite identified as N	Ion Detects	luring lah	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-0.478

-0.994

-1.382

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 10.796 S = 1.703 CV(1) = 0.158 K factor** = 2.523
 TL(1) = 15.092 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.368 X = 0.158 X = 0.158 X = 0.028 X

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 9.16 2.215 1/15/2003 10 2.303 4/10/2003 10.8 2.380 7/14/2003 14.7 2.688 9.03 10/13/2003 2.201 1/13/2004 8.49 2.139 4/13/2004 9.7 2.272 7/21/2004 8.06 2.087 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 11.8 2.468 9/16/2002 12.1 2.493 10/16/2002 11.3 2.425 1/13/2003 10.3 2.332 4/10/2003 11.7 2.460 7/16/2003 12 2.485 10/14/2003 2.501 12.2 1/13/2004 11.4 2.434

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	9.11	NO	2.209	N/A	
MW221	Sidegradient	Yes	9.6	NO	2.262	N/A	
MW222	Sidegradient	Yes	9.24	NO	2.224	N/A	
MW223	Sidegradient	Yes	10.4	NO	2.342	N/A	
MW224	Sidegradient	Yes	10.6	NO	2.361	N/A	
MW369	Downgradien	t Yes	7.2	NO	1.974	N/A	
MW372	Downgradien	t Yes	18.1	YES	2.896	N/A	
MW384	Sidegradient	Yes	11.1	NO	2.407	N/A	
MW387	Downgradien	t Yes	12.9	NO	2.557	N/A	
MW391	Downgradien	t Yes	14.7	NO	2.688	N/A	
MW394	Upgradient	Yes	11.6	NO	2.451	N/A	
N/A - Resu	lts identified as N	Ion-Detects	luring lab	oratory analysis or	data validatior	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.287 S = 0.619 CV(1) = 2.156 K factor** = 2.523
 TL(1) = 1.848 LL(1) = N/A

 Statistics-Transformed Background
 X = -2.455 S = 1.619 CV(2) = -0.659 K factor** = 2.523
 TL(2) = 1.630 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0306 -3.4871/15/2003 0.0291 -3.5370.0137 -4.290 4/10/2003 7/14/2003 2.54 0.932 -0.97310/13/2003 0.378 1/13/2004 0.159 -1.8394/13/2004 0.00707 -4.952 7/21/2004 0.0841 -2.476Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.542 -0.6129/16/2002 0.155 -1.864 10/16/2002 0.103 -2.2731/13/2003 0.128 -2.056 4/10/2003 0.005 -5.2987/16/2003 0.272 -1.30210/14/2003 0.0795 -2.532 1/13/2004 0.0658 -2.721

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.0011	N/A	-6.812	NO		
MW221	Sidegradient	Yes	0.00374	N/A	-5.589	NO		
MW222	Sidegradient	Yes	0.0132	N/A	-4.328	NO		
MW223	Sidegradient	Yes	0.00125	N/A	-6.685	NO		
MW224	Sidegradient	Yes	0.0074	N/A	-4.906	NO		
MW369	Downgradien	t Yes	0.783	N/A	-0.245	NO		
MW372	Downgradien	t Yes	0.0165	N/A	-4.104	NO		
MW384	Sidegradient	Yes	0.00182	N/A	-6.309	NO		
MW387	Downgradien	t Yes	0.00344	N/A	-5.672	NO		
MW391	Downgradien	t Yes	0.00216	N/A	-6.138	NO		
MW394	Upgradient	Yes	0.00223	N/A	-6.106	NO		
N/A - Resu	lts identified as N	Ion-Detects o	luring lahe	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.006 S = 0.008 CV(1) = 1.261 K factor** = 2.523
 TL(1) = 0.026 LL(1) = N/A

 Statistics-Transformed Background
 X = -5.747 S = 1.205 CV(2) = -0.210 K factor** = 2.523
 TL(2) = -2.708 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.00558 -5.1891/15/2003 0.00983 -4.6220.0109 -4.519 4/10/2003 7/14/2003 0.00245 -6.012 0.00566 -5.174 10/13/2003 1/13/2004 0.00572 -5.1644/13/2004 0.001 -6.908 7/21/2004 0.00392 -5.542Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/16/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/10/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.00106	N/A	-6.849	NO		
MW221	Sidegradient	Yes	0.00578	N/A	-5.153	NO		
MW222	Sidegradient	Yes	0.00030	5 N/A	-8.095	NO		
MW223	Sidegradient	Yes	0.00439	N/A	-5.428	NO		
MW224	Sidegradient	Yes	0.00063	2 N/A	-7.367	NO		
MW369	Downgradien	t No	0.00043	N/A	-7.752	N/A		
MW372	Downgradien	t No	0.00073	6 N/A	-7.214	N/A		
MW384	Sidegradient	No	0.00029	3 N/A	-8.135	N/A		
MW387	Downgradien	t No	0.0005	N/A	-7.601	N/A		
MW391	Downgradien	t No	0.0005	N/A	-7.601	N/A		
MW394	Upgradient	No	0.00023	3 N/A	-8.364	N/A		
N/A - Recu	Its identified as N	Ion-Detects	during labo	ratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.127 S = 0.228 CV(1) = 1.790 K factor** = 2.523
 TL(1) = 0.701 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.617 S = 1.837 CV(2) = -0.508 K factor** = 2.523
 TL(2) = 1.019 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.418 -0.8721/15/2003 0.738 -0.3044/10/2003 0.544 -0.6097/14/2003 0.106-2.244-2.939 10/13/2003 0.0529 1/13/2004 0.0209 -3.8684/13/2004 0.005 -5.298 7/21/2004 0.0192 -3.953Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.996 10/16/2002 0.005 -5.2981/13/2003 0.005 -5.298 4/10/2003 0.005 -5.2987/16/2003 0.005 -5.29810/14/2003 0.005 -5.2981/13/2004 0.005 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.0202	N/A	-3.902	NO		
MW221	Sidegradient	Yes	0.12	N/A	-2.120	NO		
MW222	Sidegradient	Yes	0.15	N/A	-1.897	NO		
MW223	Sidegradient	Yes	0.154	N/A	-1.871	NO		
MW224	Sidegradient	Yes	0.0137	N/A	-4.290	NO		
MW369	Downgradien	t Yes	0.00947	N/A	-4.660	NO		
MW372	Downgradien	t No	0.0014	N/A	-6.571	N/A		
MW384	Sidegradient	No	0.00126	N/A	-6.677	N/A		
MW387	Downgradien	t No	0.00106	N/A	-6.849	N/A		
MW391	Downgradien	t No	0.00106	N/A	-6.849	N/A		
MW394	Upgradient	Yes	0.00395	N/A	-5.534	NO		
M/A Dogu	lte identified as N	Ion Detects	luring lab	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 179.872 S = 86.318 CV(1) = 0.480

K factor=** 2.523

TL(1) = 397.652

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.861

S = 1.252CV(2) = 0.258 **K factor**=** 2.523

TL(2) = 8.021

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 205 5.323 1/15/2003 1.95 0.668 203 4/10/2003 5.313 7/14/2003 30 3.401 10/13/2003 107 4.673 1/13/2004 295 5.687 4/13/2004 190 5.247 7/21/2004 319 5.765 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 90 4.500 9/16/2002 240 5.481 10/16/2002 185 5.220 1/13/2003 220 5.394 4/10/2003 196 5.278 7/16/2003 5.147 172 10/14/2003 175 5.165 1/13/2004 249 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	283	NO	5.645	N/A	
MW221	Sidegradient	Yes	310	NO	5.737	N/A	
MW222	Sidegradient	Yes	289	NO	5.666	N/A	
MW223	Sidegradient	Yes	313	NO	5.746	N/A	
MW224	Sidegradient	Yes	290	NO	5.670	N/A	
MW369	Downgradien	t Yes	271	NO	5.602	N/A	
MW372	Downgradien	t Yes	256	NO	5.545	N/A	
MW384	Sidegradient	Yes	315	NO	5.753	N/A	
MW387	Downgradien	t Yes	315	NO	5.753	N/A	
MW391	Downgradien	t Yes	242	NO	5.489	N/A	
MW394	Upgradient	Yes	306	NO	5.724	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-46

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.138 S = 0.282 CV(1) = 0.046 K factor** = 2.904 TL(1) = 6.957 LL(1) = 5.3179

Statistics-Transformed Background Data

X= 1.813 **S**= 0.047 **CV(2)**= 0.026

K factor=** 2.904

TL(2)= 1.950

LL(2)=1.6765

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.798 6.04 1/15/2003 6.31 1.842 4/10/2003 6.5 1.872 7/14/2003 6.3 1.841 10/13/2003 6.34 1.847 1/13/2004 6.33 1.845 4/13/2004 6.3 1.841 7/21/2004 5.9 1.775 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 5.8 1.758 9/30/2002 5.93 1.780 10/16/2002 5.42 1.690 1.792 1/13/2003 6 4/10/2003 6.04 1.798 7/16/2003 6.2 1.825 10/14/2003 1.856 6.4 1/13/2004 6.39 1.855

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>` /</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	` /	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	6.26	NO	1.834	N/A
MW221	Sidegradient	Yes	6.16	NO	1.818	N/A
MW222	Sidegradient	Yes	6.26	NO	1.834	N/A
MW223	Sidegradient	Yes	6.07	NO	1.803	N/A
MW224	Sidegradient	Yes	6.29	NO	1.839	N/A
MW369	Downgradien	t Yes	6.01	NO	1.793	N/A
MW372	Downgradien	t Yes	6.25	NO	1.833	N/A
MW384	Sidegradient	Yes	6.19	NO	1.823	N/A
MW387	Downgradien	t Yes	6.14	NO	1.815	N/A
MW391	Downgradien	t Yes	6.23	NO	1.829	N/A
MW394	Upgradient	Yes	6.1	NO	1.808	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.654 S = 9.310 CV(1) = 1.399 K factor**= 2.523 TL(1) = 30.144 LL(1) = N/A Statistics-Transformed Background X = 1.130 S = 1.208 CV(2) = 1.069 K factor**= 2.523 TL(2) = 4.178 LL(2) = N/A Data

Historical Poolsmannd Data from

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.7	1.902
1/15/2003	29.7	3.391
4/10/2003	24.9	3.215
7/14/2003	1.13	0.122
10/13/2003	3.43	1.233
1/13/2004	6.71	1.904
4/13/2004	19.3	2.960
7/21/2004	3.97	1.379
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	,
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 1.03	0.693 0.693 0.030
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 2 1.03 1.1	0.693 0.693 0.030 0.095
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 2 1.03 1.1 1.24	0.693 0.693 0.030 0.095 0.215

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.64	N/A	0.495	NO
MW221	Sidegradient	Yes	1.38	N/A	0.322	NO
MW222	Sidegradient	Yes	0.542	N/A	-0.612	NO
MW223	Sidegradient	Yes	1.25	N/A	0.223	NO
MW224	Sidegradient	Yes	0.873	N/A	-0.136	NO
MW369	Downgradien	t Yes	0.462	N/A	-0.772	NO
MW372	Downgradien	t Yes	2.12	N/A	0.751	NO
MW384	Sidegradient	Yes	1.18	N/A	0.166	NO
MW387	Downgradien	t Yes	1.32	N/A	0.278	NO
MW391	Downgradien	t Yes	1.75	N/A	0.560	NO
MW394	Upgradient	Yes	1.48	N/A	0.392	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Sodium URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 36.363 S = 8.666CV(1)=0.238TL(1) = 58.227LL(1)=N/A **Statistics-Transformed Background** X = 3.570LL(2)=N/A

Data

S = 0.222

CV(2) = 0.062

K factor=** 2.523

TL(2) = 4.129

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35.4 3.567 1/15/2003 40.6 3.704 4/10/2003 51 3.932 7/14/2003 58.2 4.064 10/13/2003 38.1 3.640 1/13/2004 37 3.611 4/13/2004 43.2 3.766 7/21/2004 33.8 3.520 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 32.9 3.493 9/16/2002 29.9 3.398 10/16/2002 29 3.367 1/13/2003 27.1 3.300 4/10/2003 24.8 3.211 7/16/2003 3.572 35.6 10/14/2003 3.523 33.9 1/13/2004 31.3 3.444

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	41.4	NO	3.723	N/A
MW221	Sidegradient	Yes	46.9	NO	3.848	N/A
MW222	Sidegradient	Yes	47.4	NO	3.859	N/A
MW223	Sidegradient	Yes	48.9	NO	3.890	N/A
MW224	Sidegradient	Yes	59.3	YES	4.083	N/A
MW369	Downgradien	t Yes	62	YES	4.127	N/A
MW372	Downgradien	t Yes	48	NO	3.871	N/A
MW384	Sidegradient	Yes	59	YES	4.078	N/A
MW387	Downgradien	t Yes	55.7	NO	4.020	N/A
MW391	Downgradien	t Yes	40.2	NO	3.694	N/A
MW394	Upgradient	Yes	30.7	NO	3.424	N/A
NI/A Dagu	lta idantified on N	Ion Dotooto	lumin a lah	orotory analysis or	data validation	and more

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW224 MW369

MW384

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-49

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 10.481 S = 2.648 CV(1) = 0.253 K factor**= 2.523
 TL(1) = 17.161 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.322 S = 0.239 CV(2) = 0.103 K factor**= 2.523
 TL(2) = 2.925 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 10.4 2.342 1/15/2003 9.8 2.282 4/10/2003 15.4 2.734 7/14/2003 14.9 2.701 10/13/2003 13.5 2.603 1/13/2004 10.3 2.332 4/13/2004 14.3 2.660 7/21/2004 10.5 2.351 Well Number: MW394 Date Collected Result LN(Result) 11.2 8/13/2002 2.416 9/16/2002 8.3 2.116 2.079 10/16/2002 8 1/13/2003 2.140 8.5 4/10/2003 7.9 2.067 7/16/2003 2.128 8.4 10/14/2003 2.104 8.2 1/13/2004 8.1 2.092

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	19.9	YES	2.991	N/A
MW221	Sidegradient	Yes	14.9	NO	2.701	N/A
MW222	Sidegradient	Yes	12.4	NO	2.518	N/A
MW223	Sidegradient	Yes	22.1	YES	3.096	N/A
MW224	Sidegradient	Yes	13.8	NO	2.625	N/A
MW369	Downgradien	t Yes	5.59	NO	1.721	N/A
MW372	Downgradien	t Yes	73.2	YES	4.293	N/A
MW384	Sidegradient	Yes	20.9	YES	3.040	N/A
MW387	Downgradien	t Yes	20.5	YES	3.020	N/A
MW391	Downgradien	t Yes	61.4	YES	4.117	N/A
MW394	Upgradient	Yes	10.5	NO	2.351	N/A
N/A - Resu	lts identified as N	Ion-Detects of	luring lab	oratory analysis or	data validatior	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW220
MW223
MW372
MW384
MW387
MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 9.354 S = 9.280 CV(1) = 0.992 K factor**= 2.523
 TL(1) = 32.768 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.270 X = 0.849 X =

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	19.7	2.981
1/15/2003	26.1	3.262
4/10/2003	3.56	1.270
7/14/2003	0	#Func!
10/13/2003	21	3.045
1/13/2004	6.32	1.844
4/13/2004	3	1.099
7/21/2004	14.6	2.681
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.639
Date Collected	Result	
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 5.45	2.639 1.696
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 14 5.45 2.49	2.639 1.696 0.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 14 5.45 2.49 18.3	2.639 1.696 0.912 2.907
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 14 5.45 2.49 18.3 -1.45	2.639 1.696 0.912 2.907 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	20.7	NO	3.030	N/A
MW221	Sidegradient	No	16	N/A	2.773	N/A
MW222	Sidegradient	No	9.72	N/A	2.274	N/A
MW223	Sidegradient	No	-0.985	N/A	#Error	N/A
MW224	Sidegradient	No	-2.54	N/A	#Error	N/A
MW369	Downgradien	t No	9.22	N/A	2.221	N/A
MW372	Downgradien	t No	9.55	N/A	2.257	N/A
MW384	Sidegradient	Yes	155	YES	5.043	N/A
MW387	Downgradien	t Yes	314	YES	5.749	N/A
MW391	Downgradien	t No	1.26	N/A	0.231	N/A
MW394	Upgradient	No	7.82	N/A	2.057	N/A
N/A - Resu	lts identified as N	Ion-Detects (luring lah	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.494
 S= 0.737
 CV(1)=0.493
 K factor**= 2.523
 TL(1)= 3.353
 LL(1)=N/A

 Statistics-Transformed Background
 X= 0.315
 S= 0.402
 CV(2)= 1.279
 K factor**= 2.523
 TL(2)= 1.330
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1.1 0.095 1 0.000 4/10/2003 7/14/2003 3.3 1.194 10/13/2003 1.8 0.588 1/13/2004 1 0.000 4/13/2004 2 0.693 7/21/2004 3.1 1.131 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.3 0.262 9/16/2002 1 0.000 10/16/2002 1 0.000 1/13/2003 0.470 4/10/2003 1 0.000 7/16/2003 1.4 0.336 10/14/2003 1.3 0.262 0.000 1/13/2004 1

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.871	NO	-0.138	N/A
MW221	Sidegradient	No	1.06	N/A	0.058	N/A
MW222	Sidegradient	Yes	0.814	NO	-0.206	N/A
MW223	Sidegradient	Yes	1.08	NO	0.077	N/A
MW224	Sidegradient	Yes	0.978	NO	-0.022	N/A
MW369	Downgradien	t Yes	2.17	NO	0.775	N/A
MW372	Downgradien	t Yes	1.26	NO	0.231	N/A
MW384	Sidegradient	No	1.24	N/A	0.215	N/A
MW387	Downgradien	t No	1.29	N/A	0.255	N/A
MW391	Downgradien	t No	1.05	N/A	0.049	N/A
MW394	Upgradient	No	0.937	N/A	-0.065	N/A
N/A - Recu	Its identified as N	Ion-Detects	during lah	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 63.475 S = 163.135 CV(1) = 2.570

K factor=** 2.523

TL(1)= 475.063 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.103 S = 1.145 CV(2) = 0.369

K factor=** 2.523

TL(2) = 5.992

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	50	3.912
1/15/2003	10	2.303
4/10/2003	10	2.303
7/14/2003	10	2.303
10/13/2003	10	2.303
1/13/2004	10	2.303
4/13/2004	10	2.303
7/21/2004	10	2.303
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	` ,
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 672	3.912 6.510
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 50 672 50	3.912 6.510 3.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 50 672 50 36.1	3.912 6.510 3.912 3.586
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 50 672 50 36.1 10	3.912 6.510 3.912 3.586 2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	3.92	N/A	1.366	NO
MW221	Sidegradient	Yes	4.18	N/A	1.430	NO
MW222	Sidegradient	No	10	N/A	2.303	N/A
MW223	Sidegradient	Yes	3.46	N/A	1.241	NO
MW224	Sidegradient	No	10	N/A	2.303	N/A
MW369	Downgradien	t Yes	44.5	N/A	3.795	NO
MW372	Downgradien	t Yes	11.9	N/A	2.477	NO
MW384	Sidegradient	Yes	6.3	N/A	1.841	NO
MW387	Downgradien	t Yes	38.9	N/A	3.661	NO
MW391	Downgradien	t Yes	9.78	N/A	2.280	NO
MW394	Upgradient	Yes	5.8	N/A	1.758	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-53

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 8.813 S = 8.376 CV(1) = 0.951 K factor**= 2.523 TL(1) = 29.946 LL(1) = N/A Statistics-Transformed Background X = 1.395 S = 1.449 CV(2) = 1.039 K factor**= 2.523 TL(2) = 5.052 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1 0.000 4/10/2003 0.000 7/14/2003 1 0.000 1 10/13/2003 0.000 1/13/2004 1 0.000 4/13/2004 0.000 1 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 16 2.773 9/30/2002 20 2.996 10/16/2002 17 2.833 1/13/2003 15 2.708 4/10/2003 10 2.303 7/16/2003 19 2.944 10/14/2003 20 2.996 1/13/2004 16 2.773

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.48	N/A	-0.734	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t Yes	3.91	N/A	1.364	N/A
MW372	Downgradien	t Yes	6.18	NO	1.821	N/A
MW384	Sidegradient	No	1	N/A	0.000	N/A
MW387	Downgradien	t Yes	0.73	N/A	-0.315	N/A
MW391	Downgradien	t Yes	7.25	NO	1.981	N/A
MW394	Upgradient	Yes	3.42	N/A	1.230	N/A
N/A - Resu	lts identified as N	Ion-Detects of	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.036 S = 0.026 CV(1) = 0.722 K factor**= 2.523
 TL(1) = 0.101 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.485 S = 0.525 CV(2) = -0.151 K factor**= 2.523
 TL(2) = -2.162 LL(2) = N/A

Data

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.025	-3.689
1/15/2003	0.035	-3.352
4/10/2003	0.035	-3.352
7/14/2003	0.0389	-3.247
10/13/2003	0.026	-3.650
1/13/2004	0.02	-3.912
4/13/2004	0.02	-3.912
7/21/2004	0.02	-3.912
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -2.303
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 0.1	-2.303
Date Collected 8/13/2002 9/16/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.1 0.1 0.025	-2.303 -2.303 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.1 0.1 0.025 0.035	-2.303 -2.303 -3.689 -3.352
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.1 0.1 0.025 0.035 0.035	-2.303 -2.303 -3.689 -3.352 -3.352
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.1 0.1 0.025 0.035 0.035 0.02	-2.303 -2.303 -3.689 -3.352 -3.352 -3.912

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.01	N/A	-4.605	N/A	
MW221	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW222	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW223	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW224	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW369	Downgradien	t Yes	0.00538	NO	-5.225	N/A	
MW372	Downgradien	t Yes	0.00389	NO	-5.549	N/A	
MW384	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW387	Downgradien	t No	0.01	N/A	-4.605	N/A	
MW391	Downgradien	t No	0.01	N/A	-4.605	N/A	
MW394	Upgradient	No	0.01	N/A	-4.605	N/A	
N/A Pagu	lte identified as N	Ion Detects	luring lab	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.258

CV(1)=0.856

K factor=** 2.523

TL(1) = 0.815

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.266 S = 2.485

S = 0.221

CV(2) = -1.097

K factor=** 2.523

TL(2) = 4.003

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.194
Date Collected	Result	
Date Collected 8/13/2002	Result 0.824	-0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	-0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	-0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	-0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	-0.194 -1.609 -8.517 -1.013 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	0.05	N/A	-2.996	N/A	
MW373	Downgradient	No	0.05	N/A	-2.996	N/A	
MW385	Sidegradient	Yes	0.0195	NO	-3.937	N/A	
MW388	Downgradient	Yes	0.0232	NO	-3.764	N/A	
MW392	Downgradient	Yes	0.0288	NO	-3.547	N/A	
MW395	Upgradient	No	0.05	N/A	-2.996	N/A	
MW397	Upgradient	Yes	0.046	NO	-3.079	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=7.183
 S= 2.612
 CV(1)=0.364
 K factor**= 2.523
 TL(1)= 13.773
 LL(1)=N/A

 Statistics-Transformed Background
 X=1.870
 S= 0.552
 CV(2)=0.295
 K factor**= 2.523
 TL(2)= 3.261
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.086 1.09 9/16/2002 5.79 1.756 1.920 10/16/2002 6.82 1/13/2003 5.01 1.611 4/10/2003 6.1 1.808 7/16/2003 8.51 2.141 10/14/2003 4.99 1.607 1/13/2004 6.58 1.884 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 9.57 2.259 9/16/2002 11 2.398 10/17/2002 9.3 2.230 1/13/2003 8.63 2.155 4/8/2003 10 2.303 7/16/2003 1.930 6.89 10/14/2003 2.313 10.1 1/13/2004 4.55 1.515

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradien	Yes	65.7	YES	4.185	N/A	
MW373	Downgradien	Yes	14.6	N/A	2.681	N/A	
MW385	Sidegradient	Yes	126	YES	4.836	N/A	
MW388	Downgradien	Yes	114	YES	4.736	N/A	
MW392	Downgradien	Yes	4.7	N/A	1.548	N/A	
MW395	Upgradient	Yes	7.61	N/A	2.029	N/A	
MW397	Upgradient	Yes	12.1	N/A	2.493	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.650 S = 0.805 CV(1) = 1.238 K factor**= 2.523
 TL(1) = 2.681 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.034 X = 1.030 X = 0.805 X =

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 2. 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.6090.2 -1.609 4/10/2003 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/17/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/8/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	0.0339	N/A	-3.384	NO		
MW373	Downgradient	Yes	0.725	N/A	-0.322	NO		
MW385	Sidegradient	Yes	0.0165	N/A	-4.104	NO		
MW388	Downgradient	Yes	0.0204	N/A	-3.892	NO		
MW392	Downgradient	Yes	0.0279	N/A	-3.579	NO		
MW395	Upgradient	Yes	0.0261	N/A	-3.646	NO		
MW397	Upgradient	Yes	0.00915	N/A	-4.694	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.000 9/16/2002 1 0.000 0.000 10/16/2002 1 1/13/2003 1 0.000 1 0.000 4/10/2003 7/16/2003 1 0.000 10/14/2003 1 0.000 1/13/2004 1 0.000 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/17/2002 1 0.000 1/13/2003 0.000 4/8/2003 0.000 7/16/2003 1 0.000 10/14/2003 0.000 1 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

1	Current Quarter Data								
W	ell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
N	MW370	Downgradien	t Yes	0.462	NO	-0.772	N/A		
N	MW373	Downgradien	t Yes	0.625	NO	-0.470	N/A		
N	MW385	Sidegradient	Yes	0.264	NO	-1.332	N/A		
N	MW388	Downgradien	t Yes	0.319	NO	-1.143	N/A		
N	MW392	Downgradien	t Yes	0.604	NO	-0.504	N/A		
N	MW395	Upgradient	Yes	0.603	NO	-0.506	N/A		
N	MW397	Upgradient	Yes	0.438	NO	-0.826	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 23.103 **S**= 11.538 **CV(1)**=0.499

K factor=** 2.523

TL(1)= 52.213

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.357

 $S= 2.411 \quad CV(2)=1.023$

K factor=** 2.523

TL(2) = 8.439

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.965
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
		- 10		- I					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2			
MW370	Downgradient	Yes	27.6	NO	3.318	N/A			
MW373	Downgradient	Yes	58.1	YES	4.062	N/A			
MW385	Sidegradient	Yes	25.9	NO	3.254	N/A			
MW388	Downgradient	Yes	25.9	NO	3.254	N/A			
MW392	Downgradient	Yes	28.4	NO	3.346	N/A			
MW395	Upgradient	Yes	28.2	NO	3.339	N/A			
MW397	Upgradient	Yes	18.2	NO	2.901	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.035 **K factor**=** 2.523 Statistics-Background Data X = 35.313 S = 1.250TL(1) = 38.466LL(1)=N/A **Statistics-Transformed Background** X = 3.564S = 0.033CV(2) = 0.009

Data

K factor=** 2.523

TL(2) = 3.648

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	3.555
4/10/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/13/2004	35	3.555
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 40	3.689
Date Collected 8/13/2002 9/16/2002	Result 40 35	3.689 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 40 35 35	3.689 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 40 35 35 35	3.689 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 40 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	. No	20	N/A	2.996	N/A		
MW373	Downgradient	No	20	N/A	2.996	N/A		
MW385	Sidegradient	No	20	N/A	2.996	N/A		
MW388	Downgradient	Yes	10.9	NO	2.389	N/A		
MW392	Downgradient	Yes	19.5	NO	2.970	N/A		
MW395	Upgradient	Yes	12.6	NO	2.534	N/A		
MW397	Upgradient	Yes	9.17	NO	2.216	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-61

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.844 S = 11.652 CV(1) = 0.225

K factor**= 2.523

TL(1)= 81.242

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.924

S = 0.229

CV(2) = 0.058

K factor=** 2.523

TL(2) = 4.501

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	62.2	4.130
9/16/2002	64.7	4.170
10/16/2002	62.2	4.130
1/13/2003	63.5	4.151
4/10/2003	64.1	4.160
7/16/2003	64	4.159
10/14/2003	63.2	4.146
1/13/2004	60.6	4.104
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.661
Date Collected	Result	
Date Collected 8/13/2002	Result 38.9	3.661
Date Collected 8/13/2002 9/16/2002	Result 38.9 39.8	3.661 3.684
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 38.9 39.8 39.3	3.661 3.684 3.671
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 38.9 39.8 39.3 40.5	3.661 3.684 3.671 3.701
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 38.9 39.8 39.3 40.5 42.1	3.661 3.684 3.671 3.701 3.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW370	Downgradient	Yes	36.4	NO	3.595	N/A			
MW373	Downgradient	Yes	48.3	NO	3.877	N/A			
MW385	Sidegradient	Yes	33	NO	3.497	N/A			
MW388	Downgradient	Yes	33.8	NO	3.520	N/A			
MW392	Downgradient	Yes	51.4	NO	3.940	N/A			
MW395	Upgradient	Yes	51.6	NO	3.944	N/A			
MW397	Upgradient	Yes	35.5	NO	3.570	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor** = 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.609 5 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 5 1/13/2004 1.609 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 5 1.609 1/13/2003 5 1.609 5 4/8/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	No	1	N/A	0.000	N/A		
MW373	Downgradient	No	1	N/A	0.000	N/A		
MW385	Sidegradient	No	1	N/A	0.000	N/A		
MW388	Downgradient	No	1	N/A	0.000	N/A		
MW392	Downgradient	Yes	0.75	NO	-0.288	N/A		
MW395	Upgradient	No	1	N/A	0.000	N/A		
MW397	Upgradient	No	1	N/A	0.000	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.011

CV(1)=1.515 **K factor****= 2.523

TL(1)= 0.034

LL(1)=N/A

Statistics-Transformed Background Data

X= -6.053 **S**= 1.416

1.416 **CV(2)=**-0.234

K factor=** 2.523

TL(2)= -2.480

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Date Collected	Result	LN(Result)
Date Collected 8/13/2002	Result 0.025	LN(Result) -3.689
	1100410	, ,
8/13/2002	0.025	-3.689
8/13/2002 9/16/2002	0.025 0.025	-3.689 -3.689
8/13/2002 9/16/2002 10/17/2002	0.025 0.025 0.001	-3.689 -3.689 -6.908
8/13/2002 9/16/2002 10/17/2002 1/13/2003	0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW370	Downgradient	Yes	0.000355	5 N/A	-7.943	NO			
MW373	Downgradient	No	0.001	N/A	-6.908	N/A			
MW385	Sidegradient	No	0.001	N/A	-6.908	N/A			
MW388	Downgradient	No	0.001	N/A	-6.908	N/A			
MW392	Downgradient	No	0.001	N/A	-6.908	N/A			
MW395	Upgradient	No	0.001	N/A	-6.908	N/A			
MW397	Upgradient	No	0.001	N/A	-6.908	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison **Conductivity UNITS:** umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

K factor=** 2.523

TL(1)= 509.326 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.926 S = 0.136 CV(2) = 0.023

K factor=** 2.523

TL(2) = 6.270

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 405 6.004 9/16/2002 401 5.994 5.971 10/16/2002 392 1/13/2003 404 6.001 4/10/2003 488 6.190 7/16/2003 450 6.109 10/14/2003 6.016 410 1/13/2004 413 6.023 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 322 5.775 5.753 9/16/2002 315 10/17/2002 317 5.759 1/13/2003 320 5.768 4/8/2003 390 5.966 7/16/2003 354 5.869 10/14/2003 331 5.802 1/13/2004 334 5.811

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW370	Downgradient	Yes	450	NO	6.109	N/A			
MW373	Downgradient	Yes	708	YES	6.562	N/A			
MW385	Sidegradient	Yes	415	NO	6.028	N/A			
MW388	Downgradient	Yes	431	NO	6.066	N/A			
MW392	Downgradient	Yes	409	NO	6.014	N/A			
MW395	Upgradient	Yes	392	NO	5.971	N/A			
MW397	Upgradient	Yes	320	NO	5.768	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-65

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.028 S = 0.013 CV(1) = 0.474 K factor**= 2.523
 TL(1) = 0.061 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.662 S = 0.406 CV(2) = -0.111 K factor**= 2.523
 TL(2) = -2.638 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.99610/16/2002 0.0281 -3.5721/13/2003 0.02 -3.9120.02 -3.912 4/10/2003 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 1/13/2004 0.02 -3.912Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.996 10/17/2002 0.02 -3.9121/13/2003 0.02 -3.912 4/8/2003 0.02 -3.912 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	0.00043	4 NO	-7.742	N/A
MW373	Downgradient	Yes	0.00048	5 NO	-7.631	N/A
MW385	Sidegradient	Yes	0.0005	NO	-7.601	N/A
MW388	Downgradient	Yes	0.00040	2 NO	-7.819	N/A
MW392	Downgradient	Yes	0.00051	1 NO	-7.579	N/A
MW395	Upgradient	Yes	0.00044	2 NO	-7.724	N/A
MW397	Upgradient	Yes	0.00058	NO	-7.452	N/A
37/4 5						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X=

X= 4.678 **S**= 2.431

CV(1)=0.520

K factor=** 2.523

TL(1)= 10.812

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.414

S= 0.550

CV(2) = 0.389

K factor=** 2.523

TL(2)= 2.802

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	7.29	1.987
9/30/2002	4.03	1.394
10/16/2002	3.85	1.348
1/13/2003	2.36	0.859
4/10/2003	1.14	0.131
7/16/2003	1.76	0.565
10/14/2003	4.05	1.399
1/13/2004	4.26	1.449
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.448
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 11.56	2.448
Date Collected 8/13/2002 9/16/2002	Result 11.56 5.86	2.448 1.768
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 11.56 5.86 5.94	2.448 1.768 1.782
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 11.56 5.86 5.94 4.66	2.448 1.768 1.782 1.539
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 11.56 5.86 5.94 4.66 3.77	2.448 1.768 1.782 1.539 1.327

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
W	ell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
N	1W370	Downgradient	Yes	3.99	NO	1.384	N/A
M	IW373	Downgradient	Yes	2.87	NO	1.054	N/A
M	1W385	Sidegradient	Yes	2.47	NO	0.904	N/A
M	1W 388	Downgradient	Yes	4.41	NO	1.484	N/A
M	1W392	Downgradient	Yes	2.88	NO	1.058	N/A
M	1W395	Upgradient	Yes	3.05	NO	1.115	N/A
M	1W 397	Upgradient	Yes	5.14	NO	1.637	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

K factor=** 2.523

TL(1)= 305.301

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.379 S = 0.152 CV(2) = 0.028

K factor=** 2.523

TL(2) = 5.762

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.231
Date Collected	Result	` '
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	207	NO	5.333	N/A	
MW373	Downgradient	Yes	393	YES	5.974	N/A	
MW385	Sidegradient	Yes	230	NO	5.438	N/A	
MW388	Downgradient	Yes	240	NO	5.481	N/A	
MW392	Downgradient	Yes	207	NO	5.333	N/A	
MW395	Upgradient	Yes	204	NO	5.318	N/A	
MW397	Upgradient	Yes	180	NO	5.193	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-68

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.400

S= 0.514 **CV(1)**=1.286

K factor=** 2.523

TL(1)= 1.698

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.197 S = 2.634

4 **CV(2)=**-1.199

K factor=** 2.523

TL(2) = 4.449

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.294	-1.224
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	1.33	0.285
4/10/2003	1.31	0.270
7/16/2003	0.2	-1.609
10/14/2003	0.1	-2.303
1/13/2004	0.1	-2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.457
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 1.58	0.457
Date Collected 8/13/2002 9/16/2002	Result 1.58 0.232	0.457 -1.461
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1.58 0.232 0.0002	0.457 -1.461 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1.58 0.232 0.0002 0.453	0.457 -1.461 -8.517 -0.792
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1.58 0.232 0.0002 0.453 0.2	0.457 -1.461 -8.517 -0.792 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	No	0.1	N/A	-2.303	N/A		
MW373	Downgradient	No	0.1	N/A	-2.303	N/A		
MW385	Sidegradient	No	0.1	N/A	-2.303	N/A		
MW388	Downgradient	Yes	0.069	N/A	-2.674	NO		
MW392	Downgradient	Yes	0.0859	N/A	-2.455	NO		
MW395	Upgradient	Yes	0.0355	N/A	-3.338	NO		
MW397	Upgradient	Yes	0.0802	N/A	-2.523	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 9.102
 S= 4.685
 CV(1)=0.515
 K factor**= 2.523
 TL(1)= 20.922
 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.423
 S= 2.408
 CV(2)= 1.692
 K factor**= 2.523
 TL(2)= 7.500
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 12.5 2.526 9/16/2002 13 2.565 0.0127 10/16/2002 -4.3661/13/2003 11.2 2.416 4/10/2003 17.5 2.862 7/16/2003 12.9 2.557 10/14/2003 13.4 2.595 1/13/2004 12.4 2.518 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 7.83 2.058 9/16/2002 7.64 2.033 10/17/2002 0.00658 -5.0241/13/2003 6.69 1.901 4/8/2003 7.28 1.985 7/16/2003 2.057 7.82 10/14/2003 7.94 2.072 1/13/2004 7.51 2.016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
D	Well No.	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	2
dient	MW370	Yes	11.7	NO	2.460	N/A	
dient	MW373	Yes	20.8	NO	3.035	N/A	
ient	MW385	Yes	9.1	NO	2.208	N/A	
dient	MW388	Yes	10.9	NO	2.389	N/A	
dient	MW392	Yes	10.1	NO	2.313	N/A	
ent	MW395	Yes	11.6	NO	2.451	N/A	
ent	MW397	Yes	7.83	NO	2.058	N/A	
ient idient idient ent	MW385 MW388 MW392 MW395	Yes Yes Yes Yes	10.9 10.1 11.6	NO NO NO	2.389 2.313 2.451	N/A N/A N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.131

S= 0.195 **CV(1)**=1.487

K factor=** 2.523

TL(1)= 0.624

LL(1)=N/A

Statistics-Transformed Background Data

X= -3.104 **S**= 1.529

CV(2) = -0.493

K factor=** 2.523

TL(2) = 0.755

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.764
Date Collected	Result	
Date Collected 8/13/2002	Result 0.466	-0.764
Date Collected 8/13/2002 9/16/2002	Result 0.466 0.077	-0.764 -2.564
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.466 0.077 0.028	-0.764 -2.564 -3.576
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.466 0.077 0.028 0.0164	-0.764 -2.564 -3.576 -4.110
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.466 0.077 0.028 0.0164 0.0407	-0.764 -2.564 -3.576 -4.110 -3.202

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	0.00255	N/A	-5.972	NO	
MW373	Downgradient	No	0.005	N/A	-5.298	N/A	
MW385	Sidegradient	Yes	0.00155	N/A	-6.470	NO	
MW388	Downgradient	Yes	0.00102	N/A	-6.888	NO	
MW392	Downgradient	Yes	0.051	N/A	-2.976	NO	
MW395	Upgradient	Yes	0.00119	N/A	-6.734	NO	
MW397	Upgradient	Yes	0.00219	N/A	-6.124	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 157.250 S = 52.376 CV(1) = 0.333

K factor=** 2.523

TL(1)= 289.395 **LL(1)**=N/A

Statistics-Transformed Background Data

X= 5.003 **S**= 0.348

CV(2)=0.069

K factor=** 2.523

TL(2) = 5.880

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 4.745
Date Collected	Result	
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	278	NO	5.628	N/A	
MW373	Downgradient	Yes	260	NO	5.561	N/A	
MW385	Sidegradient	Yes	300	YES	5.704	N/A	
MW388	Downgradient	Yes	320	YES	5.768	N/A	
MW392	Downgradient	Yes	319	YES	5.765	N/A	
MW395	Upgradient	Yes	190	NO	5.247	N/A	
MW397	Upgradient	Yes	282	NO	5.642	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW385 MW388

MW392

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.048 S = 0.248 CV(1) = 0.041 K factor** = 2.904 TL(1) = 6.767 LL(1) = 5.3289

Statistics-Transformed Background X = 1.799 **S**= 0.042 **CV(2)**=0.023 **K factor****= 2.904 **TL(2)**= 1.920 **LL(2)**=1.6782 **Data**

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 5.8 1.758 9/16/2002 1.792 5.47 10/16/2002 1.699 1/13/2003 6 1.792 4/10/2003 6.18 1.821 7/16/2003 6 1.792 10/14/2003 6.31 1.842 1/13/2004 6.24 1.831 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 5.84 1.765 9/30/2002 1.792 6 10/17/2002 5.75 1.749 1/13/2003 1.792 6 4/8/2003 6.3 1.841 7/16/2003 6.2 1.825 10/14/2003 6.36 1.850 1/13/2004 6.32 1.844

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>. ,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	. ,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW370	Downgradien	t Yes	6.31	NO	1.842	N/A
MW373	Downgradien	t Yes	6.21	NO	1.826	N/A
MW385	Sidegradient	Yes	6.17	NO	1.820	N/A
MW388	Downgradien	t Yes	6.09	NO	1.807	N/A
MW392	Downgradien	t Yes	6.23	NO	1.829	N/A
MW395	Upgradient	Yes	6.22	NO	1.828	N/A
MW397	Upgradient	Yes	6.1	NO	1.808	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis **Historical Background Comparison Potassium** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 1.590S = 0.642CV(1)=0.404

TL(1) = 3.208LL(1)=N/A

Statistics-Transformed Background Data

X = -0.306 S = 2.457CV(2) = -8.028 **K factor**=** 2.523

TL(2) = 5.892

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 2. 9/16/2002 2 0.693 0.00129 10/16/2002 -6.6531/13/2003 1.51 0.412 0.513 4/10/2003 1.67 7/16/2003 1.73 0.548 10/14/2003 1.7 0.531 1/13/2004 1.58 0.457 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2.03 0.708 9/16/2002 0.693 2 0.00145 10/17/2002 -6.5361/13/2003 1.69 0.525 4/8/2003 1.73 0.548 7/16/2003 2 0.693 10/14/2003 1.92 0.652 1/13/2004 1.87 0.626

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	2.43	NO	0.888	N/A
MW373	Downgradient	t Yes	2.46	NO	0.900	N/A
MW385	Sidegradient	Yes	1.67	NO	0.513	N/A
MW388	Downgradient	t Yes	1.88	NO	0.631	N/A
MW392	Downgradient	t Yes	1.88	NO	0.631	N/A
MW395	Upgradient	Yes	1.67	NO	0.513	N/A
MW397	Upgradient	Yes	1.66	NO	0.507	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.039

S = 0.419 C

CV(1) = 10.740 K i

K factor=** 2.523

TL(1)= 1.096

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.695 **S**= 1.043

CV(2) = -0.615

K factor=** 2.523

TL(2) = -0.414

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/16/2002	0.661	-0.414
1/13/2003	-0.839	#Func!
10/14/2003	0.0266	-3.627
1/13/2004	-0.0777	#Func!
4/12/2004	-0.115	#Func!
7/20/2004	0.105	-2.254
10/12/2004	0.408	-0.896
1/18/2005	0.0564	-2.875
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.552
Date Collected	Result	` ′
Date Collected 10/17/2002	Result 0.576	-0.552
Date Collected 10/17/2002 1/13/2003	Result 0.576 -0.841	-0.552 #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003	Result 0.576 -0.841 -0.179	-0.552 #Func! #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003 1/13/2004	Result 0.576 -0.841 -0.179 -0.0564	-0.552 #Func! #Func! #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003 1/13/2004 4/12/2004	Result 0.576 -0.841 -0.179 -0.0564 0.174	-0.552 #Func! #Func! #Func! -1.749

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	0.875	N/A	-0.134	YES
MW373	Downgradient	No	0.329	N/A	-1.112	N/A
MW385	Sidegradient	Yes	0.707	N/A	-0.347	YES
MW388	Downgradient	Yes	0.803	N/A	-0.219	YES
MW392	Downgradient	Yes	0.916	N/A	-0.088	YES
MW395	Upgradient	No	0.198	N/A	-1.619	N/A
MW397	Upgradient	No	0.41	N/A	-0.892	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW385

MW388

MW392

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis **Historical Background Comparison Sodium** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 29.560 S = 13.894 CV(1) = 0.470

K factor=** 2.523

TL(1)= 64.616

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.615 S = 2.411

CV(2) = 0.922

K factor=** 2.523

TL(2)= 8.699

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.561
Date Collected	Result	•
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	42.8	NO	3.757	N/A
MW373	Downgradient	Yes	50.5	NO	3.922	N/A
MW385	Sidegradient	Yes	45.8	NO	3.824	N/A
MW388	Downgradient	Yes	47.1	NO	3.852	N/A
MW392	Downgradient	Yes	36.2	NO	3.589	N/A
MW395	Upgradient	Yes	31	NO	3.434	N/A
MW397	Upgradient	Yes	33.9	NO	3.523	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-76

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.756 S = 2.147

CV(1)=0.200

K factor=** 2.523

TL(1)= 16.173

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.356

S = 0.203

CV(2) = 0.086

K factor**= 2.523

TL(2)= 2.869

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	10.3	2.332
9/16/2002	9.1	2.208
10/16/2002	8.8	2.175
1/13/2003	9	2.197
4/10/2003	8.3	2.116
7/16/2003	8.2	2.104
10/14/2003	8.3	2.116
1/13/2004	8.2	2.104
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.639
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 12.8	2.639 2.549
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 14 12.8 12.3	2.639 2.549 2.510
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 14 12.8 12.3 12.7	2.639 2.549 2.510 2.542
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 14 12.8 12.3 12.7 12.8	2.639 2.549 2.510 2.542 2.549

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

G 4	O 4 D 4					
Current	Quarter Data					
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	20.8	YES	3.035	N/A
MW373	Downgradient	Yes	106	YES	4.663	N/A
MW385	Sidegradient	Yes	22.3	YES	3.105	N/A
MW388	Downgradient	Yes	23.7	YES	3.165	N/A
MW392	Downgradient	Yes	6.89	NO	1.930	N/A
MW395	Upgradient	Yes	10.4	NO	2.342	N/A
MW397	Upgradient	Yes	9.7	NO	2.272	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 11.359
 S= 9.138
 CV(1)=0.805 K factor**= 2.523
 TL(1)=34.414 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.398
 S= 0.859
 CV(2)=0.358 K factor**= 2.523
 TL(2)=3.246 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	20.8	3.035
9/16/2002	16.2	2.785
10/16/2002	8.28	2.114
1/13/2003	13	2.565
4/10/2003	-9.37	#Func!
7/16/2003	0.826	-0.191
10/14/2003	14.1	2.646
1/13/2004	0	#Func!
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 8/13/2002	Result 6.06	1.802
Date Collected 8/13/2002 9/16/2002	Result 6.06 17.3	1.802 2.851
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 6.06 17.3 25.7	1.802 2.851 3.246
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 6.06 17.3 25.7 20.9	1.802 2.851 3.246 3.040
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 6.06 17.3 25.7 20.9 20.1	1.802 2.851 3.246 3.040 3.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	99.1	YES	4.596	N/A	
MW373	Downgradient	Yes	26.8	NO	3.288	N/A	
MW385	Sidegradient	Yes	188	YES	5.236	N/A	
MW388	Downgradient	Yes	172	YES	5.147	N/A	
MW392	Downgradient	No	3.2	N/A	1.163	N/A	
MW395	Upgradient	No	9.95	N/A	2.298	N/A	
MW397	Upgradient	No	14.9	N/A	2.701	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.544 S = 0.856 CV(1) = 0.554 K factor** = 2.523
 TL(1) = 3.702 LL(1) = N/A

 Statistics-Transformed Background
 X = 0.325 S = 0.452 CV(2) = 1.393 K factor** = 2.523
 TL(2) = 1.465 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.470 1.6 9/16/2002 1.1 0.095 10/16/2002 1 0.000 1/13/2003 2 0.6934/10/2003 3.4 1.224 7/16/2003 2 0.693 10/14/2003 0.000 1 1/13/2004 1 0.000 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/17/2002 1 0.000 1/13/2003 1.281 4/8/2003 1.9 0.642 7/16/2003 1.1 0.095 10/14/2003 0.000 1 0.000 1/13/2004 1

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	t Yes	1.1	NO	0.095	N/A
MW373	Downgradient	t Yes	1.12	NO	0.113	N/A
MW385	Sidegradient	No	1.18	N/A	0.166	N/A
MW388	Downgradient	t No	1.16	N/A	0.148	N/A
MW392	Downgradient	t No	1.18	N/A	0.166	N/A
MW395	Upgradient	No	0.944	N/A	-0.058	N/A
MW397	Upgradient	Yes	0.813	NO	-0.207	N/A
MW373 MW385 MW388 MW392 MW395	Downgradient Sidegradient Downgradient Downgradient Upgradient	t Yes No t No t No No	1.12 1.18 1.16 1.18 0.944	NO N/A N/A N/A N/A	0.113 0.166 0.148 0.166 -0.058	N/A N/A N/A N/A N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 31.513 S = 18.609 CV(1) = 0.591

K factor=** 2.523

TL(1) = 78.462

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.240

S = 0.707

CV(2) = 0.218

K factor=** 2.523

TL(2) = 5.024

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 3.912 50 9/16/2002 50 3.912 3.912 10/16/2002 50 1/13/2003 18.3 2.907 51.2 4/10/2003 3.936 7/16/2003 42.6 3.752 10/14/2003 12.3 2.510 1/13/2004 10 2.303 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 50 3.912 9/16/2002 50 3.912 10/17/2002 50 3.912 1/13/2003 2.485 12 4/8/2003 19.9 2.991 7/16/2003 17.9 2.885 10/14/2003 10 2.303 1/13/2004 10 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradien	t Yes	11.8	NO	2.468	N/A		
MW373	Downgradien	t Yes	9.42	NO	2.243	N/A		
MW385	Sidegradient	Yes	4.9	NO	1.589	N/A		
MW388	Downgradien	t Yes	9.94	NO	2.297	N/A		
MW392	Downgradien	t Yes	26.9	NO	3.292	N/A		
MW395	Upgradient	Yes	5.36	NO	1.679	N/A		
MW397	Upgradient	Yes	15.8	NO	2.760	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-80

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.313

CV(1)=0.780

K factor=** 2.523

TL(1)= 21.695

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.467

S= 1.213

S = 5.701

CV(2) = 0.827

K factor=** 2.523

TL(2) = 4.528

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	11	2.398			
9/30/2002	14	2.639			
10/16/2002	12	2.485			
1/13/2003	14	2.639			
4/10/2003	14	2.639			
7/16/2003	13	2.565			
10/14/2003	12	2.485			
1/13/2004	11	2.398			
Well Number:	MW397				
Well Number: Date Collected	MW397 Result	LN(Result)			
		LN(Result) 1.609			
Date Collected	Result	` ′			
Date Collected 8/13/2002	Result 5	1.609			
Date Collected 8/13/2002 9/30/2002	Result 5	1.609 1.609			
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000			
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1	1.609 1.609 0.000 0.000			
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1 1	1.609 1.609 0.000 0.000 0.000			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	1.88	N/A	0.631	N/A		
MW373	Downgradient	Yes	7.32	NO	1.991	N/A		
MW385	Sidegradient	Yes	0.38	N/A	-0.968	N/A		
MW388	Downgradient	Yes	0.5	N/A	-0.693	N/A		
MW392	Downgradient	Yes	13.1	NO	2.573	N/A		
MW395	Upgradient	Yes	3.1	N/A	1.131	N/A		
MW397	Upgradient	No	1	N/A	0.000	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.044 S = 0.034 CV(1) = 0.760 K factor** = 2.523
 TL(1) = 0.129 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.342 S = 0.659 CV(2) = -0.197 K factor** = 2.523
 TL(2) = -1.679 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.1 -2.3039/16/2002 0.1 -2.30310/16/2002 0.025 -3.6891/13/2003 0.035 -3.3520.035 4/10/2003 -3.3527/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 1/13/2004 0.02 -3.912Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 0.1 -2.303 9/16/2002 0.1 -2.30310/17/2002 0.025 -3.6891/13/2003 0.035 -3.352 4/8/2003 0.035 -3.352 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradien	t No	0.01	N/A	-4.605	N/A	
MW373	Downgradien	t No	0.01	N/A	-4.605	N/A	
MW385	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW388	Downgradien	t Yes	0.00381	NO	-5.570	N/A	
MW392	Downgradien	t No	0.01	N/A	-4.605	N/A	
MW395	Upgradient	No	0.01	N/A	-4.605	N/A	
MW397	Upgradient	No	0.01	N/A	-4.605	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-S/T Second Quarter 2017 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 291.750 S = 105.442 CV(1) = 0.361

K factor=** 3.188

TL(1) = 627.898

LL(1)=N/A

Statistics-Transformed Background

X = 5.618S = 0.367CV(2) = 0.065 **K factor**=** 3.188

TL(2) = 6.787

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396			
Date Collected	Result	LN(Result)		
4/22/2015	469	6.151		
7/16/2015	330	5.799		
10/22/2015	159	5.069		
1/5/2016	223	5.407		
4/18/2016	384	5.951		
7/19/2016	339	5.826		
10/12/2016	221	5.398		
1/17/2017	209	5.342		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	309	NO	5.733	N/A		
MW390	Downgradien	t Yes	336	NO	5.817	N/A		
MW393	Downgradien	t Yes	211	NO	5.352	N/A		
MW396	Upgradient	Yes	172	NO	5.147	N/A		

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-3

C-746-S/T Second Quarter 2017 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = -1.105	S = 6.487	CV(1)= -5.872	K factor**= 3.188	TL(1)= 19.577	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.756	S = 1.438	CV(2)= 1.902	K factor**= 3.188	TL(2)= 1.831	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
4/22/2015	2.84	1.044
7/16/2015	0.171	-1.766
10/22/2015	-7.28	#Func!
1/5/2016	6.24	1.831
4/18/2016	-7.52	#Func!
7/19/2016	3.89	1.358
10/12/2016	-10.9	#Func!
1/17/2017	3.72	1.314

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW390	Downgradien	t Yes	70.9	YES	4.261	N/A		

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.276 S = 5.457

CV(1)=0.531

K factor**= 2.523

TL(1) = 24.043

LL(1)=N/A

Statistics-Transformed Background

X = 2.184

S = 0.584 CV(2) = 0.267

K factor=** 2.523

TL(2) = 3.656

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/14/2015 11.4 2.434 7/15/2015 9.31 2.231 10/15/2015 17 2.833 1/5/2016 18.1 2.896 4/12/2016 14.2 2.653 7/19/2016 6.61 1.889 10/10/2016 21.7 3.077 1/11/2017 2.610 13.6

1/11/2017	13.0	2.010
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/22/2015	9.13	2.212
7/17/2015	5.97	1.787
10/22/2015	11.6	2.451
1/5/2016	6.13	1.813
4/18/2016	7.54	2.020
7/19/2016	4.04	1.396
10/12/2016	2.51	0.920
1/17/2017	5.57	1.717

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW384	Sidegradient	Yes	123	YES	4.812	N/A
MW387	Downgradient	t Yes	232	YES	5.447	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2017 Statistical Analysis Cur Calcium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 24.338 **S**= 3.908

CV(1)=0.161

K factor=** 2.523

TL(1) = 34.196

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.179

S = 0.166 CV(2) = 0.052

K factor=** 2.523

TL(2) = 3.598

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/14/2015 23 3.135 7/15/2015 21.8 3.082 10/15/2015 2.918 18.5 1/5/2016 19.3 2.960 4/12/2016 25.7 3.246 7/19/2016 19.5 2.970 10/10/2016 20.5 3.020 1/11/2017 2.976 19.6

Well Number:	MW394	
Date Collected	Result	LN(Result)
4/22/2015	26.5	3.277
7/17/2015	26.8	3.288
10/22/2015	26.9	3.292
1/5/2016	27.7	3.321
4/18/2016	29.5	3.384
7/19/2016	28.8	3.360
10/12/2016	28.6	3.353
1/17/2017	26.7	3.285

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW372	Downgradien	t Yes	48.7	YES	3 886	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2017 Statistical Analysis Carbon disulfide UNITS: ug/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 5.000

S= 0.000 **CV(1)**=0.000

K factor=** 2.523

TL(1) = 5.000

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.609

S = 0.000 CV

CV(2) = 0.000

K factor=** 2.523

TL(2)= 1.609

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/14/2015 1.609 7/15/2015 5 1.609 10/15/2015 5 1.609 1/5/2016 5 1.609 4/12/2016 5 1.609 7/19/2016 5 1.609 10/10/2016 5 1.609 1/11/2017 5 1.609

Well Number:	MW394	
Date Collected	Result	LN(Result)
4/22/2015	5	1.609
7/17/2015	5	1.609
10/22/2015	5	1.609
1/5/2016	5	1.609
4/18/2016	5	1.609
7/19/2016	5	1.609
10/12/2016	5	1.609
1/17/2017	5	1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW387	Downgradien	Ves	15.2	YES	2 721	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis **Current Background Comparison Chemical Oxygen Demand (COD) URGA** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 26.766 S = 26.356 CV(1) = 0.985

K factor=** 2.523

TL(1)= 93.262

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.058

S = 0.603

CV(2) = 0.197

K factor=** 2.523

TL(2) = 4.581

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/14/2015	20	2.996
7/15/2015	120	4.787
10/15/2015	20	2.996
1/5/2016	20	2.996
4/12/2016	15.8	2.760
7/19/2016	33.1	3.500
10/10/2016	13.9	2.632
1/11/2017	12.7	2.542

1/11/2017	12.7	2.542
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/22/2015	41.4	3.723
7/17/2015	20	2.996
10/22/2015	12.9	2.557
1/5/2016	20	2.996
4/18/2016	20	2.996
7/19/2016	34.9	3.552
10/12/2016	13.6	2.610
1/17/2017	9.95	2.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW222	Sidegradient	Yes	36.2	NO	3 589	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-8

C-746-S/T Second Quarter 2017 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 212.938 S = 22.231 CV(1) = 0.104

K factor=** 2.523

TL(1) = 269.025

LL(1)=N/A

Statistics-Transformed Background

X = 5.356 S = 0.100 CV(2) = 0.019

K factor=** 2.523

utilizing TL(1).

TL(2) = 5.609

Because CV(1) is less than or equal to

1, assume normal distribution and

5.759

N/A

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/14/2015 197 5.283 7/15/2015 224 5.412 10/15/2015 236 5.464 1/5/2016 209 5.342 4/12/2016 273 5.609 7/19/2016 200 5.298 10/10/2016 187 5.231 1/11/2017 201 5.303

Current Quarter Data

Downgradient Yes

MW372

Well No. Gradient Detected? Result Result >TL(1)? LN(Result) LN(Result) >TL(2)

YES

Well Number: MW394 Date Collected Result LN(Result) 4/22/2015 181 5.198 7/17/2015 201 5.303 10/22/2015 210 5.347 1/5/2016 226 5.421 4/18/2016 199 5.293 7/19/2016 5.442 231 10/12/2016 219 5.389 1/17/2017 213 5.361

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis **Magnesium** UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.358 S = 1.646

CV(1)=0.159

K factor=** 2.523

TL(1) = 14.511

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.325

S = 0.165

CV(2) = 0.071

K factor=** 2.523

TL(2) = 2.742

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/14/2015 10.2 2.322 7/15/2015 2.215 9.16 10/15/2015 2.062 7.86 1/5/2016 8.44 2.133 4/12/2016 10.5 2.351 7/19/2016 7.99 2.078 10/10/2016 8.7 2.163 1/11/2017 2.138 8.48

Well Number:	MW394	
Date Collected	Result	LN(Result)
4/22/2015	11.1	2.407
7/17/2015	11.9	2.477
10/22/2015	12.1	2.493
1/5/2016	11.9	2.477
4/18/2016	11.9	2.477
7/19/2016	11.7	2.460
10/12/2016	12.1	2.493
1/17/2017	11.7	2.460

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW372	Downgradien	t Yes	18 1	YES	2.896	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-10

C-746-S/T Second Quarter 2017 Statistical Analysis Sodium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 36.669 **S**= 5.448

CV(1)=0.149

K factor**= 2.523

TL(1) = 50.413

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.592

S = 0.143 CV(2) = 0.040

K factor=** 2.523

TL(2) = 3.953

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected LN(Result) Result 4/14/2015 44.9 3.804 7/15/2015 38.3 3.645 10/15/2015 33.5 3.512 1/5/2016 40.1 3.691 4/12/2016 49.2 3.896 7/19/2016 39.8 3.684 10/10/2016 39.6 3.679

1/11/2017	41	3.714
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/22/2015	30.3	3.411
7/17/2015	31.2	3.440
10/22/2015	33.1	3.500
1/5/2016	32.3	3.475
4/18/2016	31.8	3.459
7/19/2016	31.4	3.447
10/12/2016	34.9	3.552
1/17/2017	35.3	3.564

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW224	Sidegradient	Yes	59.3	YES	4.083	N/A
MW369	Downgradien	t Yes	62	YES	4.127	N/A
MW384	Sidegradient	Yes	59	YES	4.078	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW224 MW369 MW384

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2017 Statistical Analysis Sulfate UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.294

Statistics-Background Data

X= 14.221 **S**= 4.206

CV(1)=0.296

K factor**= 2.523

TL(1) = 24.833

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.614

CV(2) = 0.113

K factor=** 2.523

TL(2) = 3.357

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/14/2015	17.9	2.885
7/15/2015	18.6	2.923
10/15/2015	14.7	2.688
1/5/2016	16.5	2.803
4/12/2016	21.8	3.082
7/19/2016	17.9	2.885
10/10/2016	18.7	2.929
1/11/2017	18.4	2.912
1, 11, 201,	10	2.712
Well Number:	MW394	2.7.12
		LN(Result)
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
Well Number: Date Collected 4/22/2015	MW394 Result 10.3	LN(Result) 2.332
Well Number: Date Collected 4/22/2015 7/17/2015	MW394 Result 10.3 10.4	LN(Result) 2.332 2.342
Well Number: Date Collected 4/22/2015 7/17/2015 10/22/2015	MW394 Result 10.3 10.4 10.7	LN(Result) 2.332 2.342 2.370
Well Number: Date Collected 4/22/2015 7/17/2015 10/22/2015 1/5/2016	MW394 Result 10.3 10.4 10.7 10.1	LN(Result) 2.332 2.342 2.370 2.313

10.8

1/17/2017

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result $>TL(1)$?	LN(Result)	LN(Result) > TL(2)
MW220	Upgradient	Yes	19.9	NO	2.991	N/A
MW223	Sidegradient	Yes	22.1	NO	3.096	N/A
MW372	Downgradien	t Yes	73.2	YES	4.293	N/A
MW384	Sidegradient	Yes	20.9	NO	3.040	N/A
MW387	Downgradien	t Yes	20.5	NO	3.020	N/A
MW391	Downgradien	t Yes	61.4	YES	4.117	N/A

Conclusion of Statistical Analysis on Current Data

2.380

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2017 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.680 **S**= 7.530

CV(1)=0.645

K factor**= 2.523

TL(1) = 30.679

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.177

S= 0.910 **C**

CV(2) = 0.418

K factor=** 2.523

TL(2) = 4.474

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/14/2015 12.2 2.501 7/15/2015 14.8 2.695 10/15/2015 11.6 2.451 1/5/2016 18.4 2.912 4/12/2016 13 2.565 7/19/2016 28.9 3.364 10/10/2016 12.3 2.510 1/11/2017 3.144 23.2

Well Number:	MW394	
Date Collected	Result	LN(Result)
4/22/2015	11.5	2.442
7/17/2015	3.11	1.135
10/22/2015	0.742	-0.298
1/5/2016	4.07	1.404
4/18/2016	15	2.708
7/19/2016	5.87	1.770
10/12/2016	4.39	1.479
1/17/2017	7.79	2.053

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW384	Sidegradient	Yes	155	YES	5.043	N/A
MW387	Downgradien	t Yes	314	YES	5.749	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2017 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 6.558	S = 5.452	CV(1)= 0.831	K factor**= 2.523	TL(1)= 20.313	LL(1)= N/A
Statistics-Transformed Background Data	X = 1.838	S = 0.720	CV(2)= 0.392	K factor**= 2.523	TL(2)= 2.845	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/22/2015	1.03	0.030
7/17/2015	3.79	1.332
10/22/2015	10.7	2.370
1/5/2016	17.2	2.845
4/18/2016	6.43	1.861
7/19/2016	-1.87	#Func!
10/12/2016	3.62	1.286
1/17/2017	5.31	1.670
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result)
Date Collected	Result	, ,
Date Collected 4/22/2015	Result 5.37	1.681
Date Collected 4/22/2015 7/15/2015	Result 5.37 17	1.681 2.833
Date Collected 4/22/2015 7/15/2015 10/22/2015	Result 5.37 17 -1.02	1.681 2.833 #Func!
Date Collected 4/22/2015 7/15/2015 10/22/2015 1/5/2016	Result 5.37 17 -1.02 9.49	1.681 2.833 #Func! 2.250
Date Collected 4/22/2015 7/15/2015 10/22/2015 1/5/2016 4/14/2016	Result 5.37 17 -1.02 9.49 10.2	1.681 2.833 #Func! 2.250 2.322

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
Downgradient	t Yes	65.7	YES	4.185	N/A	
Sidegradient	Yes	126	YES	4.836	N/A	
Downgradient	t Yes	114	YES	4.736	N/A	
	Gradient Downgradient Sidegradient	Gradient Detected?	Gradient Detected? Result Downgradient Yes 65.7 Sidegradient Yes 126	Gradient Detected? Result Result >TL(1)? Downgradient Yes 65.7 YES Sidegradient Yes 126 YES	Gradient Detected? Result Result >TL(1)? LN(Result) Downgradient Yes 65.7 YES 4.185 Sidegradient Yes 126 YES 4.836	

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 23.819

S= 5.022 **CV(1)**=0.211

K factor=** 2.523

TL(1)= 36.490

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.150

 $S = 0.209 \quad CV(2) = 0.066$

K factor=** 2.523

TL(2) = 3.678

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected LN(Result) Result 4/22/2015 26.4 3.273 7/17/2015 26.5 3.277 10/22/2015 27 3.296 1/5/2016 27.4 3.311 4/18/2016 27.6 3.318 7/19/2016 26.3 3.270 10/12/2016 27.2 3.303 1/17/2017 3 254

1/1//201/	25.9	3.254
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/22/2015	18.7	2.929
7/15/2015	17.7	2.874
10/22/2015	19.2	2.955
1/5/2016	19.2	2.955
4/14/2016	18.1	2.896
7/19/2016	35.1	3.558
10/11/2016	19.3	2.960
1/11/2017	19.5	2.970

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW373	Downgradien	t Ves	58.1	VES	4.062	N/Δ

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2017 Statistical Analysis Current Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 357.875 S = 30.576 CV(1) = 0.085

K factor**= 2.523

TL(1) = 435.019

LL(1)=N/A

Statistics-Transformed Background

X = 5.877

S = 0.085 CV(2) = 0.014

K factor=** 2.523

TL(2) = 6.090

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/22/2015	338	5.823
7/17/2015	390	5.966
10/22/2015	372	5.919
1/5/2016	408	6.011
4/18/2016	399	5.989
7/19/2016	394	5.976
10/12/2016	377	5.932
1/17/2017	386	5.956

10/12/2016	3//	5.932
1/17/2017	386	5.956
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/22/2015	325	5.784
7/15/2015	334	5.811
10/22/2015	323	5.778
1/5/2016	353	5.866
4/14/2016	323	5.778
7/19/2016	333	5.808
10/11/2016	334	5.811
1/11/2017	337	5.820

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW373	Downgradien	t Ves	708	YES	6.562	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2017 Statistical Analysis **Current Background Comparison Dissolved Solids** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 192.000 S = 26.067 CV(1) = 0.136

K factor=** 2.523

TL(1)= 257.766 **LL(1)**=N/A

LRGA

Statistics-Transformed Background Data

X = 5.249S = 0.139 CV(2) = 0.027

K factor=** 2.523

utilizing TL(1).

TL(2) = 5.600

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/22/2015 179 5.187 7/17/2015 203 5.313 10/22/2015 194 5.268 1/5/2016 229 5.434 4/18/2016 224 5.412 7/19/2016 219 5.389 10/12/2016 214 5.366 1/17/2017 5.407 223

Current Quar	ter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	Yes	393	YES	5.974	N/A

Well Number:	MW397	
Date Collected	Result	LN(Result)
4/22/2015	144	4.970
7/15/2015	190	5.247
10/22/2015	160	5.075
1/5/2016	204	5.318
4/14/2016	167	5.118
7/19/2016	169	5.130
10/11/2016	166	5.112
1/11/2017	187	5.231

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2017 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 431.250 **S**= 82.393 **CV(1)**=0.191

K factor=** 2.523

TL(1) = 639.127

LL(1)=N/A

Statistics-Transformed Background

X = 6.050 S = 0.189

CV(2) = 0.031

K factor=** 2.523

TL(2) = 6.526

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/22/2015 474 6.161 7/17/2015 468 6.148 10/22/2015 5.935 378 1/5/2016 380 5.940 4/18/2016 325 5.784 7/19/2016 428 6.059 10/12/2016 357 5.878 1/17/2017 5.700 299 Well Number: MW397

Date Collected Result LN(Result) 4/22/2015 471 6.155 7/15/2015 599 6.395 10/22/2015 448 6.105 1/5/2016 473 6.159 4/14/2016 586 6.373 7/19/2016 6.040 420 10/11/2016 378 5.935 1/11/2017 416 6.031

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

,	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW385	Sidegradient	Yes	300	NO	5.704	N/A
	MW388	Downgradient	t Yes	320	NO	5.768	N/A
	MW392	Downgradient	t Yes	319	NO	5.765	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Current Background Comparison Radium-226 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.581	S = 0.315	CV(1) = 0.543	K factor**= 2.523	TL(1)= 1.376	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.590	S = 0.545	CV(2)= -0.923	K factor**= 2.523	TL(2)= 0.182	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/22/2015 0.892 -0.1147/17/2015 1.2 0.182 10/22/2015 1.01 0.010 0.707 -0.3471/5/2016 4/18/2016 0.13 -2.0407/19/2016 0.654 -0.42510/12/2016 0.669 -0.4021/17/2017 -1.058 0.347 Well Number: MW397 Date Collected Result LN(Result) 4/22/2015 0.69 -0.371 7/15/2015 0.516 -0.66210/22/2015 0.356 -1.033 -0.2901/5/2016 0.748 4/14/2016 -0.0439 #Func! 7/19/2016 0.464 -0.76810/11/2016 0.575 -0.5531/11/2017 0.374 -0.983

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW370	Downgradient	t Yes	0.875	NO	-0.134	N/A				
MW385	Sidegradient	Yes	0.707	NO	-0.347	N/A				
MW388	Downgradient	t Yes	0.803	NO	-0.219	N/A				
MW392	Downgradient	t Yes	0.916	NO	-0.088	N/A				

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2017 Statistical Analysis Curre Sulfate UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.521 S = 0.731

CV(1)=0.069

K factor=** 2.523

TL(1)= 12.365

LL(1)=N/A

Statistics-Transformed Background

X = 2.351

 $S = 0.069 \quad CV(2) = 0.029$

K factor=** 2.523

3 **T**

TL(2) = 2.525

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/22/2015 10.1 2.313 7/17/2015 10.2 2.322 10/22/2015 10 2.303 1/5/2016 9.84 2.286 4/18/2016 9.73 2.275 7/19/2016 9.9 2.293 10/12/2016 9.86 2.288 1/17/2017 10.1 2.313 Well Number: MW397 Date Collected Result LN(Result) 4/22/2015 10.9 2.389 7/15/2015 11.4 2.434 10/22/2015 11.6 2.451 1/5/2016 11.2 2.416

9.61

11

11.3

11.6

4/14/2016

7/19/2016

10/11/2016

1/11/2017

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	20.8	YES	3.035	N/A
MW373	Downgradient	Yes	106	YES	4.663	N/A
MW385	Sidegradient	Yes	22.3	YES	3.105	N/A
MW388	Downgradient	Yes	23.7	YES	3.165	N/A

Conclusion of Statistical Analysis on Current Data

2.263

2.398

2.425

2.451

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2017 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.136 **S**= 3.856

CV(1)=0.380

K factor=** 2.523

TL(1)= 19.864

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.225

S= 0.492

CV(2) = 0.221

K factor=** 2.523

TL(2) = 3.466

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/22/2015 7.25 1.981 7/17/2015 14.7 2.688 10/22/2015 9.39 2.240 1/5/2016 1.739 5.69 4/18/2016 8.36 2.123 7/19/2016 13.2 2.580 10/12/2016 2.15 0.765

1/17/2017	11.4	2.434
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/22/2015	9.32	2.232
7/15/2015	13.2	2.580
10/22/2015	9.83	2.285
1/5/2016	17.4	2.856
4/14/2016	7.44	2.007
7/19/2016	14.9	2.701
10/11/2016	9.1	2.208
1/11/2017	8.85	2.180

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	99.1	YES	4.596	N/A
MW385	Sidegradient	Yes	188	YES	5.236	N/A
MW388	Downgradient	Yes	172	YES	5.147	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

August 4, 2017

Ms. Kelly Layne Fluor Federal Services, Inc. 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in biology, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Fluor Federal Services, Inc.

For this project, the statistical analyses conducted on the second quarter 2017 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Jennifer R. Blewett

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/INERT—QUARTERLY, 2nd CY 2017 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

LAB ID: None
For Official Use Only

Finds/Unit: KY8-890-008-982/1

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the second quarter 2017 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on April 26 and 27, 2017. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 2.15×10^{-4} ft/ft. Additional water level measurements in April (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 2.99×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for April 2017, the groundwater flow direction in the immediate area of the landfill was oriented primarily eastward to northeastward.

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

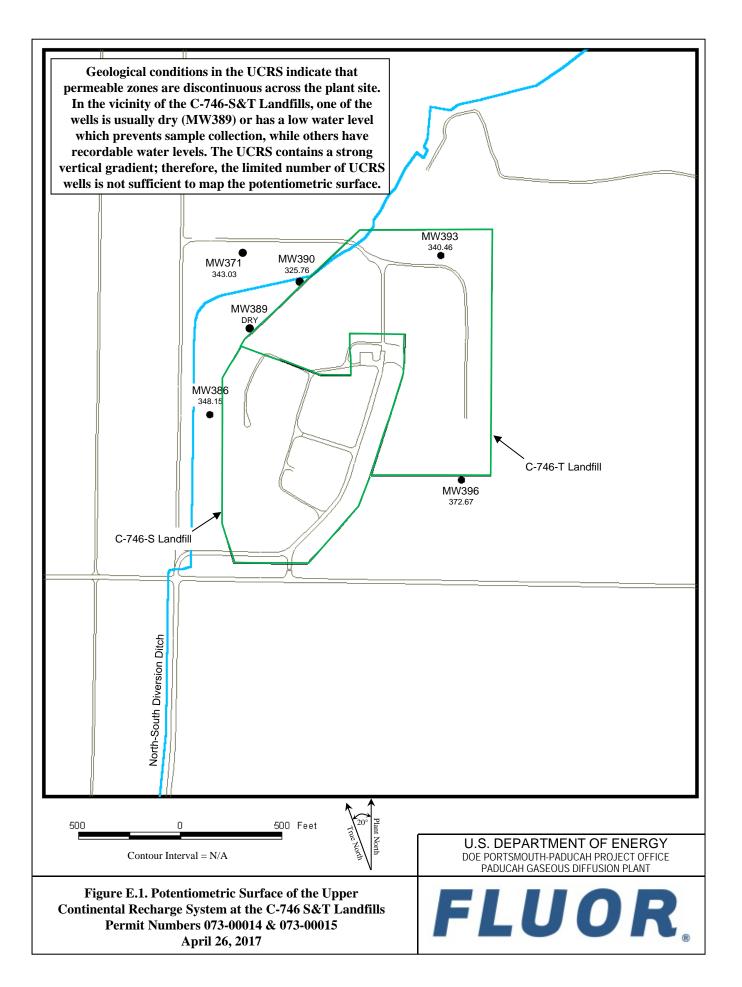


Table E.1. C-746-S&T Landfills Second Quarter 2017 (April) Water Levels

	C-746-S&T Landfills (April 2017) Water Levels									
							Ra	w Data	*Corre	ected Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H ₂ 0)	(ft)	(ft amsl)	(ft)	(ft amsl)
4/26/2017	9:47	MW220	URGA	381.44	29.60	0.00	55.65	325.79	55.65	325.79
4/26/2017	9:39	MW221	URGA	390.83	29.60	0.00	65.07	325.76	65.07	325.76
4/27/2017	9:56	MW222	URGA	394.87	29.76	-0.18	69.30	325.57	69.12	325.75
4/26/2017	9:41	MW223	URGA	394.03	29.60	0.00	68.30	325.73	68.30	325.73
4/26/2017	9:45	MW224	URGA	395.41	29.60	0.00	69.68	325.73	69.68	325.73
4/26/2017	9:49	MW225	URGA	385.55	29.60	0.00	59.84	325.71	59.84	325.71
4/26/2017	10:06	MW353	LRGA	374.86	29.60	0.00	49.11	325.75	49.11	325.75
4/26/2017	10:02	MW384	URGA	365.06	29.60	0.00	39.31	325.75	39.31	325.75
4/26/2017	10:04	MW385	LRGA	365.54	29.60	0.00	39.79	325.75	39.79	325.75
4/26/2017	10:03	MW386	UCRS	365.21	29.60	0.00	17.06	348.15	17.06	348.15
4/26/2017	9:59	MW387	URGA	363.27	29.60	0.00	37.49	325.78	37.49	325.78
4/26/2017	10:00	MW388	LRGA	363.25	29.60	0.00	37.48	325.77	37.48	325.77
4/26/2017	9:58	MW389	UCRS	363.82					DRY	
4/26/2017	9:56	MW390	UCRS	360.36	29.60	0.00	34.60	325.76	34.60	325.76
4/26/2017	9:24	MW391	URGA	366.54	29.60	0.00	40.85	325.69	40.85	325.69
4/26/2017	9:26	MW392	LRGA	365.67	29.60	0.00	39.99	325.68	39.99	325.68
4/26/2017	9:25	MW393	UCRS	366.59	29.60	0.00	26.13	340.46	26.13	340.46
4/26/2017	9:32	MW394	URGA	378.32	29.60	0.00	52.61	325.71	52.61	325.71
4/26/2017	9:30	MW395	LRGA	379.01	29.60	0.00	53.27	325.74	53.27	325.74
4/26/2017	9:31	MW396	UCRS	378.64	29.60	0.00	5.97	372.67	5.97	372.67
4/26/2017	9:52	MW397	LRGA	386.90	29.60	0.00	61.25	325.65	61.25	325.65
4/26/2017	9:27	MW418	URGA	366.78	29.60	0.00	41.09	325.69	41.09	325.69
4/26/2017	9:28	MW419	LRGA	366.68	29.60	0.00	41.01	325.67	41.01	325.67

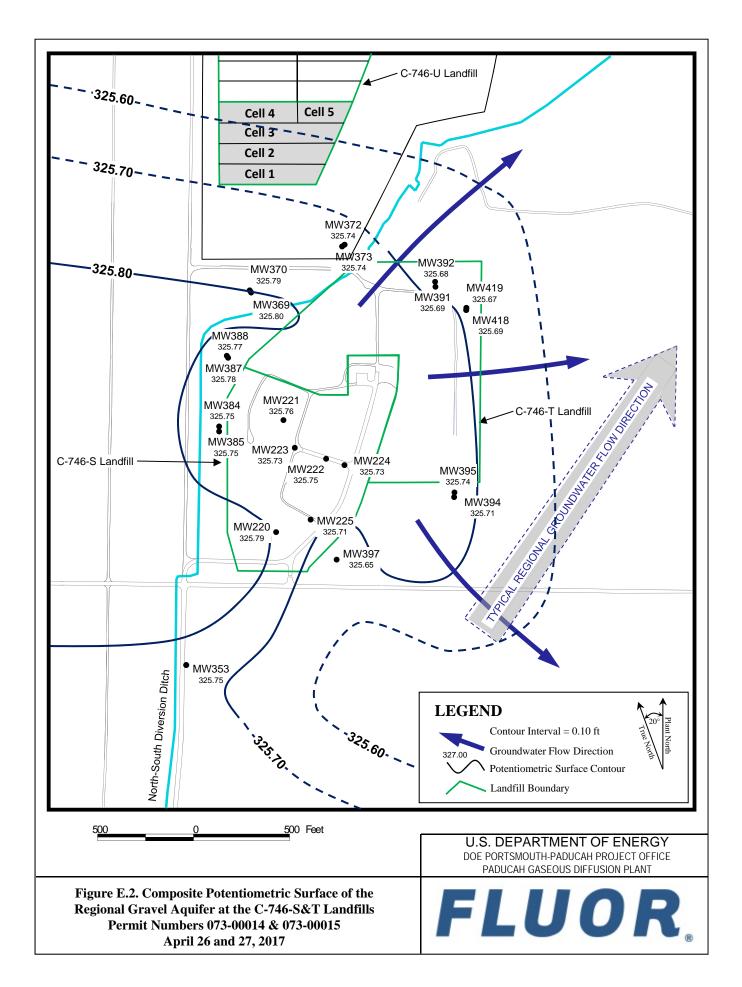
Initial Barometric Pressure

Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum


29.60

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

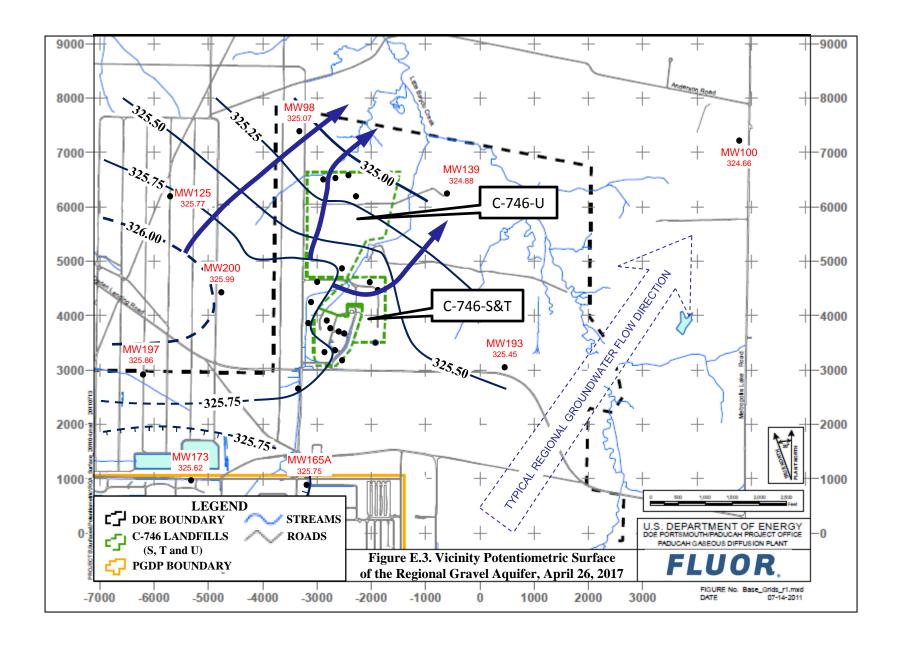


Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	2.15×10^{-4}
Vicinity	2.99×10^{-4}

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Conductivity (K) ft/day cm/s		Specific Discharge (q)		Average Linear Velocity (v)	
		ft/day cm/s		ft/day	cm/s
Beneath Landfill	Mound				
725	0.256	0.156	5.49 × 10 ⁻⁵	0.622	2.20×10^{-4}
425	0.150	0.0912	3.22×10^{-5}	0.365	1.29×10^{-4}
Vicinity					
725	0.256	0.217	7.65×10^{-5}	0.867	3.06×10^{-4}
425	0.150	0.1.27	4.48×10^{-5}	0.508	1.79×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the second quarter 2017 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Carbon Disulfide Sodium Technetium-99	MW387 MW224, MW369, MW384 MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW370, MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

5/22/2017

Fluor Federal Services PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S and -T LANDFILLS PERMIT NUMBERS 073-00014 and 073-00015 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4818	MW370	Beta activity	9310	65.7	pCi/L	50
8004-4808	MW372	Trichloroethene	8260B	6.18	ug/L	5
8004-4792	MW373	Trichloroethene	8260B	7.32	ug/L	5
8004-4809	MW384	Beta activity	9310	123	pCi/L	50
8004-4810	MW385	Beta activity	9310	126	pCi/L	50
8004-4815	MW387	Beta activity	9310	232	pCi/L	50
8004-4816	MW388	Beta activity	9310	114	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	7.25	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	13.1	ug/L	5

NOTE 1: These levels are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills

Cranter S. D. D. D. U. S. S. S. S. S. D. D. D. D. U. U. S. D. D. D. D. D. D. U. U. S. D.	Groundwater Flow System			UCR.	S		l				1	URGA	A								LRG	A		
Moniforing Well MCETONE Quarter 3, 2003 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 2, 200		S				U	S	S	S	S				D	D	U	U	S	D				U	U
ACETONS																								397
Ounter 1, 2003 Ounter 2, 2005 Ounter 3, 2005 Ounter 4, 2002 Ounter 4, 2003 Ounter 4, 2004 Ounter 4, 2004 Ounter 4, 2005 Ounter 4, 2006 Ounter 5, 2006 Ounter 6, 2006 Ounter 7, 2007 Ounter 7, 2006 Ounter 7, 2007 Ounter																								
Ounter 4, 2003 Ounter 4, 2008 Ounter 2, 2003 ** * * * * * * * * * * * * * * * * *								*					*											
Quarter 4, 2005	-											*								*				
APPIN ACTIVITY										*														
Quarter 4, 2002																								
Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 2, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 2, 2005 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 200																								
Ounter 4, 2010 NULLMINUM Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2005 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2016 Quarter 2, 2017 BARUM Quarter 2, 2003 BETA ACTIVITY Quarter 2, 2003																								
NLUMINON																								
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 4, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2014 Quarter 2, 2016 Quarter 3, 2003 Quarter 4, 2007 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 2, 2003 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 2, 2003 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2003 Quarter 2, 2006 Quarter 3, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 2, 2003																								
Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2005 ** Quarter 3, 2005 ** Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2001 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2012 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2006 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 5, 2017 Quarter 5, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 7, 2017 Quarter 6, 2003 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2006 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarte				*				*					*	*	*									
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 1, 2014 Quarter 2, 2016 Quarter 1, 2016 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2013 Quarter 4, 2001 Quarter 4, 2001 Quarter 2, 2016 Quarter 4, 2001 Quarter 4, 2003 Quarter 2, 2003	Quarter 2, 2003			*				*						*	*									
Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 2, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2008 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2016 Quarter 3, 2013 Quarter 1, 2016 Quarter 4, 2006 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2013 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2016 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2001 Quarter 2, 2016 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2003 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2006	Quarter 3, 2003			*				*	*					*	*									
Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 ** ** ** ** Quarter 1, 2005 Quarter 2, 2005 ** ** ** Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2008 ** Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 1, 2010 ** Quarter 1, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 ** Quarter 3, 2013 Quarter 4, 2004 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2011 Quarter 2, 2011 Quarter 1, 2011 ** ** ** ** ** ** ** ** **								*	*			*			*									
Quarter 4, 2004 Quarter 4, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 3, 2003 Quarter 4, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000	Quarter 1, 2004			*				*	*			*												
Quarter 4, 2004 Quarter 1, 2005 **	Quarter 2, 2004							*							*									
Quarter 4, 2004 Quarter 1, 2005 ** ** ** Quarter 2, 2005 ** ** ** Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 ** ** ** Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2013 Quarter 1, 2011 Quarter 2, 2012 X X X X X X X X X X X X X								*							*									
Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2016 Quarter 4, 2006 Quarter 4, 2001 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2000 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2016 Quarter 4, 2000 Quarter 6, 2000				*																				
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2013 Quarter 4, 2014 Quarter 2, 2012 Quarter 1, 2014 Quarter 2, 2016 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2016 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2000 Quarter 2, 2010 Quarter 3, 2003 Quarter 4, 2003				*																				
Quarter 4, 2005				*				*																
Quarter 1, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 1, 2013 Quarter 2, 2014 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2003 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2016 Quarter 3, 2003 Quarter 4, 2008 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2014 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2003 Quarter 2, 2003			t	*							*							\vdash				*		
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2008 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2001 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 2, 2014 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2010 Quarter 4, 2003 Quarter 1, 2010 Quarter 4, 2003 Quarter 1, 2003 Quarter 1, 2003					 					 		*												
Quarter 2, 2006	• /	\vdash		<u> </u>								-		*										
Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2003 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2017 BARIUM Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2003 Quarter 1, 2010 Quarter 2, 2003		\vdash		*	-		 			-				-										<u> </u>
Quarter 1, 2006		┢		-																				
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2003 Quarter 4, 2003 Quarter 2, 2003		┢		3E																				
Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2003 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2014 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2016 Quarter 4, 2003 Quarter 1, 2003 Quarter 1, 2003		<u> </u>		•			-											- NE						
Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2016 Quarter 3, 2003 Quarter 4, 2003 BERIUM Quarter 4, 2003 BERIARCH 2,003 Quarter 4, 2003 Quarter 2, 2003	• /	<u> </u>																						
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 4, 2004 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2018 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2016 Quarter 3, 2003 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2003 Quarter 2, 2009 Quarter 4, 2000 Quarter 2, 2000																		不						
Quarter 1, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 2, 2011 X X X X X X X X X X X X X X X X X X																								
Quarter 2, 2008 Quarter 4, 2008 Quarter 1, 2009 W W W W W W W W W W W W W			<u> </u>												L									
Quarter 4, 2008	-	<u> </u>						*							*									
Quarter 1, 2009												*												
Quarter 1, 2010		<u> </u>																						
Quarter 2, 2010		<u> </u>																						
Quarter 3, 2010	Quarter 1, 2010	<u> </u>						*																
Quarter 1, 2011	Quarter 2, 2010											*												
Quarter 2, 2011	Quarter 3, 2010			*								*			*			*			*			
Quarter 2, 2012	Quarter 1, 2011							*				*												
Quarter 3, 2012	Quarter 2, 2011			*								*												
Quarter 1, 2013	Quarter 2, 2012			*																				
Quarter 3, 2013	Quarter 3, 2012							*																
Quarter 1, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 BARIUM Quarter 3, 2003 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003	Quarter 1, 2013							*				*												
Quarter 2, 2014 Quarter 4, 2014 W Quarter 1, 2016 Quarter 2, 2016 Quarter 1, 2017 W BARIUM Quarter 3, 2003 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 W W W W W W W W W W W W W W W W W W	Quarter 3, 2013			*																				
Quarter 2, 2014 Quarter 4, 2014 W Quarter 1, 2016 Quarter 2, 2016 Quarter 1, 2017 W BARIUM Quarter 3, 2003 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 W W W W W W W W W W W W W W W W W W	Quarter 1, 2014							*																
Quarter 4, 2014												*												
Quarter 1, 2016 * *				*																				
Quarter 2, 2016 * *	-							*																
Quarter 1, 2017															*									
BARIUM Quarter 3, 2003 Image: Control of the control o	,							*																
Quarter 3, 2003 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 5, 2003 Quarter 6, 2003 Quarter 7, 2003 Quarter 7, 2003 Quarter 8, 2003 Quarter 9, 2003																								
Quarter 4, 2003 Image: Control of the control of t																								
BETA ACTIVITY	-																							
Quarter 1, 2003																								
Quarter 1, 2003	Quarter 4, 2002																							
Quarter 2, 2003																								
			_				_	_							_	_	_		_			_		

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System Gradient	_	D 389	390	D 393	U 396	S 221	S 222	S 223	S 224	S 384	JRGA D 369	D 372	D 387	D 391	U 220	U 394	S 385	D 370	D 373	D 388	D 392	U 395	U 397
Monitoring Well 33 BETA ACTIVITY Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005	_		390																				
BETA ACTIVITY Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005			-																				
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005			-																				
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005			-										-										
Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005					_																		
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005																							
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005																							
Quarter 2, 2005 Quarter 3, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005										-													
Quarter 1, 2006													•						-				
Quarter 2, 2006													•						•				
Quarter 3, 2006										-													
Quarter 4, 2006																							
Quarter 1, 2007																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																			•				
Quarter 1, 2008																							
Quarter 2, 2008													•										
Quarter 3, 2008													•										
Quarter 4, 2008													•										
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012													-				•						
Quarter 4, 2012													-				•		-				<u> </u>
Quarter 1, 2013										_		•	•						•				
Quarter 2, 2013										_		_	_				•		_	_			<u> </u>
Quarter 3, 2013										•		•	•	ļ			•			_			<u> </u>
Quarter 4, 2013										_		_	•										
Quarter 1, 2014	_		•									-	_				_			-		<u> </u>	<u> </u>
Quarter 2, 2014													_							_			<u> </u>
Quarter 3, 2014													_										<u> </u>
Quarter 4, 2014													_										<u> </u>
Quarter 1, 2015						<u> </u>						-	_				_					Щ	<u> </u>
Quarter 2, 2015	_												_				_					<u> </u>	<u> </u>
Quarter 3, 2015						<u> </u>				_			•				•					Щ	<u> </u>
Quarter 4, 2015						<u> </u>				_		-	-	<u> </u>			-					\vdash	—
Quarter 1, 2016			•			<u> </u>							_				_					Щ	<u> </u>
Quarter 2, 2016						<u> </u>							_				_					Щ	<u> </u>
Quarter 3, 2016						<u> </u>							_				_					Щ	<u> </u>
Quarter 4, 2016						<u> </u>							_				_					Щ	<u> </u>
Quarter 1, 2017													_					_					<u> </u>
Quarter 2, 2017										_			•				_	_		•			
BROMIDE			JI.																				
Quarter 1, 2003			*																				<u> </u>
Quarter 4, 2003			*																	<u> </u>			<u> </u>
Quarter 1, 2004			*			Щ																	_

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System			UCRS	3						ı	URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BROMIDE																							
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				1
Quarter 3, 2006			*																				
CALCIUM																							
Quarter 1, 2003			*																				_
Quarter 2, 2003			*									*											
Quarter 3, 2003			*																				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				1
Quarter 2, 2005					_							*	_				_		*				+-
Quarter 3, 2005												*					_		*				+
												*							*				₩
Quarter 4, 2005			<u> </u>				-				<u> </u>	*					-		*		<u> </u>	<u> </u>	₩
Quarter 1, 2006																							₩
Quarter 2, 2006												*							*				Щ.
Quarter 3, 2006												*							*				Ь.
Quarter 4, 2006												*							*				<u> </u>
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				<u>L</u>
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				1
Quarter 3, 2009												*							*				
Quarter 4, 2009												*							*				1
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				₩
												*							*				₩
Quarter 3, 2010												*							*				₩
Quarter 4, 2010																							₩
Quarter 1, 2011												*	4						*				₩
Quarter 2, 2011												*	*						*				<u> </u>
Quarter 3, 2011					<u> </u>							*							*				Щ
Quarter 4, 2011					<u> </u>							*	<u> </u>						*				<u> </u>
Quarter 1, 2012												*							*				Щ
Quarter 2, 2012												*							*				$oldsymbol{ol}}}}}}}}}}}}}}}}}$
Quarter 3, 2012												*							*				L
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				T
Quarter 2, 2014												*							*				t
Quarter 3, 2014					_							*	_				-	*	*				+-
Quarter 4, 2014					<u> </u>		-					*	<u> </u>					_	*				+-
												*	*				_		*				+
Quarter 1, 2015													. ~						. ~				1

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Secondary Seco	Groundwater Flow System			UCRS	S						1	JRG/	A								LRG	4		
AMACHEN Danter 2, 2015 Danter 3, 2015 Danter 4, 2005 Danter 4, 2006 Danter 4, 2006 Danter 4, 2006 Danter 4, 2005 Danter 4, 2006 Danter 4, 2007 Danter 4, 2007 Danter 6, 2006 Danter 6, 200	Gradient	S				U	S	S	S	S				D	D	U	U	S	D				U	U
AMACHEN Danter 2, 2015 Danter 3, 2015 Danter 4, 2005 Danter 4, 2006 Danter 4, 2006 Danter 4, 2006 Danter 4, 2005 Danter 4, 2006 Danter 4, 2007 Danter 4, 2007 Danter 6, 2006 Danter 6, 200	Monitoring Well																							397
Dauter 4, 2015 Dauter 4, 2015 Dauter 5, 2016 Dauter 6, 2017 Dauter 6, 2017 Dauter 7, 2017 Dauter 1, 2018 Dauter 6, 2018 Dauter	ů																							
Danter 4, 2015 Danter 4, 2016 Danter 4, 2017 Danter 2, 2017 Danter 2, 2017 Danter 2, 2017 Danter 2, 2017 Danter 3, 2016 Danter 4, 2010 Danter 4, 2010 Danter 4, 2010 Danter 4, 2010 Danter 5, 2010 Danter 6, 2010 Danter 6, 2010 Danter 1, 2010 Danter 2, 2017 Danter 1, 2010 Danter 2, 2010 Danter 2, 2010 Danter 2, 2010 Danter 3, 2010 Danter 3, 2010 Danter 4, 2010 Danter 4, 2010 Danter 2, 2010 Danter 3, 2010 Danter 4, 2010 Danter 4, 2010 Danter 4, 2010 Danter 4, 2010 Danter 2, 2010 Danter 4, 2010 Danter 5, 2010 Danter 6, 2010 Danter 6, 2010 Danter 7, 2010 Danter													*							*				
Descript 2,015 Descript 2,016 Descript 2,017 Descript 2,003 Descript 2,003 Descript 2,003 Descript 2,003 Descript 2,004 Descript 2,004 Descript 2,004 Descript 2,005 Descript													*							*				
Dearter 1, 2016													*							*				
Daurier 2, 2016 Daurier 3, 2016 Daurier 4, 2016 Daurier 4, 2016 Daurier 5, 2016 Daurier 5, 2016 Daurier 5, 2017 Daurier 6, 2017 Daurier 6, 2017 Daurier 6, 2017 Daurier 6, 2017 Daurier 7, 2													*							*				
Danter 1, 2016 Danter 2, 2017 Danter 3, 2016 Danter 4, 2010 Danter 4, 2010 Danter 4, 2010 Danter 5, 2017 Danter 5, 2017 Danter 5, 2005 Danter 6, 2005 Danter 7, 2005 Danter 7, 2005 Danter 8, 2005 Danter 8, 2005 Danter 8, 2005 Danter 9, 2005 Danter 9, 2005 Danter 1, 2006 Danter 1, 2006 Danter 1, 2007 Danter 1, 2007 Danter 1, 2008 Danter 3, 2007 Danter 3, 2007 Danter 3, 2006 Danter 3, 2007 Danter 3, 2007 Danter 3, 2007 Danter 4, 2006 Danter 4, 2006 Danter 3, 2006 Danter 4, 2006 Danter 3, 2006 Danter 4, 2006 Danter 4, 2006 Danter 4, 2006 Danter 5, 2006 Danter 6, 2007 Danter 6, 2008 Danter 6, 2009 Danter 6, 2010 Danter 7, 2010 Danter 6, 2010 Danter 6, 2010 Danter 7, 2010 Danter 7, 2010 Danter 8, 2011 Danter 8, 2016 Danter 9, 2016 Danter 1, 2016 Danter 2, 2016 Danter 2, 2016 Danter 2, 2016 Danter 3, 2016 Danter 6, 2016 Danter 6, 2016 Danter 7, 2016 Danter 8, 2016 Danter 8, 2016 Danter 9, 2016 Danter 9, 2016 Danter 9, 2016 Danter 1, 2016															*					*				
Desire 1, 2016 Desire 2, 2017 Desire 2, 2017 Desire 3, 2017 Desire 4, 2016 Desire 3, 2017 Desire 4, 2016 Desire 4, 2016 Desire 4, 2007 Desire 4, 2008 Desire 4, 2009 Desi															-									
Seater 1, 2017 Seater 2, 2010 Seater 3, 2010 Seater 3, 2011 Seater 3, 2011 Seater 4, 2000 Seater 4, 2001 Seater 3, 2000 Seater 4, 2005 Seater 4, 2005 Seater 4, 2006 Seater 4, 2007 Seater 4, 2007 Seater 4, 2007 Seater 4, 2007 Seater 4, 2008 Seater 4, 2009 Seater 4, 2008 Seater 4, 2009 Seat																								
Dauter 2, 2017 ARBON DISULFIDE Dauter 4, 2010 Dauter 1, 2003 Dauter 2, 2007 THEMICAL OXYGEN DEMAND Dauter 1, 2003 Dauter 2, 2003 Dauter 2, 2003 Dauter 3, 2003 Dauter 4, 2005 Dauter 4, 2006 Dauter 5, 2006 Dauter 6, 2006 Dauter 6, 2006 Dauter 6, 2006 Daute																								
Danter 4, 2005 Danter 4, 2005 Danter 4, 2005 Danter 5, 2007 Danter 6, 2007 Danter 6, 2007 Danter 7, 2008 Danter 6, 2008 Danter 7, 2008 Danter 7, 2008 Danter 8, 2008 Danter 8, 2008 Danter 8, 2008 Danter 9, 2009 Danter 1, 2009 Danter 1, 2019 Danter 9, 2009 Danter 1, 2019 Danter 9, 2019 Danter 1, 2019 Danter 9, 2019 Danter 1, 2019 Danter 1, 2019 Danter 1, 2019 Danter 1, 2019 Danter 2, 2019 Danter 2, 2019 Danter 1, 2019 Danter 3, 2019 Danter 4, 2019 Danter 4, 2019 Danter 3, 2016 Danter 3, 2016 Danter 4, 2016 Danter 3, 2016 Danter 4, 2016 Danter 4, 2016 Danter 4, 2016 Danter 5, 2016 Danter 5, 2016 Danter 6, 2016 Danter 6, 2016 Danter 7, 2016 Danter 7, 2016 Danter 8, 2016 Danter 9, 2018 Danter																								
Description													Ψ.							Α				
Dauter 1, 2011												3E												
Name												不	<u>.</u>									.		-
Description													*									*		
Dearter 1, 2003														*										
Danter 2, 2003		D																						
Danter 3, 2003	Quarter 1, 2003																							
Daurier 4, 2003	Quarter 2, 2003																							
Duarter 1, 2004	Quarter 3, 2003							*			*													
Duarter 4, 2004	Quarter 4, 2003																							
Quarter 1, 2005	Quarter 1, 2004				*																			
Quarter 2, 2005	Quarter 4, 2004																							
Quarter 3, 2005	Quarter 1, 2005		L	L										L				L		L	L		L	L
Quarter 1, 2006	Quarter 2, 2005	*																						
Quarter 1, 2006	Quarter 3, 2005	*									*		*									*		
Quarter 2, 2006	Quarter 4, 2005	*									*													
Quarter 4, 2006	Quarter 1, 2006	*																						
Quarter 4, 2006 Quarter 1, 2007 *	Quarter 2, 2006	*																						
Quarter 4, 2006 Quarter 1, 2007	Quarter 3, 2006	*																						
Quarter 1, 2007																		*						
Quarter 2, 2007		*									*													
Quarter 3, 2007																								
Quarter 4, 2007																								
Quarter 1, 2008																								
Quarter 2, 2008	-																							
Quarter 3, 2008																								
Quarter 4, 2008																								
Quarter 1, 2009																								
Quarter 2, 2009																								
Quarter 3, 2009	Quarter 1, 2009																				L.			
Quarter 4, 2009	Quarter 2, 2009																				*			
Quarter 1, 2010	Quarter 3, 2009					L																		
Quarter 2, 2010	Quarter 4, 2009		L	L		L								L				L		L	L		L	L
Quarter 3, 2010	Quarter 1, 2010	*																						
Quarter 4, 2010	Quarter 2, 2010	*																						
Quarter 3, 2011	Quarter 3, 2010	*																						
Quarter 4, 2011	Quarter 4, 2010	*																						
Quarter 4, 2011 * Quarter 1, 2012 * Quarter 1, 2013 * Quarter 3, 2013 * Quarter 3, 2014 * Quarter 4, 2014 * Quarter 2, 2015 * Quarter 3, 2016 * Quarter 4, 2016 *	Quarter 3, 2011	*																						
Quarter 1, 2012	Quarter 4, 2011	*																						
Quarter 1, 2013 *																								
Quarter 3, 2013			-	-	 			 					 	-						-	 		-	
Quarter 3, 2014														_				\vdash		_	_			
Quarter 4, 2014 * Quarter 2, 2015 * Quarter 3, 2015 * Quarter 3, 2016 * Quarter 4, 2016 *										*				*				-	*					
Quarter 2, 2015 Quarter 3, 2016 * Quarter 4, 2016 * * Quarter 4, 2016 * * Quarter 4, 2016		_						*		•				T					•					
Quarter 3, 2015								*									yle.	_						
Quarter 3, 2016 * * Quarter 4, 2016 *			-	-	<u> </u>			<u> </u>					<u> </u>	<u> </u>		4	木	-		<u> </u>	<u> </u>		-	
Quarter 4, 2016 **				<u></u>										<u> </u>		*				<u> </u>	<u> </u>			
				*								*												
Quarter 2, 2017 * *	Quarter 4, 2016																	*						
	Quarter 2, 2017							*																

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System	l		UCR:	S						1	URGA	A]	LRGA	Α.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHLORIDE																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				-
Quarter 1, 2005 Quarter 2, 2005			*																				-
Quarter 3, 2005			*																				-
			*																				-
Quarter 4, 2005			•															*					-
Quarter 1, 2006			*															*					-
Quarter 2, 2006 Quarter 3, 2006			*																				-
			*																				-
Quarter 4, 2006 Quarter 1, 2007			*		<u> </u>		-																<u> </u>
Quarter 1, 2007 Quarter 2, 2007	 		*	-	-																	\vdash	₩
,	!		*																				₩
Quarter 4, 2007	!		*																				₩
Quarter 4, 2007	!		*																				₩
Quarter 1, 2008 Quarter 2, 2008	 		*	-	-																	\vdash	₩
,			*																				-
Quarter 3, 2008 Quarter 4, 2008			*																				-
Quarter 4, 2008 Quarter 1, 2009			*																				-
			*																				-
Quarter 2, 2009 Quarter 3, 2009			*																				-
-			*																				-
Quarter 4, 2009 Quarter 1, 2010			*																				-
Quarter 2, 2010			*																				
Quarter 3, 2010			*																				-
Quarter 4, 2010			*																				-
Quarter 4, 2010 Quarter 2, 2011			*																				-
Quarter 3, 2011			*																				
Quarter 4, 2011			*																				
			*																				-
Quarter 3, 2012 Quarter 3, 2013			*																				-
Quarter 4, 2013			*																				
Quarter 4, 2013 Quarter 4, 2014			*																				-
CHROMIUM			т.																				
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003								-															
Quarter 3, 2009																							
COBALT																							
Quarter 3, 2003							*																
CONDUCTIVITY																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*					*		*									*				_
Quarter 4, 2003			*							*									*				<u>L</u>
Quarter 1, 2004										314									*			Ш	<u> </u>
Quarter 2, 2004	_		<u> </u>	<u> </u>	<u> </u>		<u> </u>			*									*				₩
Quarter 3, 2004			- V	<u> </u>	<u> </u>		<u> </u>			*									*			\vdash	<u> </u>
Quarter 4, 2004			*							*		yle.							*				
Quarter 1, 2005	_	-								*		*							*				<u> </u>
Quarter 2, 2005												*							*				-
Quarter 3, 2005 Quarter 4, 2005			_	_	_		_			*		*							*			\vdash	
Quarter 1, 2006	 		-		-		-			*		*							*				-
Quality 1, 2000	_																						_

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System			UCRS	S						1	URG/	A								LRGA	Α.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																							
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007												*					*		*				
Quarter 1, 2008												*					-		*				
Quarter 2, 2008												*							*				
												*					*		*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008																							
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				L
Quarter 4, 2010												*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*							*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
												*							*				
Quarter 4, 2013																							
Quarter 1, 2014												*							*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016																			*				
Quarter 3, 2016												*							*				
Quarter 4, 2016																			*				
Quarter 1, 2017																			*				
Quarter 2, 2017																			*				
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*						 	*									*	 			
Quarter 2, 2003		 	*				 			*			 	 					*		 	 	
Quarter 3, 2003		-	*				*	*		*		*	-	-					*		-	-	-
-	-	-	*			_	*	-	*	*		*	-	<u> </u>			-	-	*	 		<u> </u>	_
Quarter 4, 2003	-	 	*			<u> </u>	*		*	*		*	 	-			-		*		 	-	<u> </u>
Quarter 1, 2004			*							JL.								-		-			
Quarter 2, 2004		<u> </u>	ļ				<u> </u>			*		*	<u> </u>	<u> </u>				ļ	*	ļ	<u> </u>	<u> </u>	<u> </u>
Quarter 3, 2004		<u> </u>								*		*	<u> </u>						*		<u> </u>		<u> </u>
Quarter 4, 2004										*		*							*				L

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System			UCRS	S						1	URGA	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS																							
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006	1									*		*					*		*			\vdash	
Quarter 1, 2007																			*				
Quarter 2, 2007	1									*		*							*			\vdash	
Quarter 3, 2007	1									*		*							*			H	
Quarter 4, 2007	1											*							*			\vdash	
Quarter 1, 2008	1											*							*			₩	
	1											*							*			\vdash	
Quarter 2, 2008	1-	-	-									*							*	-		\vdash	
Quarter 3, 2008	 						<u> </u>	-		yl.			<u> </u>	<u> </u>							-	<u> </u>	<u> </u>
Quarter 4, 2008	<u> </u>									*		*							*			<u> </u>	<u> </u>
Quarter 1, 2009	1							<u> </u>				*	L.						*		<u> </u>	<u> </u>	<u> </u>
Quarter 2, 2009	1							<u> </u>				*	*						*		<u> </u>	<u> </u>	<u> </u>
Quarter 3, 2009												*	*						*			<u> </u>	
Quarter 4, 2009												*	*						*			<u> </u>	
Quarter 1, 2010												*	*						*			<u> </u>	
Quarter 2, 2010										*		*	*						*			<u> </u>	
Quarter 3, 2010										*		*							*			<u> </u>	
Quarter 4, 2010										*		*							*			<u> </u>	<u> </u>
Quarter 1, 2011										*		*							*			<u> </u>	<u> </u>
Quarter 2, 2011												*	*						*			\vdash	
Quarter 3, 2011												*							*			\vdash	
Quarter 4, 2011											.	*							*			\vdash	
Quarter 1, 2012											*	*	*						*			\vdash	<u> </u>
Quarter 2, 2012	1									4		*	4						*			\vdash	
Quarter 3, 2012										*		*	*						*			\vdash	<u> </u>
Quarter 4, 2012	1									4		*	*						*			-	
Quarter 1, 2013	1									*		*							*			\vdash	
Quarter 2, 2013	<u> </u>											*							*			⊢	
Quarter 3, 2013	1											*							*			\vdash	
Quarter 4, 2013	<u> </u>											*	.						*			⊢	
Quarter 1, 2014	1											*	*						*			\vdash	
Quarter 2, 2014	1								.			*	4						*			\vdash	
Quarter 3, 2014	1-								*			*	*						*			\vdash	<u> </u>
Quarter 4, 2014	1-	-	-									*	木						*	-		\vdash	<u> </u>
Quarter 1, 2015	1-	-	-									*							*	-		\vdash	<u> </u>
Quarter 2, 2015	1-						<u> </u>	<u> </u>						<u> </u>					4		<u> </u>		<u> </u>
Quarter 4, 2015	1-						<u> </u>	<u> </u>	*			*		<u> </u>				*	*		<u> </u>		<u> </u>
Quarter 4, 2015	1-						<u> </u>	<u> </u>	*			*		<u> </u>				*	*		<u> </u>		<u> </u>
Quarter 1, 2016 Quarter 2, 2016	1-						<u> </u>	<u> </u>				*	*	*					*		<u> </u>		<u> </u>
	1-						<u> </u>	<u> </u>				*	*	*					*		<u> </u>		<u> </u>
Quarter 4, 2016	1-						<u> </u>	<u> </u>				*		<u> </u>					*		<u> </u>		<u> </u>
Quarter 4, 2016 Quarter 1, 2017	1-						<u> </u>	<u> </u>				*		<u> </u>					*		<u> </u>		<u> </u>
Quarter 1, 2017 Quarter 2, 2017	1-						-					*	<u> </u>	-					*				<u> </u>
												*							*				
Ouarter 4, 2002																					*		
Quarter 4, 2002	₽-					*															不	H	<u> </u>
Quarter 2, 2003	₽-					*							34c									H	<u> </u>
Quarter 3, 2003	₽-			*									*									H	<u> </u>
Quarter 1, 2004	1-			不			<u> </u>	<u> </u>						<u> </u>							*		<u> </u>
Quarter 3, 2010	├									*											*	\vdash	
Quarter 2, 2013	_			_	_	_			_	*		_	_				Щ		_			_	<u> </u>

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System			UCRS	,						'	URG	4								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												1
Quarter 1, 2007											*	*											1
Quarter 2, 2007											*												1
Quarter 2, 2008	\top											*											
Quarter 3, 2008	+											*											\vdash
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003	+		*					-				*		-	-	-			*	-	-		\vdash
Quarter 3, 2003	+		*				*	-				*		-	-	-				-	-		\vdash
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005	+											*							*				-
Quarter 2, 2005												*							*				
Quarter 3, 2005	-											*							*				-
Quarter 4, 2005	-											*							*				!
	-											*							*				
Quarter 1, 2006	_											*							*				
Quarter 2, 2006																							<u> </u>
Quarter 3, 2006												*							*				<u> </u>
Quarter 4, 2006												*							*				<u> </u>
Quarter 1, 2007												*							*				<u> </u>
Quarter 2, 2007												*							*				<u> </u>
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009	1											*							*				<u> </u>
Quarter 1, 2010												*							*				
Quarter 2, 2010	+											*	*						*				\vdash
Quarter 3, 2010	+											*							*				
Quarter 4, 2010	+		-				 	-				*		-	-	-			*	-	-		\vdash
Quarter 1, 2011	+						-	<u> </u>				*				<u> </u>			*	<u> </u>			
Quarter 1, 2011 Quarter 2, 2011	+	-						_		-	-	*	*			_			*	_			<u> </u>
• ,	+											*	•						*				_
Quarter 3, 2011	+																						<u> </u>
Quarter 4, 2011	\bot											*							*				<u> </u>
Quarter 1, 2012								<u> </u>				*				<u> </u>			*				<u> </u>
Quarter 2, 2012	\perp							<u> </u>				*				<u> </u>			*	<u> </u>			<u> </u>
Quarter 3, 2012	\perp											*	*						*				<u> </u>
Quarter 4, 2012		1	l				I	l	1	1	I	*	*	l	l	l			*	l	1	Ī	1

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Gradient S D D D U S S S S D D D U S D D D U S D D D U	Groundwater Flow System			UCRS	S						1	URGA	A]	LRGA	A		
Moniforly Well 880 890 890 890 896 281 222 223 224 884 890 897 397 897 897 897 897 897 897 897 897 897 8	•	S				U	S	S	S	S				D	D	U	U	S	D				U	U
Quarter 1, 2013		386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 200	MAGNESIUM																							
Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2005 Quarter 4, 2009 Quarter 3, 2005 Quarter 4, 2009 Quarter 3, 2005 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2005 Quarter 4, 2009 Quarter 3, 2005 Quarter 4, 2009 Quarter 2, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2001 Quarter 6, 200	Quarter 1, 2013												*							*				
Quarter 4, 2013 Quarter 1, 2014 Quarter 3, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2006 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 200	Quarter 2, 2013												*							*				
Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2001 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2003 Quarter 4, 200	Quarter 3, 2013												*							*				
Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2001 Quarter 4, 2002 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2008 Quarter 4, 2009 Quarter 2, 2001 Quarter 3, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2009 Quarter 3, 2001 Quarter 4, 20	Quarter 4, 2013												*							*				
Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2016 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2005 Quarter 4, 2001 Quarter 3, 2005 Quarter 4, 2001 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 5, 2001 Quarter 6, 200	Quarter 1, 2014																		*	*				
Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 200													*	*						*				
Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2007 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2009 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2009 Quarter 2, 2001 Quarter 2, 2009 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2008 Quarter 3, 200													*							*				
Quarter 1,2015 Quarter 2,2015 Quarter 2,2015 Quarter 3,2015 Quarter 4,2015 Quarter 4,2016 Quarter 2,2016 Quarter 3,2016 Quarter 3,2016 Quarter 3,2017 Quarter 2,2017 Quarter 3,2017 Quarter 3,2017 Quarter 3,2017 Quarter 3,2017 Quarter 3,2007 Quarter 3,2007 Quarter 3,2008 Quarter 3,2008 Quarter 3,2009 Quarte													*	*						*				
Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 3, 2017 Quarter 2, 2017 Quarter 3, 2001 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2001 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 200																								
Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2005 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 200	•												*							*				
Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 4, 2016 Quarter 2, 2017 MANGANESE Quarter 3, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2006 Quarter 3, 2009 ** ** ** ** ** ** ** ** **													*							*				
Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 MANGANESE Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2003 Quarter 3, 2005 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2003 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2003 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2001 Quarter 1, 2001 Quarter 2, 2001 Quarter 3, 2009 Quarter 4, 2001 Quarter 3, 2009 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Qu	Quarter 4, 2015												*							*				
Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2002 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2009 ** Quarter 3, 2005 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2009 Quarter 4, 2000 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3,	Quarter 1, 2016												*							*				
Quarter 1, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2001 Quarter 3, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2007 Quarter 4, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2009 Quarter 3, 2007 Quarter 3, 2009 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter	Quarter 2, 2016												*		*					*				
Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 4, 2002 Quarter 4, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 3, 2009 ** ** ** ** ** ** ** ** **	Quarter 3, 2016												*							*				
Quarter 2, 2017 MANGANESE	Quarter 4, 2016												*		*					*				
MANGANESE Quarter 4, 2002 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2001 Quarter 3, 2005 ** ** ** ** ** ** ** ** **	Quarter 1, 2017												*		*					*				
Quarter 4, 2002 Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2006 Quarter 3, 2003 Quarter 2, 2006 Quarter 2, 2004 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2005 Quarter 3, 2007 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2001 Quarter 4, 200	Quarter 2, 2017												*											
Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 5, 2006 Quarter 5, 2006 Quarter 6, 2007 Quarter 7, 2006 Quarter 7, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2009 Quarter 3, 2000 Quarter 4, 2000 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 3, 2000 Quarter 1, 2007 Quarter 3, 2000 Quarter 1, 2007 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 1, 2007 Quarter 3, 2000 Quarter 1, 2007 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 1, 2007 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 8, 2000 Quarter 9, 200	MANGANESE																							
Quarter 1, 2004 Quarter 2, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2009 ** ** ** ** ** ** ** ** **	Quarter 4, 2002																					*		
Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2009 * Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 4, 2009 Quarter 4, 2000 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2000 Quarter 3, 2005 * Quarter 4, 2005 * Quarter 4, 2005 * Quarter 4, 2005 * Quarter 3, 2005 * Quarter 3, 2005 * Quarter 4, 2005 * Quarter 3, 2005 * Quarter 4, 2005 Quarter 2, 2006 * Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2008 * * * * * * * * * * * * * * * * * *	Quarter 3, 2003							*	*															
Quarter 2, 2004	Quarter 4, 2003							*	*															
Quarter 1, 2004	Quarter 1, 2004							*																
Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2004 Quarter 2, 2005 ** Quarter 4, 2005 Quarter 2, 2005 ** Quarter 4, 2005 Quarter 2, 2006 ** Quarter 4, 2005 Quarter 2, 2006 ** Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 ** Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 ** Quarter 4, 2009 Quarter 3, 2008 ** ** ** ** ** ** ** ** ** ** ** ** *	Quarter 2, 2004							*																
Quarter 3, 2005	Quarter 4, 2004							*	*															
Quarter 3, 2009 * OXIDATION-REDUCTION POTENTIAL * Quarter 4, 2003 * Quarter 2, 2004 * Quarter 3, 2004 * Quarter 4, 2005 * Quarter 2, 2005 * Quarter 3, 2005 * Quarter 3, 2005 * Quarter 4, 2005 * Quarter 2, 2006 * Quarter 3, 2006 * Quarter 4, 2006 * Quarter 4, 2006 * Quarter 4, 2007 * Quarter 2, 2007 * Quarter 3, 2007 * Quarter 4, 2007 * Quarter 2, 2007 * Quarter 2, 2008 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 4, 2009 * Quarter 4, 2001 * Quarter 4, 2009 * Quarter 4, 2001 * Quarter 4, 2009 * Quarter 3, 2009 * Quarter 4, 2010	Quarter 1, 2005							*																
OXIDATION-REDUCTION POTENTIAL Quarter 4, 2003 *	Quarter 3, 2005																					*		
Quarter 4, 2003	Quarter 3, 2009	*																						
Quarter 2, 2004	OXIDATION-REDUCTION POT	ENT	IAL																					
Quarter 3, 2004	Quarter 4, 2003			*																				
Quarter 4, 2004	Quarter 2, 2004			*																				
Quarter 1, 2005	Quarter 3, 2004			*															*					
Quarter 2, 2005	Quarter 4, 2004			*			*																	
Quarter 3, 2005 * * * .	Quarter 1, 2005			*															*					
Quarter 4, 2005 * *	Quarter 2, 2005	*		*																				
Quarter 2, 2006 * *	Quarter 3, 2005	*																						
Quarter 3, 2006 * * * * * * Quarter 4, 2006 * * * * Quarter 1, 2007 * * * * * * Quarter 2, 2007 * <td></td>																								
Quarter 4, 2006																								
Quarter 1, 2007 Quarter 2, 2007 W* * * * * * * * * * * * * * * * * * *	,																		*					
Quarter 2, 2007 * * * .																								
Quarter 3, 2007 *			ļ		ļ			L																
Quarter 4, 2007 *	,		ļ		ļ																			
Quarter 1, 2008								*																
Quarter 2, 2008 *			<u> </u>		<u> </u>			<u> </u>		4								<u> </u>			<u> </u>	<u> </u>		
Quarter 3, 2008 * * * * * * * * * * * * * * * * * * *		JL.	<u> </u>		طو			<u> </u>		*				JL.				ىلو		ىل	طو	<u> </u>		
Quarter 4, 2008		*	<u> </u>					<u> </u>														-		
Quarter 1, 2009	-							JL.	yle.	yle.									yle.	*				
Quarter 3, 2009 * * * * * * Quarter 4, 2009 * * * * * * Quarter 1, 2010 * * * * * * * Quarter 2, 2010 * * * * * * * * * * * * * Quarter 3, 2010 * * * * * * * * * * * * * * * * * * *					不		*								yle.			*						
Quarter 4, 2009 * * * * * * Quarter 1, 2010 * * * * * * * Quarter 2, 2010 *					JL.		<u>J4</u>	木	*	*				*	*			JL.		yle.				
Quarter 1, 2010 * <td></td> <td></td> <td></td> <td></td> <td>木</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td>					木					*								*		*				
Quarter 2, 2010 * <td>-</td> <td>3k</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>不</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-	3k					*			*									不					
Quarter 3, 2010 * <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td>					*					*				*				*	*					
Quarter 4, 2010 * <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td>							*			*				*						*				
Quarter 1, 2011 * <td></td> <td>*</td> <td><u> </u></td> <td></td> <td>*</td> <td></td> <td>*</td> <td><u> </u></td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td>		*	<u> </u>		*		*	<u> </u>	*			*			*							<u> </u>		
Quarter 2, 2011 * * * * * * * * * * * * * * * * * *		*	-	*	*		*	*		*				*						*		*		
	,			*			_				*									*				
Quantot 2, 2011												·r				*						٠,٣		
	Vamio 3, 2011	·r	_	·*			_		·*	_				·*	_	_ <u>*</u> _	ш	<u> </u>	·*	·*	т.	_	_	

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System			UCRS	S						1	JRG/	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
OXIDATION-REDUCTION POT																							
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*	-		*	*			*	*	*	*	*		
Quarter 2, 2012	*		*	-			*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*	***	*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*	•	*		*	*			·	*	~	*	*		-
-	- Jak			*		*	- NE	*			*		*	*			*		- JE				
Quarter 2, 2013	*		.			4	*	4	*	4	不							*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*	ale.		*	-14			*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		
Quarter 3, 2014	*		*	*		*											*	*	*	*			
Quarter 4, 2014	*		*	*							*		*				*	*	*	*	*		
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*		*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*		*	*	*	*	*	*	*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 2, 2016	*		*	*	*	*		*	*	*			*	*	*	*	*	*		*	*	*	*
Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 4, 2016	*		*	*	*		*	*		*			*		*		*	*	*	*	*	*	*
Quarter 1, 2017	*		*	*	*			*	*						*			*		*		*	*
Quarter 2, 2017	*		*	*	*				-								*			*	*		<u> </u>
PCB, 1016					-																-		
Quarter 4, 2003							*	*	*		*							*					
							т.	•	т		*							т-					
Quarter 3, 2004							*																
Quarter 3, 2005							不				*												
Quarter 1, 2006											*									<u> </u>			
Quarter 2, 2006											*												
Quarter 4, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007												*											
Quarter 3, 2007											*												
Quarter 2, 2008											*	*											
Quarter 3, 2008											*												
Quarter 4, 2008											*												
Quarter 1, 2009											*												
Quarter 2, 2009											*												
Quarter 3, 2009					-						*		_	-	_	_		_	-	-	_		
											*	-					<u> </u>			1			-
Quarter 4, 2009												<u> </u>		ļ					ļ	1			
Quarter 1, 2010											*									<u> </u>			
Quarter 2, 2010											*												
Quarter 3, 2010											*												
Quarter 4, 2010											*												
PCB-1232																							
Quarter 1, 2011											*												
PCB-1248																							
Quarter 2, 2008												*											
PCB-1260																							
Quarter 2, 2006																		*					
pH																		_					
																	*						
Quarter 4, 2002												-								1			-
Quarter 2, 2003														-			*		ļ	<u> </u>			
Quarter 3, 2003							ų.					<u> </u>		ļ			*		ļ	1			
Quarter 4, 2003							*					<u> </u>					*			<u> </u>			
Quarter 1, 2004							*										*			<u> </u>			
Quarter 2, 2004																	*						
Quarter 3, 2004																	*						

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Section Sect	Groundwater Flow System			UCRS	S						1	J R GA	4								LRGA	A		
Manual	Gradient	S				U	S	S	S	S				D	D	U	U	S	D				U	U
Manuface 4, 2004 Danater 4, 2005 Danater 1, 2006 Danater 2, 2006 Danater 3, 2007 Danater 4, 2007 Danater 5, 2006 Danater 3, 2007 Danater 4, 2007 Danater 4, 2007 Danater 4, 2007 Danater 4, 2007 Danater 5, 2006 Danater 5, 2006 Danater 5, 2006 Danater 6, 2006 Danater 6, 2006 Danater 7, 2006 Danater 8, 2006 Danater 9, 2006 Danat	Monitoring Well																							397
Journet 4, 2004 Journet 3, 2005 Journet 4, 2005 Journet 6, 2006 Journet 6, 2006 Journet 7, 2006 Journet 7, 2006 Journet 8, 2007 Journet 9, 2006 Journet 9, 2007 Journet 9, 200	pH	- 50		-/-	- / /	-/-									-/-			- 55	-,0		233	-/-	270	-//
Danter 3, 2005 Danter 1, 2006 Danter 2, 2006 Danter 2, 2006 Danter 3, 2007 Danter 4, 2007 Danter 4, 2008 Danter 4, 2008 Danter 5, 2008 Danter 5, 2008 Danter 5, 2008 Danter 6, 2009 Danter 6, 2009 Danter 7, 2009 Danter 7, 2009 Danter 7, 2009 Danter 8, 2009 Danter 9, 2009 Danter	•																	*						
Danter 1, 2005 Danter 1, 2006 Danter 2, 2006 Danter 3, 2007 Danter 3, 2007 Danter 3, 2007 Danter 3, 2007 Danter 4, 2008 Danter 3, 2007 Danter 4, 2008 Danter 4, 2008 Danter 4, 2008 Danter 5, 2006 Danter 5, 2006 Danter 5, 2007 Danter 5, 2007 Danter 6, 2007 Danter 6, 2007 Danter 7, 2008 Danter 8, 2007 Danter 9, 2008 Danter 9, 2009 Danter											*											*		
Danter 1, 2006 Danter 2, 2006 Danter 3, 2006 Danter 4, 2007 Danter 4, 2008 Danter 5, 2007 Danter 4, 2008 Danter 5, 2006 Danter 5, 2007 Danter 6, 2009 Danter 1, 2009 Danter 1, 2009 Danter 1, 2009 Danter 1, 2009 Danter 2, 2011 Danter 3, 2011 Danter 3, 2011 Danter 3, 2011 Danter 3, 2011 Danter 4, 2012 Danter 4, 2012 Danter 4, 2014 Danter 4, 2008 Danter 4, 2009 Danter 6, 2009 Danter 6, 2009 Danter 7, 2009 Danter 7, 2009 Danter 8, 2009 Danter 9, 2009 Danter																								
Dates 2, 2006 Dates 3, 2007 Dates 4, 2007 Dates 4, 2007 Dates 5, 2007 Dates 6, 2007											-													
Dates 3, 2006 Dates 3, 2007 Dates 4, 2007 Dates 4, 2007 Dates 4, 2008 Dates 5, 2007 Dates 5, 2007 Dates 6, 2007 Dates 6, 2008 Dates 6, 2009 Dates 6, 2001 Dates 6, 2008 Dates 6, 2001 Da																								
Date of 2,0007 Date o							-																	
Doubter 4, 2007 Doubter 1, 2009 Doubter 1, 2009 Doubter 1, 2009 Doubter 1, 2001 Doubter 2, 2011 Doubter 3, 2014 Doubter 4, 2005 Doubter 4, 2006 Doubter 4, 2007 Doubter 3, 2014 Doubter 3, 2014 Doubter 3, 2014 Doubter 4, 2006 Doubter 4,																								
Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2013 Quarter 3, 2014 Quarter 2, 2016 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2005 Quarter 4,																								
Dauter 1, 2001 Dauter 2, 2011 Dauter 3, 2011 Dauter 4, 2002 Dauter 4, 2005 Dauter 4, 2006 Dauter 3, 2015 Dauter 3, 2015 Dauter 4, 2006 Dauter 4, 2006	-																							
Description																								
Dauter 2, 2011	Quarter 1, 2009																							
Date of 2, 2011 Date of 2, 2015 Date of 2, 2016 Date of 2, 2016 Date of 3, 2011 Date of 2, 2016 Date of 3, 2016 Date of 3, 2016 Date of 3, 2016 Date of 3, 2006 Date of 4, 2006 Date o	Quarter 1, 2011																	*						
Danter 1, 2012	Quarter 2, 2011											*												
Quarter 1, 2013	Quarter 3, 2011											*												
Daurier 4, 2014 Daurier 2, 2016 Daurier 3, 2007 Daurier 4, 2002 Daurier 3, 2005 Daurier 3, 2005 Daurier 4, 2006 Daurier 3, 2001 Daurier 4, 2008 Daurier 4, 2009 Daurier 4, 2009 Daurier 4, 2001 Daurier 4, 2006 Daurier 4, 2000 Daurier 4, 2000 Daurier 4, 2000 Daurier 4, 2003 Daurie	Quarter 1, 2012														*									
Danter 2, 2016	Quarter 1, 2013										*			*				*						
Descriptor 2, 2016							1															*		
COTASSIUM																			*	*				
Daurier 4, 2002 Daurier 3, 2004 Daurier 2, 2005 Daurier 3, 2005 Daurier 4, 2005 Daurier 4, 2005 Daurier 4, 2005 Daurier 4, 2006 Daurier 3, 2006 Daurier 3, 2006 Daurier 4, 2008 Daurier 5, 2013 Daurier 6, 2009 Daurier 6, 2009 Daurier 7, 2013 Daurier 7, 2013 Daurier 7, 2013 Daurier 8, 2014 Daurier 9, 2004 Daurier 9, 2005 Daurier 1, 2009 Daurier 1, 2015 Daurier 1, 2015 Daurier 3, 2016 Daurier 4, 2016 Daurier 3, 2016 Daurier 4, 2016 Daurier 4, 2016 Daurier 4, 2016 Daurier 4, 2016 Daurier 2, 2015 Daurier 3, 2016 Daurier 4, 2016 Daurier 4, 2016 Daurier 4, 2016 Daurier 2, 2005 Daurier 3, 2016 Daurier 4, 2016 Daurier 5, 2003 Daurier 6, 2003 Daurier 6, 2003 Daurier 7, 2003 Daurier 7, 2003 Daurier 8, 2003 Daurier 9, 200																								
Dumer 3, 2004 Dumer 3, 2004 Dumer 3, 2005 Dumer 4, 2005 Dumer 4, 2006 Dumer 4, 2006 Dumer 4, 2006 Dumer 4, 2006 Dumer 4, 2008 Dumer 4, 2009 Dumer 4, 2016 Dumer 5, 2018 Dumer 5, 2018 Dumer 5, 2018 Dumer 5, 2018 Du																			*	*				
Dunter 2, 2005		-	-		-		1	-		-					-				-		-	-		
Dunter 3, 2005		-	 		 		 	 		 					 	—					 	 		
Quarter 4, 2005 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 3, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2004 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2005 Quarter 2, 2016 Quarter 3, 2006 Quarter 2, 2016 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2005 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 200	-						-																	
Quarter 2, 2006																								
Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 5, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2014 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2004 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2007 Quarter 3, 2005 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 5, 2006 Quarter 6, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 7, 2006 Quarter 6, 2007 Quarter 7, 2006 Quarter 6, 2007 Quarter 7, 2006 Quarter 6, 2005 Quarter 6, 2003 Quarter 6, 2003 Quarter 7, 2003 Quarter 8, 2005 Quarter 8, 2005 Quarter 8, 2005 Quarter 9, 200																								
Quarter 4, 2006																								
Quarter 4, 2008 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 2, 2005 Quarter 2, 2006 Quarter 4, 2016 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 4, 2016 Quarter 2, 2017 Quarter 4, 2016 Quarter 2, 2017 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 2, 2007 Quarter 1, 2008 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 5, 2003 Quarter 6, 200																								
Quarter 3, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2002 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2009 Quarter 3, 2014 Quarter 2, 2014 Quarter 1, 2009 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 200	Quarter 4, 2006																							
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 RADIUM-226 Quarter 4, 2002 Quarter 2, 2004 Quarter 2, 2006 Quarter 1, 2009 Quarter 3, 2014 Quarter 1, 2009 Quarter 3, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 RADIUM-228 Quarter 2, 2017 RADIUM-228 Quarter 2, 2005 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003	Quarter 4, 2008																							
Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2002 ** Quarter 2, 2004 Quarter 2, 2005 Quarter 1, 2009 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 ** ** ** ** ** ** ** ** **	Quarter 3, 2012																			*				
Quarter 3, 2013 AADIUM-226 Quarter 4, 2002 ** Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2007 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2007 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2005 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003	Quarter 1, 2013																			*				
ADIUM-226 Quarter 4, 2002 Quarter 2, 2004 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2017 Quarter 2, 2017 ADUUM-228 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2000 Quarter 2, 2003 Quarter 3, 2003	Quarter 2, 2013																			*				
Quarter 4, 2002	Quarter 3, 2013																			*				
Quarter 4, 2002	RADIUM-226																							
Quarter 2, 2004 Quarter 2, 2005 Quarter 1, 2009 Quarter 3, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2007 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 5, 2003 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003				*										*	*							*		
Quarter 2, 2005																				*				
Quarter 1, 2009 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2003 Quarter 3, 2003										*														
Puarter 3, 2014										-4"		*												
Quarter 4, 2014										*		т —	*											
Warter 1, 2015				*						т.		*	т						*					
Warter 3, 2015								<u>.</u>			ı.	*	ı.											
Duarter 3, 2015	•	_	<u> </u>		<u> </u>		!			<u> </u>					<u> </u>						<u> </u>	<u> </u>		
Warter 4, 2015			<u> </u>		<u> </u>			*		<u> </u>	*		*						*					
Warter 3, 2016				*		<u>.</u>									<u> </u>						<u> </u>		L,	
Quarter 3, 2016 Quarter 4, 2016 * * * * * * * * * * * * * * * * * * *	Quarter 4, 2015					*	*			L.					L.		اليا	*				*	*	
The second color of the	Quarter 2, 2016			*						*		*	*	*	*	*	*							
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *	Quarter 3, 2016																		*					
Quarter 2, 2017 RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003	Quarter 4, 2016	*					*			*				*		*					*		*	
RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003	Quarter 1, 2017			*							*	*												
Quarter 2, 2005 Image: square of the property of	Quarter 2, 2017																	*	*		*	*		
Quarter 2, 2005 Image: square of the property of	RADIUM-228																							
Quarter 3, 2005	Quarter 2, 2005																							
Quarter 4, 2005 Image: square of the point of the	Quarter 3, 2005						1																	
Quarter 1, 2006 Image: Control of the control of th																								
SELENIUM Quarter 4, 2002 Image: Control of the control			l -		l -		1	l -		l -					l -						l -	l -		
Quarter 4, 2002 Image: Control of the control of th																								
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003																								
Quarter 2, 2003			 	-	 			 		 					 						 	 		
Quarter 3, 2003	-			_																			-	
			<u> </u>		<u> </u>	_		<u> </u>		<u> </u>					<u> </u>						<u> </u>	<u> </u>		
Quarter 4, 2003			<u> </u>		<u> </u>			<u> </u>		<u> </u>					<u> </u>						<u> </u>	<u> </u>		
	Quarter 4, 2003		<u> </u>		<u> </u>		<u> </u>	<u> </u>		<u> </u>					<u> </u>						<u> </u>	<u> </u>		

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System			UCRS	S						1	URG	4								LRGA	١		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372		391	220	394	385	370	373	388	392	395	397
SODIUM																							
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*												
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*		*													
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006									*														
Quarter 3, 2006									*	*		*							*				\vdash
Quarter 4, 2006					_			_	*	*		H					*	-	H	_		-	\vdash
Quarter 1, 2007	 	-			<u> </u>			<u> </u>	*	_		*							<u> </u>	<u> </u>			
Quarter 2, 2007	 	-			-			-	*	*		-							-	-			-
									*	Ψ.													
Quarter 4, 2007		-			<u> </u>			<u> </u>	*								_		<u> </u>	<u> </u>			<u> </u>
Quarter 4, 2007									*														
Quarter 1, 2008									不														<u> </u>
Quarter 3, 2008									L	L.,		*											<u> </u>
Quarter 4, 2008									*	*													
Quarter 1, 2009									*			*							*				
Quarter 3, 2009												*											
Quarter 4, 2009									*			*											
Quarter 1, 2010												*											
Quarter 2, 2010										*		*											
Quarter 3, 2010										*													
Quarter 4, 2010									*	*													
Quarter 1, 2011										*													
Quarter 2, 2011									*														
Quarter 4, 2011																			*				
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											\vdash
Quarter 3, 2013												*							*				\vdash
Quarter 4, 2013		 										*							*				
Quarter 1, 2014												*							<u> </u>				
Quarter 2, 2014									*		*	*							*				\vdash
Quarter 3, 2014									-		-4"	*							*				\vdash
Quarter 4, 2014	 	-			-			-	*	*		*	*				-	-	Ë	-		-	1
Quarter 1, 2015	 	-			-			-	<u> </u>	4,		*	*				-	-	-	-		-	1
Quarter 2, 2015												*	·T										\vdash
Quarter 3, 2015					_					*		*					_						\vdash
Quarter 4, 2015									*	*		*											\vdash
Quarter 2, 2016	_				_			_	<u> </u>	-	*	<u> </u>	 	 			\vdash		_	_			\vdash
Quarter 3, 2016	1	 			-			-	-		*	-						-	-	-		-	*
Quarter 1, 2017	_				_			_		*	*		*	 			\vdash	*	_	_			Ë
Quarter 2, 2017	_				_			_	*	*	*		Ë	 			\vdash	<u> </u>	_	_			\vdash
STRONTIUM-90									Ė														
Quarter 2, 2003																							
Quarter 1, 2004	1	 			-			-	-			-						-	-	-		-	
2,200	_			_		_			_	_		_				_	_	_				_	_

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System			UCRS	S						1	JRG/	4]	LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372		391	220	394			373	388	392	395	397
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*					*	*				
Quarter 3, 2005										*		*	*				*	*	*				
-										*		*					不	*		*			
Quarter 4, 2005													*				4		*				
Quarter 1, 2006										*		*	*				*	*	*	*			
Quarter 2, 2006									*	*		*	*				*	*	*	*			
Quarter 3, 2006									*	*		*	*				*		*	*			
Quarter 4, 2006									*	*		*	*				*		*				L
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*	-	*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
-									*	*		*	*				*	*	*	*			
Quarter 3, 2009	.								*									*		*			
Quarter 4, 2009	*								ale.	*		*	*				*	*	*				
Quarter 1, 2010	*								*	*		*	*				*		*				
Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 3, 2010										*		*	*				*	*	*	*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012										*		*	*				*	*	*	*			
Quarter 1, 2012 Quarter 1, 2013	-					-				*		*	*				*	*	*	*			
,	-									*		*	*	*			*	*	*	*			
Quarter 2, 2013	-	<u> </u>		<u> </u>		-				*		*	*	*			*	*	*	*			<u> </u>
Quarter 3, 2013	├					_								*									
Quarter 4, 2013		-		<u> </u>		-		JL.		*		*	*				*	*	*	*	<u> </u>		<u> </u>
Quarter 1, 2014								*		*		*	*	,1,			*	*	*	*			
Quarter 2, 2014										*		*	*	*			*	*	*	*	<u> </u>		<u> </u>
Quarter 3, 2014										*		*	*	*			*	*	*	*			
Quarter 4, 2014										*		*	*				*	*	*	*			
Quarter 1, 2015										*		*	*				*	*	*	*			
Quarter 2, 2015										*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2015								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2015						L				*		*	*	*			*		*	*	L		L
Quarter 1, 2016								*		*		*	*	*			*	*	*	*			
Quarter 2, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2016										*		*	*	*	*		*	*	*	*			
Quarter 1, 2017										*		*	*	*	*		*	*	*	*			
Quarter 2, 2017								*		*		*	*	*	*		*	*	*	*			
Quarter 2, 2017																							

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Monitoring Well TECHNETIUM-99 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006	**	D 389	** ** ** ** ** **	D 393	U 396	S 2211	S 222	S 223	S 224	\$ 384 *	D 369	D 372 ***	D 387 * * * * *	D 391	U 220	U 394	\$ 385 * * * *	D 370	D 373 * * *	D 388	D 392	U 395	U 397
TECHNETIUM-99 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007	*	389	* * * * * * * * *	393	396	221	222	223	224	*	369	*	* * *	391	220	394	* * * *	370	* *	*	392	395	397
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007			* * * * * * *									*	* * *				* *		*	*			
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007			* * * * * * *									*	* * *				* *		*	*			
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007			* * * * * * *									*	* * *				* *		*	*			
Quarter 2, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007			* * * * * * *									*	* *				*			*			
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007	*		* * * * * *							*		*	*				*			*			
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007	*		* * * * * *							*		*	*				*						
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007	*		* * * * *																*				
Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007	*		* * * * *									*	314										1
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007	*		* * * *									•	*				*		*	*			
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007	*		* * *									*					*		*				
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007	*		* * *							*		*	*				*	*	*				
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007	*		* *							*		*	*				*			*			
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007	*		*							*			*				*	*	*	*			
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007	*		*							*			*				*	*	*	*			
Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007	*				l					*		*	*				*		*	*			
Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007	*									*		*	*						*	*			
Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007	*		*	l						*			*				*	*	*	*			
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007	*									*			*				*	*	*	*			
Quarter 2, 2007 Quarter 3, 2007		t								*		*	*			\neg	П		*	*			
Quarter 2, 2007 Quarter 3, 2007			*							*			*			\neg	*		*	*			
Quarter 3, 2007			*							*		*	*				*	*		*			
		t	*							*	*	*	*			-	*	\Box	*	*			
<u>- </u>		t	*							*		*	*			-	*	\vdash	*	*			
Quarter 1, 2008		1	*		-			-		*		*	*			-	*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*	-	*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*	-	-	***			<u> </u>
Quarter 2, 2009			*							*		*	*			_	*	*	├	*			-
Quarter 3, 2009			*							*	*	*	*			-	*	-		*			
-			*							*	•	*	*				*			<u> </u>			<u> </u>
Quarter 4, 2009		<u> </u>	*							*		*	*			—	*		Н—				
Quarter 1, 2010												不				-		4	⊢	4			<u> </u>
Quarter 2, 2010			*							*	.	4	*				*	*	—	*			<u> </u>
Quarter 3, 2010			*							*	*	*	*				*		—				<u> </u>
Quarter 4, 2010			*							*		*	*			\vdash	*		⊢				
Quarter 1, 2011										*			*			\vdash	*		<u> </u>				<u> </u>
Quarter 2, 2011			*							*			*				*		Ь—	*			
Quarter 3, 2011			*							*			*				*		Ь—	*			
Quarter 4, 2011			*							*	*	*	*				*		<u> </u>				
Quarter 1, 2012			*							*			*				*		<u> </u>	*			<u> </u>
Quarter 2, 2012		<u> </u>	*							*			*			<u> </u>	*	Ш	*	*			<u>L</u>
Quarter 3, 2012			*							*		*	*				*	Ш					L
Quarter 4, 2012		<u> </u>								*		*	*				*		*	*			<u> </u>
Quarter 1, 2013		<u> </u>								*			*			Ш	*		*	*			<u> </u>
Quarter 2, 2013										*		*	*				*	ш	*	*			<u> </u>
Quarter 3, 2013			*							*		*	*				*		*	*			_
Quarter 4, 2013			*							*		*	*				*		*	*			
Quarter 1, 2014	_		*						L	*	*		*]	*		*	*			L
Quarter 2, 2014			*							*	*		*	*			*		*	*			L
Quarter 3, 2014			*							*			*				*			*			
Quarter 4, 2014			*							*	*	*	*				*		*	*			
Quarter 1, 2015			*							*	*	*	*				*			*			
Quarter 2, 2015			*							*	*		*				*			*			
Quarter 3, 2015			*							*	*	*	*				*	*	*	*			
Quarter 4, 2015			*							*	*	*	*				*	*		*			
Quarter 1, 2016			*							*	*		*				*		*	*			
Quarter 2, 2016			*			*				*			*			\neg	*	*		*			
Quarter 3, 2016			*							*		*	*			\neg	*	*		*			
Quarter 4, 2016			*							*	*		*			-	*			*			
Quarter 1, 2017		1	*							*			*			-	*	*		*			
Quarter 2, 2017		t	*					 		*	—		_					, ,					⊢
- ,				_								1	*			_	*	*	·	*			ļ

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Gradient S D D D U S S S S D D D U U S D D D	Groundwater Flow System	Т		UCRS	S						1	URGA	4								LRGA	1		
### PROMINERS		S	D	D	D	U	S	S	S	S				D	D	U	U	S	D				U	U
### PROMINERS		_																					395	397
Owner 1, 2012 Owner 2, 2015 Owner 3, 2015 Owner 3, 2017 FIORING 24 Owner 3, 2003 Owner 4, 2007 TOZIENE Owner 2, 2014 TOZIENE Owner 2, 2014 TOZIENE Owner 3, 2003 Owner 4, 2007 TOZIENE Owner 4, 2007 TOZIENE Owner 4, 2007 TOZIENE Owner 4, 2007 TOZIENE Owner 4, 2007 Owner 4, 2008 Owner 4, 2008 Owner 4, 2008 Owner 4, 2009 Owner 5, 2009 Owner 5, 2009 Owner 6, 2009 Owner 6, 2009 Owner 6, 2009 Owner																								
Ounter 4, 2014		*								*					*									
Quarter 1, 2017 THORRIMAS 14 Quarter 2, 2003 Quarter 3, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 4, 2005 Quarter 2, 2004 Quarter 2, 2003 Quarter 3, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 2, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 5, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 6	Quarter 4, 2014	*		*																				
Ounter 1, 2017 THORIUN-234 Ounter 2, 2003 Ounter 3, 2004 Ounter 3, 2004 Ounter 3, 2004 Ounter 4, 2005 Ounter 3, 2004 Ounter 3, 2004 Ounter 3, 2004 Ounter 3, 2005 Ounter 3, 2005 Ounter 3, 2006 Ounter 3, 2006 Ounter 3, 2006 Ounter 3, 2006 Ounter 4, 2005 Ounter 3, 2006 Ounter 3, 2006 Ounter 4, 2006 Ounter 3, 2006 Ounter 4, 2005 Ounter 3, 2006 Ounter 3, 2006 Ounter 3, 2006 Ounter 4, 2006 Ounter 4, 2006 Ounter 4, 2006 Ounter 5, 2007 Ounter 5, 2006 Ounter 6, 2006 Ounter 7, 2007 Ounter 7, 2006 Ounter 7, 2007 Ounter 7, 2006 Ounter 7, 2007 Ounter 7, 2007 Ounter 7, 2007 Ounter 7, 2008 Ounter 7, 2009 O		*								*	*			*		*								
TOORINE234		1		*							*							*						
Owater 2, 2003 Owater 4, 2007 TOLUENS Owater 2, 2014 TOTAL ORGANIC CARBON Owater 2, 2003 Owater 2, 2004 Owater 3, 2005 Owater 3, 2005 Owater 3, 2006 Owater 4, 2007 Owater 2, 2006 Owater 3, 2006 Owater 4, 2000 Owater 5, 2000 Owater 6, 2000 Owater																								
Quarter 4, 2007 TOLLENE Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2008 Quarter 1, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2006 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarte							*			*					*									
TOLLENE Quarter 2, 2014 TOTAL ORGANIC CARBON Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Q		\vdash								*														
Quarter 2, 2014 TOTAL ORGANIC CARBON																								
Note		1									*	*		*										
Quarter 4, 2002 Quarter 3, 2003 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 3, 2006 Quarter 3, 2009 Quarter 2, 2009	•										-			-										
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 6, 2008 Quarter 6, 2008 Quarter 6, 2008 Qua		1																				*		
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2008 Quarter 3, 2009		1			*						*	*							*	*				
Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2002 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2002 Quarter 4, 2002 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2002 Quarter 2, 2006 Quarter 1, 2007 Quarter 3, 2008 Quarter 4, 2006 Quarter 1, 2008 Quarter 1, 2006 Quarter 1, 2007 Quarter 3, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2009 Quarter 4, 200		\vdash												*										
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2001 Quarter 3, 2007 Quarter 3, 2003 ** ** ** ** ** ** ** ** **		_						*	*	*			*											
Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2001 Quarter 3, 2000 Quarter 4, 2006 Quarter 1, 2005 Quarter 4, 2006 Quarter 1, 2005 Quarter 1, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 2, 2006 Quarter 1, 2009 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 1, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 200		┼							-4"			-4"	-4-											
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 * * * * * * * * * * * * * * * * * * *		┼								***														
Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 ** ** ** ** ** ** ** ** **		1	1			<u> </u>		-				*	-	<u> </u>		<u> </u>					<u> </u>			
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2005 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2009 Quarter 4, 2006 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009		₩										٠,٣						_						\vdash
Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2001 Quarter 2, 2001 Quarter 3, 2017 Quarter 3, 2012 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2016 Quarter 4, 2001 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2002 Quarter 4, 2002 Quarter 5, 2005 Quarter 6, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 6, 2009 Quarter 7, 200		₩	1	 		-			 			 	 	-	-	-					-			-
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 ** Quarter 3, 2012 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2014 Quarter 3, 2015 ** Quarter 3, 2016 ** ** Quarter 3, 2016 ** ** Quarter 3, 2016 ** Quarter 3, 2017 Quarter 3, 2018 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 ** Quarter 3, 2007 ** Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2007 ** Quarter 4, 2006 Quarter 2, 2007 Quarter 4, 2006 Quarter 3, 2007 ** Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2008 ** Quarter 4, 2009 ** Quarter 4, 2009 Quarter 3, 2009 ** Quarter 4, 2009		₩	 					-																<u> </u>
Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 * * * * * * * * * * * * * * * * * *		—	<u> </u>																			,,,		<u> </u>
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2007 * * * * * * * * * * * * * * * * * *		ــــــ											L.											<u> </u>
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2007 * * * * * * * * * * * * * * * * * *	Quarter 3, 2005												*											
Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 ** Quarter 2, 2011 Quarter 3, 2012 ** Quarter 3, 2016 TOTAL ORGANIC HALIDES Quarter 4, 2002 Quarter 3, 2003 ** Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 2, 2009 ** Quarter 2, 2009 ** Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 ** Quarter 2, 2009 Quarter 2, 2009 ** Quarter 2, 2009 ** Quarter 3, 2009 ** Quarter 1, 2010 ** Quarter 1, 2010	Quarter 4, 2005										*											*		
Quarter 4, 2006 Quarter 1, 2007	Quarter 1, 2006										*													
Quarter 1, 2007	Quarter 2, 2006										*		*											
Quarter 3, 2007	Quarter 4, 2006	1																*						
Quarter 3, 2007	Quarter 1, 2007	*									*													
Quarter 2, 2011		*					*	*	*	*	*			*	*			*						
Quarter 3, 2012		 										*												
Quarter 3, 2016 POTAL ORGANIC HALIDES Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 1, 2009		*										-												\vdash
TOTAL ORGANIC HALIDES Quarter 4, 2002 Quarter 1, 2003 ** Quarter 3, 2003 ** Quarter 2, 2004 Quarter 1, 2005 ** Quarter 1, 2005 ** Quarter 2, 2005 ** Quarter 2, 2005 ** Quarter 3, 2005 ** Quarter 4, 2005 ** Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 ** Quarter 3, 2006 ** Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 ** Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 ** Quarter 4, 2007 Quarter 4, 2008 ** Quarter 4, 2008 ** Quarter 1, 2009 ** Quarter 1, 2009 ** Quarter 1, 2009 ** Quarter 2, 2009 ** Quarter 2, 2009 ** Quarter 2, 2009 ** Quarter 3, 2009 ** Quarter 1, 2009 ** Quarter 2, 2009 ** Quarter 2, 2009 ** Quarter 2, 2009 ** Quarter 3, 2009 ** Quarter 3, 2009 ** Quarter 3, 2009 ** Quarter 4, 2009 ** Quarter 4, 2009 ** Quarter 1, 2009 ** Quarter 2, 2009 ** Quarter 3, 2009 ** Quarter 3, 2009 ** Quarter 4, 2009 ** Quarter 4, 2009 ** Quarter 4, 2009 ** Quarter 1, 2009 ** Quarter 2, 2009 ** Quarter 3, 2009 ** Quart																				*				
Quarter 4, 2002 Quarter 1, 2003 Quarter 3, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 * Quarter 3, 2009 Quarter 4, 2009 * Quarter 3, 2009 Quarter 4, 2009 * Quarter 4, 2009 * Quarter 4, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * * * * * * * * * * * * * * * * * *		\vdash																		*				
Quarter 1, 2003																				<u>.</u>		<u>.</u>		
Quarter 3, 2003		₩			- NE															不				
Quarter 3, 2004																			不					
Quarter 1, 2005		₩			*																			
Quarter 1, 2005 * Quarter 2, 2005 * Quarter 3, 2005 * Quarter 4, 2005 * Quarter 1, 2006 * Quarter 2, 2006 * Quarter 3, 2006 * Quarter 4, 2006 * Quarter 1, 2007 * Quarter 2, 2007 * Quarter 3, 2007 * Quarter 4, 2007 * Quarter 4, 2008 * Quarter 4, 2008 * Quarter 1, 2009 * Quarter 2, 2009 * Quarter 4, 2009 * Quarter 1, 2010 *		L.,																				*		
Quarter 3, 2005																								
Quarter 3, 2005	` .																							
Quarter 4, 2005																								
Quarter 1, 2006																								
Quarter 2, 2006																								<u> </u>
Quarter 3, 2006																								
Quarter 4, 2006 Quarter 1, 2007 * Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 * Quarter 1, 2010						L					L			L		L					L			L
Quarter 1, 2007 *		*																						
Quarter 2, 2007																		*						
Quarter 3, 2007	Quarter 1, 2007																							
Quarter 4, 2007	Quarter 2, 2007	*																						
Quarter 1, 2008	Quarter 3, 2007																							
Quarter 4, 2008 *	Quarter 4, 2007	*																				*		
Quarter 4, 2008 *	Quarter 1, 2008	*																						
Quarter 1, 2009 *	Quarter 4, 2008	*																						
Quarter 1, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 *	Quarter 4, 2008	*																						
Quarter 2, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 *		*																						
Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 *			i –																			*		
Quarter 4, 2009 *																								
Quarter 1, 2010 **																								
			1																					\vdash
			1																					\vdash
Quarter 3, 2010 *	-		 	<u> </u>	_	<u> </u>	<u> </u>	1	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	<u> </u>	\vdash	 			<u> </u>		_	\vdash
()	20001 3, 2010						_																	

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System			UCRS	S						1	URG/	4]	LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TOTAL ORGANIC HALIDES																							
Quarter 4, 2010	*																						
Quarter 1, 2011	*																						
Quarter 3, 2013																					*		
TRICHLOROETHENE																							
Quarter 4, 2002														•		•							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005												•							•				
Quarter 4, 2005												•							•				
Quarter 1, 2006												•							•				
Quarter 2, 2006																							
Quarter 2, 2007																			•				
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012														_		-							
Quarter 3, 2012														_									
Quarter 4, 2012														_									
Quarter 1, 2013																			-				
Quarter 2, 2013																							
Quarter 3, 2013		 		 			 						-		-	-						-	1
Quarter 4, 2013		1		1			1						1		1							-	
Quarter 1, 2014																			Ē				
Quarter 2, 2014		 		 			 						-		-	H						-	1
Quarter 3, 2014												Ŧ				_					i	_	
Quarter 4, 2014		-		-			-					-	-		-							-	
Quarter 1, 2015		-		-			-					-	-		-							-	-
Quarter 1, 2015 Quarter 2, 2015																<u>-</u>							
Quarter 3, 2015																							
Quarter 3, 2015 Quarter 4, 2015															_								
,		 		 			 						 		 					-		-	
Quarter 1, 2016		<u> </u>		<u> </u>			<u> </u>					÷	<u> </u>		<u> </u>	-							<u> </u>
Quarter 2, 2016 Quarter 3, 2016		<u> </u>		<u> </u>			<u> </u>					÷	<u> </u>		<u> </u>				-		i		<u> </u>
,																			-				
Quarter 4, 2016		-		-			-						-		-				-			-	₩
Quarter 1, 2017				<u> </u>			<u> </u>						-		-	-			_			<u> </u>	<u> </u>
Quarter 2, 2017																				1			


 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System		1	UCR.	S						ı	JRG/	A								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004 *																							
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														
																		•				•	
* Statistical test results indicate an	eleva	ted co	ncen	ratior	i.e.,	a sta	tistica	lly sig	gnific	ant in	crease	2)											
■ MCL Exceedance								- '	-														
UCRS Upper Continental Recharge	Syste	m																					
URGA Upper Regional Gravel Aqu	ifer																						
LRGA Lower Regional Gravel Aqu	ifer																						

S Sidegradient; D Downgradient; U Upgradient

APPENDIX H METHANE MONITORING DATA

C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	6/08/20	17					1	Γim	ie:	1	3:2	5					Мо	nitor	:	Та	mm	ıy S	mith	ı	
Weather Co Sunny with																									
Monitoring RAE Syster	Equipm	ent:		0-5																					
					N	loni	itori	ng	Lo	cat	ion	1												adin LEI	
Ogden Landi Road Entran		Che	ecked	d at g	round	d lev	el							1,5-1										0	
North Landfi	II Gate	Che	ecked	d at g	round	d lev	el																	0	
West Side of Landfill: North 37° West 88°	07.652	Che	ecked	d at g	round	d lev	el																	0	
East Side of Landfill: North 37° West 88°	07.628	Che	ecked	d at g	round	d lev	el														770791		190	0	
Cell 1 Gas V	ent (17)	1	0	3	4 0	5	6		7	8		9	10 0	11	12	13 0	14 0	15 0		0	17 0			0	
Cell 2 Gas V	/ent (3)	1	0	0 0																	0				
Cell 3 Gas V	/ent (7)	1	0	3	4 0	. 5	6		7 0															0	
	II Office	Che	ecked	d at fl	oor le	evel																		0	
Suspect or F	Problem	No	area	s note	ed																	15	6-0	0 0 8- /3	
Remarks:																									
ALL VENT	S CHEC	CKE	D 1"	FR	MC	ТНЕ	E MC	DU	TH	10	FΤ	HE	E VE	ENT											
Performed	by:				6		, ,	P	, .	4	,								-		6/0	18/2	017		
					lam Si	gwa	ture	nu	u	n	_	5- L-1									0,0	O/ E	Da	te	
							Cardon C																		

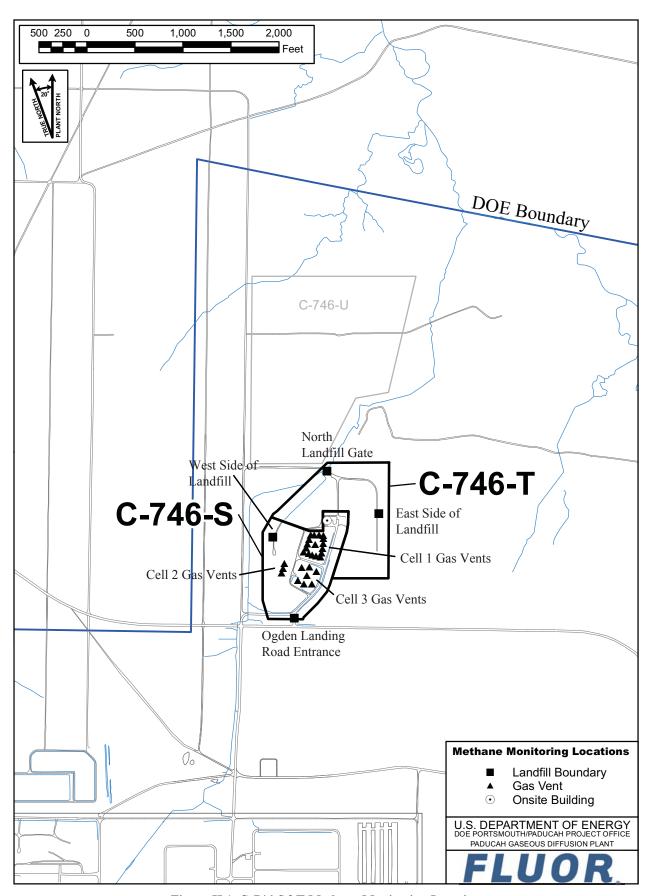



Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

Frankfort, KY 40601 (502)564-6716

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L135 UPSTRE	AM	L154 DOWNSTI	REAM	L136 AT SI	TE		/
Sample Sequer	ıce	#				1		1		1			
If sample is	a Bl	ank, specify Type: (F)ield, (T)r:	ip, (M)ethod	, or (E)quipment	NA		NA		NA			
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		4/27/2017 07:	45	4/27/2017 07	:32	5/4/2017 09	:15		
Duplicate (")	?" c	or "N") ¹				N		N		N			
Split ('Y' o	· "N	Ι") ²				N		N		N			$\overline{/}$
Facility Samp	ole	ID Number (if applicable)				L135SS3-17	7	L154US3-1	7	L136SS3-	17	\ /	
Laboratory Sa	mpl	e ID Number (if applicable)				421918001		421909002	2	42247700	1	\ /	
Date of Analy	rsis	s (Month/Day/Year)				5/22/2017		5/19/2017		5/19/2017	7		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQI	F L A G s ⁷
A200-00-0	0	Flow	Т	MGD	Field	1.82		3.31		0.69		/ \	
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	0.887		0.781		0.219		/ \	
14808-79-8	0	Sulfate	Т	MG/L	300.0	2.51		2.22		7.14			
7439-89-6	0	Iron	Т	MG/L	200.8	2.29		2.46		1.17			
7440-23-5	0	Sodium	т	MG/L	200.8	1.7		1.54		1.15			
s0268	0	Organic Carbon ⁶	Т	MG/L	9060	15.3		15		7.9			
s0097	0	BOD ⁶	т	MG/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	Т	MG/L	410.4	73.5		54		43.6			

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	oint	(KPDES Discharge Number, or	י" ד	JPSTREAM" or	"DOWNSTREAM")	L135 UPSTRI	EAM	L154 DOWNSTR	REAM	L136 AT S	ITE		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	
s0145	1	Specific Conductance	т	µнмѕ/см	Field	101		78		236			Γ
s0270	0	Total Suspended Solids	т	MG/L	160.2	23.6		13.6		33.7	*		
s0266	0	Total Dissolved Solids	Т	MG/L	160.1	141		127		150	*		
s0269	0	Total Solids	Т	MG/L	SM-2540 B 17	159		141		200			
s0296	0	рН	Т	Units	Field	7.17		7.04		7.89			
7440-61-1		Uranium	Т	MG/L	200.8	0.00196		0.00145		0.00255			
12587-46-1		Gross Alpha (α)	Т	pCi/L	9310	2.17	*	0.499	*	5.69	*		
12587-47-2		Gross Beta (β)	т	pCi/L	9310	13.7	*	8.3	*	4.38	*	X	
												/	1
													\setminus
													\prod
													L
												<u> </u>	

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 & 073-00015

Finds/Unit:	KY8-890-008-982	<u>' 1</u>
LAB ID:	None	_
For Official U	se Only	

SURFACE WATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
L135	L135SS3-17	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.31. Rad error is 5.3.
		Beta activity		TPU is 8.11. Rad error is 7.78.
L154	L154US3-17	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.89. Rad error is 4.89.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.18. Rad error is 7.04.
L136	L136SS3-17	Biochemical Oxygen Demand (BOD		Insufficient flow to collect a sample.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.01. Rad error is 6.94.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.42. Rad error is 6.38.

