

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

MAY 2 5 2017

PPPO-02-4204430-17A

Ms. Robin Green Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Mr. Allan Shingleton Division of Waste Management Kentucky Department for Environmental Protection 625 Hospital Drive Madisonville, Kentucky 42431

Dear Ms. Green, Mr. Hendricks, and Mr. Shingleton:

C-746-S&T LANDFILLS FIRST QUARTER CALENDAR YEAR 2017 (JANUARY–MARCH) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FPDP-RPT-0088/V1, PERMIT NUMBER SW07300014, SW07300015, SW07300045

Enclosed is the subject report for First Quarter Calendar Year (CY) 2017. This report is required in accordance with Condition ACTV0006, Special Condition Number 3, of the C-746-S&T Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The report includes groundwater and surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the First Quarter 2017 monitoring well data collected from the C-746-S&T Landfills were performed in accordance with Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical increase notification for the First Quarter CY17, in accordance with Condition GSTR0003, Standard Requirement 8, of the C-746-S&T Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

1) ordars

Jennifer Woodard Paducah Site Lead Portsmouth/Paducah Project Office

Enclosure:

C-746-S&T Landfills First Quarter CY17 (January-March) Compliance Monitoring Report

e-copy w/enclosure: april.webb@ky.gov, KDEP/Frankfort brian.begley@ky.gov, KDEP/Frankfort christopher.jung@ky.gov, KDEP/Frankfort dave.dollins@lex.doe.gov, PPPO/PAD edward.winner@ky.gov, KDEP/Frankfort ffscorrespondence@ffspaducah.com, FFS/Kevil jennifer.blewett@ffspaducah.com, FFS/Kevil jennifer.watson@ffspaducah.com, FFS/Kevil jennifer.woodard@lex.doe.gov, PPPO/PAD joseph.towarnicky@ffspaducah.com, FFS/Kevil karen.walker@ffspaducah.com, FFS/Kevil kelly.layne@ffspaducah.com, FFS/Kevil ken.davis@ffspaducah.com, FFS/Kevil kim.knerr@lex.doe.gov, PPPO/PAD leo.williamson@ky.gov, KDEP/Frankfort lisa.crabtree@ffspaducah.com, FFS/Kevil mike.guffey@ky.gov, KDEP/Frankfort myrna.redfield@ffspaducah.com, FFS/Kevil pad.rmc@swiftstaley.com, SSI/Kevil stephaniec.brock@ky.gov, KYRHB/Frankfort tracey.duncan@lex.doe.gov, PPPO/PAD

FPDP-RPT-0088/V1

C-746-S&T Landfills First Quarter Calendar Year 2017 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

<u>5-23-17</u> PDP Classification Support Date

FPDP-RPT-0088/V1

C-746-S&T Landfills First Quarter Calendar Year 2017 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—May 2017

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FLUOR FEDERAL SERVICES, INC., Paducah Deactivation Project managing the Deactivation Project at the Paducah Gaseous Diffusion Plant under Task Order DE-DT0007774

FIC	GURES			v
TA	BLES			v
AC	CRONY	'MS		vii
1.	1.1	BACK	ΓΙΟΝ GROUND ΓΟRING PERIOD ACTIVITIES	1
		1.2.1 1.2.2 1.2.3	Groundwater Monitoring Methane Monitoring Surface Water Monitoring	1 3
			ESULTS	
2.	2.1		LUATION/STATISTICAL SYNOPSIS STICAL ANALYSIS OF GROUNDWATER DATA Upper Continental Recharge System	12 12
		2.1.3	Upper Regional Gravel Aquifer Lower Regional Gravel Aquifer VERIFICATION AND VALIDATION	13
3.	PROF	ESSIO	NAL GEOLOGIST AUTHORIZATION	15
4.	REFE	RENCI	ES	17
AF	PEND	IX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
AF	PEND	IX B:	FACILITY INFORMATION SHEET	B-1
AF	PEND	IX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
AF	PEND	IX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
AF	PEND	IX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
AF	PEND	IX F:	NOTIFICATIONS	F-1
AF	PEND	IX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
AF	PEND	IX H:	METHANE MONITORING DATA	H-1
AF	PEND	IX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1

CONTENTS

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	. 2
2.	C-746-S&T Landfills Surface Water Monitoring Locations	.4

TABLES

1.	Summary of MCL Exceedances	5
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells	6
4.	C-746-S and -T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
	Exceedances of Current Background UTL in Downgradient UCRS Wells	
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

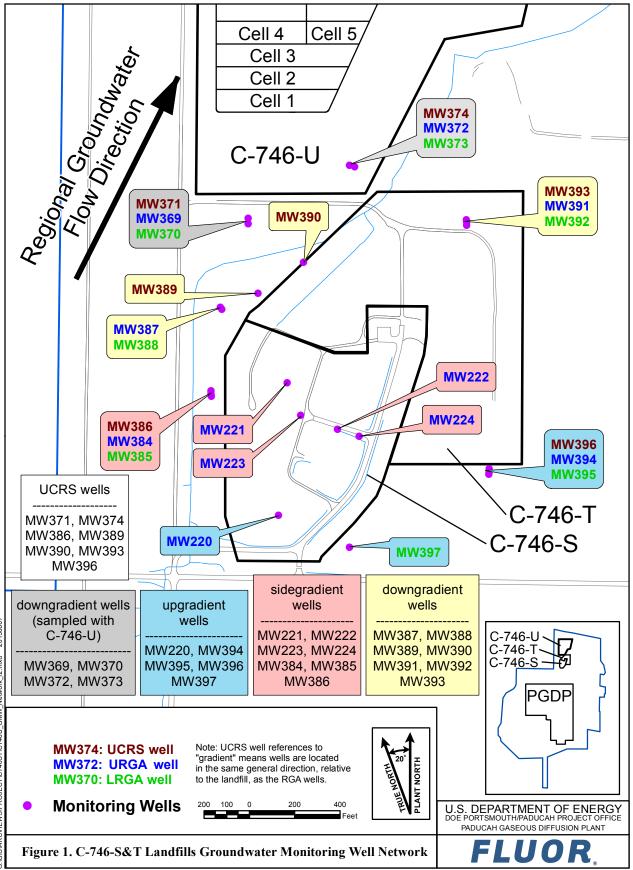
CFR CY KAR KDWM KRS	Code of Federal Regulations calendar year Kentucky Administrative Regulations Kentucky Division of Waste Management Kentucky Revised Statutes
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
MCL	maximum contaminant level
MW	monitoring well
PGDP	Paducah Gaseous Diffusion Plant
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer
UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills First Quarter Calendar Year 2017 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 *KAR* 47:030 § 6 and for all permit required parameters listed in 40 *CFR* § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090 § 4. Surface water results are provided in Appendix I.

1.1 BACKGROUND


The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Gaseous Diffusion Plant (PGDP) and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for PGDP. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from PGDP. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a water level measurement or sample; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for the UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the first quarter 2017 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using Fluor Federal Services, Inc., procedure CP4-ES-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on January 24, 2017, in MWs of the C-746-S&T Landfills (see Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is north to northeastward, toward the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in January was 3.03×10^4 ft/ft, while the gradient beneath the C-746-S&T Landfills was 1.96×10^4 ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.333 to 0.878 ft/day (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 4 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application, Attachment 12, of the Solid Waste Landfill Permit. Landfill operations staff monitored for the occurrence of methane in 1 on-site building location, 4 locations along the landfill boundary, and 27 gas-passive vents located in Cells 1, 2, and 3 of the C-746-S Landfill on March 16, 2017. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the approved C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and KY-073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application Attachment 24, of the Solid Waste Landfill Permit. Sampling was performed at three locations (see Figure 2) monitored for the C-746-S&T Landfills. The landfills have an upstream location, L135; a downstream location, L154; and a location capturing runoff from the landfill surface, L136.

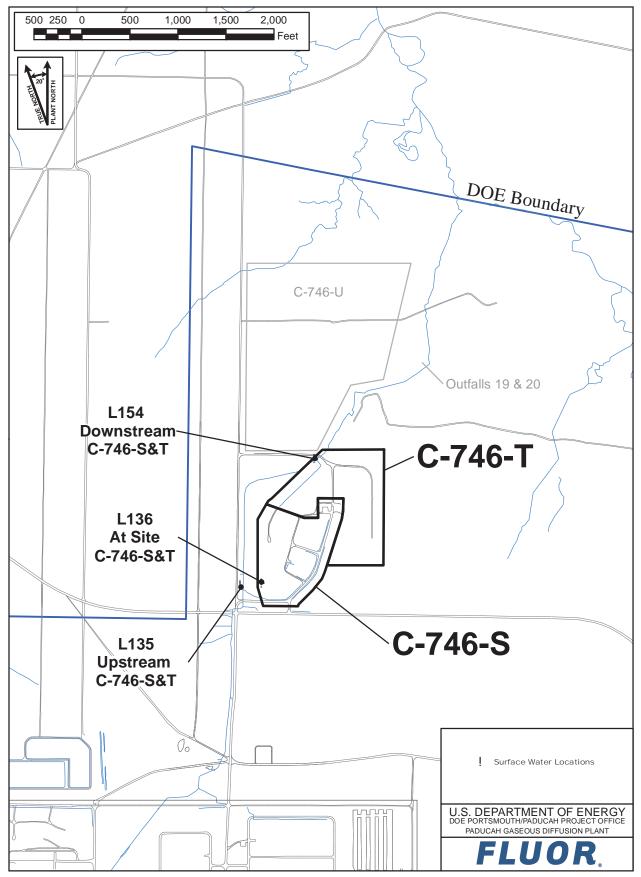


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

The parameters identified in the Solid Waste Landfill Permit were analyzed for report only format, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Gaseous Diffusion Plant, Contained Landfill) at the Paducah Paducah, Kentucky, (LATA Kentucky 2014) which is Technical Application, Attachment 25, of the Solid Waste Landfill permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were further evaluated against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL during the first quarter 2017, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW372, MW373, and MW391 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedances for trichloroethene in MW392 and beta activity in MW387 and MW388 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances because the source(s) of these exceedances is not determined. To evaluate these preliminary Type 2 exceedances further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. MW387 and MW388 had no increasing Mann-Kendall trend for beta activity and are considered to be Type 1 exceedances (not attributable to the landfill). MW392 had an increasing trend for trichloroethene that is discussed in detail later in this section.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 8, and 401 *KAR* 48:300 § 7.

UCRS	URGA	LRGA
None	MW372: Trichloroethene	MW373:Trichloroethene
	MW384: Beta activity	MW385: Beta activity
	MW387: Beta activity	MW388: Beta activity
	MW391: Trichloroethene	MW392: Trichloroethene
	MW394: Trichloroethene	

Table 1. Summary of MCL Exceedances

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Oxidation-reduction	MW220: Oxidation-reduction	MW370: Oxidation-reduction
potential	potential, sulfate	potential, radium-226, sodium,
		sulfate, technetium-99
MW390: Oxidation-reduction	MW222: Aluminum	MW373: Calcium, conductivity,
potential, radium-226,		dissolved solids, magnesium, sulfate
technetium-99, thorium-230		
MW393: Oxidation-reduction	MW223: Oxidation-reduction	MW385: Beta activity, ^a sulfate,
potential	potential	technetium-99, thorium-230
MW396: Oxidation-reduction	MW224: Oxidation-reduction	MW388: Beta activity, ^a
potential	potential	oxidation-reduction potential,
-	-	sulfate, technetium-99
	MW369: Radium-226, sodium	MW392: Trichloroethene
	MW372: Calcium, dissolved solids,	MW395: Oxidation-reduction
	magnesium, sulfate	potential
	MW384: Beta activity, ^a radium-226,	MW397: Oxidation-reduction
	sodium, sulfate, technetium-99,	potential
	thorium-230	
	MW387: Beta activity, ^a sodium,	
	sulfate, technetium-99	
	MW391: Magnesium, sulfate	

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393

Upgradient wells: MW220, MW394, MW395, MW396, MW397

^a Beta activity has an MCL; the exceedances of the MCL were subjected to a comparison against the statistically derived historical background.

^b In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW369: Sodium	MW370: Sulfate, technetium-99
MW372: Calcium, dissolved solids,	MW373: Calcium, conductivity,
magnesium, sulfate	dissolved solids, magnesium, sulfate
MW387: Beta activity, sodium, sulfate,	MW388: Beta activity, sulfate,
technetium-99	technetium-99
MW391: Magnesium, sulfate	MW392: Trichloroethene

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S ³	Var(S) ⁴	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
	MW369	Sodium	8	0.05	0.054	14.00	0.000	2.462	0.500	No Trend
	MW370	Sulfate	8	0.05	0.159	9.000	64.33	0.145	0.327	No Trend
	WI W 370	Technetium-99	8	0.05	0.199	8.000	0.000	5.105	0.286	No Trend
		Calcium	8	0.05	0.003	-22.00	0.000	-2.714	-0.786	Negative Trend
	MW372	Dissolved Solids	8	0.05	0.016	-18.00	0.000	-13.29	-0.643	Negative Trend
	MW 372	Magnesium	8	0.05	0.000	-26.00	0.000	-0.978	-0.929	Negative Trend
		Sulfate	8	0.05	0.001	-25.00	64.33	-10.25	-0.909	Negative Trend
		Calcium	8	0.05	0.054	-14.00	0.000	-1.038	-0.500	No Trend
		Conductivity	8	0.05	0.054	-14.00	0.000	-12.95	-0.500	No Trend
C-746-S and T	MW373	Dissolved Solids	8	0.05	0.360	-4.000	0.000	-6.167	-0.143	No Trend
Landfills		Magnesium	8	0.05	0.031	-16.00	0.000	-0.583	-0.571	Negative Trend
Downgradient		Sulfate	8	0.05	0.007	-20.00	0.000	-7.429	-0.714	Negative Trend
Wells		Beta Activity	8	0.05	0.089	-12.00	0.000	-5.083	-0.429	No Trend
	MW387	Sodium	8	0.05	0.452	-2.000	0.000	-0.067	-0.071	No Trend
	IVI W 387	Sulfate	8	0.05	0.106	11.00	64.33	0.833	0.400	No Trend
		Technetium-99	8	0.05	0.274	-6.000	0.000	-5.458	-0.214	No Trend
		Beta Activity	8	0.05	0.360	-4.000	0.000	-1.770	-0.143	No Trend
	MW388	Sulfate	8	0.05	0.227	7.000	64.33	0.225	0.255	No Trend
		Technetium-99	8	0.05	0.360	4.000	0.000	4.733	0.143	No Trend
	MW391	Magnesium	8	0.05	0.031	16.00	0.000	0.731	0.571	Positive Trend
	WI W 391	Sulfate	8	0.05	0.089	12.00	0.000	4.126	0.429	No Trend
	MW392	Trichloroethene	8	0.05	0.007	20.00	0.000	0.792	0.714	Positive Trend

Table 4. C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Footnotes:

¹An alpha of 0.05 represents a 95% confidence interval.

²The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

⁴VAR(S) represents the variance of S in the sample set and takes into account statistical ties.

⁵The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all $(x_j - x_k)/(j-k)$, where x is a data point and j and k are values of time.

⁶Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is positive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend.

⁷The Mann-Kendall decision operates on two hypothesis, the H₀ and H_a. H₀ assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend. Two different tests were ran to test for positive or negative trends. This table reports the test with the lowest p-value.

Note: Statistics generated using XLSTAT.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as upgradient, to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

Those constituents listed in Table 3 exceed both the historical UTL and the current UTL and preliminarily are considered to be a Type 2 exceedance per the approved Groundwater Monitoring Plan. To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All but two of these preliminary Type 2 exceedances in downgradient wells—magnesium in MW391 and trichloroethene in MW392—did not have an increasing trend and are considered to be Type 1 exceedances (not attributable to the landfill).

The Mann-Kendall statistical test indicates that there is an increasing trend of magnesium in MW391 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, this is considered a Type 2 exceedance (source unknown). The source of the trend is believed to be unrelated to the C-746-S&T Landfills because the adjacent URGA well, MW372, does not show the increasing Mann-Kendall trend (refer to Table 4). In addition, the source of magnesium in this well may be associated with non-landfill alternative sources that simultaneously could increase sulfate, dissolved solids, specific conductivity, calcium, and magnesium—all of which have similar concentration fluctuations over the past eight quarters.

The Mann-Kendall statistical test indicates that there is an increasing trend of trichloroethene in MW392 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, this is considered a Type 2 exceedance (source unknown). The source of the trend is believed to be unrelated to the C-746-S&T Landfills because the collocated URGA well, MW391, does not exceed the historical background concentration (refer to Table 2). In addition, if there were a landfill source, it would be expected that more of the downgradient wells would have this exceedance, and it would be expected that there would be more exceedances in the (shallow) URGA relative to the (deeper) LRGA.

In accordance with Permit Condition GSTR0003, Variance 2, of the Solid Waste Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the Permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS well MW390 with a technetium-99 value that exceeds both the historical and current backgrounds. Because this well is not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T sources and is considered to be a Type 1 exceedance (Table 5).

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells

UCRS
MW390: Technetium-99

All MCL and UTL exceedances, except for the listed parameters—magnesium in MW391 and trichloroethene in MW392, reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills. The increasing trends for these listed parameters do not appear to be landfill-related, given the data collected to date. The listed parameters will continue to be evaluated in the context of these observations.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2017 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the respective Kentucky solid waste facility MCL found in 401 *KAR* 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance.

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both the upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

UCRS	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389***	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396**	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	
	MW387	
	MW391	
	MW394 (upgradient)	

Table 6. Monitoring Wells Included in Statistical Analysis*

*A map showing the MW locations is shown on Figure 1.

**In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

***MW389 had insufficient water to permit a water sample for laboratory analysis.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the UCRS. During the first quarter, oxidation-reduction potential, radium-226, technetium-99, and thorium-230 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Technetium-99 exceeded the current background UTL and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 31 parameters, including those with MCLs, required statistical analysis in the URGA. During the first quarter, aluminum, beta activity, calcium, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sodium, sulfate, technetium-99, and thorium-230 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, dissolved solids, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 33 parameters, including those with MCLs, required statistical analysis in the LRGA. During the first quarter, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sodium, sulfate, technetium-99, thorium-230, and trichloroethene displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, technetium-99, and trichloroethene exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices, and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples—such as matrix spikes, matrix spike duplicates, and method blanks—are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills First Quarter Calendar Year 2017 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FPDP-RPT-0088/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

1 R. Davis

Kenneth R. Dav

PG113927

May 23, 2017 Date /

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and KY-073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Paducah	Activity: C	-746-S&T Landfills			
	(As officially shown					
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	1st Qtr. CY 2017		
Please check the f	following as applicable:	. 9				
Characterization X Quarterly Semiannual Annual Assess						
Please check appl	icable submittal(s):	X Surface Water				
	_	Leachate	<u> </u>	ethane Monitoring		

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Myrna E. Redfield, Director Environmental Management Fluor Federal Services, Inc.

Jernifer Woodard, Paducah Site Lead U.S. Department of Energy

A-3

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date:	Groundwater: January 2017 Surface Water: February and March 2017 Methane: March 2017	County: McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045
Facility Name:	U.S. DOE—Paducah Gaseous Diffusion Pla	int		
	(As officially shown on DWM	I Permit Face)		
Site Address:	5501 Hobbs Road	Kevil, Kentucky		42053
	Street	City/State		Zip
Phone No:	(270) 441-6800 Latitude:	N 37° 07' 37.70"	Longitude:	W 88° 47' 55.41"
	OWNER	INFORMATION		
Facility Owner:	U.S. DOE, Robert E. Edwards III, Manager		Phone No:	(859) 227-5020
Contact Person:	Myrna E. Redfield			(270) 441-5113
Contact Person Ti	tle: Director, Environmental Managemen	t, Fluor Federal Services, Inc.		
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053
C	Street	City/State		Zip
	(IF OTHER THAN LA	IG PERSONNEL NDFILL OR LABORATORY)		
Company:	GEO Consultants, LLC			
Contact Person:	Sam Martin		Phone No:	(270) 441-6755
Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky		42053
	Street	City/State		Zip
	LABORAT	ORY RECORD #1		
Laboratory:	GEL Laboratories, LLC	Lab ID No: _ K	XY90129	
Contact Person:	Valerie Davis		Phone No:	(843) 769-7391
Mailing Address:	2040 Savage Road Ch	arleston, South Carolina		29407
	Street	City/State		Zip
	LABORAT	ORY RECORD #2		
Laboratory:	N/A	Lab ID No:	N/A	
Contact Person:	N/A		Phone No:	N/A
Mailing Address:	N/A			
	Street	City/State		Zip
	LABORAT	ORY RECORD #3		
Laboratory:	N/A	Lab ID No:	N/A	
Contact Person:	N/A		Phone No:	N/A
Mailing Address:	N/A			
0	Street	City/State		Zip

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

THIS PAGE INTENTIONALLY LEFT BLANK

 Division of Waste Management
 RESIDENTIAL/INERT-QUARTERLY

 Solid Waste Branch
 Facility: US DOE - Paducah Gaseous Diffusion Plant

 14 Reilly Road
 Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

 Frankfort, KY 40601 (502)564-6716
 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER¹, Facility Well/Spring Number 8000-5201 8000-5202 8000-5242 8000-5243 222 223 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 220 221 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA NA NA 1/11/2017 08:47 1/5/2017 12:55 1/5/2017 12:10 1/5/2017 11:00 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν N N Split ("Y" or "N")³ Ν Ν N Ν MW220SG2-17 MW221SG2-17 MW222SG2-17 MW223SG2-17 Facility Sample ID Number (if applicable) 414135001 413785003 413785005 413785007 Laboratory Sample ID Number (if applicable) 1/13/2017 1/9/2017 1/9/2017 1/9/2017 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis UP SIDE SIDE SIDE Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN⁴ CONSTITUENT т Unit METHOD DETECTED F DETECTED DETECTED DETECTED F F F D OF VALUE L VALUE L VALUE L VALUE ь 5 MEASURE OR А OR А OR А OR А POL⁶ POL⁶ POL⁶ POL⁶ G G G G S^7 s s s 0.221 0.462 0.464 0.449 24959-67-9 Bromide т mg/L 9056 23.2 33.7 33.6 31.3 16887-00-6 Chloride(s) т 9056 mg/L 0.109 0.146 0.204 0.205 16984-48-8 Fluoride т 9056 mq/L 1.22 1.12 1.17 1.27 s0595- т Nitrate & Nitrite 9056 mq/L 18.4 14.3 10.8 13.9 14808-79-8 т Sulfate mq/L 9056 29.97 30.08 30.04 30.08 NS1894 Barometric Pressure Reading T Inches/Hg Field 345 395 317 414 s0145- т Specific Conductance Field µMH0/cm

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use ``*," then describe on ``Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

C.

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520)1	8000-520	2	8000-5242	2	8000-5243	
ľ	Facility's Lo	ocal Well or Spring Number (e.g., M	W-1,	MW-2, BLANK-	F, etc.)	220		221		222		223	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
ľ	s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.91		323.53		323.65		323.58	
ľ	N238	Dissolved Oxygen	т	mg/L	Field	5.58		5.64		5.91		3.81	
ľ	s0266	Total Dissolved Solids	т	mg/L	160.1	201	В	240	*	214	*	251	*
ľ	S0296	рн	т	Units	Field	6.05		6.28		6.4		6.15	
ľ	NS215	Eh	т	mV	Field	417		321		392		423	
ľ	S0907	Temperature	т	°C	Field	14.83		15.78		14.89		13.39	
	7429-90-5	Aluminum	т	mg/L	6020	0.0444	J	<0.05		0.418		<0.05	
Ī	7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
ľ	7440-38-2	Arsenic	т	mg/L	6020	0.00217	BJ	<0.005		0.00213	J	<0.005	
ſ	7440-39-3	Barium	т	mg/L	6020	0.196		0.216		0.222		0.264	
	7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
ľ	7440-42-8	Boron	т	mg/L	6020	0.0142	J	0.0125	J	0.00932	J	<0.015	
ľ	7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
ľ	7440-70-2	Calcium	т	mg/L	6020	19.6		22.7		15		22	
ſ	7440-47-3	Chromium	т	mg/L	6020	0.00383	J	0.0106	В	0.00789	BJ	0.0213	В
ſ	7440-48-4	Cobalt	т	mg/L	6020	0.000227	J	0.000397	J	0.00409		0.000736	J
	7440-50-8	Copper	т	mg/L	6020	0.00119		0.00185		0.00175		0.00122	
	7439-89-6	Iron	т	mg/L	6020	0.0727	J	0.0401	J	0.552		<0.1	
	7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7439-95-4	Magnesium	т	mg/L	6020	8.48		10.1		7.05		9.14	
	7439-96-5	Manganese	т	mg/L	6020	0.00192	J	0.00113	J	0.00637		<0.005	
ſ	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-2

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-520	01	8000-52	202	8000-524	42	8000-52	43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.00071		0.00228		0.00049	J	0.00671	
7440-02-0	Nickel	т	mg/L	6020	0.0198		0.0251		0.0264		0.129	
7440-09-7	Potassium	т	mg/L	6020	2.71		1.4		0.745		4.89	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	41		48.6		47.8		49.8	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	0.00736	J	<0.01		0.00475	J	<0.01	
7440-66-6	Zinc	т	mg/L	6020	0.00498	J	0.00367	J	<0.01		<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005	*	<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520)2	8000-52	242	8000-5	243
Facility's Loo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	220		221		222		223	5
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	42	8000-524	43
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000195		<0.0000194		<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NU	MBER ¹ ,	Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	43
Facility	's Loc	al Well or Spring Number (e.g.	, MW-1	, MW-2, et	tc.)	220		221		222		223	
CAS RI	J ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69	-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82	-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14	-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46	-1	Gross Alpha	т	pCi/L	9310	1.82	*	0.811	*	-2.36	*	-1.14	*
12587-47	-2	Gross Beta	т	pCi/L	9310	13.6	*	6.37	*	3.84	*	1.85	*
10043-66	-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63	-3	Radium-226	т	pCi/L	AN-1418	0.308	*	0.469	*	0.212	*	0.327	*
10098-97	-2	Strontium-90	т	pCi/L	905.0	-2.85	*	0.424	*	3.48	*	1.45	*
14133-76	-7	Technetium-99	т	pCi/L	TC-02-RC	23.2	*	14.8	*	11.3	*	5.58	*
14269-63	-7	Thorium-230	т	pCi/L	Th-01-RC	-0.126	*	0.342	*	0.395	*	0.294	*
10028-17	-8	Tritium	т	pCi/L	906.0	137	*	-125	*	-50.5	*	-93.3	*
s0130		Chemical Oxygen Demand	т	mg/L	410.4	12.7	J	<20		<20		10.1	J
57-12-5		Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54	-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268		Total Organic Carbon	т	mg/L	9060	1.14	J	1.02	J	0.889	J	1.06	J
S0586		Total Organic Halides	т	mg/L	9020	0.00622	J	0.0136		0.00694	J	0.0068	J
													─
													<u> </u>
													+
													+

 Division of Waste Management
 RESIDENTIAL/INERT-QUARTERLY

 Solid Waste Branch
 Facility: US DOE - Paducah Gaseous Diffusion Plant

 14 Reilly Road
 Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

 Frankfort, KY 40601 (502)564-6716
 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER¹, Facility Well/Spring Number 8000-5244 8004-4820 8004-4818 8004-4808 370 372 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 224 369 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA NA NA 1/11/2017 07:53 1/19/2017 08:53 1/18/2017 08:28 1/18/2017 09:22 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν N Ν Split ("Y" or "N")³ Ν Ν Ν Ν MW224SG2-17 MW369UG2-17 MW370UG2-17 MW372UG2-17 Facility Sample ID Number (if applicable) 414135003 414569011 414569001 414675001 Laboratory Sample ID Number (if applicable) 1/13/2017 1/20/2017 1/23/2017 1/24/2017 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis SIDE DOWN DOWN DOWN Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN⁴ CONSTITUENT т Unit METHOD DETECTED F DETECTED DETECTED DETECTED F F F D OF VALUE L VALUE L VALUE L VALUE ь 5 MEASURE OR А OR А OR А OR А POL⁶ POL⁶ POL⁶ POL⁶ G G G G S^7 s s s 0.317 0.367 0.463 0.639 J 24959-67-9 Bromide т mg/L 9056 20.6 33.6 37.4 48.1 16887-00-6 Chloride(s) т 9056 mg/L 0.118 0.22 0.169 0.18 16984-48-8 Fluoride т 9056 mq/L J 0.633 0.475 1.11 0.0513 J s0595- т Nitrate & Nitrite 9056 mq/L 10 4.95 19.6 66.2 14808-79-8 т Sulfate mq/L 9056 29.98 30.23 30.25 29.93 NS1894 Barometric Pressure Reading T Inches/Hg Field 393 390 444 595 s0145- т Specific Conductance Field µMH0/cm

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use ``*," then describe on ``Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

	AKGWA NUMBER ¹	¹ , Facility Well/Spring Number				8000-524	14	8004-482	0	8004-4818	3	8004-4808	
	Facility's Lo	ocal Well or Spring Number (e.g., M	w-1,	MW-2, BLANK-	F, etc.)	224		369		370		372	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
ľ	S0906	Static Water Level Elevation	т	Ft. MSL	Field	323.81		323.07		323.04		323.47	
ľ	N238	Dissolved Oxygen	т	mg/L	Field	4.6		1.38		3.41		0.89	
ľ	S0266	Total Dissolved Solids	т	mg/L	160.1	234	В	213		240		326	
Γ	S0296	рн	т	Units	Field	5.91		6.23		6.16		6.02	
Γ	NS215	Eh	т	mV	Field	442		381		412		263	
	S0907	Temperature	т	°C	Field	14.17		13.83		13.94		14.11	
Γ	7429-90-5	Aluminum	т	mg/L	6020	0.0339	J	0.0694		<0.05		0.0749	
ŀ	7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
Γ	7440-38-2	Arsenic	т	mg/L	6020	0.0021	BJ	<0.005		0.00198	BJ	0.00425	J
Γ	7440-39-3	Barium	т	mg/L	6020	0.202		0.503		0.266		0.0446	
ſ	7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
ſ	7440-42-8	Boron	т	mg/L	6020	0.0151		0.00843	J	0.0313		0.983	
ſ	7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
Γ	7440-70-2	Calcium	т	mg/L	6020	18.8		19.5		32		47.5	
Γ	7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
	7440-48-4	Cobalt	т	mg/L	6020	0.000662	J	0.0107		0.000584	J	0.000823	BJ
	7440-50-8	Copper	т	mg/L	6020	0.000387	J	0.0013		0.000654	J	<0.001	
	7439-89-6	Iron	т	mg/L	6020	0.066	J	0.239		0.0548	J	1.58	
Γ	7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
ſ	7439-95-4	Magnesium	т	mg/L	6020	8.43		8.47		14.4		18.6	
	7439-96-5	Manganese	т	mg/L	6020	0.00401	J	0.157		0.00862		0.0202	
ſ	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	08
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005		<0.0005		0.000723	
7440-02-0	Nickel	т	mg/L	6020	0.00308		0.00601		0.000998	J	0.00148	J
7440-09-7	Potassium	т	mg/L	6020	0.72		0.571		2.94		2.14	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	51.7		72		79.9		43.4	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		0.000997	J
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	*
7440-62-2	Vanadium	т	mg/L	6020	0.00684	J	<0.01		<0.01		<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		0.00389	J	<0.01		0.00485	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005	*	<0.005		<0.005		<0.005	*
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1,	Facility Well/Spring Number				8000-5244	4	8004-482	20	8004-48	318	8004-48	308
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00497		0.00178		0.00712	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

Ĩ	AKGWA NUMBER ¹	,	Facility Well/Spring Number				8000-5244	1	8004-4820)	8004-481	8	8004-480)8
ľ	Facility's Lo	oca	al Well or Spring Number (e.g., M	1W-1	, MW-2, et	.c.)	224		369		370		372	
	CAS RN ⁴		CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
ľ	100-41-4		Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
ľ	591-78-6		2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
ľ	74-88-4		Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1		Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5		Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2		Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
Ģ	108-10-1		Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
ω	96-12-8		Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198		<0.0000199	*	<0.0000195	*	<0.0000199	
	78-87-5		Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6		trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5		cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5		trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4		Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4		1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1		Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7		Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3		PCB,Total	т	ug/L	8082		*	0.0475	J	<0.1		<0.0952	
	12674-11-2		PCB-1016	т	ug/L	8082		*	<0.101		<0.1		<0.0952	
	11104-28-2		PCB-1221	т	ug/L	8082		*	<0.101		<0.1		<0.0952	
	11141-16-5		PCB-1232	т	ug/L	8082		*	<0.101		<0.1		<0.0952	
	53469-21-9		PCB-1242	т	ug/L	8082		*	0.0475	J	<0.1		<0.0952	
	12672-29-6		PCB-1248	т	ug/L	8082		*	<0.101		<0.1		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUME	ER ¹ , Facility Well/Spring Number				8000-5244	Ļ	8004-4820)	8004-481	8	8004-480	08
Facility's	Local Well or Spring Number (e.	g., MW-1	, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.101		<0.1		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.101		<0.1		<0.0952	
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.101		<0.1		<0.0952	
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.37	*	2.72	*	3	*	-0.207	*
12587-47-2	Gross Beta	Т	pCi/L	9310	1.9	*	8.82	*	44.8	*	14.2	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.476	*	0.868	*	0.72	*	0.54	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.17	*	1.5	*	2.37	*	-1.59	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	0.195	*	27	*	82.8	*	24.7	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.0688	*	-0.00581	*	0.216	*	0.32	*
10028-17-8	Tritium	т	pCi/L	906.0	41.8	*	28.4	*	-10.5	*	59.4	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	16.8	J	<20		<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		0.00176	J	<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	1.48	J	1.88	J	1.26	J	2.22	
s0586	Total Organic Halides	т	mg/L	9020	<0.01		0.0411		0.00954	J	0.01	
												<u> </u>
								<u> </u>				<u> </u>

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792	2	8004-48	309	8004-48	310	8004-480)4
Facility's Loo	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	.)	373		384		385		386	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour:minu	tes)		1/19/2017 10):23	1/4/2017	13:04	1/5/2017	08:11	1/5/2017 07	7:31
Duplicate ("Y	or "N") ²				N		Ν		Ν		N	
Split ("Y" or	"N") ³				N		Ν		Ν		N	
Facility Samp	le ID Number (if applicable)				MW373UG2	-17	MW384S0	G2-17	MW385S0	G2-17	MW386SG	2-17
Laboratory Sar	mple ID Number (if applicable)				41467500	9	413720	005	413785	001	4137850	09
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	1/24/2017	,	1/5/201	17	1/9/201	17	1/9/2017	7
Gradient with	respect to Monitored Unit (UP, DC)WN,	SIDE, UNKN	IOWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.601		0.526		0.248		0.154	J
16887-00-6	Chloride(s)	т	mg/L	9056	47.8		47.9		24.8		14.4	
16984-48-8	Fluoride	т	mg/L	9056	0.193		0.213		0.147		0.523	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.11		1.27		0.561		<0.1	
14808-79-8	Sulfate	т	mg/L	9056	110		19.7		19.9		46.5	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.89		30.21		30.05		30.05	
s0145	Specific Conductance	т	µMH0/cm	Field	781		490		474		631	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

C-15

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

	AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-479	92	8004-480	9	8004-4810)	8004-4804	,		
	Facility's Lo	ocal Well or Spring Number (e.g., M	w-1,	MW-2, BLANK-	F, etc.)	373		384		385		386	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
	s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.49		323		323.18		346.82	1
	N238	Dissolved Oxygen	т	mg/L	Field	2.27		4.32		2.11		1.79	1
	S0266	Total Dissolved Solids	т	mg/L	160.1	413		243		21.4	*	403	*
	S0296	рн	т	Units	Field	6.25		6.22		6.6		6.68	
	NS215	Eh	т	mV	Field	279		330		240		171	
	S0907	Temperature	т	°C	Field	14.78		14.72		13.33		12.78	
ר	7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
٦ <i>۴</i>	7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
	7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00215	BJ	0.00202	J	0.00347	J
	7440-39-3	Barium	т	mg/L	6020	0.0296		0.127		0.259		0.201	
	7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
	7440-42-8	Boron	т	mg/L	6020	1.59		0.0143	J	0.013	J	<0.015	
	7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
	7440-70-2	Calcium	т	mg/L	6020	69.6		30.8		44.2		24.7	
	7440-47-3	Chromium	т	mg/L	6020	<0.01		0.00343	BJ	<0.01		0.00469	BJ
	7440-48-4	Cobalt	т	mg/L	6020	0.000198	BJ	0.000111	J	0.000172	J	0.00784	
	7440-50-8	Copper	т	mg/L	6020	0.000438	J	0.000979	J	0.00117		0.00173	
	7439-89-6	Iron	т	mg/L	6020	0.0749	J	0.042	J	<0.1		1.29	
	7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7439-95-4	Magnesium	т	mg/L	6020	23.9		11.1		16.4		10.6	
	7439-96-5	Manganese	т	mg/L	6020	0.00334	J	0.00132	J	0.00667		1.41	
	7439-97-6	Mercury	т	mg/L	7470	<0.0002		0.00009	BJ	<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005		0.00058		0.000554	
7440-02-0	Nickel	т	mg/L	6020	0.00155	J	0.00116	J	0.00142	J	0.00247	
7440-09-7	Potassium	т	mg/L	6020	2.57		1.19		1.99		0.373	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00304	J	<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	58.3		83.2		34.3		152	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002	*	<0.0002		0.000246		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005	*	<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-480	09	8004-48	810	8004-4	304
Facility's Loo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	373		384		385		386	1
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00853		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

ſ	AKGWA NUMBER1	¹ , Facility Well/Spring Number		8004-479	2	8004-4809)	8004-48	10	8004-480)4		
	Facility's Lo	ocal Well or Spring Number (e.g., M	W-1	, MW-2, et	.c.)	373		384		385		386	
Ī	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ľ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
Ģ	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
9	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.00002		<0.0000197		<0.0000196		<0.0000199	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3	PCB,Total	т	ug/L	8082	<0.106			*		*		*
	12674-11-2	PCB-1016	т	ug/L	8082	<0.106			*		*		*
	11104-28-2	PCB-1221	т	ug/L	8082	<0.106			*		*		*
	11141-16-5	PCB-1232	т	ug/L	8082	<0.106			*		*		*
	53469-21-9	PCB-1242	т	ug/L	8082	<0.106			*		*		*
ſ	12672-29-6	PCB-1248	т	ug/L	8082	<0.106			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-4809	1	8004-481	0	8004-480)4
Facility's Lo	ocal Well or Spring Number (e.g	., MW-1	, MW-2, et	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.106			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.106			*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.106			*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	1.89	*	-0.917	*	0.863	*	0.641	*
12587-47-2	Gross Beta	т	pCi/L	9310	15.6	*	103	*	54	*	1.32	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.332	*	0.678	*	1.32	*	0.747	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.0653	*	3.18	*	2.38	*	2.26	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	33.1	*	144	*	92.5	*	3.12	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.217	*	0.985	*	1.4	*	-0.109	*
10028-17-8	Tritium	т	pCi/L	906.0	-63.8	*	-6.36	*	20.9	*	-67.3	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	14.6	J	18.1	J	<20		24.8	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.27	J	1.12	J	0.918	J	7.29	
s0586	Total Organic Halides	т	mg/L	9020	0.0155		0.014		0.0101		0.174	

Division of Waste Management	RESIDENTIAL/INERT-QUARTERLY
Solid Waste Branch	Facility: US DOE - Paducah Gaseous Diffusion Plant
14 Reilly Road	Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1
Frankfort, KY 40601 (502)564-6	5716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	316	8004-48	312	8004-481	1
Facility's Loo	cal Well or Spring Number (e.g., 1	MW-1	, MW-2, etc	.)	387		388		389		390	
Sample Sequend	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour:minu	tes)		1/4/2017 11	:42	1/4/2017	12:20	NA		1/4/2017 07	7:56
Duplicate ("Y	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)		MW387SG2	-17	MW388S0	G2-17	NA		MW390SG	2-17		
Laboratory Sar	boratory Sample ID Number (if applicable)						413720	009	NA		4137200	01
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	1/5/2017		1/6/201	17	NA		1/5/201	7
Gradient with	respect to Monitored Unit (UP, Do	JWN,	SIDE, UNKN	OWN)	DOWN		DOW	N	SIDE		DOWN	1
CAS RN ⁴	CONSTITUENT	H D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.474		0.355			*	0.621	
16887-00-6	Chloride(s)	т	mg/L	9056	41.2		33.5			*	63.3	
16984-48-8	Fluoride	т	mg/L	9056	0.486		0.15			*	0.255	
S0595	Nitrate & Nitrite	т	mg/L	9056	1.16		1.19			*	3	
14808-79-8	Sulfate	т	mg/L	9056	30.1		24.9			*	30.8	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.23		30.21			*	30.19	
s0145	Specific Conductance	т	µMH0/cm	Field	519		436			*	680	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

			(00110									
AKGWA NUMBER1	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g., MV	V-1, 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.04		322.99			*	322.98	
N238	Dissolved Oxygen	т	mg/L	Field	4.28		4.91			*	4.65	
s0266	Total Dissolved Solids	т	mg/L	160.1	276		241			*	361	
s0296	рН	т	Units	Field	6.18		6.1			*	6.35	
NS215	Eh	т	mV	Field	348		327			*	380	
s0907	Temperature	т	°C	Field	13.39		14.17			*	12.94	
7429-90-5	Aluminum	т	mg/L	6020	0.0191	J	<0.05			*	0.175	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00366	BJ	0.00196	BJ		*	0.00192	BJ
7440-39-3	Barium	т	mg/L	6020	0.12		0.222			*	0.263	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0339		0.0243			*	0.011	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	35.7		28.9			*	34.2	
7440-47-3	Chromium	т	mg/L	6020	0.00311	BJ	<0.01			*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.000153	J	0.000151	J		*	0.000434	J
7440-50-8	Copper	т	mg/L	6020	0.000995	J	0.000951	J		*	0.00212	
7439-89-6	Iron	т	mg/L	6020	0.0489	J	0.0492	J		*	0.204	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	14.2		11.6			*	13.3	
7439-96-5	Manganese	т	mg/L	6020	0.00151	J	<0.005			*	0.00132	J
7439-97-6	Mercury	т	mg/L	7470	0.00009	BJ	0.000093	BJ		*	0.00009	BJ

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-48	15	8004-48	16	8004-48	12	8004-481	1
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005			*	0.000543	
7440-02-0	Nickel	т	mg/L	6020	0.00135	J	0.00173	J		*	0.00202	
7440-09-7	Potassium	т	mg/L	6020	1.84		2.23			*	0.416	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	т	mg/L	6020	0.00213	J	<0.005			*	<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	т	mg/L	6020	65.4		57.1			*	134	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*		*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002			*	0.000141	J
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01			*	0.00467	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-481	5	8004-48	16	8004-4	812	8004-481	1
Facility's Loo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00083	J	0.00067	J		*	0.00037	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

Ī	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-481	5	8004-4816	6	8004-48	12	8004-48	11	
l	Facility's Loc	al Well or Spring Number (e.g., M	W-1	, MW-2, et	.c.)	387		388		389		390	
	CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
ľ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
ľ	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
ľ	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
Ģ	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
25	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000201		<0.0000197			*	<0.0000199	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	I
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
	1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
	12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
	11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
	11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
	53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
	12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA	NUMBER1	, Facility Well/Spring Number				8004-4815		8004-4816	;	8004-481	2	8004-4811	l
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)				387		388		389		390			
CAS	RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-	-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096	-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100.	-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587.	-46-1	Gross Alpha	т	pCi/L	9310	-1.29	*	2.54	*		*	-1.01	*
12587.	-47-2	Gross Beta	т	pCi/L	9310	154	*	86.4	*		*	40.9	*
10043	-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982	-63-3	Radium-226	т	pCi/L	AN-1418	0.342	*	0.536	*		*	1.19	*
10098-	-97-2	Strontium-90	т	pCi/L	905.0	2.12	*	2.5	*		*	2.32	*
14133-	-76-7	Technetium-99	т	pCi/L	Tc-02-RC	249	*	142	*		*	55.3	*
14269	-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.438	*	0.111	*		*	0.661	*
10028-	-17-8	Tritium	т	pCi/L	906.0	-14.7	*	7.98	*		*	53.9	*
S0130-)	Chemical Oxygen Demand	т	mg/L	410.4	22		22			*	18.1	J
57-12	-5	Cyanide	т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461	-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
S0268-	;	Total Organic Carbon	т	mg/L	9060	1.14	J	0.933	J		*	2.07	
S0586-	i	Total Organic Halides	т	mg/L	9020	0.0106		0.0164			*	0.0186	
													─
													+
													+
													-

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-48	306	8004-48	307	8004-4802	
Facility's Loc	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	.)	391		392		393		394	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA	NA			NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		1/5/2017 10	:14	1/5/2017	09:00	1/5/2017 (09:35	1/17/2017 0)7:54
Duplicate ("Y	or "N") ²	N		Ν		N		Ν				
Split ("Y" or	"N") ³	N		Ν		N		Ν				
Facility Sampl	le ID Number (if applicable)				MW391SG2	-17	MW392S0	G2-17	MW393S0	G2-17	MW394SG	2-17
Laboratory Sam	mple ID Number (if applicable)				41378501	1	413785	013	4137850	015	414471001	
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	1/9/2017		1/9/2017		1/9/2017		1/19/201	7
Gradient with	respect to Monitored Unit (UP, DC) wn	SIDE, UNKN	OWN)	DOWN		DOW	N	DOWN		UP	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.595		0.632		0.187	J	0.697	
16887-00-6	Chloride(s)	т	mg/L	9056	47.7		48.5		14.6		53.4	
16984-48-8	Fluoride	т	mg/L	9056	0.106		0.151		0.103		0.163	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.15		0.742		<0.1		1.23	
14808-79-8	Sulfate	т	mg/L	9056	50.2		7.21		11.9		10.8	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.08		30.06		30.05		29.98	
s0145	Specific Conductance	т	µMH0/cm	Field	471		409		399		427	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

[AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480)5	8004-4806		8004-4807		8004-4802	
	Facility's Lo	ocal Well or Spring Number (e.g., M	w-1,	MW-2, BLANK-	F, etc.)	391		392		393		394	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.23		323.24		339.46		323.69	
	N238	Dissolved Oxygen	т	mg/L	Field	3.71		1.99		4.3		4.81	
	s0266	Total Dissolved Solids	т	mg/L	160.1	283	*	260	*	260	*	213	
	s0296	рн	т	Units	Field	6.13		6.35		6.23		5.97	
	NS215	Eh	т	mV	Field	311		289		247		397	
	s0907	Temperature	т	°C	Field	14.83		14.56		15.11		13.94	
	7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0242	J	0.0278	J	<0.05	
	7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
	7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00423	J	<0.005	
	7440-39-3	Barium	т	mg/L	6020	0.197		0.208		0.113		0.259	
	7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
	7440-42-8	Boron	т	mg/L	6020	0.127		0.0276		0.0206		0.0225	
	7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
	7440-70-2	Calcium	т	mg/L	6020	39.2		31		12.9		26.7	
	7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		0.00465	BJ	<0.01	
	7440-48-4	Cobalt	т	mg/L	6020	0.000151	J	0.000206	J	0.0001	J	<0.001	
	7440-50-8	Copper	т	mg/L	6020	0.000987	J	0.000878	J	0.00113		0.000747	J
	7439-89-6	Iron	т	mg/L	6020	0.0525	J	0.109		1.42		0.0545	J
	7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7439-95-4	Magnesium	т	mg/L	6020	16.2		10.8		3.79		11.7	
	7439-96-5	Manganese	т	mg/L	6020	0.00212	J	0.0296		0.0426		0.00444	J
	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	05	8004-48	06	8004-480	07	07 8004-4802	
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.000879	J	0.00125	J	<0.002		0.00252	
7440-09-7	Potassium	т	mg/L	6020	1.82		1.86		0.459		1.09	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	37.7		37.8		96.8		35.3	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	06	8004-48	307	8004-4802	
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	0.00049	J	0.00083	J	<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.011		0.022		0.00248		0.00786	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

Ĩ	AKGWA NUMBER1	,	Facility Well/Spring Number				8004-4805	5	8004-4806	6	8004-480)7	8004-480)2
ľ	Facility's Lo	oca	al Well or Spring Number (e.g., M	1W-1	, MW-2, et	.c.)	391		392		393		394	
	CAS RN ⁴		CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ľ	100-41-4		Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
ľ	591-78-6		2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4		Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1		Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5		Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2		Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
9	108-10-1		Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
Ĩ	96-12-8		Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000195		<0.0000194		<0.0000199	
	78-87-5		Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6		trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5		cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5		trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4		Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4		1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1		Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7		Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3		PCB,Total	т	ug/L	8082		*		*		*		*
	12674-11-2		PCB-1016	т	ug/L	8082		*		*		*		*
	11104-28-2		PCB-1221	т	ug/L	8082		*		*		*		*
	11141-16-5		PCB-1232	т	ug/L	8082		*		*		*		*
	53469-21-9		PCB-1242	т	ug/L	8082		*		*		*		*
	12672-29-6		PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number	8004-4805		8004-4806		8004-480	7	8004-4802				
Facility's L	ocal Well or Spring Number (e.g.	., MW-1	, MW-2, et	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	2.8	*	0.619	*	0.871	*	1.25	*
12587-47-2	Gross Beta	т	pCi/L	9310	-1.93	*	1.8	*	-0.509	*	5.57	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.252	*	0.631	*	0.514	*	0.518	*
10098-97-2	Strontium-90	т	pCi/L	905.0	3.73	*	2.85	*	1.93	*	1.9	*
14133-76-7	Technetium-99	т	pCi/L	TC-02-RC	5.9	*	7.69	*	-1.71	*	7.79	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.00562	*	0.381	*	0.142	*	-0.0549	*
10028-17-8	Tritium	Т	pCi/L	906.0	1.53	*	34.9	*	40.7	*	7.36	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		10.1	J	<20		9.95	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1	J	1.1	J	2.56		1.02	J
s0586	Total Organic Halides	т	mg/L	9020	0.014		0.0239		0.0311		0.01	
												<u> </u>
		-										
												<u> </u>

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480		8004-48	803	8004-48	317	0000-0000	
Facility's Loc	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	••)	395		396		397		E. BLANK	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	nuipment	NA		NA	NA			E	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/17/2017 09):27	1/17/2017	08:47	1/11/2017	09:51	1/4/2017 07:08	
Duplicate ("Y	" or "N") ²	Ν		Ν		N		Ν				
Split ("Y" or	"N") ³	Ν		Ν		N		N				
Facility Sampl	le ID Number (if applicable)	MW395SG2	-17	MW396S0	G2-17	MW397S0	G2-17	RI1SG2-	17			
Laboratory Sar	mple ID Number (if applicable)				41447100	3	414471	005	414135	005	413720012	
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	1/20/2017	,	1/20/2017		1/13/2017		1/7/201	7
Gradient with	respect to Monitored Unit (UP, DC	wn,	SIDE, UNKN	IOWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.541		1.06		0.494			*
16887-00-6	Chloride(s)	т	mg/L	9056	46.7		73.9		39.6			*
16984-48-8	Fluoride	т	mg/L	9056	0.122		0.594		0.095	J		*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.67		<0.1		1.61			*
14808-79-8	Sulfate	т	mg/L	9056	10.1		23.2		11.6			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.03		30.01		29.98			*
s0145	Specific Conductance	т	µMH0/cm	Field	386		790		337			*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

					(00110							
AKGWA NUMBER1	, Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	7	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., Mw	-1 , 1	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.06		370.34		323.67			*
N238	Dissolved Oxygen	т	mg/L	Field	4.88		4.07		5.79			*
S0266	Total Dissolved Solids	т	mg/L	160.1	223		460		187	В		*
s0296	рН	т	Units	Field	6.39		6.37		6.08			*
NS215	Eh	т	mV	Field	299		209		416			*
s0907	Temperature	т	°C	Field	14.11		14.28		15.83			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0642		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00231	J	0.00191	BJ	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.269		0.429		0.136		<0.002	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0223		0.00844	J	0.0112	J	<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	25.9		35.7		19.5		<0.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00298		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000619	J	0.00129		0.000615	J	<0.001	
7439-89-6	Iron	т	mg/L	6020	<0.1		2.51		0.0865	J	<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.4		15.4		8.54		<0.03	
7439-96-5	Manganese	т	mg/L	6020	<0.005		0.558		0.00343	J	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		0.000088	BJ

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	395		396		397		E. BLAI	١K
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.000517		<0.0005		<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.000686	J	0.00129	J	0.00059	J	<0.002	
7440-09-7	Potassium	т	mg/L	6020	1.56		0.803		1.82		<0.3	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	29.1		116		33.4		<0.25	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005	*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		0.000071	J	<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		0.00778	J	<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01		0.00357	J	<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	03	8004-48	317	0000-00	000
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00365		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

ſ	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-481	17	0000-000	00
	Facility's Lo	cal Well or Spring Number (e.g., M	ſ₩-1	, MW-2, et	.c.)	395		396		397		E. BLAN	IK
7	CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
ľ	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
9	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
57	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000196		<0.0000196		<0.0000195		<0.0000195	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
	12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
	11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
	11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
	53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
ſ	12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER-	, Facility Well/Spring Number				8004-4801		8004-4803	5	8004-481	7	0000-000	00
Facility's Lo	ocal Well or Spring Number (e.g.	, MW-1	L, MW-2, et	.c.)	395		396		397		E. BLAN	IK
CAS RN ⁴	CONSTITUENT	Τ D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	0.491	*	1.82	*	-1.85	*	-0.759	*
12587-47-2	Gross Beta	т	pCi/L	9310	5.31	*	0.0175	*	4.42	*	-1.59	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.347	*	0.79	*	0.374	*	0.31	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.36	*	1.14	*	-0.646	*	4.26	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	11.4	*	3.72	*	8.85	*	-5.51	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.526	*	0.408	*	-0.0832	*	0.0915	*
10028-17-8	Tritium	т	pCi/L	906.0	22.8	*	55	*	175	*	103	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		16.9	J	18.9	J		*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		0.616		<0.5		<0.5	
S0268- -	Total Organic Carbon	т	mg/L	9060	0.879	J	6.37		0.792	J		*
s0586	Total Organic Halides	т	mg/L	9020	<0.01		0.0406		<0.01			*
	Facility's Loc CAS RN ⁴ 11097-69-1 11096-82-5 11100-14-4 12587-46-1 12587-47-2 10043-66-0 13982-63-3 10098-97-2 14133-76-7 10028-17-8 S0130- 57-12-5 20461-54-5 S0268-	Facility's Local Well or Spring Number (e.g.CASRN4CONSTITUENT11097-69-1PCB-125411096-82-5PCB-126011100-14-4PCB-126812587-46-1Gross Alpha12587-47-2Gross Beta10043-66-0Iodine-13113982-63-3Radium-22610098-97-2Strontium-9014133-76-7Technetium-9914269-63-7Thorium-23010028-17-8Tritium\$0130Chemical Oxygen Demand57-12-5Cyanide20461-54-5Iodide\$0268Total Organic Carbon	Facility's Local Well or Spring Number (e.g., MW-1CAS RN4CONSTITUENTT11097-69-1PCB-1254T11096-82-5PCB-1260T11100-14-4PCB-1268T12587-46-1Gross AlphaT12587-47-2Gross BetaT10043-66-0Iodine-131T13982-63-3Radium-226T10098-97-2Strontium-90T14133-76-7Technetium-99T14269-63-7Thorium-230T10028-17-8TritiumT50130-Chemical Oxygen DemandT20461-54-5IodideTsourceTotal Organic CarbonT	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etCAS RN4CONSTITUENTT D D SUnit OF MEASURE11097-69-1PCB-1254Tug/L11096-82-5PCB-1260Tug/L1100-14-4PCB-1268Tug/L12587-46-1Gross AlphaTpCi/L10043-66-0I Odine-131TpCi/L13982-63-3Radium-226TpCi/L14133-76-7Technetium-99TpCi/L10028-17-8TritiumTpCi/L57-12-5CyanideTmg/L20461-54-5IodideTmg/L50268Total Organic CarbonTmg/L	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) CAS RN ⁴ CONSTITUENT T Unit D METHOD 11097-69-1 PCB-1254 T ug/L 8082 11096-82-5 PCB-1260 T ug/L 8082 1100-14-4 PCB-1268 T ug/L 8082 12587-46-1 Gross Alpha T pCi/L 9310 10043-66-0 Iodine-131 T pCi/L 9310 10098-97-2 Strontium-90 T pCi/L AN-1418 10098-97-2 Strontium-90 T pCi/L 7C-02-RC 14269-63-7 Thorium-230 T pCi/L Th-01-RC 10028-17-8 Tritium T pCi/L 906.0 50130- Chemical Oxygen Demand T mg/L 9012 20461-54-5 Iodide T mg/L 9010	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 395 CAS RN ⁴ CONSTITUENT T Unit OF MEASURE METHOD MEASURE DETECTED VALUE OR POL ⁶ 11097-69-1 PCB-1254 T ug/L 8082	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 395 CAS RN ⁴ CONSTITUENT T Unit OF METHOD DETECTED VALUE OR PQL ⁶ F 11097-69-1 PCB-1254 T ug/L 8082 * 11096-82-5 PCB-1260 T ug/L 8082 * 11097-69-1 PCB-1268 T ug/L 8082 * 1100-14-4 PCB-1268 T ug/L 8082 * 12587-46-1 Gross Alpha T pCi/L 9310 0.491 * 12587-47-2 Gross Beta T pCi/L 9310 5.31 * 10043-66-0 Iodine-131 T pCi/L AN-1418 0.347 * 13982-63-3 Radium-226 T pCi/L AN-1418 0.347 * 14133-76-7 Technetium-99 T pCi/L 905.0 1.36 * 14269-63-7 Thorium-230 T pCi/L Th-01-RC 0.526 * 10028-17-8 Tritium T mg/L 9012 <0.2	Facility's Local Well or Spring Number (e.g., MN-1, MN-2, etc.) 395 396 CAS RN ⁴ CONSTITUENT T Unit OF METHOD DETECTED VALUE OR PCE-1254 T Ug/L 8082 * 11097-69-1 PCB-1254 T Ug/L 8082 * * * 11096-82-5 PCB-1260 T Ug/L 8082 * * * 1100-14-4 PCB-1268 T Ug/L 8082 * * * 12587-46-1 Gross Alpha T pCi/L 9310 0.491 * 1.82 1043-66-0 Iodine-131 T pCi/L 9310 5.31 * 0.0175 1098-97-2 Strontium-90 T pCi/L An-1418 0.347 * 0.79 1098-97-2 Strontium-90 T pCi/L Tc-02-RC 11.4 * 3.72 14269-63-7 Thorium-230 T pCi/L Tc-01-RC 0.526	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 395 396 CAS RN ⁴ CONSTITUENT $T \\ D \\ D \\ D \\ MEASURE$ METHOD OF MEASURE DETECTED VALUE OR PQL ⁶ $F \\ L \\ A \\ S \\ S$	Facility's Local Well or Spring Number (e.g., NM-1, NW-2, etc.) 395 396 397 CAS RN ⁴ CONSTITUENT $\frac{1}{9}$ Unit OF MEASURE METHOD OR PQL ⁶ DETECTED NULUE OR S $\frac{1}{8}$ DETECTED VALUE OR PQL ⁶ $\frac{1}{8}$ 1	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 395 396 397 CAS RN ⁴ CONSTITUENT $\begin{bmatrix} T \\ 0 \\ MEASURE \\ 0 \\ MEASURE \\ ME$	Paciality's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 395 396 397 E.BLAN CAS RN ⁴ CONSTITUENT $\frac{1}{9}$ Unit OF MRASURE METHOD VALUE OF MRASURE DETECTED VALUE SPOL ⁶ $\frac{1}{8}$ DETECTED VALUE OR S $\frac{1}{8}$ DETECTED VALUE OR S $\frac{1}{8}$ DETECTED VALUE OR S $\frac{1}{8}$ DETECTED VALUE S DETECTED VALUE S $\frac{1}{8}$

 Division of Waste Management
 RESIDENTIAL/INERT-QUARTERLY

 Solid Waste Branch
 Facility: US DOE - Paducah Gaseous Diffusion Plant

 14 Reilly Road
 Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

 Frankfort, KY 40601 (502)564-6716
 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

0000-0000 AKGWA NUMBER¹, Facility Well/Spring Number 0000-0000 0000-0000 0000-0000 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) F. BI ANK T. BLANK 1 T. BLANK 2 T. BLANK 3 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment F Т Т Т 1/4/2017 13:10 1/4/2017 07:05 1/5/2017 07:00 1/11/2017 06:55 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² N Ν Ν Ν Split ("Y" or "N")³ Ν Ν Ν Ν Facility Sample ID Number (if applicable) FB1SG2-17 TB1SG2-17 TB2SG2-17 TB3SG2-17 413720011 41372013 413785017 414135007 Laboratory Sample ID Number (if applicable) 1/7/2017 1/6/2017 1/9/2017 1/13/2017 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) NA NA NA NA CAS RN4 CONSTITUENT т Unit METHOD DETECTED F DETECTED F DETECTED F DETECTED F D OF VALUE г VALUE ь VALUE ь VALUE L MEASURE OR А OR А OR А OR А PQL⁶ G PQL⁶ G PQL⁶ G PQL⁶ G s^7 s s S * * т 24959-67-9 Bromide mg/L 9056 * * * 16887-00-6 т Chloride(s) mg/L 9056 * * * т 16984-48-8 Fluoride mg/L 9056 * * * * S0595- -Nitrate & Nitrite т mg/L 9056 * * * * 14808-79-8 Sulfate т mg/L 9056 يد. * * * NS1894 Barometric Pressure Reading т Inches/Hg Field * * * Specific Conductance т S0145- -Field uMH0/cm

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use ``*," then describe on `Written Comments Page." STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

	AKGWA NUMBER ¹	¹ , Facility Well/Spring Number				0000-000	00	000-000	0	0000-0000)	0000-0000	
	Facility's Lo	ocal Well or Spring Number (e.g., M	w-1,	MW-2, BLANK-	F, etc.)	F. BLAN	K	T. BLANK	(1	T. BLANK	2	T. BLANK 3	3
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
	s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
	N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
	S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
	S0296	рн	т	Units	Field		*		*		*		*
	NS215	Eh	т	mV	Field		*		*		*		*
	S0907	Temperature	т	°C	Field		*		*		*		*
2 10	7429-90-5	Aluminum	т	mg/L	6020	<0.05			*		*		*
	7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
ĺ	7440-38-2	Arsenic	т	mg/L	6020	<0.005			*		*		*
ĺ	7440-39-3	Barium	т	mg/L	6020	<0.002			*		*		*
ĺ	7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
	7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
	7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
	7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
	7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
	7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
	7440-50-8	Copper	т	mg/L	6020	<0.001			*		*		*
	7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
	7439-92-1	Lead	т	mg/L	6020	<0.002			*		*		*
	7439-95-4	Magnesium	т	mg/L	6020	0.0143	J		*		*		*
	7439-96-5	Manganese	т	mg/L	6020	<0.005			*		*		*
	7439-97-6	Mercury	т	mg/L	7470	0.000094	BJ		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				0000-000	00	0000-00	000	0000-00	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.	., MW-	1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	IK 1	T. BLAN	K 2	T. BLAN	К3
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*		*		*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	т	mg/L	6020	<0.01			*		*		*
7440-66-6	Zinc	т	mg/L	6020	<0.01			*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		0.00231	J
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				0000-000	0	0000-000	00	0000-00	000	0000-00	000
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	F. BLAN	<	T. BLANI	۲1	T. BLAN	IK 2	T. BLAN	IK 3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	0.00034	J	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

ſ	AKGWA NUMBER1	, Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-000	00
	Facility's Lo	cal Well or Spring Number (e.g., M	IW-1	, MW-2, et	.c.)	F. BLANK	(T. BLANK	1	T. BLAN	٢2	T. BLANI	<3
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
Ч Ч	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
43	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000199		<0.0000201		<0.0000198		<0.0000197	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
	12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
	11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
	11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
	53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
ſ	12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

Γ	AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-0000		0000-0000		0000-0000)
	Facility's Lo	ocal Well or Spring Number (e.g., 1	/W-1	, MW-2, et	.c.)	F. BLANK		T. BLANK 1		T. BLANK 2		T. BLANK 3	3
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
	11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
	11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
	12587-46-1	Gross Alpha	т	pCi/L	9310	-0.0558	*		*		*		*
	12587-47-2	Gross Beta	т	pCi/L	9310	-0.674	*		*		*		*
	10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
C-44	13982-63-3	Radium-226	т	pCi/L	AN-1418	0.549	*		*		*		*
4	10098-97-2	Strontium-90	т	pCi/L	905.0	0.894	*		*		*		*
	14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-10.6	*		*		*		*
	14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.235	*		*		*		*
	10028-17-8	Tritium	т	pCi/L	906.0	56.2	*		*		*		*
	s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
	57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
	20461-54-5	Iodide	т	mg/L	300.0	<0.5			*		*		*
	S0268- -	Total Organic Carbon	т	mg/L	9060		*		*		*		*
	s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management	RESIDENTIAL/INERT-QUARTERLY	
Solid Waste Branch	Facility: US DOE - Paducah Gaseous Di	ffusion Plant
14 Reilly Road	Permit Number:073-00014 & 073-00015 FIN	DS/UNIT: <u>KY8-890-008-982/</u> 1
Frankfort, KY 40601 (502)564-6	5716 LAB	ID: None
	For	Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER¹, Facility Well/Spring Number 0000-0000 8004-4809 384 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) T. BLANK 4 2 Sample Sequence # 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment т NA 1/4/2017 13:04 1/17/2017 07:15 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Υ Split ("Y" or "N")³ Ν Ν MW384DSG2-17 TB4SG2-17 Facility Sample ID Number (if applicable) 413720003 414471007 Laboratory Sample ID Number (if applicable) 1/5/2017 1/20/2017 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis SIDE Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) NA DETECTED CAS RN⁴ CONSTITUENT т Unit METHOD F DETECTED F DETECTED F DETECTED F VALUE VALUE VALUE VALUE D OF г ь ь L 5 MEASURE OR OR OR А А OR А PQL⁶ PQL⁶ G G PQL⁶ /G POL6 G s⁷ s S S 0.531 24959-67-9 Bromide т mg/L 9056 48 16887-00-6 Chloride(s) т mg/L 9056 0.222 т 16984-48-8 Fluoride mg/L 9056 1.29 S0595- -Nitrate & Nitrite т mg/L 9056 20.3 14808-79-8 Sulfate т mg/L 9056 30.21 NS1894 Barometric Pressure Reading т Inches/Hg Field 490 S0145- -Specific Conductance т Field uMH0/cm

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

5				77 4 7 7 7 1			.,			<u>x</u>		F	
	AKGWA NUMBER1	, Facility Well/Spring Number				0000-000		8004-480)9	[]			
	Facility's Lo	ocal Well or Spring Number (e.g., M	v-1,	MW-2, BLANK-	F, etc.)	T. BLANK	(4	384					Ζ
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR POL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
	S0906	Static Water Level Elevation	т	Ft. MSL	Field		*	323				/	
	N238	Dissolved Oxygen	т	mg/L	Field		*	4.32					
	S0266	Total Dissolved Solids	т	mg/L	160.1		*	240					
	S0296	рН	т	Units	Field		*	6.22					
ľ	NS215	Eh	т	mV	Field		*	330			Ν		
	S0907	Temperature	т	°C	Field		*	14.72			$\left \right\rangle$		
	7429-90-5	Aluminum	т	mg/L	6020		*	<0.05			\square		
	7440-36-0	Antimony	т	mg/L	6020		*	<0.003					
	7440-38-2	Arsenic	т	mg/L	6020		*	0.0021	BJ			X	
ſ	7440-39-3	Barium	т	mg/L	6020		*	0.128					
	7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005			1		
ſ	7440-42-8	Boron	т	mg/L	6020		*	0.0148	J		17		
ſ	7440-43-9	Cadmium	т	mg/L	6020		*	<0.001			V		
ſ	7440-70-2	Calcium	т	mg/L	6020		*	31.8					
ſ	7440-47-3	Chromium	т	mg/L	6020		*	0.00349	BJ				
	7440-48-4	Cobalt	т	mg/L	6020		*	0.000114	J				
ſ	7440-50-8	Copper	т	mg/L	6020		*	0.00104					
ſ	7439-89-6	Iron	т	mg/L	6020		*	<0.1				X	
	7439-92-1	Lead	т	mg/L	6020		*	<0.002					
	7439-95-4	Magnesium	т	mg/L	6020		*	11.1					$\overline{)}$
	7439-96-5	Manganese	т	mg/L	6020		*	0.00137	J				$\overline{}$
	7439-97-6	Mercury	т	mg/L	7470		*	0.00009	BJ	1/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				0000-000	00	8004-48	609	\backslash			/
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	T. BLANI	≺4	384					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020		*	<0.0005					
7440-02-0	Nickel	т	mg/L	6020		*	0.0011	J				
7440-09-7	Potassium	т	mg/L	6020		*	1.2					
7440-16-6	Rhodium	т	mg/L	6020		*	<0.005					
7782-49-2	Selenium	т	mg/L	6020		*	0.00271	J		\		
7440-22-4	Silver	т	mg/L	6020		*	<0.001			\setminus		
7440-23-5	Sodium	т	mg/L	6020		*	71.6					
7440-25-7	Tantalum	т	mg/L	6020		*	<0.005	*			/	
7440-28-0	Thallium	т	mg/L	6020		*	<0.002			X		
7440-61-1	Uranium	т	mg/L	6020		*	<0.0002				\land	
7440-62-2	Vanadium	т	mg/L	6020		*	<0.01					
7440-66-6	Zinc	т	mg/L	6020		*	<0.01					
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		/	/		
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		/			
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005					
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005					
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001					
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001					
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003					\mathbf{N}
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001					\Box
108-88-3	Toluene	т	mg/L	8260	0.00036	J	<0.001					
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		0000-0000	0	8004-48	09	\land					
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	T. BLANK	4	384		\backslash			/
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001				/	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001				/	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001					
78-93-3	Methyl ethyl ketone	т	mg/L	8260	0.00372	J	<0.005					
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			\setminus		
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005					
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001					
67-66-3	Chloroform	т	mg/L	8260	0.00138		<0.001				/	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001				X	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			/		
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001					
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			7		
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			/		
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		/			
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		/			
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001					
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001					
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001					
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001					$\left \right\rangle$
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001					\Box
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001					
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00038	J	/			

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

ſ	AKGWA NUMBER1,	, Facility Well/Spring Number				0000-000	0	8004-4809	9	\land			/
	Facility's Lo	cal Well or Spring Number (e.g., M	W-1	, MW-2, et	.c.)	T. BLANK	4	384		\backslash			
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G s
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001				/	
	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005					
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005					
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001					
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			\backslash		
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			\square		
Ņ	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005					
49	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.00002		<0.0000201					
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001				K	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001					
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001					
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001					
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			/		
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001					
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001					
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001					
	1336-36-3	PCB,Total	т	ug/L	8082		*		*				
	12674-11-2	PCB-1016	т	ug/L	8082		*		*				$ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	11104-28-2	PCB-1221	т	ug/L	8082		*		*				\setminus
	11141-16-5	PCB-1232	т	ug/L	8082		*		*				
	53469-21-9	PCB-1242	т	ug/L	8082		*		*				\Box
	12672-29-6	PCB-1248	т	ug/L	8082		*		*				

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBE	ER ¹ , Facility Well/Spring Number				0000-0000		8004-4809		Ν			
Facility's	Local Well or Spring Number (e.g.	, MW-1	, MW-2, et)	T. BLANK	4	384		$ \rangle$			
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR POL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	FLAGS
11097-69-1	PCB-1254	т	ug/L	8082		*		*			/	
11096-82-5	PCB-1260	т	ug/L	8082		*		*				
11100-14-4	PCB-1268	т	ug/L	8082		*		*				
12587-46-1	Gross Alpha	т	pCi/L	9310		*	-1.08	*				
12587-47-2	Gross Beta	т	pCi/L	9310		*	95.5	*		\backslash		
10043-66-0	Iodine-131	т	pCi/L			*		*		$ \rangle$		
13982-63-3	Radium-226	т	pCi/L	AN-1418		*	0.463	*		$ \rangle$		
10098-97-2	Strontium-90	т	pCi/L	905.0		*	2.12	*		\ \	\bigvee	
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	149	*			\wedge	
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*	0.224	*				
10028-17-8	Tritium	т	pCi/L	906.0		*	-39.2	*				
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*	20			/		
57-12-5	Cyanide	т	mg/L	9012		*	<0.2			1		
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5		/			
s0268	Total Organic Carbon	т	mg/L	9060		*	1.14	J				
s0586	Total Organic Halides	т	mg/L	9020		*	0.00706	J				
												$\left \right\rangle$
												$\left \right\rangle$
									/			

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5201 MW2	20 MW220SG2-17	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Vinyl acetate	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.83. Rad error is 2.81.
		Gross beta		TPU is 3.26. Rad error is 2.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.406. Rad error is 0.405.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.06. Rad error is 2.06.
		Technetium-99		TPU is 11.8. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.239. Rad error is 0.239.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 136. Rad error is 133.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5202 MW221	MW221SG2-17	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.6. Rad error is 2.59.
		Gross beta		TPU is 2.64. Rad error is 2.43.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.474. Rad error is 0.474.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.42. Rad error is 2.42.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.3. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.389. Rad error is 0.382.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 125. Rad error is 125.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5242 MW2	22 MW222SG2-17	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.3. Rad error is 2.3.
		Gross beta		TPU is 1.81. Rad error is 1.69.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.319. Rad error is 0.319.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.89. Rad error is 2.83.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.59. Rad error is 8.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.383. Rad error is 0.375.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 135. Rad error is 135.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5243 MW2	23 MW223SG2-17	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.32. Rad error is 2.31.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.4. Rad error is 1.37.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.408. Rad error is 0.408.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.69. Rad error is 2.69.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.56. Rad error is 7.53.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.426. Rad error is 0.42.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 128. Rad error is 128.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5244 MW224	MW224SG2-17	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Vinyl acetate	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 2.48. Rad error is 2.47.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 1.82. Rad error is 1.79.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 0.454. Rad error is 0.454.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 1.53. Rad error is 1.53.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 0.264. Rad error is 0.263.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 118. Rad error is 118.
8004-4820 MW369	MW369UG2-17	1,2-Dibromo-3-chloropropane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 3.03. Rad error is 3.
		Gross beta		TPU is 2.69. Rad error is 2.25.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.6. Rad error is 0.599.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.86. Rad error is 1.84.
		Technetium-99		TPU is 12.4. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.7. Rad error is 0.699.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 127. Rad error is 127.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4818 MW37	70 MW370UG2-17	1,2-Dibromo-3-chloropropane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.14. Rad error is 2.08.
		Gross beta		TPU is 7.73. Rad error is 1.93.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.529. Rad error is 0.529.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.56. Rad error is 2.53.
		Technetium-99		TPU is 17.6. Rad error is 15.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.779. Rad error is 0.773.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 121. Rad error is 121.
3004-4808 MW37	72 MW372UG2-17	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Uranium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.13. Rad error is 2.13.
		Gross beta		TPU is 3.65. Rad error is 2.77.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.427. Rad error is 0.426.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.53. Rad error is 2.53.
		Technetium-99		TPU is 12.1. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.893. Rad error is 0.886.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 125. Rad error is 125.
004-4792 MW37	73 MW373UG2-17	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Uranium	Ν	Sample spike (MS/MSD) recovery not within control limits
		Vinyl acetate	L	LCS or LCSD recovery outside of control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.41. Rad error is 2.39.
		Gross beta		TPU is 3.99. Rad error is 3.09.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.349. Rad error is 0.348.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 1.97. Rad error is 1.97.
		Technetium-99		TPU is 12. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.566. Rad error is 0.565.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TI is 125. Rad error is 125.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4809 MW384	4 MW384SG2-17	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.52. Rad error is 1.52.
		Gross beta		TPU is 17.2. Rad error is 4.13.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.469. Rad error is 0.468.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.89. Rad error is 2.84.
		Technetium-99		TPU is 22.4. Rad error is 15.7.
		Thorium-230		TPU is 0.588. Rad error is 0.563.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 118. Rad error is 118.
004-4810 MW385	5 MW385SG2-17	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.68. Rad error is 2.68.
		Gross beta		TPU is 9.6. Rad error is 3.91.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.898. Rad error is 0.896.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.96. Rad error is 1.93.
		Technetium-99		TPU is 14.3. Rad error is 10.
		Thorium-230		TPU is 0.722. Rad error is 0.684.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 126. Rad error is 125.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4804 MW3	86 MW386SG2-17	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.52. Rad error is 2.52.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.66. Rad error is 1.65.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.549. Rad error is 0.548.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.66. Rad error is 2.64.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.93. Rad error is 7.92.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.295. Rad error is 0.295.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 127. Rad error is 127.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4815 MW38	37 MW387SG2-17	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.25. Rad error is 2.25.
		Gross beta		TPU is 25.7. Rad error is 5.75.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.385. Rad error is 0.385.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.16. Rad error is 3.14.
		Technetium-99		TPU is 32.8. Rad error is 17.7.
		Thorium-230 Tritium	U U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.473. Rad error is 0.463. Indicates analyte/nuclide was analyzed for, but not detected. TPU
		THUUIII	0	is 118. Rad error is 118.
8004-4816 MW38	88 MW388SG2-17	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.36. Rad error is 2.32.
		Gross beta		TPU is 14.7. Rad error is 4.36.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.396. Rad error is 0.395.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.7. Rad error is 2.67.
		Technetium-99		TPU is 21.6. Rad error is 14.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.378. Rad error is 0.375.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 120. Rad error is 120.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample was collected.
		Chloride		During sampling, the well was dry; therefore, no sample was collected.
		Fluoride		During sampling, the well was dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample was collected.
		Sulfate		During sampling, the well was dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample was collected.
		рН		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample was collected.
		Temperature		During sampling, the well was dry; therefore, no sample was collected.
		Aluminum		During sampling, the well was dry; therefore, no sample was collected.
		Antimony		During sampling, the well was dry; therefore, no sample was collected.
		Arsenic		During sampling, the well was dry; therefore, no sample was collected.
		Barium		During sampling, the well was dry; therefore, no sample was collected.
		Beryllium		During sampling, the well was dry; therefore, no sample was collected.
		Boron		During sampling, the well was dry; therefore, no sample was collected.
		Cadmium		During sampling, the well was dry; therefore, no sample was collected.
		Calcium		During sampling, the well was dry; therefore, no sample was collected.
		Chromium		During sampling, the well was dry; therefore, no sample was collected.
		Cobalt		During sampling, the well was dry; therefore, no sample was collected.
		Copper		During sampling, the well was dry; therefore, no sample was collected.
		Iron		During sampling, the well was dry; therefore, no sample was collected.
		Lead		During sampling, the well was dry; therefore, no sample was collected.
		Magnesium		During sampling, the well was dry; therefore, no sample was collected.
		Manganese		During sampling, the well was dry; therefore, no sample was collected.
		Mercury		During sampling, the well was dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample wa collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample wa collected.
		Selenium		During sampling, the well was dry; therefore, no sample wa collected.
		Silver		During sampling, the well was dry; therefore, no sample wa collected.
		Sodium		During sampling, the well was dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well was dry; therefore, no sample wa collected.
		Thallium		During sampling, the well was dry; therefore, no sample wa collected.
		Uranium		During sampling, the well was dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well was dry; therefore, no sample wa collected.
		Zinc		During sampling, the well was dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample wa collected.
		Acetone		During sampling, the well was dry; therefore, no sample wa collected.
		Acrolein		During sampling, the well was dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample wa collected.
		Benzene		During sampling, the well was dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well was dry; therefore, no sample wa collected.
		Styrene		During sampling, the well was dry; therefore, no sample wa collected.
		Toluene		During sampling, the well was dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample wa collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Chloroform		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample was collected.
		Gross beta		During sampling, the well was dry; therefore, no sample was collected.
		lodine-131		During sampling, the well was dry; therefore, no sample was collected.
		Radium-226		During sampling, the well was dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample was collected.
		Tritium		During sampling, the well was dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample was collected.
		Cyanide		During sampling, the well was dry; therefore, no sample was collected.
		lodide		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

3004-4811 MW390	0 MW390SG2-17	Tantalum PCB, Total PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254	Ν	Sample spike (MS/MSD) recovery not within control limits Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. Analysis of constituent not required and not performed.
		PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248		Analysis of constituent not required and not performed.
		PCB-1221 PCB-1232 PCB-1242 PCB-1248		
		PCB-1232 PCB-1242 PCB-1248		Analysis of constituent not required and not performed.
		PCB-1242 PCB-1248		
		PCB-1248		Analysis of constituent not required and not performed.
				Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
				Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. This 2.44. Rad error is 2.44.
		Gross beta		TPU is 7.31. Rad error is 2.93.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.624. Rad error is 0.623.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. This 2.27. Rad error is 2.24.
		Technetium-99		TPU is 14.6. Rad error is 13.2.
		Thorium-230		TPU is 0.502. Rad error is 0.486.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. This 120. Rad error is 119.
004-4805 MW39	1 MW391SG2-17	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. This 3.12. Rad error is 3.08.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.89. Rad error is 1.89.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.413. Rad error is 0.413.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.22. Rad error is 3.17.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 7.79. Rad error is 7.76.
		Thorium-230 Tritium	U U	Indicates analyte/nuclide was analyzed for, but not detected. Ti is 0.567. Rad error is 0.566. Indicates analyte/nuclide was analyzed for, but not detected. Ti

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4806 MW392 MW392SG2-17		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.5. Rad error is 2.5.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.41. Rad error is 1.37.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.488. Rad error is 0.488.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.39. Rad error is 2.34.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.06. Rad error is 8.01.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.48. Rad error is 0.472.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 135. Rad error is 135.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4807 MW393	MW393SG2-17	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.61. Rad error is 2.61.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.06. Rad error is 2.06.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.469. Rad error is 0.468.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.19. Rad error is 2.16.
	Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 7.83. Rad error is 7.83.	
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.399. Rad error is 0.395.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 135. Rad error is 135.
004-4802 MW394	MW394SG2-17	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.49. Rad error is 2.48.
		Gross beta		TPU is 3.08. Rad error is 2.94.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.382. Rad error is 0.382.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.26. Rad error is 2.24.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 9.75. Rad error is 9.71.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.32. Rad error is 0.319.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 124. Rad error is 124.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4801 MW39	5 MW395SG2-17	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.1. Rad error is 2.1.
		Gross beta		TPU is 2.95. Rad error is 2.82.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.383. Rad error is 0.383.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 2.08. Rad error is 2.07.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. This 9.39. Rad error is 9.31.
	Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. This 0.481. Rad error is 0.469.	
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TI is 128. Rad error is 128.
8004-4803 MW39	6 MW396SG2-17	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 2.06. Rad error is 2.02.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. This 1.23. Rad error is 1.23.
	lodine-131		Analysis of constituent not required and not performed.	
		Radium-226		TPU is 0.5. Rad error is 0.499.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. This 2.66. Rad error is 2.66.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. This 9.73. Rad error is 9.72.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. Th is 0.497. Rad error is 0.489.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 123. Rad error is 123.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4817 MW3	97 MW397SG2-17	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Vinyl acetate	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.07. Rad error is 2.07.
		Gross beta		TPU is 2.02. Rad error is 1.88.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.356. Rad error is 0.356.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.64. Rad error is 1.64.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.296. Rad error is 0.295.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 135. Rad error is 131.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG2-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.04. Rad error is 1.04.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.65. Rad error is 1.65.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.372. Rad error is 0.371.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.32. Rad error is 3.25.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 10.2. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.393. Rad error is 0.39.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 126. Rad error is 124.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Facility Sample ID	Constituent	Flag	Description
FB1SG2-17	Bromide		Analysis of constituent not required and not performed.
	Chloride		Analysis of constituent not required and not performed.
	Fluoride		Analysis of constituent not required and not performed.
	Nitrate & Nitrite		Analysis of constituent not required and not performed.
	Sulfate		Analysis of constituent not required and not performed.
	Barometric Pressure Reading		Analysis of constituent not required and not performed.
	Specific Conductance		Analysis of constituent not required and not performed.
	Static Water Level Elevation		Analysis of constituent not required and not performed.
	Dissolved Oxygen		Analysis of constituent not required and not performed.
	Total Dissolved Solids		Analysis of constituent not required and not performed.
	рН		Analysis of constituent not required and not performed.
	Eh		Analysis of constituent not required and not performed.
	Temperature		Analysis of constituent not required and not performed.
	Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
	PCB, Total		Analysis of constituent not required and not performed.
	PCB-1016		Analysis of constituent not required and not performed.
	PCB-1221		Analysis of constituent not required and not performed.
	PCB-1232		Analysis of constituent not required and not performed.
	PCB-1242		Analysis of constituent not required and not performed.
	PCB-1248		Analysis of constituent not required and not performed.
	PCB-1254		Analysis of constituent not required and not performed.
	PCB-1260		Analysis of constituent not required and not performed.
	PCB-1268		Analysis of constituent not required and not performed.
	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.53. Rad error is 1.53.
	Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.2. Rad error is 2.2.
	lodine-131		Analysis of constituent not required and not performed.
	Radium-226		TPU is 0.453. Rad error is 0.452.
	Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.07. Rad error is 2.07.
	Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.1. Rad error is 10.1.
	Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.163. Rad error is 0.162.
	Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 122. Rad error is 122.
	Chemical Oxygen Demand		Analysis of constituent not required and not performed.
	Cyanide		Analysis of constituent not required and not performed.
	Total Organic Carbon		Analysis of constituent not required and not performed.
	Sample ID	Sample IDConstituentFB1SG2-17BromideChlorideFluorideNitrate & NitriteSulfateBarometric Pressure ReadingSpecific ConductanceStatic Water Level ElevationDissolved OxygenTotal Dissolved SolidspHEhTemperatureTantalumPCB, TotalPCB-1016PCB-1221PCB-1221PCB-1232PCB-1242PCB-1248PCB-1254PCB-1254PCB-1260PCB-1268Gross betaIodine-131Radium-226Strontium-90Technetium-99Thorium-230TritiumChemical Oxygen Demand	Sample IDConstituentFlagFB1SG2-17BromideChlorideFluorideFluorideNitrate & NitriteSulfateBarometric Pressure ReadingSpecific ConductanceStatic Water Level ElevationDissolved OxygenTotal Dissolved SolidspHEhTemperatureTantalumNPCB, TotalPCB-1016PCB-1221PCB-1222PCB-1242PCB-1248PCB-1254PCB-1260PCB-1268Gross alphaUIodine-131Radium-226Strontium-90UThorium-230UChemical Oxygen Demand

RESIDENTIAL/INERT – QUARTERLY

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG2-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015 Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG2-17	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG2-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG2-17	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG2-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

C-75

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG2-17	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG2-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

C-77

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG2-17	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4809 MW3	84 MW384DSG2-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.32. Rad error is 2.32.
		Gross beta		TPU is 16. Rad error is 3.97.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.432. Rad error is 0.432.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.88. Rad error is 2.86.
		Technetium-99		TPU is 23. Rad error is 15.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.384. Rad error is 0.379.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 116. Rad error is 116.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT—QUARTERLY, 1st CY 2017 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the first quarter 2017 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The first quarter 2017 data used to conduct the statistical analyses were collected in January 2017. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that exceeded the historical background, using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the

current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation: TL = $X + (K \times S)$
- 2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, first quarter 2017. The observations are representative of the current quarter data. Background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondect if it has a "U" validation code.

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
MW390 ¹	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

¹**NOTE:** The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

Parameters
Aluminum
Beta Activity
Boron
Bromide
Calcium
Chemical Oxygen Demand (COD)
Chloride
cis-1,2-Dichloroethene
Cobalt
Conductivity
Copper
Cyanide
Dissolved Oxygen
Dissolved Solids
Iodide
Iron
Magnesium
Manganese
Molybdenum
Nickel
Oxidation-Reduction Potential
pH*
Potassium
Radium-226
Sodium
Sulfate
Technetium-99
Thorium-230
Total Organic Carbon (TOC)
Total Organic Halides (TOX)
Trichloroethene
Uranium
Vanadium
Zinc

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

•

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	2	2	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Boron	4	1	3	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon Disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	1	3	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	0	4	Yes
Conductivity	4	0	4	Yes
	4	0	4 4	Yes
Copper				
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No
Iodide	4	3	1	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	0	4	Yes
Methylene Chloride	4	4	0	No
Molybdenum	4	2	2	Yes
Nickel	4	1	3	Yes
Oxidation-Reduction Potential	4	0	4	Yes
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	3	1	Yes
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	3	1	Yes
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Uranium	4	3	1	Yes
Vanadium	4	4	0	No
Vinyl Acetate	4	4	0	No
Zinc	4	3	1	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	5	6	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Beta Activity	11	3	8	Yes
Boron	11	1	10	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon Disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	5	6	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	10	1	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	1	10	Yes
Conductivity	11	0	11	Yes
Copper	11	1	10	Yes
Cyanide Dibrom exhlement to a c	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	2	9	Yes
Magnesium	11	0	11	Yes
Manganese	11	1	10	Yes
Methylene Chloride	11	11	0	No
Molybdenum	11	7	4	Yes
Nickel	11	0	11	Yes
Oxidation-Reduction Potential	11	0	11	Yes
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	8	3	Yes
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	6	5	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	10	1	Yes
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	1	10	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	5	6	Yes
Trichlorofluoromethane	11	11	0	No
Uranium	11	11	0	No
Vanadium	11	8	3	Yes
Vinyl Acetate	11	11	0	No
Zinc	11	7	4	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	5	2	Yes
Antimony	7	7	0	No
Aroclor-1268	2	2	0	No
Beryllium	7	7	0	No
Beta Activity	7	1	6	Yes
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon Disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	3	4	Yes
Chloride	7	0		Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
<i>cis</i> -1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	3	4	Yes
Conductivity	7	0	4	Yes
Copper	7	0	7	Yes
Cyanide	7	6	1	Yes
Dibromochloromethane	7	0 7	0	No
Dibromochloromethane	7	7	0	No
	7	7	0	
Dimethylbenzene, Total	7		0 7	No Yes
Dissolved Oxygen Dissolved Solids	7	0	7	
	7	0 7	0	Yes No
Ethylbenzene Iodide	7	7		
			0	No
Iodomethane	7	7	0	No

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iron	7	2	5	Yes
Magnesium	7	0	7	Yes
Manganese	7	2	5	Yes
Methylene Chloride	7	7	0	No
Molybdenum	7	6	1	Yes
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	5	2	Yes
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	3	4	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	6	1	Yes
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	2	5	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	2	5	Yes
Trichlorofluoromethane	7	7	0	No
Uranium	7	6	1	Yes
Vanadium	7	6	1	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	6	1	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 29, 31, and 33 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background UTL for oxidation-reduction potential, radium-226, technetium-99, and thorium-230.

<u>URGA</u>

This quarter's results identified exceedances of historical background UTL for aluminum, beta activity, calcium, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sodium, sulfate, technetium-99, and thorium-230.

LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sodium, sulfate, technetium-99, thorium-230, and trichloroethene.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: Oxidation-reduction potential, sulfate	MW370: Oxidation-reduction potential, radium-226, sodium, sulfate, technetium-99
MW390: Oxidation-reduction potential, radium-226, technetium-99, thorium-230	MW222: Aluminum	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
MW393: Oxidation-reduction potential	MW223: Oxidation-reduction potential	MW385: Beta activity, sulfate, technetium-99, thorium-230
MW396: Oxidation-reduction potential	MW224: Oxidation-reduction potential	MW388: Beta activity, oxidation-reduction potential, sulfate, technetium-99
	MW369: Radium-226, sodium	MW392: Trichloroethene
	MW372: Calcium, dissolved solids, magnesium, sulfate	MW395: Oxidation-reduction potential
	MW384: Beta activity, radium-226, sodium, sulfate, technetium-99, thorium-230	MW397: Oxidation-reduction potential
	MW387: Beta activity, sodium, sulfate, technetium-99	
	MW391: Magnesium, sulfate	

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COB)	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	1.78	Current results exceed statistically derived historical background concentration in MW390.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Thorium-230	Tolerance Interval	2.01	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentration in MW222.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentration in MW384 and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW391.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220, MW223, and MW224.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.59	Current results exceed statistically derived historical background concentration in MW369 and MW384.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW369, MW384, and MW387.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW220, MW372, MW384, MW387, and MW391.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW384 and MW387.
Thorium-230	Tolerance Interval	1.65	Current results exceed statistically derived historical background concentration in MW384.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.08	No exceedance of statistically derived historical background concentration.
Zinc CV: coefficient of variation	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

CV: coefficient of variation * If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW385 and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Cyanide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW388, MW395, and MW397.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.74	Current results exceed statistically derived historical background concentration in MW370.
Sodium	Tolerance Interval	0.47	Current results exceed statistically derived historical background concentration in MW370.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Thorium-230	Tolerance Interval	1.35	Current results exceed statistically derived historical background concentration in MW385.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	Current results exceed statistically derived historical background concentration in MW392.
Uranium	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 4, 11, and 12 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10, presented by well number.

URGA	LRGA
MW369: Sodium	MW370: Sulfate, technetium-99
MW372: Calcium, dissolved solids, magnesium, sulfate	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
MW387: Beta activity, sodium, sulfate, technetium-99	MW388: Beta activity, sulfate, technetium-99
MW391: Magnesium, sulfate	MW392: Trichloroethene

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

<u>UCRS</u>

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted, however, that the technetium-99 concentration in one UCRS well (i.e., MW390) was higher than the current TL this quarter.

<u>URGA</u>

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, technetium-99, and trichloroethene.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.37	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Radium-226	Tolerance Interval	0.39	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	-45.37	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill. However, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Thorium-230	Tolerance Interval	1.50	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.88	MW222 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Beta Activity	Tolerance Interval	0.57	MW384 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.16	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.15	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.16	MW372 and MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.26	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Radium-226	Tolerance Interval	0.42	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sodium	Tolerance Interval	0.15	MW369, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.29	MW372, MW387, and MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.68	MW384 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Thorium-230	Tolerance Interval	3.73	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.81	MW385 and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.21	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.08	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.15	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.22	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.21	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Radium-226	Tolerance Interval	0.51	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sodium	Tolerance Interval	0.51	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.07	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.44	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Thorium-230	Tolerance Interval	2.16	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Trichloroethene	Tolerance Interval	0.69	MW392 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

CV: coefficient of variation * If CV > 1.0, used log-transformed data.

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.320	S = 0.182	CV(1)= 0.567	K factor**= 3.188	TL(1)= 0.900	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.259	S = 0.503	CV(2) =-0.400	K factor**= 3.188	TL(2)= 0.345	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW396	
Result	LN(Result)
0.393	-0.934
0.2	-1.609
0.2	-1.609
0.501	-0.691
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.668	-0.403
	Result 0.393 0.2 0.2 0.501 0.2 0.2 0.2 0.2

Dry/Par	tially Dry Wells	
Wall No	Cradiant	

wen no.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A
MW390	Downgradien	t Yes	0.175	NO	-1.743	N/A
MW393	Downgradien	t Yes	0.0278	NO	-3.583	N/A
MW396	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.650	S = 0.833	CV(1)= 1.282	K factor**= 3.188	TL(1)= 3.306	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.034	S= 1.066	CV(2) =-1.031	K factor**= 3.188	TL(2)= 2.364	LL(2)= N/A

Upgradient Wells with Transformed Result
--

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW3	89	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.015	N/A	-4.200	N/A
MW390	Downgradien	t Yes	0.011	N/A	-4.510	NO
MW393	Downgradien	t Yes	0.0206	N/A	-3.882	NO
MW396	Upgradient	Yes	0.00844	N/A	-4.775	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =1.388	S = 0.327	CV(1)= 0.236	K factor**= 3.188	TL(1)= 2.430	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.301	S = 0.252	CV(2) =0.838	K factor**= 3.188	TL(2)= 1.105	LL(2)= N/A

Upgradient Wells with Transformed Result
--

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Partially Dry Wells	

well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.154	NO	-1.871	N/A		
MW390	Downgradien	t Yes	0.621	NO	-0.476	N/A		
MW393	Downgradien	t Yes	0.187	NO	-1.677	N/A		
MW396	Upgradient	Yes	1.06	NO	0.058	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 41.825	S = 8.445	CV(1)= 0.202	K factor**= 3.188	TL(1)= 68.748	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.711	S = 0.241	CV(2) =0.065	K factor**= 3.188	TL(2)= 4.479	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Partially Dry Wells						
Well No.	Gradient					

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	24.7	NO	3.207	N/A
MW390	Downgradien	t Yes	34.2	NO	3.532	N/A
MW393	Downgradien	t Yes	12.9	NO	2.557	N/A
MW396	Upgradient	Yes	35.7	NO	3.575	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 0.021	K factor**= 3.188		
Statistics-Transformed Background Data	X= 3.566	S = 0.021	CV(2) =0.006	K factor**= 3.188	TL(2)= 3.632	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number:	MW396

Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Partially Dry Wells
Well No. Gradient

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	24.8	NO	3.211	N/A
MW390	Downgradien	t Yes	18.1	NO	2.896	N/A
MW393	Downgradien	t No	20	N/A	2.996	N/A
MW396	Upgradient	Yes	16.9	NO	2.827	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 101.725 S= 5.245
 CV(1)=0.052
 K factor**= 3.188
 TL(1)= 118.447
 LL(1)=N/A

 Statistics-Transformed Background
 X= 4.621
 S= 0.053
 CV(2)=0.011
 K factor**= 3.188
 TL(2)= 4.789
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Par	tially Dry	Wells
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	14.4	NO	2.667	N/A
MW390	Downgradien	t Yes	63.3	NO	4.148	N/A
MW393	Downgradien	t Yes	14.6	NO	2.681	N/A
MW396	Upgradient	Yes	73.9	NO	4.303	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.008	S = 0.011	CV(1)= 1.340	K factor**= 3.188	TL(1)= 0.042	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.645	S = 1.339	CV(2) =-0.237	K factor**= 3.188	TL(2)= -1.377	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00784	N/A	-4.849	NO
MW390	Downgradien	t Yes	0.00043	4 N/A	-7.742	NO
MW393	Downgradien	t Yes	0.0001	N/A	-9.210	NO
MW396	Upgradient	Yes	0.00298	N/A	-5.816	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 922.500 S = 107.616 CV(1) = 0.117 K factor**= 3.188
 TL(1)= 1265.579 LL(1)=N/A

Statistics-Transformed Background X=6.822 S= 0.111 CV(2)=0.016 Data

Historical Background Data from Upgradient Wells with Transformed Result

1011200

XX7 11 XT

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	784	6.664
9/30/2002	871	6.770
10/16/2002	868	6.766
1/13/2003	912	6.816
4/8/2003	942	6.848
7/16/2003	910	6.813
10/14/2003	935	6.841
1/14/2004	1158	7.054

Dry/Par	tially Dry Wells
Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 7.175

LL(2)=N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	631	NO	6.447	N/A
MW390	Downgradien	t Yes	680	NO	6.522	N/A
MW393	Downgradien	t Yes	399	NO	5.989	N/A
MW396	Upgradient	Yes	790	NO	6.672	N/A

K factor=** 3.188

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.028	S = 0.014	CV(1)= 0.481	K factor**= 3.188	TL(1)= 0.072	LL(1)= N/A
Statistics-Transformed Background	X= -3.650	S = 0.414	CV(2) =-0.113	K factor**= 3.188	TL(2)= -2.331	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

1 111200

Data

XX7 11 XT

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00173	NO	-6.360	N/A
MW390	Downgradien	t Yes	0.00212	NO	-6.156	N/A
MW393	Downgradien	t Yes	0.00113	NO	-6.786	N/A
MW396	Upgradient	Yes	0.00129	NO	-6.653	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.395	S = 1.677	CV(1)= 1.202	K factor**= 3.188	TL(1)= 6.743	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.043	S = 0.814	CV(2) =-18.867	K factor**= 3.188	TL(2)= 2.553	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number:	MW396

wen rumber.	11110370	
Date Collected	Result	LN(Result)
8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Par	tially Dry Wells
Well No.	Gradient
MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.79	N/A	0.582	NO
MW390	Downgradien	t Yes	4.65	N/A	1.537	NO
MW393	Downgradien	t Yes	4.3	N/A	1.459	NO
MW396	Upgradient	Yes	4.07	N/A	1.404	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=550.375 S= 104.330 CV(1)=0.190 **K factor**=** 3.188 **Statistics-Background Data** TL(1)= 882.980 LL(1)=N/A **K factor**=** 3.188 **TL(2)**= 6.815 LL(2)=N/A

Statistics-Transformed Background X= 6.298 S = 0.162 CV(2) = 0.026Data

Historical Background Data from Upgradient Wells with Transformed Result

1011200

XX7 11 XT

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Par	tially Dry Wells
Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	403	NO	5.999	N/A
MW390	Downgradien	t Yes	361	NO	5.889	N/A
MW393	Downgradien	t Yes	260	NO	5.561	N/A
MW396	Upgradient	Yes	460	NO	6.131	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 2.150	S = 0.283	CV(1)= 0.132	K factor**= 3.188	TL(1)= 3.052	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.759	S = 0.123	CV(2)= 0.162	K factor**= 3.188	TL(2)= 1.150	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	2	0.693
1/13/2003	2	0.693
4/8/2003	2	0.693
7/16/2003	2.7	0.993
10/14/2003	2.5	0.916
1/14/2004	2	0.693

Dry/Partially Dry Wells			
Well No	Gradient		

wenno.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A
MW396	Upgradient	Yes	0.616	NO	-0.485	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =7.796	S = 3.723	CV(1)= 0.478	K factor**= 3.188	TL(1)= 19.666	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.880	S = 0.723	CV(2) =0.384	K factor**= 3.188	TL(2)= 4.184	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.8	0.588
9/16/2002	9.53	2.254
10/16/2002	7.43	2.006
1/13/2003	9.93	2.296
4/8/2003	10.2	2.322
7/16/2003	9.16	2.215
10/14/2003	11.9	2.477
1/14/2004	2.42	0.884

Dry/Partially Dry Wells	

well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.29	NO	0.255	N/A
MW390	Downgradien	t Yes	0.204	NO	-1.590	N/A
MW393	Downgradien	t Yes	1.42	NO	0.351	N/A
MW396	Upgradient	Yes	2.51	NO	0.920	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 0.196	K factor**= 3.188		
Statistics-Transformed Background Data	X= 2.804	S = 0.240	CV(2) =0.086	K factor**= 3.188	TL(2)= 3.569	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result			
Well Number:	MW396		

well Number:	MW 390	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Par	tially Dry Wells	
Well No.	Gradient	

in en rioi	oradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	10.6	NO	2.361	N/A	
MW390	Downgradien	t Yes	13.3	NO	2.588	N/A	
MW393	Downgradien	t Yes	3.79	NO	1.332	N/A	
MW396	Upgradient	Yes	15.4	NO	2.734	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

for pri exceeds the TE of is less than t	the BB, that I	5 Statistically	Significant evidence	e of elevated of formere	a concentration m	that wen.
Statistics-Background Data	X= 0.774	S = 0.353	CV(1)= 0.456	K factor**= 3.188	TL(1)= 1.900	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.566	S = 1.192	CV(2) =-2.105	K factor**= 3.188	TL(2)= 3.235	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW396

wen rumber.	111 570		
Date Collected	Result	LN(Result)	
8/13/2002	0.57	-0.562	
9/16/2002	0.647	-0.435	
10/16/2002	0.88	-0.128	
1/13/2003	1.132	0.124	
4/8/2003	0.965	-0.036	
7/16/2003	0.983	-0.017	
10/14/2003	0.984	-0.016	
1/14/2004	0.0314	-3.461	

Dry/Par	tially Dry Wells
Well No.	Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.41	NO	0.344	N/A
MW390	Downgradien	t Yes	0.00132	NO	-6.630	N/A
MW393	Downgradien	t Yes	0.0426	NO	-3.156	N/A
MW396	Upgradient	Yes	0.558	NO	-0.583	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.007	S = 0.011	CV(1)= 1.507	K factor**= 3.188	TL(1)= 0.042	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.928	S = 1.420	CV(2) =-0.240	K factor**= 3.188	TL(2)= -1.400	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00128	-6.661
4/8/2003	0.00271	-5.911
7/16/2003	0.00117	-6.751
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00055	4 N/A	-7.498	NO
MW390	Downgradien	t No	0.00054	3 N/A	-7.518	N/A
MW393	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW396	Upgradient	Yes	0.00051	7 N/A	-7.567	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.016	S = 0.021	CV(1)= 1.272	K factor**= 3.188	TL(1)= 0.083	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.706	S = 1.057	CV(2) =-0.225	K factor**= 3.188	TL(2)= -1.338	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Par	tially Dry Wells
Well No.	Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00247	N/A	-6.004	NO
MW390	Downgradien	t Yes	0.00202	N/A	-6.205	NO
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A
MW396	Upgradient	Yes	0.00129	N/A	-6.653	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis **Historical Background Comparison** UCRS **Oxidation-Reduction Potential UNITS: mV**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=13.000 S= 61.952 CV(1)=4.766 **K factor**=** 3.188 **Statistics-Background Data** TL(1)= 210.502 LL(1)=N/A **Statistics-Transformed Background K factor**=** 3.188 **TL(2)**= 4.736 LL(2)=N/A

X= 4.364 S= 0.333 CV(2)=0.076 Data

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW396			

Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Par	tially Dry Wells
Well No.	Gradient

MW389	Downgradient
MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	171	N/A	5.142	YES
MW390	Downgradien	t Yes	380	N/A	5.940	YES
MW393	Downgradien	t Yes	247	N/A	5.509	YES
MW396	Upgradient	Yes	209	N/A	5.342	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW386 **MW390** MW393 MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.460	S = 0.350	CV(1)= 0.054	K factor**= 3.736	TL(1)= 7.766	LL(1)= 5.1541
Statistics-Transformed Background Data	X= 1.864	S = 0.054	CV(2) =0.029	K factor**= 3.736	TL(2)= 2.067	LL(2)= 1.6621

Historical Background Data from Upgradient Wells with Transformed Result
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Partially Dry Wells	
-------------------------	--

Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	6.68	NO	1.899	N/A
MW390	Downgradien	t Yes	6.35	NO	1.848	N/A
MW393	Downgradien	t Yes	6.23	NO	1.829	N/A
MW396	Upgradient	Yes	6.37	NO	1.852	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.411	S = 0.399	CV(1)= 0.282	K factor**= 3.188	TL(1)= 2.682	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.311	S = 0.271	CV(2)= 0.870	K factor**= 3.188	TL(2)= 1.175	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Partially Dry Wells	
Well No. Gradient	

	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.373	NO	-0.986	N/A
MW390	Downgradien	t Yes	0.416	NO	-0.877	N/A
MW393	Downgradien	t Yes	0.459	NO	-0.779	N/A
MW396	Upgradient	Yes	0.803	NO	-0.219	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisHistorical Background ComparisonRadium-226UNITS: pCi/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.157	S= 0.280	CV(1)= 1.782	K factor**= 3.188	TL(1)= 1.050	LL(1)= N/A
Statistics-Transformed Background	X = -1.836	S = 1.229	CV(2) =-0.669	K factor**= 3.188	TL(2) = -0.371	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Resu

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
10/16/2002	0.69	-0.371
1/13/2003	-0.00693	#Func!
10/14/2003	-0.0514	#Func!
1/14/2004	0.494	-0.705
4/12/2004	-0.082	#Func!
7/20/2004	0.0879	-2.432
10/12/2004	0.0408	-3.199
1/18/2005	0.0844	-2.472

Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.747	N/A	-0.292	N/A
MW390	Downgradient	t Yes	1.19	N/A	0.174	YES
MW393	Downgradient	t No	0.514	N/A	-0.666	N/A
MW396	Upgradient	No	0.79	N/A	-0.236	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 106.825 S= 32.041
 CV(1)=0.300
 K factor**= 3.188
 TL(1)= 208.973
 LL(1)=N/A

 Statistics-Transformed Background
 X= 4.595
 S= 0.492
 CV(2)=0.107
 K factor**= 3.188
 TL(2)= 6.163
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	115	4.745
9/16/2002	116	4.754
10/16/2002	117	4.762
1/13/2003	122	4.804
4/8/2003	106	4.663
7/16/2003	117	4.762
10/14/2003	132	4.883
1/14/2004	29.6	3.388

Dry/Par	tially Dry Wells
Well No.	Gradient

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	152	NO	5.024	N/A
MW390	Downgradien	t Yes	134	NO	4.898	N/A
MW393	Downgradien	t Yes	96.8	NO	4.573	N/A
MW396	Upgradient	Yes	116	NO	4.754	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 22.463 S = 8.876 CV(1) = 0.395 K factor**= 3.188 TL(1) = 50.759 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.054 S = 0.351 CV(2) = 0.115 K factor**= 3.188 TL(2) = 4.173 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW396			

Data

wen number.	101 00 590	
Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Partially Dry Wells					
Well No.	Gradient				

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	46.5	NO	3.839	N/A
MW390	Downgradien	t Yes	30.8	NO	3.428	N/A
MW393	Downgradien	t Yes	11.9	NO	2.477	N/A
MW396	Upgradient	Yes	23.2	NO	3.144	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisHistorical Background ComparisonTechnetium-99UNITS: pCi/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.624	S = 6.558	CV(1)= 0.860	K factor**= 3.188	TL(1)= 28.531	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.498	S = 1.321	CV(2) =0.882	K factor**= 3.188	TL(2)= 5.710	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Wall Number	MW206				

well Number:	MW 396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells				
Well No.	Gradient			

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	3.12	N/A	1.138	N/A
MW390	Downgradien	t Yes	55.3	YES	4.013	N/A
MW393	Downgradien	t No	-1.71	N/A	#Error	N/A
MW396	Upgradient	No	3.72	N/A	1.314	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Thorium-230 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.103	S = 0.206	CV(1)= 2.010	K factor**= 3.188	TL(1)= 0.760	LL(1)= N/A
Statistics-Transformed Background	X = -2 743	S = 2.515	CV(2) = -0.917	K factor**= 3 188	TL(2) = -0.611	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW396			
Date Collected	Result	LN(Result)		
10/12/2004	0.543	-0.611		
1/18/2005	0.00196	-6.235		

0.285

-0.0108

0.0566

-0.049

-0.0049

-0.00122

Data

4/19/2005

7/11/2005

4/11/2006 7/17/2006

10/17/2005 1/19/2006

Dry/Partially Dry Wells			
Well No.	Gradient		

MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	-0.109	N/A	#Error	N/A
MW390	Downgradien	t Yes	0.661	N/A	-0.414	YES
MW393	Downgradien	t No	0.142	N/A	-1.952	N/A
MW396	Upgradient	No	0.408	N/A	-0.896	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.255

#Func!

-2.872

#Func!

#Func!

#Func!

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 0.470	K factor**= 3.188		LL(1)= N/A
Statistics-Transformed Background Data	X= 2.210	S = 0.454	CV(2) =0.205	K factor**= 3.188	TL(2)= 3.657	LL(2)= N/A

Upgradient Wells with Transformed Result
--

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	19	2.944
9/16/2002	14.6	2.681
10/16/2002	10.4	2.342
1/13/2003	4.4	1.482
4/8/2003	7	1.946
7/16/2003	7.3	1.988
10/14/2003	9.1	2.208
1/14/2004	8.1	2.092

Dry/Partially Dry Wells	

Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	7.29	NO	1.987	N/A
MW390	Downgradien	t Yes	2.07	NO	0.728	N/A
MW393	Downgradien	t Yes	2.56	NO	0.940	N/A
MW396	Upgradient	Yes	6.37	NO	1.852	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 142.650 S= 53.533 CV(1)=0.375
 K factor**= 3.188 TL(1)= 313.314 LL(1)=N/A

 Statistics-Transformed Background
 X= 4.896 S= 0.390 CV(2)=0.080
 K factor**= 3.188 TL(2)= 6.138 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

MW396	
Result	LN(Result)
193	5.263
190	5.247
221	5.398
106	4.663
77.8	4.354
122	4.804
86.4	4.459
145	4.977
	Result 193 190 221 106 77.8 122 86.4

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	174	NO	5.159	N/A	
MW390	Downgradien	t Yes	18.6	NO	2.923	N/A	
MW393	Downgradien	t Yes	31.1	NO	3.437	N/A	
MW396	Upgradient	Yes	40.6	NO	3.704	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 0.314	K factor**= 3.188		LL(1)= N/A
Statistics-Transformed Background Data	X= -6.821	S = 0.245	CV(2) =-0.036	K factor**= 3.188	TL(2)= -6.040	LL(2)= N/A

Upgradient Wells with Transformed Result
--

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.002	-6.215
9/16/2002	0.001	-6.908
10/16/2002	0.001	-6.908
1/13/2003	0.001	-6.908
4/8/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells						
Well No. Gradi	ent					

	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.0002	N/A	-8.517	N/A	
MW390	Downgradien	t No	0.00014	1 N/A	-8.867	N/A	
MW393	Downgradien	t No	0.0002	N/A	-8.517	N/A	
MW396	Upgradient	Yes	0.00007	1 NO	-9.553	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data		•	*			
Statistics-Transformed Background	X =-3.342	S = 0.682	CV(2) =-0.204	K factor**= 3.188	TL(2)= -1.168	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW396					

Data

Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/8/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Par	tially Dry W	Vells
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW390	Downgradien	t Yes	0.00467	NO	-5.367	N/A	
MW393	Downgradien	t No	0.01	N/A	-4.605	N/A	
MW396	Upgradient	No	0.01	N/A	-4.605	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.221	S= 0.061	CV(1)= 0.277	K factor**= 2.523	TL(1)= 0.376	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.534	S = 0.212	CV(2) =-0.138	K factor**= 2.523	TL(2)= -0.999	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.427	-0.851
1/13/2004	0.309	-1.174
4/13/2004	0.2	-1.609
7/21/2004	0.202	-1.599
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 0.2	-1.609
Date Collected 8/13/2002 9/16/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.0444	NO	-3.115	N/A	
MW221	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW222	Sidegradient	Yes	0.418	YES	-0.872	N/A	
MW223	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW224	Sidegradient	Yes	0.0339	NO	-3.384	N/A	
MW369	Downgradien	t Yes	0.0694	NO	-2.668	N/A	
MW372	Downgradien	t Yes	0.0749	NO	-2.592	N/A	
MW384	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW387	Downgradien	t Yes	0.0191	NO	-3.958	N/A	
MW391	Downgradien	t No	0.05	N/A	-2.996	N/A	
MW394	Upgradient	No	0.05	N/A	-2.996	N/A	
N/A - Resu	lts identified as N	on-Detects of	luring lab	oratory analysis or	data validatior	and were not	

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW222

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 14.273	S = 13.883	CV(1)= 0.973	K factor**= 2.523	TL(1)= 49.300	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.213	S = 1.033	CV(2)= 0.467	K factor**= 2.523	TL(2)= 4.819	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW220

wen rumber.	101 00 220	
Date Collected	Result	LN(Result)
10/14/2002	15.2	2.721
1/15/2003	42.5	3.750
4/10/2003	45.4	3.816
7/14/2003	8.53	2.144
10/13/2003	11.7	2.460
1/13/2004	13.5	2.603
4/13/2004	33.5	3.512
7/21/2004	13.7	2.617
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.615
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 5.03	1.615
Date Collected 8/13/2002 9/16/2002	Result 5.03 5.57	1.615 1.717
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 5.03 5.57 12.8	1.615 1.717 2.549
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 5.03 5.57 12.8 4.3	1.615 1.717 2.549 1.459
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.03 5.57 12.8 4.3 9.52	1.615 1.717 2.549 1.459 2.253
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5.03 5.57 12.8 4.3 9.52 3.92	1.615 1.717 2.549 1.459 2.253 1.366

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	13.6	N/A	2.610	N/A
MW221	Sidegradient	Yes	6.37	N/A	1.852	N/A
MW222	Sidegradient	Yes	3.84	N/A	1.345	N/A
MW223	Sidegradient	No	1.85	N/A	0.615	N/A
MW224	Sidegradient	No	1.9	N/A	0.642	N/A
MW369	Downgradien	t Yes	8.82	N/A	2.177	N/A
MW372	Downgradien	t Yes	14.2	N/A	2.653	N/A
MW384	Sidegradient	Yes	103	YES	4.635	N/A
MW387	Downgradien	t Yes	154	YES	5.037	N/A
MW391	Downgradien	t No	-1.93	N/A	#Error	N/A
MW394	Upgradient	Yes	5.57	N/A	1.717	N/A
N/A Doon	Its identified as N	Ion Dataata	luring lab	orotory analysis or	data validation	and wans not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

Wells with Exceedances MW384 MW387

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.425	S = 0.615	CV(1)= 1.447	K factor**= 2.523	TL(1)= 1.976	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.322	S= 0.786	CV(2)= -0.595	K factor**= 2.523	TL(2)= 0.663	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MUM

X7-11 NT----1----

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.2	-1.609
1/13/2004	0.2	-1.609
4/13/2004	0.2	-1.609
7/21/2004	0.2	-1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 2. 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 2 2. 0.2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.0142	N/A	-4.255	NO	
MW221	Sidegradient	Yes	0.0125	N/A	-4.382	NO	
MW222	Sidegradient	Yes	0.00932	N/A	-4.676	NO	
MW223	Sidegradient	No	0.015	N/A	-4.200	N/A	
MW224	Sidegradient	Yes	0.0151	N/A	-4.193	NO	
MW369	Downgradien	t Yes	0.00843	N/A	-4.776	NO	
MW372	Downgradien	t Yes	0.983	N/A	-0.017	NO	
MW384	Sidegradient	Yes	0.0148	N/A	-4.213	NO	
MW387	Downgradien	t Yes	0.0339	N/A	-3.384	NO	
MW391	Downgradien	t Yes	0.127	N/A	-2.064	NO	
MW394	Upgradient	Yes	0.0225	N/A	-3.794	NO	
	Its identified as N	Ion Detects (luring lab	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis **Historical Background Comparison Bromide** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2) =#Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220			
Date Collected	Result	LN(Result)		
10/14/2002	1	0.000		
1/15/2003	1	0.000		
4/10/2003	1	0.000		
7/14/2003	1	0.000		
10/13/2003	1	0.000		
1/13/2004	1	0.000		
4/13/2004	1	0.000		
7/21/2004	1	0.000		
Well Number:	MW394			
Well Number: Date Collected	MW394 Result	LN(Result)		
		LN(Result) 0.000		
Date Collected	Result	. ,		
Date Collected 8/13/2002	Result 1	0.000		
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000		
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1 1 1	0.000 0.000 0.000		
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000		
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
Upgradient	Yes	0.221	NO	-1.510	N/A	
Sidegradient	Yes	0.462	NO	-0.772	N/A	
Sidegradient	Yes	0.464	NO	-0.768	N/A	
Sidegradient	Yes	0.449	NO	-0.801	N/A	
Sidegradient	Yes	0.317	NO	-1.149	N/A	
Downgradien	t Yes	0.367	NO	-1.002	N/A	
Downgradien	t Yes	0.639	NO	-0.448	N/A	
Sidegradient	Yes	0.531	NO	-0.633	N/A	
Downgradien	t Yes	0.474	NO	-0.747	N/A	
Downgradien	t Yes	0.595	NO	-0.519	N/A	
Upgradient	Yes	0.697	NO	-0.361	N/A	
	Upgradient Sidegradient Sidegradient Sidegradient Downgradient Downgradient Downgradient Downgradient Downgradient Upgradient	UpgradientYesSidegradientYesSidegradientYesSidegradientYesDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesUpgradientYes	UpgradientYes0.221SidegradientYes0.462SidegradientYes0.464SidegradientYes0.449SidegradientYes0.317DowngradientYes0.367DowngradientYes0.639SidegradientYes0.531DowngradientYes0.531DowngradientYes0.595UpgradientYes0.697	UpgradientYes0.221NOSidegradientYes0.462NOSidegradientYes0.464NOSidegradientYes0.449NOSidegradientYes0.317NODowngradientYes0.367NODowngradientYes0.639NOSidegradientYes0.531NODowngradientYes0.571NODowngradientYes0.697NO	Upgradient Yes 0.221 NO -1.510 Sidegradient Yes 0.462 NO -0.772 Sidegradient Yes 0.464 NO -0.768 Sidegradient Yes 0.449 NO -0.801 Sidegradient Yes 0.317 NO -1.149 Downgradient Yes 0.367 NO -1.002 Downgradient Yes 0.639 NO -0.633 Downgradient Yes 0.474 NO -0.747 Downgradient Yes 0.595 NO -0.519	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 27.638	S = 4.743	CV(1)= 0.172	K factor**= 2.523	TL(1)= 39.604	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.304	S = 0.183	CV(2) =0.055	K factor**= 2.523	TL(2)= 3.765	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	23.6	3.161			
1/15/2003	25.9	3.254			
4/10/2003	30.4	3.414			
7/14/2003	33.9	3.523			
10/13/2003	21.3	3.059			
1/13/2004	20.3	3.011			
4/13/2004	23.8	3.170			

19	2.944
MW394	
Result	LN(Result)
29.5	3.384
29.9	3.398
31.2	3.440
30.7	3.424
34.4	3.538
29.6	3.388
30.3	3.411
28.4	3.346
	MW394 Result 29.5 29.9 31.2 30.7 34.4 29.6 30.3

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	19.6	NO	2.976	N/A
MW221	Sidegradient	Yes	22.7	NO	3.122	N/A
MW222	Sidegradient	Yes	15	NO	2.708	N/A
MW223	Sidegradient	Yes	22	NO	3.091	N/A
MW224	Sidegradient	Yes	18.8	NO	2.934	N/A
MW369	Downgradien	t Yes	19.5	NO	2.970	N/A
MW372	Downgradien	t Yes	47.5	YES	3.861	N/A
MW384	Sidegradient	Yes	31.8	NO	3.459	N/A
MW387	Downgradien	t Yes	35.7	NO	3.575	N/A
MW391	Downgradien	t Yes	39.2	NO	3.669	N/A
MW394	Upgradient	Yes	26.7	NO	3.285	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =35.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 35.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.555	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 3.555	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW220

-			
Date Collected	Result	LN(Result)	
10/14/2002	35	3.555	
1/15/2003	35	3.555	
4/10/2003	35	3.555	
7/14/2003	35	3.555	
10/13/2003	35	3.555	
1/13/2004	35	3.555	
4/13/2004	35	3.555	
7/21/2004	35	3.555	
Well Number:	MW394		
Well Number: Date Collected	MW394 Result	LN(Result)	
		LN(Result) 3.555	
Date Collected	Result	· · · · ·	
Date Collected 8/13/2002	Result 35	3.555	
Date Collected 8/13/2002 9/16/2002	Result 35 35	3.555 3.555	
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 35 35 35	3.555 3.555 3.555	
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 35 35 35 35 35	3.555 3.555 3.555 3.555	
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 35 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555 3.555	
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 35 35 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555 3.555 3.555	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	12.7	NO	2.542	N/A
MW221	Sidegradient	No	20	N/A	2.996	N/A
MW222	Sidegradient	No	20	N/A	2.996	N/A
MW223	Sidegradient	Yes	10.1	NO	2.313	N/A
MW224	Sidegradient	Yes	16.8	NO	2.821	N/A
MW369	Downgradien	t No	20	N/A	2.996	N/A
MW372	Downgradien	t No	20	N/A	2.996	N/A
MW384	Sidegradient	Yes	20	NO	2.996	N/A
MW387	Downgradien	t Yes	22	NO	3.091	N/A
MW391	Downgradien	t No	20	N/A	2.996	N/A
MW394	Upgradient	Yes	9.95	NO	2.298	N/A
NI/A Dame	(T D-++-			1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 49.044	S = 11.278	CV(1)= 0.230	K factor**= 2.523	TL(1)= 77.499	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.866	S = 0.244	CV(2)= 0.063	K factor**= 2.523	TL(2)= 4.482	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW220				

Date Collected	Result	LN(Result)
10/14/2002	44.6	3.798
1/15/2003	43.2	3.766
4/10/2003	31.5	3.450
7/14/2003	30.8	3.428
10/13/2003	40.9	3.711
1/13/2004	40.8	3.709
4/13/2004	37.5	3.624
7/21/2004	40.8	3.709
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.101
Date Collected	Result	
Date Collected 8/13/2002	Result 60.4	4.101
Date Collected 8/13/2002 9/16/2002	Result 60.4 60.3	4.101 4.099
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 60.4 60.3 58	4.101 4.099 4.060
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 60.4 60.3 58 60.7	4.101 4.099 4.060 4.106
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 60.4 60.3 58 60.7 62.9	4.101 4.099 4.060 4.106 4.142
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 60.4 60.3 58 60.7 62.9 58.1	4.101 4.099 4.060 4.106 4.142 4.062

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	23.2	NO	3.144	N/A
MW221	Sidegradient	Yes	33.7	NO	3.517	N/A
MW222	Sidegradient	Yes	33.6	NO	3.515	N/A
MW223	Sidegradient	Yes	31.3	NO	3.444	N/A
MW224	Sidegradient	Yes	20.6	NO	3.025	N/A
MW369	Downgradien	t Yes	33.6	NO	3.515	N/A
MW372	Downgradien	t Yes	48.1	NO	3.873	N/A
MW384	Sidegradient	Yes	48	NO	3.871	N/A
MW387	Downgradien	t Yes	41.2	NO	3.718	N/A
MW391	Downgradien	t Yes	47.7	NO	3.865	N/A
MW394	Upgradient	Yes	53.4	NO	3.978	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis **Historical Background Comparison** cis-1,2-Dichloroethene UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =5.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.609	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	5	1.609
1/15/2003	5	1.609
4/10/2003	5	1.609
7/14/2003	5	1.609
10/13/2003	5	1.609
1/13/2004	5	1.609
4/13/2004	5	1.609
7/21/2004	5	1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t No	1	N/A	0.000	N/A
MW372	Downgradien	t No	1	N/A	0.000	N/A
MW384	Sidegradient	No	1	N/A	0.000	N/A
MW387	Downgradien	t No	1	N/A	0.000	N/A
MW391	Downgradien	t Yes	0.49	NO	-0.713	N/A
MW394	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.016	S = 0.040	CV(1)= 2.440	K factor**= 2.523	TL(1)= 0.116	LL(1)= N/A
Statistics-Transformed Background Data	X =-5.582	S = 1.573	CV(2) =-0.282	K factor**= 2.523	TL(2)= -1.613	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0041	-5.497
1/15/2003	0.00496	-5.306
4/10/2003	0.00289	-5.846
7/14/2003	0.161	-1.826
10/13/2003	0.0226	-3.790
1/13/2004	0.00464	-5.373
4/13/2004	0.001	-6.908
7/21/2004	0.00264	-5.937
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00022	7 N/A	-8.391	NO
MW221	Sidegradient	Yes	0.00039	7 N/A	-7.832	NO
MW222	Sidegradient	Yes	0.00409	N/A	-5.499	NO
MW223	Sidegradient	Yes	0.00073	6 N/A	-7.214	NO
MW224	Sidegradient	Yes	0.00066	2 N/A	-7.320	NO
MW369	Downgradien	t Yes	0.0107	N/A	-4.538	NO
MW372	Downgradien	t Yes	0.00082	3 N/A	-7.103	NO
MW384	Sidegradient	Yes	0.00011	4 N/A	-9.079	NO
MW387	Downgradien	t Yes	0.00015	3 N/A	-8.785	NO
MW391	Downgradien	t Yes	0.00015	1 N/A	-8.798	NO
MW394	Upgradient	No	0.001	N/A	-6.908	N/A
N/A - Resu	lts identified as N	Jon-Detects of	luring labo	oratory analysis or	data validatior	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 382.132 S = 107.134 C	V(1)= 0.280 K factor**= 2.523	TL(1)= 652.432 LL(1)=N/A
Statistics-Transformed Background Data	X = 5.716 S = 1.164 C	V(2) =0.204 K factor **= 2.523	TL(2)= 8.652 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number: MW220						
Date Collected	Result	LN(Result)				
10/14/2002	368	5.908				
1/15/2003	433.2	6.071				

6.192

6.064

5.846

5.900

6.031

5.866

6.006

6.035

6.019

6.045

6.040

6.082

1.364

5.979

LN(Result)

489

430

346

365

416

353

MW394

Result

406

418

411

422

420

438

3.91

395

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	345	NO	5.844	N/A
MW221	Sidegradient	Yes	395	NO	5.979	N/A
MW222	Sidegradient	Yes	317	NO	5.759	N/A
MW223	Sidegradient	Yes	414	NO	6.026	N/A
MW224	Sidegradient	Yes	393	NO	5.974	N/A
MW369	Downgradien	t Yes	390	NO	5.966	N/A
MW372	Downgradien	t Yes	595	NO	6.389	N/A
MW384	Sidegradient	Yes	490	NO	6.194	N/A
MW387	Downgradien	t Yes	519	NO	6.252	N/A
MW391	Downgradien	t Yes	471	NO	6.155	N/A
MW394	Upgradient	Yes	427	NO	6.057	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.024	S = 0.010	CV(1)= 0.429	K factor**= 2.523	TL(1)= 0.050	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.794	S = 0.312	CV(2) =-0.082	K factor**= 2.523	TL(2)= -3.007	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Date Collected	Result	LN(Result)					
10/14/2002	0.0211	-3.858					
1/15/2003	0.02	-3.912					
4/10/2003	0.02	-3.912					
7/14/2003	0.02	-3.912					
10/13/2003	0.02	-3.912					
1/13/2004	0.02	-3.912					
4/13/2004	0.02	-3.912					
7/21/2004	0.02	-3.912					
Well Number:	MW394						
Date Collected	Result	LN(Result)					
8/13/2002	0.05	-2.996					
9/16/2002	0.05	-2.996					
10/16/2002	0.02	-3.912					

0.02

0.02

0.02

0.02

0.02

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00119	NO	-6.734	N/A
MW221	Sidegradient	Yes	0.00185	NO	-6.293	N/A
MW222	Sidegradient	Yes	0.00175	NO	-6.348	N/A
MW223	Sidegradient	Yes	0.00122	NO	-6.709	N/A
MW224	Sidegradient	Yes	0.00038	7 NO	-7.857	N/A
MW369	Downgradien	t Yes	0.0013	NO	-6.645	N/A
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A
MW384	Sidegradient	Yes	0.00104	NO	-6.869	N/A
MW387	Downgradien	t Yes	0.00099	5 NO	-6.913	N/A
MW391	Downgradien	t Yes	0.00098	7 NO	-6.921	N/A
MW394	Upgradient	Yes	0.00074	7 NO	-7.199	N/A
N/A - Resu	lts identified as N	Ion-Detects o	luring labo	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

-3.912

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.784	S = 1.887	CV(1)= 0.499	K factor**= 2.523	TL(1)= 8.545	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.182	S = 0.612	CV(2)= 0.518	K factor**= 2.523	TL(2)= 2.727	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	6.79	1.915			
1/15/2003	7.25	1.981			
4/10/2003	3.6	1.281			
7/14/2003	0.94	-0.062			
10/13/2003	1.65	0.501			
1/13/2004	3.48	1.247			
4/13/2004	1.05	0.049			
7/21/2004	4.46	1.495			

Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	6.09	1.807
9/16/2002	3.85	1.348
10/16/2002	5.11	1.631
1/13/2003	3.83	1.343
4/10/2003	4.15	1.423
7/16/2003	1.83	0.604
10/14/2003	3.33	1.203
1/13/2004	3.14	1.144

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	5.58	NO	1.719	N/A
MW221	Sidegradient	Yes	5.64	NO	1.730	N/A
MW222	Sidegradient	Yes	5.91	NO	1.777	N/A
MW223	Sidegradient	Yes	3.81	NO	1.338	N/A
MW224	Sidegradient	Yes	4.6	NO	1.526	N/A
MW369	Downgradien	t Yes	1.38	NO	0.322	N/A
MW372	Downgradien	t Yes	0.89	NO	-0.117	N/A
MW384	Sidegradient	Yes	4.32	NO	1.463	N/A
MW387	Downgradien	t Yes	4.28	NO	1.454	N/A
MW391	Downgradien	t Yes	3.71	NO	1.311	N/A
MW394	Upgradient	Yes	4.81	NO	1.571	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =232.68	8 S = 27.490	CV(1)= 0.118	K factor**= 2.523	TL(1)= 302.045	LL(1)= N/A
Statistics-Transformed Background Data	X= 5.443	S = 0.118	CV(2)= 0.022	K factor**= 2.523	TL(2)= 5.740	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MW220

Well Number

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 247 259 201 228 249 240	5.509 5.557 5.303 5.429 5.517 5.481

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	201	NO	5.303	N/A
MW221	Sidegradient	Yes	240	NO	5.481	N/A
MW222	Sidegradient	Yes	214	NO	5.366	N/A
MW223	Sidegradient	Yes	251	NO	5.525	N/A
MW224	Sidegradient	Yes	234	NO	5.455	N/A
MW369	Downgradien	t Yes	213	NO	5.361	N/A
MW372	Downgradien	t Yes	326	YES	5.787	N/A
MW384	Sidegradient	Yes	243	NO	5.493	N/A
MW387	Downgradien	t Yes	276	NO	5.620	N/A
MW391	Downgradien	t Yes	283	NO	5.645	N/A
MW394	Upgradient	Yes	213	NO	5.361	N/A
N/A - Resul	Its identified as N	Ion-Detects	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.897	S = 1.050	CV(1)= 1.170	K factor**= 2.523	TL(1)= 3.545	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.565	S = 0.951	CV(2) =-1.683	K factor**= 2.523	TL(2)= 1.834	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.429	-0.846
7/14/2003	4.33	1.466
10/13/2003	1.81	0.593
1/13/2004	0.793	-0.232
4/13/2004	0.13	-2.040
7/21/2004	0.382	-0.962
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.293
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 1.34	0.293
Date Collected 8/13/2002 9/16/2002	Result 1.34 0.328	0.293 -1.115
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.34 0.328 1.38	0.293 -1.115 0.322
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.34 0.328 1.38 1.3	0.293 -1.115 0.322 0.262
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.34 0.328 1.38 1.3 0.494	0.293 -1.115 0.322 0.262 -0.705
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.34 0.328 1.38 1.3 0.494 0.62	0.293 -1.115 0.322 0.262 -0.705 -0.478

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0727	N/A	-2.621	NO
MW221	Sidegradient	Yes	0.0401	N/A	-3.216	NO
MW222	Sidegradient	Yes	0.552	N/A	-0.594	NO
MW223	Sidegradient	No	0.1	N/A	-2.303	N/A
MW224	Sidegradient	Yes	0.066	N/A	-2.718	NO
MW369	Downgradien	t Yes	0.239	N/A	-1.431	NO
MW372	Downgradien	t Yes	1.58	N/A	0.457	NO
MW384	Sidegradient	Yes	0.042	N/A	-3.170	NO
MW387	Downgradien	t Yes	0.0489	N/A	-3.018	NO
MW391	Downgradien	t Yes	0.0525	N/A	-2.947	NO
MW394	Upgradient	Yes	0.0545	N/A	-2.910	NO
N/A Doon	Its identified as N	Ion Dataata	luring lab	orotory analysis or	data validation	and wans not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis **Historical Background Comparison** Magnesium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.796	S = 1.703	CV(1)= 0.158	K factor**= 2.523	TL(1)= 15.092	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.368	S = 0.158	CV(2)= 0.067	K factor**= 2.523	TL(2)= 2.766	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number: MW220						
Date Collected Result LN(Result)						
10/14/2002 9.16 2.215						

2.303

2.380

2.688

2.201

2.139

2.272

2.087

2.468

2.493

2.425

2.332

2.460

2.485

2.501

2.434

LN(Result)

10.8

14.7

9.03

8.49

9.7

8.06

MW394

Result

11.8

12.1

11.3

10.3

11.7

12.2

11.4

12

10

1/15/2003

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	8.48	NO	2.138	N/A
MW221	Sidegradient	Yes	10.1	NO	2.313	N/A
MW222	Sidegradient	Yes	7.05	NO	1.953	N/A
MW223	Sidegradient	Yes	9.14	NO	2.213	N/A
MW224	Sidegradient	Yes	8.43	NO	2.132	N/A
MW369	Downgradien	t Yes	8.47	NO	2.137	N/A
MW372	Downgradien	t Yes	18.6	YES	2.923	N/A
MW384	Sidegradient	Yes	11.1	NO	2.407	N/A
MW387	Downgradien	t Yes	14.2	NO	2.653	N/A
MW391	Downgradien	t Yes	16.2	YES	2.785	N/A
MW394	Upgradient	Yes	11.7	NO	2.460	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

Wells with Exceedances MW372 MW391

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.287	S = 0.619	CV(1)= 2.156	K factor**= 2.523	TL(1)= 1.848	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.455	S = 1.619	CV(2) =-0.659	K factor**= 2.523	TL(2)= 1.630	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW220							
Date Collected	Result	LN(Result)						
10/14/2002	0.0306	-3.487						
1/15/2003	0.0291	-3.537						
4/10/2003	0.0137	-4.290						
7/14/2003	2.54	0.932						
10/13/2003	0.378	-0.973						
1/13/2004	0.159	-1.839						
4/13/2004	0.00707	-4.952						
7/21/2004	0.0841	-2.476						
Well Number:	MW394							
Date Collected	Result	LN(Result)						
8/13/2002	0.542	-0.612						

0.155

0.103

0.128

0.005

0.272

0.0795

0.0658

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00192	N/A	-6.255	NO
MW221	Sidegradient	Yes	0.00113	N/A	-6.786	NO
MW222	Sidegradient	Yes	0.00637	N/A	-5.056	NO
MW223	Sidegradient	No	0.005	N/A	-5.298	N/A
MW224	Sidegradient	Yes	0.00401	N/A	-5.519	NO
MW369	Downgradien	t Yes	0.157	N/A	-1.852	NO
MW372	Downgradien	t Yes	0.0202	N/A	-3.902	NO
MW384	Sidegradient	Yes	0.00137	N/A	-6.593	NO
MW387	Downgradien	t Yes	0.00151	N/A	-6.496	NO
MW391	Downgradien	t Yes	0.00212	N/A	-6.156	NO
MW394	Upgradient	Yes	0.00444	N/A	-5.417	NO
MW391 MW394	Downgradien Upgradient	t Yes Yes	0.00212 0.00444	N/A	-6.156 -5.417	NO NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.864

-2.273

-2.056

-5.298

-1.302

-2.532

-2.721

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.006	S = 0.008	CV(1)= 1.261	K factor**= 2.523	TL(1)= 0.026	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.747	S = 1.205	CV(2) =-0.210	K factor**= 2.523	TL(2)= -2.708	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW220						
Date Collected	Result	LN(Result)					
10/14/2002	0.00558	-5.189					

0.00983

0.0109

0.00245

0.00566

0.00572

0.00392

MW394

Result

0.025

0.025

0.001

0.001

0.001

0.001

0.001

0.001

0.001

-4.622

-4.519

-6.012

-5.174

-5.164

-6.908

-5.542

-3.689

-3.689

-6.908

-6.908

-6.908

-6.908

-6.908

-6.908

LN(Result)

1/15/2003

4/10/2003 7/14/2003

10/13/2003 1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.00071	N/A	-7.250	N/A
MW221	Sidegradient	Yes	0.00228	N/A	-6.084	NO
MW222	Sidegradient	Yes	0.00049	N/A	-7.621	NO
MW223	Sidegradient	Yes	0.00671	N/A	-5.004	NO
MW224	Sidegradient	No	0.0005	N/A	-7.601	N/A
MW369	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW372	Downgradien	t Yes	0.00072	3 N/A	-7.232	NO
MW384	Sidegradient	No	0.0005	N/A	-7.601	N/A
MW387	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW391	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW394	Upgradient	No	0.0005	N/A	-7.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.127	S = 0.228	CV(1)= 1.790	K factor**= 2.523	TL(1)= 0.701	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.617	S = 1.837	CV(2)= -0.508	K factor**= 2.523	TL(2)= 1.019	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number:	MW220					

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.418	-0.872
1/15/2003	0.738	-0.304
4/10/2003	0.544	-0.609
7/14/2003	0.106	-2.244
10/13/2003	0.0529	-2.939
1/13/2004	0.0209	-3.868
4/13/2004	0.005	-5.298
7/21/2004	0.0192	-3.953
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.05 0.05 0.005 0.005	-2.996 -2.996 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -5.298 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.05 0.05 0.005 0.005 0.005 0.005	-2.996 -2.996 -5.298 -5.298 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0198	N/A	-3.922	NO
MW221	Sidegradient	Yes	0.0251	N/A	-3.685	NO
MW222	Sidegradient	Yes	0.0264	N/A	-3.634	NO
MW223	Sidegradient	Yes	0.129	N/A	-2.048	NO
MW224	Sidegradient	Yes	0.00308	N/A	-5.783	NO
MW369	Downgradien	t Yes	0.00601	N/A	-5.114	NO
MW372	Downgradien	t Yes	0.00148	N/A	-6.516	NO
MW384	Sidegradient	Yes	0.00116	N/A	-6.759	NO
MW387	Downgradien	t Yes	0.00135	N/A	-6.608	NO
MW391	Downgradien	t Yes	0.00087	9 N/A	-7.037	NO
MW394	Upgradient	Yes	0.00252	N/A	-5.983	NO
N/A - Resu	lts identified as N	Ion-Detects o	luring labo	pratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =179.87	2 S = 86.318	CV(1)= 0.480	K factor**= 2.523	TL(1)= 397.652	LL(1)= N/A
Statistics-Transformed Background Data	X= 4.861	S = 1.252	CV(2)= 0.258	K factor**= 2.523	TL(2)= 8.021	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW220

wen number:	IVI W 220	
Date Collected	Result	LN(Result)
10/14/2002	205	5.323
1/15/2003	1.95	0.668
4/10/2003	203	5.313
7/14/2003	30	3.401
10/13/2003	107	4.673
1/13/2004	295	5.687
4/13/2004	190	5.247
7/21/2004	319	5.765
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	
Date Collected 8/13/2002	Result 90	4.500
Date Collected 8/13/2002 9/16/2002	Result 90 240	4.500 5.481
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 90 240 185	4.500 5.481 5.220
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 90 240 185 220	4.500 5.481 5.220 5.394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 90 240 185 220 196	4.500 5.481 5.220 5.394 5.278
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 90 240 185 220 196 172	4.500 5.481 5.220 5.394 5.278 5.147

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	417	YES	6.033	N/A
MW221	Sidegradient	Yes	321	NO	5.771	N/A
MW222	Sidegradient	Yes	392	NO	5.971	N/A
MW223	Sidegradient	Yes	423	YES	6.047	N/A
MW224	Sidegradient	Yes	442	YES	6.091	N/A
MW369	Downgradien	t Yes	381	NO	5.943	N/A
MW372	Downgradien	t Yes	263	NO	5.572	N/A
MW384	Sidegradient	Yes	330	NO	5.799	N/A
MW387	Downgradien	t Yes	348	NO	5.852	N/A
MW391	Downgradien	t Yes	311	NO	5.740	N/A
MW394	Upgradient	Yes	397	NO	5.984	N/A
	lts identified as N	Ion Detects (luring lab	oratory analysis or	data validation	and wars not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW220
MW223
MW224

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.138	S = 0.282	CV(1)= 0.046	K factor**= 2.904	TL(1)= 6.957	LL(1)= 5.3179
Statistics-Transformed Background Data	X= 1.813	S = 0.047	CV(2)= 0.026	K factor**= 2.904	TL(2)= 1.950	LL(2)= 1.6765

kground Da ells with Tra	ta from ansformed Resul
MW220	
Result	LN(Result)
6.04	1.798
6.31	1.842
6.5	1.872
6.3	1.841
6.34	1.847
6.33	1.845
6.3	1.841
5.9	1.775
MW394	
Result	LN(Result)
5.8	1.758
5.93	1.780
5.42	1.690
6	1.792
6.04	1.798
6.2	1.825
6.4	1.856
6.39	1.855
	MW220 Result 6.04 6.31 6.5 6.3 6.3 6.3 6.3 6.3 5.9 MW394 Result 5.8 5.93 5.42 6 6.04 6.2 6.4

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	6.05	NO	1.800	N/A
MW221	Sidegradient	Yes	6.28	NO	1.837	N/A
MW222	Sidegradient	Yes	6.4	NO	1.856	N/A
MW223	Sidegradient	Yes	6.15	NO	1.816	N/A
MW224	Sidegradient	Yes	5.91	NO	1.777	N/A
MW369	Downgradien	t Yes	6.23	NO	1.829	N/A
MW372	Downgradien	t Yes	6.02	NO	1.795	N/A
MW384	Sidegradient	Yes	6.22	NO	1.828	N/A
MW387	Downgradien	t Yes	6.18	NO	1.821	N/A
MW391	Downgradien	t Yes	6.13	NO	1.813	N/A
MW394	Upgradient	Yes	5.97	NO	1.787	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.654	S = 9.310	CV(1)= 1.399	K factor**= 2.523	TL(1)= 30.144	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.130	S = 1.208	CV(2)= 1.069	K factor**= 2.523	TL(2)= 4.178	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	6.7	1.902				
1/15/2003	29.7	3.391				
4/10/2003	24.9	3.215				

1.13

3.43

6.71

19.3

3.97

MW394

Result

2

2

1.03

1.1

1.24

1.14

1.05

1.07

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	2.71	N/A	0.997	NO
MW221	Sidegradient	Yes	1.4	N/A	0.336	NO
MW222	Sidegradient	Yes	0.745	N/A	-0.294	NO
MW223	Sidegradient	Yes	4.89	N/A	1.587	NO
MW224	Sidegradient	Yes	0.72	N/A	-0.329	NO
MW369	Downgradien	t Yes	0.571	N/A	-0.560	NO
MW372	Downgradien	t Yes	2.14	N/A	0.761	NO
MW384	Sidegradient	Yes	1.2	N/A	0.182	NO
MW387	Downgradien	t Yes	1.84	N/A	0.610	NO
MW391	Downgradien	t Yes	1.82	N/A	0.599	NO
MW394	Upgradient	Yes	1.09	N/A	0.086	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.122

1.233

1.904

2.960

1.379

0.693

0.693

0.030

0.095

0.215

0.131

0.049

0.068

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.036	S = 0.382	CV(1)= 10.588	K factor**= 2.523	TL(1)= 1.001	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.873	S = 1.110	CV(2) =-0.592	K factor**= 2.523	TL(2)= -0.538	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	-0.804	#Func!
1/15/2003	0	#Func!
10/13/2003	0.389	-0.944
1/13/2004	-0.12	#Func!
4/13/2004	0.159	-1.839
7/21/2004	0.382	-0.962
10/11/2004	0.211	-1.556
1/20/2005	0.229	-1.474
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -0.538
Date Collected	Result	
Date Collected 10/16/2002	Result 0.584	-0.538
Date Collected 10/16/2002 1/13/2003	Result 0.584 -0.839	-0.538 #Func!
Date Collected 10/16/2002 1/13/2003 10/14/2003	Result 0.584 -0.839 0.0325	-0.538 #Func! -3.427
Date Collected 10/16/2002 1/13/2003 10/14/2003 1/13/2004	Result 0.584 -0.839 0.0325 -0.00402	-0.538 #Func! -3.427 #Func!
Date Collected 10/16/2002 1/13/2003 10/14/2003 1/13/2004 4/12/2004	Result 0.584 -0.839 0.0325 -0.00402 -0.000337	-0.538 #Func! -3.427 #Func! #Func!
Date Collected 10/16/2002 1/13/2003 10/14/2003 1/13/2004 4/12/2004 7/20/2004	Result 0.584 -0.839 0.0325 -0.00402 -0.000337 0.29	-0.538 #Func! -3.427 #Func! #Func! -1.238

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.308	N/A	-1.178	N/A
MW221	Sidegradient	No	0.469	N/A	-0.757	N/A
MW222	Sidegradient	No	0.212	N/A	-1.551	N/A
MW223	Sidegradient	No	0.327	N/A	-1.118	N/A
MW224	Sidegradient	No	0.476	N/A	-0.742	N/A
MW369	Downgradien	t Yes	0.868	N/A	-0.142	YES
MW372	Downgradien	t Yes	0.54	N/A	-0.616	NO
MW384	Sidegradient	Yes	0.678	N/A	-0.389	YES
MW387	Downgradien	t No	0.342	N/A	-1.073	N/A
MW391	Downgradien	t No	0.252	N/A	-1.378	N/A
MW394	Upgradient	No	0.518	N/A	-0.658	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW369 MW384

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 36.363	S= 8.666	CV(1)= 0.238	K factor**= 2.523	TL(1)= 58.227	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.570	S = 0.222	CV(2) =0.062	K factor**= 2.523	TL(2)= 4.129	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number:	MW220

Date Collected	Result	LN(Result)	
10/14/2002	35.4	3.567	
1/15/2003	40.6	3.704	
4/10/2003	51	3.932	
7/14/2003	58.2	4.064	
10/13/2003	38.1	3.640	
1/13/2004	37	3.611	
4/13/2004	43.2	3.766	
7/21/2004	33.8	3.520	
Well Number:	MW394		
Well Number: Date Collected		LN(Result)	
		LN(Result) 3.493	
Date Collected	Result	. ,	
Date Collected 8/13/2002	Result 32.9	3.493	
Date Collected 8/13/2002 9/16/2002	Result 32.9 29.9	3.493 3.398	
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 32.9 29.9 29	3.493 3.398 3.367	
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 32.9 29.9 29 27.1	3.493 3.398 3.367 3.300	
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 32.9 29.9 29 27.1 24.8	3.493 3.398 3.367 3.300 3.211	
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 32.9 29.9 27.1 24.8 35.6	3.493 3.398 3.367 3.300 3.211 3.572	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	41	NO	3.714	N/A
MW221	Sidegradient	Yes	48.6	NO	3.884	N/A
MW222	Sidegradient	Yes	47.8	NO	3.867	N/A
MW223	Sidegradient	Yes	49.8	NO	3.908	N/A
MW224	Sidegradient	Yes	51.7	NO	3.945	N/A
MW369	Downgradien	t Yes	72	YES	4.277	N/A
MW372	Downgradien	t Yes	43.4	NO	3.770	N/A
MW384	Sidegradient	Yes	83.2	YES	4.421	N/A
MW387	Downgradien	t Yes	65.4	YES	4.181	N/A
MW391	Downgradien	t Yes	37.7	NO	3.630	N/A
MW394	Upgradient	Yes	35.3	NO	3.564	N/A
MW384 MW387 MW391 MW394	Sidegradient Downgradien Downgradien Upgradient	Yes t Yes t Yes Yes	83.2 65.4 37.7 35.3	YES YES NO	4.421 4.181 3.630 3.564	N/A N/A N/A N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW369
MW384
MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.481	S = 2.648	CV(1)= 0.253	K factor**= 2.523	TL(1)= 17.161	LL(1)= N/A
Statistics-Transformed Background	X= 2.322	S= 0.239	CV(2) =0.103	K factor**= 2.523	TL(2)= 2.925	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW220

Date Collected	Result	LN(Result)
10/14/2002	10.4	2.342
1/15/2003	9.8	2.282
4/10/2003	15.4	2.734
7/14/2003	14.9	2.701
10/13/2003	13.5	2.603
1/13/2004	10.3	2.332
4/13/2004	14.3	2.660
7/21/2004	10.5	2.351
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.416
Date Collected	Result	()
Date Collected 8/13/2002	Result 11.2	2.416
Date Collected 8/13/2002 9/16/2002	Result 11.2 8.3	2.416 2.116
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.2 8.3 8	2.416 2.116 2.079
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.2 8.3 8 8.5	2.416 2.116 2.079 2.140
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.2 8.3 8 8.5 7.9	2.416 2.116 2.079 2.140 2.067
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 11.2 8.3 8 8.5 7.9 8.4	2.416 2.116 2.079 2.140 2.067 2.128

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	18.4	YES	2.912	N/A
MW221	Sidegradient	Yes	14.3	NO	2.660	N/A
MW222	Sidegradient	Yes	10.8	NO	2.380	N/A
MW223	Sidegradient	Yes	13.9	NO	2.632	N/A
MW224	Sidegradient	Yes	10	NO	2.303	N/A
MW369	Downgradien	t Yes	4.95	NO	1.599	N/A
MW372	Downgradien	t Yes	66.2	YES	4.193	N/A
MW384	Sidegradient	Yes	20.3	YES	3.011	N/A
MW387	Downgradien	t Yes	30.1	YES	3.405	N/A
MW391	Downgradien	t Yes	50.2	YES	3.916	N/A
MW394	Upgradient	Yes	10.8	NO	2.380	N/A
	10			NU		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW220	
MW372	
MW384	
MW387	
MW391	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.354	S = 9.280	CV(1)= 0.992	K factor**= 2.523	TL(1)= 32.768	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.270	S = 0.849	CV(2)= 0.374	K factor**= 2.523	TL(2)= 3.262	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW220							
Date Collected	Result	LN(Result)						
10/14/2002	19.7	2.981						
1/15/2003	26.1	3.262						
4/10/2003	3.56	1.270						
7/14/2003	0	#Func!						
10/13/2003	21	3.045						
1/13/2004	6.32	1.844						
4/13/2004	3	1.099						
7/21/2004	14.6	2.681						
Well Number:	MW394							
Date Collected	Result	LN(Result)						
8/13/2002	14	2.639						
9/16/2002	5.45	1.696						

2.49

18.3

-1.45

-1.71

18.3

0

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	23.2	NO	3.144	N/A
MW221	Sidegradient	No	14.8	N/A	2.695	N/A
MW222	Sidegradient	No	11.3	N/A	2.425	N/A
MW223	Sidegradient	No	5.58	N/A	1.719	N/A
MW224	Sidegradient	No	0.195	N/A	-1.635	N/A
MW369	Downgradien	t Yes	27	NO	3.296	N/A
MW372	Downgradien	t Yes	24.7	NO	3.207	N/A
MW384	Sidegradient	Yes	149	YES	5.004	N/A
MW387	Downgradien	t Yes	249	YES	5.517	N/A
MW391	Downgradien	t No	5.9	N/A	1.775	N/A
MW394	Upgradient	No	7.79	N/A	2.053	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.912

2.907

#Func!

#Func!

2.907

#Func!

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Thorium-230 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.103	S = 0.171	CV(1)= 1.652	K factor**= 2.523	TL(1)= 0.535	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.248	S = 1.154	CV(2) =-0.513	K factor**= 2.523	TL(2)= -0.573	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/11/2004	0.267	-1.321
1/20/2005	0.251	-1.382
4/25/2005	0.348	-1.056
7/14/2005	-0.0428	#Func!
10/20/2005	-0.00586	#Func!
1/18/2006	-0.00543	#Func!
4/11/2006	-0.0295	#Func!
7/17/2006	-0.0311	#Func!
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -0.573
Date Collected	Result	· · · · ·
Date Collected 10/12/2004	Result 0.564	-0.573
Date Collected 10/12/2004 1/18/2005	Result 0.564 0.106	-0.573 -2.244
Date Collected 10/12/2004 1/18/2005 4/18/2005	Result 0.564 0.106 -0.022	-0.573 -2.244 #Func!
Date Collected 10/12/2004 1/18/2005 4/18/2005 7/11/2005	Result 0.564 0.106 -0.022 0.127	-0.573 -2.244 #Func! -2.064
Date Collected 10/12/2004 1/18/2005 4/18/2005 7/11/2005 10/17/2005	Result 0.564 0.106 -0.022 0.127 0.0291	-0.573 -2.244 #Func! -2.064 -3.537
Date Collected 10/12/2004 1/18/2005 4/18/2005 7/11/2005 10/17/2005 1/18/2006	Result 0.564 0.106 -0.022 0.127 0.0291 0.0271	-0.573 -2.244 #Func! -2.064 -3.537 -3.608

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	-0.126	N/A	#Error	N/A
MW221	Sidegradient	No	0.342	N/A	-1.073	N/A
MW222	Sidegradient	No	0.395	N/A	-0.929	N/A
MW223	Sidegradient	No	0.294	N/A	-1.224	N/A
MW224	Sidegradient	No	-0.0688	N/A	#Error	N/A
MW369	Downgradien	t No	-0.00581	l N/A	#Error	N/A
MW372	Downgradien	t No	0.32	N/A	-1.139	N/A
MW384	Sidegradient	Yes	0.985	N/A	-0.015	YES
MW387	Downgradien	t No	0.438	N/A	-0.826	N/A
MW391	Downgradien	t No	-0.00562	2 N/A	#Error	N/A
MW394	Upgradient	No	-0.0549	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW384

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.494	S = 0.737	CV(1)= 0.493	K factor**= 2.523	TL(1)= 3.353	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.315	S = 0.402	CV(2)= 1.279	K factor**= 2.523	TL(2)= 1.330	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1 111000

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1.1	0.095
4/10/2003	1	0.000
7/14/2003	3.3	1.194
10/13/2003	1.8	0.588
1/13/2004	1	0.000
4/13/2004	2	0.693
7/21/2004	3.1	1.131
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.262
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 1.3	0.262
Date Collected 8/13/2002 9/16/2002	Result 1.3 1	0.262 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.3 1 1	0.262 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.3 1 1 1.6	0.262 0.000 0.000 0.470
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.3 1 1.6 1	0.262 0.000 0.000 0.470 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.3 1 1.6 1 1.4	0.262 0.000 0.000 0.470 0.000 0.336

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	1.14	NO	0.131	N/A	
MW221	Sidegradient	Yes	1.02	NO	0.020	N/A	
MW222	Sidegradient	Yes	0.889	NO	-0.118	N/A	
MW223	Sidegradient	Yes	1.06	NO	0.058	N/A	
MW224	Sidegradient	Yes	1.48	NO	0.392	N/A	
MW369	Downgradien	t Yes	1.88	NO	0.631	N/A	
MW372	Downgradien	t Yes	2.22	NO	0.798	N/A	
MW384	Sidegradient	Yes	1.14	NO	0.131	N/A	
MW387	Downgradien	t Yes	1.14	NO	0.131	N/A	
MW391	Downgradien	t Yes	1	NO	0.000	N/A	
MW394	Upgradient	Yes	1.02	NO	0.020	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 63.475	S=	163.135	CV(1)= 2.570	K factor**= 2.523	TL(1)= 475.063	LL(1)= N/A
Statistics-Transformed Background	X= 3.103	S=	1.145	CV(2)= 0.369	K factor**= 2.523	TL(2)= 5.992	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	50	3.912			
1/15/2003	10	2.303			

2.303

2.303

2.303

2.303

2.303

2.303

3.912

6.510

3.912

3.586

2.303

3.754

3.091

2.549

LN(Result)

10

10

10

10

10

10

MW394

Result

50

672

50

36.1

10

22

42.7

12.8

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	6.22	N/A	1.828	NO
MW221	Sidegradient	Yes	13.6	N/A	2.610	NO
MW222	Sidegradient	Yes	6.94	N/A	1.937	NO
MW223	Sidegradient	Yes	6.8	N/A	1.917	NO
MW224	Sidegradient	No	10	N/A	2.303	N/A
MW369	Downgradien	t Yes	41.1	N/A	3.716	NO
MW372	Downgradien	t Yes	10	N/A	2.303	NO
MW384	Sidegradient	Yes	14	N/A	2.639	NO
MW387	Downgradien	t Yes	10.6	N/A	2.361	NO
MW391	Downgradien	t Yes	14	N/A	2.639	NO
MW394	Upgradient	Yes	10	N/A	2.303	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 8.813	S = 8.376	CV(1)= 0.951	K factor**= 2.523	TL(1)= 29.946	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.395	S= 1.449	CV(2)= 1.039	K factor**= 2.523	TL(2)= 5.052	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1 111000

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.773
Date Collected	Result	
Date Collected 8/13/2002	Result 16	2.773
Date Collected 8/13/2002 9/30/2002	Result 16 20	2.773 2.996
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 16 20 17	2.773 2.996 2.833
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 16 20 17 15	2.773 2.996 2.833 2.708
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 16 20 17 15 10	2.773 2.996 2.833 2.708 2.303
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 16 20 17 15 10 19	2.773 2.996 2.833 2.708 2.303 2.944

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
Upgradient	No	1	N/A	0.000	N/A		
Sidegradient	No	1	N/A	0.000	N/A		
Sidegradient	No	1	N/A	0.000	N/A		
Sidegradient	No	1	N/A	0.000	N/A		
Sidegradient	No	1	N/A	0.000	N/A		
Downgradien	t Yes	4.97	N/A	1.603	N/A		
Downgradien	t Yes	7.12	NO	1.963	N/A		
Sidegradient	Yes	0.38	N/A	-0.968	N/A		
Downgradien	t Yes	0.83	N/A	-0.186	N/A		
Downgradien	t Yes	11	NO	2.398	N/A		
Upgradient	Yes	7.86	NO	2.062	N/A		
	Gradient Upgradient Sidegradient Sidegradient Sidegradient Downgradien Downgradien Downgradien Downgradien Upgradient	GradientDetected?UpgradientNoSidegradientNoSidegradientNoSidegradientNoSidegradientNoDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesUpgradientYes	GradientDetected?ResultUpgradientNo1SidegradientNo1SidegradientNo1SidegradientNo1SidegradientNo1DowngradientYes4.97DowngradientYes7.12SidegradientYes0.38DowngradientYes11UpgradientYes7.86	GradientDetected?ResultResult >TL(1)?UpgradientNo1N/ASidegradientNo1N/ASidegradientNo1N/ASidegradientNo1N/ASidegradientNo1N/ASidegradientNo1N/ADowngradientYes4.97N/ADowngradientYes7.12NOSidegradientYes0.38N/ADowngradientYes11NOUpgradientYes7.86NO	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient No 1 N/A 0.000 Sidegradient No 1 N/A 0.000 Downgradient Yes 4.97 N/A 1.603 Downgradient Yes 7.12 NO 1.963 Sidegradient Yes 0.38 N/A -0.968 Downgradient Yes 0.83 N/A -0.186 Downgradient Yes 11 NO 2.398		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.021	S = 0.002	CV(1)= 0.083	K factor**= 2.523	TL(1)= 0.025	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.884	S = 0.076	CV(2) =-0.020	K factor**= 2.523	TL(2)= -3.692	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	0.02	-3.912			
1/15/2003	0.02	-3.912			
4/10/2003	0.02	-3.912			
7/14/2003	0.02	-3.912			
10/13/2003	0.02	-3.912			
1/13/2004	0.02	-3.912			
4/13/2004	0.02	-3.912			
7/21/2004	0.02	-3.912			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	0.025	-3.689			
9/16/2002	0.025	-3.689			
10/16/2002	0.02	-3.912			
1/13/2003	0.02	-3.912			
4/10/2003	0.02	-3.912			
7/16/2003	0.02	-3.912			
10/14/2003	0.02	-3.912			

0.02

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00736	NO	-4.912	N/A	
MW221	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW222	Sidegradient	Yes	0.00475	NO	-5.350	N/A	
MW223	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW224	Sidegradient	Yes	0.00684	NO	-4.985	N/A	
MW369	Downgradien	t No	0.01	N/A	-4.605	N/A	
MW372	Downgradien	t No	0.01	N/A	-4.605	N/A	
MW384	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW387	Downgradien	t No	0.01	N/A	-4.605	N/A	
MW391	Downgradien	t No	0.01	N/A	-4.605	N/A	
MW394	Upgradient	No	0.01	N/A	-4.605	N/A	
N/A - Resu	lts identified as N	Ion-Detects of	luring labo	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.036	S = 0.026	CV(1)= 0.722	K factor**= 2.523	TL(1)= 0.101	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.485	S= 0.525	CV(2)= -0.151	K factor**= 2.523	TL(2)= -2.162	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW220			
Date Collected	Result	LN(Result)		

-3.689

-3.352

-3.352

-3.247

-3.650

-3.912

-3.912

-3.912

-2.303

-2.303

-3.689

-3.352

-3.352

-3.912

-3.912

-3.912

LN(Result)

0.025

0.035

0.035

0.0389

0.026

0.02

0.02

0.02

MW394

Result

0.1

0.1

0.025

0.035

0.035

0.02

0.02

0.02

10/14/2002

1/15/2003

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00498	NO	-5.302	N/A
MW221	Sidegradient	Yes	0.00367	NO	-5.608	N/A
MW222	Sidegradient	No	0.01	N/A	-4.605	N/A
MW223	Sidegradient	No	0.01	N/A	-4.605	N/A
MW224	Sidegradient	No	0.01	N/A	-4.605	N/A
MW369	Downgradien	t Yes	0.00389	NO	-5.549	N/A
MW372	Downgradien	t Yes	0.00485	NO	-5.329	N/A
MW384	Sidegradient	No	0.01	N/A	-4.605	N/A
MW387	Downgradien	t No	0.01	N/A	-4.605	N/A
MW391	Downgradien	t No	0.01	N/A	-4.605	N/A
MW394	Upgradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.258	S = 0.221	CV(1)= 0.856	K factor**= 2.523	TL(1)= 0.815	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.266	S= 2.485	CV(2)= -1.097	K factor**= 2.523	TL(2)= 4.003	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
$\mathbf{D} \leftarrow \mathbf{C} \parallel 1 \leftarrow 1$	D 1/				

Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.194
Date Collected	Result	· · · ·
Date Collected 8/13/2002	Result 0.824	-0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	-0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	-0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	-0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	-0.194 -1.609 -8.517 -1.013 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	0.05	N/A	-2.996	N/A
MW373	Downgradien	t No	0.05	N/A	-2.996	N/A
MW385	Sidegradient	No	0.05	N/A	-2.996	N/A
MW388	Downgradien	t No	0.05	N/A	-2.996	N/A
MW392	Downgradien	t Yes	0.0242	NO	-3.721	N/A
MW395	Upgradient	No	0.05	N/A	-2.996	N/A
MW397	Upgradient	Yes	0.0642	NO	-2.746	N/A
N/A Decui	(Ion Dotooto	lumin a lab	anatomy analysis on	data walidation	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =7.183	S= 2.612	CV(1)= 0.364	K factor**= 2.523	TL(1)= 13.773	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.870	S= 0.552	CV(2) =0.295	K factor**= 2.523	TL(2)= 3.261	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW395			

Date Collected	Result	LN(Result)
8/13/2002	1.09	0.086
9/16/2002	5.79	1.756
10/16/2002	6.82	1.920
1/13/2003	5.01	1.611
4/10/2003	6.1	1.808
7/16/2003	8.51	2.141
10/14/2003	4.99	1.607
1/13/2004	6.58	1.884
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.259
Date Collected	Result	
Date Collected 8/13/2002	Result 9.57	2.259
Date Collected 8/13/2002 9/16/2002	Result 9.57 11	2.259 2.398
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 9.57 11 9.3	2.259 2.398 2.230
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 9.57 11 9.3 8.63	2.259 2.398 2.230 2.155
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 9.57 11 9.3 8.63 10	2.259 2.398 2.230 2.155 2.303
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 9.57 11 9.3 8.63 10 6.89	2.259 2.398 2.230 2.155 2.303 1.930

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	Yes	44.8	N/A	3.802	N/A
MW373	Downgradien	Yes	15.6	N/A	2.747	N/A
MW385	Sidegradient	Yes	54	YES	3.989	N/A
MW388	Downgradien	Yes	86.4	YES	4.459	N/A
MW392	Downgradien	t No	1.8	N/A	0.588	N/A
MW395	Upgradient	Yes	5.31	N/A	1.670	N/A
MW397	Upgradient	Yes	4.42	N/A	1.486	N/A
N/A - Resu	lts identified as N	on-Detects of	luring lab	oratory analysis or	data validatior	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.650	S = 0.805	CV(1)= 1.238	K factor**= 2.523	TL(1)= 2.681	LL(1)= N/A
Statistics-Transformed Background Data	X =-1.034	S = 1.030	CV(2)= -0.996	K factor**= 2.523	TL(2)= 1.564	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				

wen rumber.	11110375	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2 2. 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 2 2. 0.2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.0313	N/A	-3.464	NO
MW373	Downgradien	t Yes	1.59	N/A	0.464	NO
MW385	Sidegradient	Yes	0.013	N/A	-4.343	NO
MW388	Downgradien	t Yes	0.0243	N/A	-3.717	NO
MW392	Downgradien	t Yes	0.0276	N/A	-3.590	NO
MW395	Upgradient	Yes	0.0223	N/A	-3.803	NO
MW397	Upgradient	Yes	0.0112	N/A	-4.492	NO
N/A = Result	lts identified as N	on-Detects d	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis **Historical Background Comparison Bromide** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2) =#Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1	0.000
9/16/2002	1	0.000
10/16/2002	1	0.000
1/13/2003	1	0.000
4/10/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.463	NO	-0.770	N/A
MW373	Downgradien	t Yes	0.601	NO	-0.509	N/A
MW385	Sidegradient	Yes	0.248	NO	-1.394	N/A
MW388	Downgradien	t Yes	0.355	NO	-1.036	N/A
MW392	Downgradien	t Yes	0.632	NO	-0.459	N/A
MW395	Upgradient	Yes	0.541	NO	-0.614	N/A
MW397	Upgradient	Yes	0.494	NO	-0.705	N/A
N/A - Resul	ts identified as N	Ion-Detects (luring lah	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =23.103	S = 11.538	CV(1)= 0.499	K factor**= 2.523	TL(1)= 52.213	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.357	S= 2.411	CV(2)= 1.023	K factor**= 2.523	TL(2)= 8.439	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resu					
Well Number:	MW395				

Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.965
Date Collected	Result	
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 19.4 19 0.0179 17.8 20.3 19.4	2.965 2.944 -4.023 2.879 3.011 2.965

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	32	NO	3.466	N/A
MW373	Downgradien	t Yes	69.6	YES	4.243	N/A
MW385	Sidegradient	Yes	44.2	NO	3.789	N/A
MW388	Downgradien	t Yes	28.9	NO	3.364	N/A
MW392	Downgradien	t Yes	31	NO	3.434	N/A
MW395	Upgradient	Yes	25.9	NO	3.254	N/A
MW397	Upgradient	Yes	19.5	NO	2.970	N/A
N/A Docul	to identified on N	Ion Dataata d	luring lab	oratory analysis or	data validation	and wars not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 35.313	S = 1.250	CV(1)= 0.035	K factor**= 2.523	TL(1)= 38.466	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.564	S = 0.033	CV(2) =0.009	K factor**= 2.523	TL(2)= 3.648	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resu						
Well Number:	MW395					

Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	3.555
4/10/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/13/2004	35	3.555
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 40	3.689
Date Collected 8/13/2002 9/16/2002	Result 40 35	3.689 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 40 35 35	3.689 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 40 35 35 35	3.689 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 40 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 40 35 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	20	N/A	2.996	N/A
MW373	Downgradient	t Yes	14.6	NO	2.681	N/A
MW385	Sidegradient	No	20	N/A	2.996	N/A
MW388	Downgradient	t Yes	22	NO	3.091	N/A
MW392	Downgradient	t Yes	10.1	NO	2.313	N/A
MW395	Upgradient	No	20	N/A	2.996	N/A
MW397	Upgradient	Yes	18.9	NO	2.939	N/A
NI/A Dame	14- 14		1		4-4	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =51.844	S = 11.652	CV(1)= 0.225	K factor**= 2.523	TL(1)= 81.242	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.924	S= 0.229	CV(2)= 0.058	K factor**= 2.523	TL(2)= 4.501	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
8/13/2002	62.2	4.130					
9/16/2002	64.7	4.170					
10/16/2002	62.2	4.130					
1/13/2003	63.5	4.151					
4/10/2003	64.1	4.160					
7/16/2003	64	4.159					
10/14/2003	63.2	4.146					
1/13/2004	60.6	4.104					
Well Number:	MW397						
Date Collected	Result	LN(Result)					
8/13/2002	38.9	3.661					
9/16/2002	39.8	3.684					

39.3

40.5

42.1

42

40.8

41.6

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	37.4	NO	3.622	N/A	
MW373	Downgradien	t Yes	47.8	NO	3.867	N/A	
MW385	Sidegradient	Yes	24.8	NO	3.211	N/A	
MW388	Downgradien	t Yes	33.5	NO	3.512	N/A	
MW392	Downgradien	t Yes	48.5	NO	3.882	N/A	
MW395	Upgradient	Yes	46.7	NO	3.844	N/A	
MW397	Upgradient	Yes	39.6	NO	3.679	N/A	
NI/A Dama	to identified on N	Ion Dotooto d	المستسم المله	anatomy analysis on	data walidation	and more not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.671

3.701

3.740

3.738

3.709

3.728

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis **Historical Background Comparison** cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 5.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.609	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	5	1.609
9/30/2002	5	1.609
10/16/2002	5	1.609
1/13/2003	5	1.609
4/10/2003	5	1.609
7/16/2003	5	1.609
10/14/2003	5	1.609
1/13/2004	5	1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data							
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
Downgradient	No	1	N/A	0.000	N/A			
Downgradient	No	1	N/A	0.000	N/A			
Sidegradient	No	1	N/A	0.000	N/A			
Downgradient	No	1	N/A	0.000	N/A			
Downgradient	Yes	0.83	NO	-0.186	N/A			
Upgradient	No	1	N/A	0.000	N/A			
Upgradient	No	1	N/A	0.000	N/A			
	Downgradient Downgradient Sidegradient Downgradient Downgradient Upgradient Upgradient	DowngradientNoDowngradientNoSidegradientNoDowngradientNoDowngradientYesUpgradientNoUpgradientNo	DowngradientNo1DowngradientNo1SidegradientNo1DowngradientNo1DowngradientYes0.83UpgradientNo1UpgradientNo1	DowngradientNo1N/ADowngradientNo1N/ASidegradientNo1N/ADowngradientNo1N/ADowngradientYes0.83NOUpgradientNo1N/AUpgradientNo1N/A	DowngradientNo1N/A0.000DowngradientNo1N/A0.000SidegradientNo1N/A0.000DowngradientNo1N/A0.000DowngradientYes0.83NO-0.186UpgradientNo1N/A0.000			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.007	S = 0.011	CV(1)= 1.515	K factor**= 2.523	TL(1)= 0.034	LL(1)= N/A
Statistics-Transformed Background Data	X= -6.053	S= 1.416	CV(2)= -0.234	K factor**= 2.523	TL(2)= -2.480	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

NAN2204

W7-11 Manualian

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	0.00058	4 N/A	-7.446	NO	
MW373	Downgradient	No	0.00021	N/A	-8.468	N/A	
MW385	Sidegradient	Yes	0.00017	2 N/A	-8.668	NO	
MW388	Downgradient	Yes	0.00015	1 N/A	-8.798	NO	
MW392	Downgradient	Yes	0.00020	6 N/A	-8.488	NO	
MW395	Upgradient	No	0.001	N/A	-6.908	N/A	
MW397	Upgradient	No	0.001	N/A	-6.908	N/A	
N/A - Resul	lts identified as N	on-Detects of	luring labo	oratory analysis or	data validatior	and were not	

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 377.875 S = 52.10	1 CV(1)= 0.138	K factor**= 2.523	TL(1)= 509.326	LL(1)= N/A
Statistics-Transformed Background Data	X =5.926 S = 0.136	CV(2) =0.023	K factor**= 2.523	TL(2)= 6.270	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					

wen ramber.	11111375		
Date Collected	Result	LN(Result)	
8/13/2002	405	6.004	
9/16/2002	401	5.994	
10/16/2002	392	5.971	
1/13/2003	404	6.001	
4/10/2003	488	6.190	
7/16/2003	450	6.109	
10/14/2003	410	6.016	
1/13/2004	413	6.023	
Well Number:	MW397		
Well Number: Date Collected		LN(Result)	
		LN(Result) 5.775	
Date Collected	Result	. ,	
Date Collected 8/13/2002	Result 322	5.775	
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753	
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759	
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768	
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966	
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 322 315 317 320 390 354	5.775 5.753 5.759 5.768 5.966 5.869	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	444	NO	6.096	N/A	
MW373	Downgradien	t Yes	781	YES	6.661	N/A	
MW385	Sidegradient	Yes	474	NO	6.161	N/A	
MW388	Downgradien	t Yes	436	NO	6.078	N/A	
MW392	Downgradien	t Yes	409	NO	6.014	N/A	
MW395	Upgradient	Yes	386	NO	5.956	N/A	
MW397	Upgradient	Yes	337	NO	5.820	N/A	
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.028	S = 0.013	CV(1)= 0.474	K factor**= 2.523	TL(1)= 0.061	LL(1)= N/A
Statistics-Transformed Background	X= -3.662	S= 0.406	CV(2)= -0.111	K factor**= 2.523	TL(2)= -2.638	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW395			
Date Collected	Result	LN(Result)		
8/13/2002	0.05	-2.996		

Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.0281	-3.572
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.02	-2.996 -2.996 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.02 0.02	-2.996 -2.996 -3.912 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.02 0.02 0.02	-2.996 -2.996 -3.912 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL	L(1)? LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	0.00065	4 NO	-7.332	N/A
MW373	Downgradient	t Yes	0.00046	1 NO	-7.682	N/A
MW385	Sidegradient	Yes	0.00117	NO	-6.751	N/A
MW388	Downgradient	t Yes	0.00095	1 NO	-6.958	N/A
MW392	Downgradient	t Yes	0.00087	8 NO	-7.038	N/A
MW395	Upgradient	Yes	0.00061	9 NO	-7.387	N/A
MW397	Upgradient	Yes	0.00061	5 NO	-7.394	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.						

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Cyanide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.020	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 0.020	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.912	S = 0.000	CV(2)= 0.000	K factor**= 2.523	TL(2)= -3.912	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	0.02	-3.912			
9/16/2002	0.02	-3.912			
10/16/2002	0.02	-3.912			
1/13/2003	0.02	-3.912			
4/10/2003	0.02	-3.912			
7/16/2003	0.02	-3.912			
10/14/2003	0.02	-3.912			
1/13/2004	0.02	-3.912			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	0.02	-3.912			
9/16/2002	0.02	-3.912			
10/17/2002	0.02	-3.912			
1/13/2003	0.02	-3.912			

0.02

0.02

0.02

0.02

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	0.00176	NO	-6.342	N/A
MW373	Downgradient	t No	0.2	N/A	-1.609	N/A
MW385	Sidegradient	No	0.2	N/A	-1.609	N/A
MW388	Downgradient	t No	0.2	N/A	-1.609	N/A
MW392	Downgradient	t No	0.2	N/A	-1.609	N/A
MW395	Upgradient	No	0.2	N/A	-1.609	N/A
MW397	Upgradient	No	0.2	N/A	-1.609	N/A
N/A = Result	lts identified as N	on-Detects	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 4.678	S = 2.431	CV(1)= 0.520	K factor**= 2.523	TL(1)= 10.812	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.414	S = 0.550	CV(2) =0.389	K factor**= 2.523	TL(2)= 2.802	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW395			
Date Collected	Result	LN(Result)		
8/13/2002	7.29	1.987		
9/30/2002	4.03	1.394		

1.348

0.859

0.131

0.565

1.399

1.449

2.448

1.768

1.782

1.539

1.327

1.244

1.675

1.707

LN(Result)

3.85

2.36

1.14

1.76

4.05

4.26

MW397

Result

11.56

5.86

5.94

4.66

3.77

3.47

5.34

5.51

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	3.41	NO	1.227	N/A
MW373	Downgradient	Yes	2.27	NO	0.820	N/A
MW385	Sidegradient	Yes	2.11	NO	0.747	N/A
MW388	Downgradient	Yes	4.91	NO	1.591	N/A
MW392	Downgradient	Yes	1.99	NO	0.688	N/A
MW395	Upgradient	Yes	4.88	NO	1.585	N/A
MW397	Upgradient	Yes	5.79	NO	1.756	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =219.25	0 S = 34.107	CV(1)= 0.156	K factor**= 2.523	TL(1)= 305.301	LL(1)= N/A
Statistics-Transformed Background Data	X= 5.379	S= 0.152	CV(2)= 0.028	K factor**= 2.523	TL(2)= 5.762	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				

wen runnoer.	11111375	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.231
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 187 197 183 182 217 196	5.231 5.283 5.209 5.204 5.380 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	240	NO	5.481	N/A	
MW373	Downgradien	t Yes	413	YES	6.023	N/A	
MW385	Sidegradient	Yes	21.4	NO	3.063	N/A	
MW388	Downgradien	t Yes	241	NO	5.485	N/A	
MW392	Downgradien	t Yes	260	NO	5.561	N/A	
MW395	Upgradient	Yes	223	NO	5.407	N/A	
MW397	Upgradient	Yes	187	NO	5.231	N/A	
N/A - Resul	lts identified as N	Ion-Detects of	luring lah	oratory analysis or	data validatior	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.400	S = 0.514	CV(1)= 1.286	K factor**= 2.523	TL(1)= 1.698	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.197	S= 2.634	CV(2) =-1.199	K factor**= 2.523	TL(2)= 4.449	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW395							
Date Collected	Result	LN(Result)						
8/13/2002	0.294	-1.224						
9/16/2002	0.2	-1.609						
10/16/2002	0.0002	-8.517						
1/13/2003	1.33	0.285						
4/10/2003	1.31	0.270						

0.2

0.1

0.1

MW397

Result

1.58

0.232

0.0002

0.453

0.2

0.2

0.1

0.1

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
Downgradien	t Yes	0.0548	N/A	-2.904	NO		
Downgradien	t Yes	0.084	N/A	-2.477	NO		
Sidegradient	No	0.1	N/A	-2.303	N/A		
Downgradien	t Yes	0.0492	N/A	-3.012	NO		
Downgradien	t Yes	0.109	N/A	-2.216	NO		
Upgradient	No	0.1	N/A	-2.303	N/A		
Upgradient	Yes	0.0865	N/A	-2.448	NO		
	Gradient Downgradien Downgradien Sidegradient Downgradien Upgradient Upgradient	GradientDetected?DowngradientYesDowngradientYesSidegradientNoDowngradientYesDowngradientYesUpgradientNoUpgradientYes	GradientDetected?ResultDowngradientYes0.0548DowngradientYes0.084SidegradientNo0.1DowngradientYes0.0492DowngradientYes0.109UpgradientNo0.1UpgradientYes0.0865	GradientDetected?ResultResult >TL(1)?DowngradientYes0.0548N/ADowngradientYes0.084N/ASidegradientNo0.1N/ADowngradientYes0.0492N/ADowngradientYes0.109N/AUpgradientNo0.1N/AUpgradientYes0.0865N/A	Gradient Detected? Result Result >TL(1)? LN(Result) Downgradient Yes 0.0548 N/A -2.904 Downgradient Yes 0.084 N/A -2.477 Sidegradient No 0.1 N/A -2.303 Downgradient Yes 0.0492 N/A -3.012 Downgradient Yes 0.109 N/A -2.216 Upgradient No 0.1 N/A -2.303		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

-2.303

-2.303

0.457

-1.461

-8.517

-0.792

-1.609

-1.609

-2.303

-2.303

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =9.102	S = 4.685	CV(1) =0.515	K factor**= 2.523	TL(1)= 20.922	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.423	S = 2.408	CV(2)= 1.692	K factor**= 2.523	TL(2)= 7.500	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					

8/13/2002 12.5 2.526 9/16/2002 13 2.565 10/16/2002 0.0127 -4.366 1/13/2003 11.2 2.416 4/10/2003 17.5 2.862 7/16/2003 12.9 2.557 10/14/2003 2.595 13.4 1/13/2004 12.4 2.518 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 7.83 2.058 9/16/2002 7.64 2.033 10/17/2002 0.00658 -5.0241/13/2003 6.69 1.901 4/8/2003 7.28 1.985 7/16/2003 2.057 7.82 10/14/2003 2.072 7.94 1/13/2004 7.51 2.016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradien	t Yes	14.4	NO	2.667	N/A		
MW373	Downgradien	t Yes	23.9	YES	3.174	N/A		
MW385	Sidegradient	Yes	16.4	NO	2.797	N/A		
MW388	Downgradien	t Yes	11.6	NO	2.451	N/A		
MW392	Downgradien	t Yes	10.8	NO	2.380	N/A		
MW395	Upgradient	Yes	11.4	NO	2.434	N/A		
MW397	Upgradient	Yes	8.54	NO	2.145	N/A		
Ν/Λ Ροεμ	lts identified as N	Ion Detects	luring lab	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.131	S = 0.195	CV(1)= 1.487	K factor**= 2.523	TL(1)= 0.624	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.104	S= 1.529	CV(2)= -0.493	K factor**= 2.523	TL(2)= 0.755	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
8/13/2002 0.361 -1.019							

9/16/2002 0.028 -3.576 10/16/2002 0.026 -3.650 1/13/2003 0.0713 -2.641 4/10/2003 0.629 -0.4647/16/2003 0.297 -1.21410/14/2003 0.0198 -3.922 1/13/2004 0.0126 -4.374 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.466 -0.7649/16/2002 0.077 -2.564 10/17/2002 0.028 -3.576 1/13/2003 0.0164 -4.110 4/8/2003 0.0407 -3.202 7/16/2003 0.0167 -4.092 10/14/2003 0.00555 -5.194-5.298 1/13/2004 0.005

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	0.00862	N/A	-4.754	NO	
MW373	Downgradien	t Yes	0.00379	N/A	-5.575	NO	
MW385	Sidegradient	Yes	0.00667	N/A	-5.010	NO	
MW388	Downgradien	t No	0.005	N/A	-5.298	N/A	
MW392	Downgradien	t Yes	0.0296	N/A	-3.520	NO	
MW395	Upgradient	No	0.005	N/A	-5.298	N/A	
MW397	Upgradient	Yes	0.00343	N/A	-5.675	NO	
N/A - Resu	lts identified as N	on-Detects d	luring labo	oratory analysis or	data validatior	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis **Historical Background Comparison** Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.007	S = 0.011	CV(1)= 1.451	K factor**= 2.523	TL(1)= 0.034	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.990	S= 1.443	CV(2)= -0.241	K factor**= 2.523	TL(2)= -2.349	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00609	-5.101
4/10/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	· · · ·
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	0.0005	N/A	-7.601	N/A
MW373	Downgradient	t No	0.0005	N/A	-7.601	N/A
MW385	Sidegradient	Yes	0.00058	N/A	-7.452	NO
MW388	Downgradient	t No	0.0005	N/A	-7.601	N/A
MW392	Downgradient	t No	0.0005	N/A	-7.601	N/A
MW395	Upgradient	No	0.0005	N/A	-7.601	N/A
MW397	Upgradient	No	0.0005	N/A	-7.601	N/A
N/A = Result	lts identified as N	on Detects	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.018	S = 0.020	CV(1)= 1.089	K factor**= 2.523	TL(1)= 0.068	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.540	S = 1.020	CV(2)= -0.225	K factor**= 2.523	TL(2)= -1.965	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1111206

W7-11 NT-----

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.005 0.00502	-2.996 -2.996 -5.298 -5.294
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.005 0.00502 0.00502	-2.996 -2.996 -5.298 -5.294 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.05 0.05 0.005 0.00502 0.005 0.005	-2.996 -2.996 -5.298 -5.294 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	0.00099	8 N/A	-6.910	NO		
MW373	Downgradient	Yes	0.00155	N/A	-6.470	NO		
MW385	Sidegradient	Yes	0.00142	N/A	-6.557	NO		
MW388	Downgradient	Yes	0.00173	N/A	-6.360	NO		
MW392	Downgradient	t Yes	0.00125	N/A	-6.685	NO		
MW395	Upgradient	Yes	0.00068	6 N/A	-7.285	NO		
MW397	Upgradient	Yes	0.00059	N/A	-7.435	NO		
N/A - Resul	lts identified as N	on-Detects d	luring labo	oratory analysis or	data validatior	and were not		

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =157.25	0 S = 52.376	CV(1)= 0.333	K factor**= 2.523	TL(1)= 289.395	LL(1)= N/A
Statistics-Transformed Background Data	X= 5.003	S = 0.348	CV(2)= 0.069	K factor**= 2.523	TL(2)= 5.880	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul							
Well Number:	MW395						

Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.745
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 115 140 185 230 155 188	4.745 4.942 5.220 5.438 5.043 5.236

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradien	t Yes	412	YES	6.021	N/A		
MW373	Downgradien	t Yes	279	NO	5.631	N/A		
MW385	Sidegradient	Yes	240	NO	5.481	N/A		
MW388	Downgradien	t Yes	327	YES	5.790	N/A		
MW392	Downgradien	t Yes	289	NO	5.666	N/A		
MW395	Upgradient	Yes	299	YES	5.700	N/A		
MW397	Upgradient	Yes	416	YES	6.031	N/A		
N/A - Resul	ts identified as N	Ion-Detects d	luring lab	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW370 MW388 MW395 MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.048	S = 0.248	CV(1)= 0.041	K factor**= 2.904	TL(1)= 6.767	LL(1)= 5.3289
Statistics-Transformed Background Data	X= 1.799	S= 0.042	CV(2)= 0.023	K factor**= 2.904	TL(2)= 1.920	LL(2)= 1.6782

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	5.8	1.758
9/16/2002	6	1.792
10/16/2002	5.47	1.699
1/13/2003	6	1.792
4/10/2003	6.18	1.821
7/16/2003	6	1.792
10/14/2003	6.31	1.842
1/13/2004	6.24	1.831
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	5.84	1.765
9/30/2002	6	1.792
10/17/2002	5.75	1.749
1/13/2003	6	1.792

6.3

6.2

6.36

6.32

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>. ,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	. ,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW370	Downgradien	t Yes	6.16	NO	1.818	N/A
MW373	Downgradien	t Yes	6.25	NO	1.833	N/A
MW385	Sidegradient	Yes	6.6	NO	1.887	N/A
MW388	Downgradien	t Yes	6.1	NO	1.808	N/A
MW392	Downgradien	t Yes	6.35	NO	1.848	N/A
MW395	Upgradient	Yes	6.39	NO	1.855	N/A
MW397	Upgradient	Yes	6.08	NO	1.805	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.841

1.825

1.850

1.844

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.590	S = 0.642	CV(1)= 0.404	K factor**= 2.523	TL(1)= 3.208	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.306	S = 2.457	CV(2) =-8.028	K factor**= 2.523	TL(2)= 5.892	LL(2)= N/A

Historical Bac Upgradient W		ita from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.00129	-6.653

1.51

1.67

1.73

1.7

1.58

MW397

Result

2.03

1.69

1.73

1.92

1.87

2

2 0.00145

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	2.94	NO	1.078	N/A
MW373	Downgradient	t Yes	2.57	NO	0.944	N/A
MW385	Sidegradient	Yes	1.99	NO	0.688	N/A
MW388	Downgradient	t Yes	2.23	NO	0.802	N/A
MW392	Downgradient	t Yes	1.86	NO	0.621	N/A
MW395	Upgradient	Yes	1.56	NO	0.445	N/A
MW397	Upgradient	Yes	1.82	NO	0.599	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.412

0.513

0.548

0.531

0.457

0.708

0.693

-6.536

0.525

0.548

0.693

0.652

0.626

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.039	S = 0.419	CV(1)= 10.740	K factor**= 2.523	TL(1)= 1.096	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.695	S= 1.043	CV(2) =-0.615	K factor**= 2.523	TL(2)= -0.414	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

opgrautent w	chi with 11th	iisioi meu ite
Well Number:	MW395	
Date Collected	Result	LN(Result)
10/16/2002	0.661	-0.414
1/13/2003	-0.839	#Func!
10/14/2003	0.0266	-3.627
1/13/2004	-0.0777	#Func!
4/12/2004	-0.115	#Func!
7/20/2004	0.105	-2.254
10/12/2004	0.408	-0.896
1/18/2005	0.0564	-2.875
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/17/2002	0.576	-0.552
1/13/2003	-0.841	#Func!
10/14/2003	-0.179	#Func!
1/13/2004	-0.0564	#Func!
4/12/2004	0.174	-1.749
7/21/2004	0.227	-1.483
10/12/2004	0.379	-0.970

0.119

1/20/2005

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	0.72	N/A	-0.329	YES
MW373	Downgradient	No	0.332	N/A	-1.103	N/A
MW385	Sidegradient	No	1.32	N/A	0.278	N/A
MW388	Downgradient	Yes	0.536	N/A	-0.624	NO
MW392	Downgradient	No	0.631	N/A	-0.460	N/A
MW395	Upgradient	No	0.347	N/A	-1.058	N/A
MW397	Upgradient	No	0.374	N/A	-0.983	N/A
NI/A D.	14- 14 A.C J NT	D-++-	1		J_41; J_4;	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.129

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =29.560	S = 13.894	CV(1)= 0.470	K factor**= 2.523	TL(1)= 64.616	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.615	S = 2.411	CV(2)= 0.922	K factor**= 2.523	TL(2)= 8.699	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

1111206

W7-11 Manualian

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.561
Date Collected	Result	
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 35.2 34.3 0.0336 31.3 46.1 38.4	3.561 3.535 -3.393 3.444 3.831 3.648

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	79.9	YES	4.381	N/A	
MW373	Downgradien	t Yes	58.3	NO	4.066	N/A	
MW385	Sidegradient	Yes	34.3	NO	3.535	N/A	
MW388	Downgradien	t Yes	57.1	NO	4.045	N/A	
MW392	Downgradien	t Yes	37.8	NO	3.632	N/A	
MW395	Upgradient	Yes	29.1	NO	3.371	N/A	
MW397	Upgradient	Yes	33.4	NO	3.509	N/A	
N/A - Resul	ts identified as N	on-Detects d	luring lab	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.756 S = 2.147	CV(1)= 0.200	K factor**= 2.523	TL(1)= 16.173	LL(1)= N/A
Statistics-Transformed Background Data	X =2.356 S = 0.203	CV(2) =0.086	K factor**= 2.523	TL(2)= 2.869	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	10.3	2.332			
9/16/2002	9.1	2.208			
10/16/2002	8.8	2.175			
1/13/2003	9	2.197			
4/10/2003	8.3	2.116			
7/16/2003	8.2	2.104			
10/14/2003	8.3	2.116			
1/13/2004	8.2	2.104			
Well Number:	MW397				
Date Collected	Result	LN(Result)			

14

12.8

12.3

12.7

12.8

13.1

12.1

12.1

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	19.6	YES	2.976	N/A	
MW373	Downgradien	t Yes	110	YES	4.700	N/A	
MW385	Sidegradient	Yes	19.9	YES	2.991	N/A	
MW388	Downgradien	t Yes	24.9	YES	3.215	N/A	
MW392	Downgradien	t Yes	7.21	NO	1.975	N/A	
MW395	Upgradient	Yes	10.1	NO	2.313	N/A	
MW397	Upgradient	Yes	11.6	NO	2.451	N/A	
N/A - Resu	lts identified as N	Ion-Detects d	luring lah	oratory analysis or	data validatior	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.639

2.549

2.510

2.542

2.549

2.573

2.493

2.493

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW370	
MW373	
MW385	
MW388	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 11.359	S = 9.138	CV(1)= 0.805	K factor**= 2.523	TL(1)= 34.414	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.398	S = 0.859	CV(2)= 0.358	K factor**= 2.523	TL(2)= 3.246	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	20.8	3.035			
9/16/2002	16.2	2.785			
10/16/2002	8.28	2.114			
1/13/2003	13	2.565			
4/10/2003	-9.37	#Func!			
7/16/2003	0.826	-0.191			
10/14/2003	14.1	2.646			
1/13/2004	0	#Func!			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	6.06	1.802			
9/16/2002	17.3	2.851			
10/17/2002	25.7	3.246			
1/13/2003	20.9	3.040			
4/8/2003	20.1	3.001			
7/16/2003	9.2	2.219			
10/14/2003	10.1	2.313			

8.54

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	82.8	YES	4.416	N/A	
MW373	Downgradient	Yes	33.1	NO	3.500	N/A	
MW385	Sidegradient	Yes	92.5	YES	4.527	N/A	
MW388	Downgradient	Yes	142	YES	4.956	N/A	
MW392	Downgradient	No	7.69	N/A	2.040	N/A	
MW395	Upgradient	No	11.4	N/A	2.434	N/A	
MW397	Upgradient	No	8.85	N/A	2.180	N/A	
N/A - Resu	lts identified as N	on-Detects (luring lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.145

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

```
Wells with Exceedances
MW370
MW385
MW388
```

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Thorium-230 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.139	S = 0.188	CV(1)= 1.349	K factor**= 2.523	TL(1)= 0.613	LL(1)= N/A
Statistics-Transformed Background Data	X =-2.481	S = 1.249	CV(2) =-0.504	K factor**= 2.523	TL(2)= -0.494	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MW305

Well Number

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/12/2004	0.61	-0.494
1/18/2005	-0.0305	#Func!
4/19/2005	0.347	-1.058
7/11/2005	0.276	-1.287
10/17/2005	0.0146	-4.227
1/19/2006	0.0389	-3.247
4/11/2006	0.0401	-3.216
7/17/2006	0.0124	-4.390
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.779
Date Collected	Result	
Date Collected 10/12/2004	Result 0.459	-0.779
Date Collected 10/12/2004 1/20/2005	Result 0.459 0.171	-0.779 -1.766
Date Collected 10/12/2004 1/20/2005 4/21/2005	Result 0.459 0.171 0.109	-0.779 -1.766 -2.216
Date Collected 10/12/2004 1/20/2005 4/21/2005 7/11/2005	Result 0.459 0.171 0.109 0.081	-0.779 -1.766 -2.216 -2.513
Date Collected 10/12/2004 1/20/2005 4/21/2005 7/11/2005 10/19/2005	Result 0.459 0.171 0.109 0.081 0.0319	-0.779 -1.766 -2.216 -2.513 -3.445
Date Collected 10/12/2004 1/20/2005 4/21/2005 7/11/2005 10/19/2005 1/18/2006	Result 0.459 0.171 0.109 0.081 0.0319 0.0423	-0.779 -1.766 -2.216 -2.513 -3.445 -3.163

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	t No	0.216	N/A	-1.532	N/A	
MW373	Downgradient	t No	0.342	N/A	-1.073	N/A	
MW385	Sidegradient	Yes	1.4	N/A	0.336	YES	
MW388	Downgradient	t No	0.111	N/A	-2.198	N/A	
MW392	Downgradient	t No	0.381	N/A	-0.965	N/A	
MW395	Upgradient	No	0.526	N/A	-0.642	N/A	
MW397	Upgradient	No	-0.0832	N/A	#Error	N/A	
N/A - Resu	lts identified as N	on-Detects	luring lab	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW385

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.544	S = 0.856	CV(1)= 0.554	K factor**= 2.523	TL(1)= 3.702	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.325	S= 0.452	CV(2)= 1.393	K factor**= 2.523	TL(2)= 1.465	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW395

Well Number:

wen number.	IVI VV 393	
Date Collected	Result	LN(Result)
8/13/2002	1.6	0.470
9/16/2002	1.1	0.095
10/16/2002	1	0.000
1/13/2003	2	0.693
4/10/2003	3.4	1.224
7/16/2003	2	0.693
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 3.6	0.000 0.000 0.000 1.281
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 3.6 1.9	0.000 0.000 0.000 1.281 0.642
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 1 1 3.6 1.9 1.1	0.000 0.000 0.000 1.281 0.642 0.095

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	1.26	NO	0.231	N/A	
MW373	Downgradien	t Yes	1.5	NO	0.405	N/A	
MW385	Sidegradient	Yes	0.918	NO	-0.086	N/A	
MW388	Downgradien	t Yes	0.933	NO	-0.069	N/A	
MW392	Downgradien	t Yes	1.1	NO	0.095	N/A	
MW395	Upgradient	Yes	0.879	NO	-0.129	N/A	
MW397	Upgradient	Yes	0.792	NO	-0.233	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =31.513	S = 18.609	CV(1)= 0.591	K factor**= 2.523	TL(1)= 78.462	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.240	S = 0.707	CV(2)= 0.218	K factor**= 2.523	TL(2)= 5.024	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	Well Number: MW395						
Date Collected	Result	LN(Result)					
8/13/2002	50	3.912					
9/16/2002	50	3.912					

3.912

2.907

3.936

3.752

2.510

2.303

3.912

3.912

3.912

2.485

2.991

2.885

2.303

2.303

LN(Result)

50

18.3

51.2

42.6

12.3

MW397

Result

50

50

50

12

19.9

17.9

10

10

10

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	t Yes	9.54	NO	2.255	N/A	
MW373	Downgradient	t Yes	15.5	NO	2.741	N/A	
MW385	Sidegradient	Yes	10.1	NO	2.313	N/A	
MW388	Downgradient	t Yes	16.4	NO	2.797	N/A	
MW392	Downgradient	t Yes	23.9	NO	3.174	N/A	
MW395	Upgradient	No	10	N/A	2.303	N/A	
MW397	Upgradient	No	10	N/A	2.303	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =7.313	S = 5.701	CV(1)= 0.780	K factor**= 2.523	TL(1)= 21.695	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.467	S= 1.213	CV(2)= 0.827	K factor**= 2.523	TL(2)= 4.528	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW395

Well Number:

wen Number.	111 11 555	
Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	14	2.639
10/16/2002	12	2.485
1/13/2003	14	2.639
4/10/2003	14	2.639
7/16/2003	13	2.565
10/14/2003	12	2.485
1/13/2004	11	2.398
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1	1.609 1.609 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1	1.609 1.609 0.000 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5 5 1 1 1 1 1	1.609 1.609 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	1.78	N/A	0.577	N/A	
MW373	Downgradien	t Yes	8.74	NO	2.168	N/A	
MW385	Sidegradient	No	1	N/A	0.000	N/A	
MW388	Downgradien	t Yes	0.67	N/A	-0.400	N/A	
MW392	Downgradien	t Yes	22	YES	3.091	N/A	
MW395	Upgradient	Yes	3.65	N/A	1.295	N/A	
MW397	Upgradient	No	1	N/A	0.000	N/A	
N/A - Resu	lts identified as N	on-Detects of	luring lab	oratory analysis or	data validatior	and were not	

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW392

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.001	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 0.001	LL(1)= N/A
Statistics-Transformed Background Data	X= -6.908	S = 0.000	CV(2)= 0.000	K factor**= 2.523	TL(2)= -6.908	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW305

Well Number

Well Number:	MW 395	
Date Collected	Result	LN(Result)
8/13/2002	0.001	-6.908
9/16/2002	0.001	-6.908
10/16/2002	0.001	-6.908
1/13/2003	0.001	-6.908
4/10/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -6.908
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 0.001	-6.908
Date Collected 8/13/2002 9/16/2002	Result 0.001 0.001	-6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.001 0.001 0.001	-6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.001 0.001 0.001 0.001	-6.908 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.001 0.001 0.001 0.001 0.001	-6.908 -6.908 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.001 0.001 0.001 0.001 0.001 0.001	-6.908 -6.908 -6.908 -6.908 -6.908 -6.908

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	0.0002	N/A	-8.517	N/A
MW373	Downgradien	t No	0.0002	N/A	-8.517	N/A
MW385	Sidegradient	Yes	0.00024	6 NO	-8.310	N/A
MW388	Downgradien	t No	0.0002	N/A	-8.517	N/A
MW392	Downgradien	t No	0.0002	N/A	-8.517	N/A
MW395	Upgradient	No	0.0002	N/A	-8.517	N/A
MW397	Upgradient	No	0.0002	N/A	-8.517	N/A
N/A - Resul	lts identified as N	on-Detects	luring labo	ratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.021	S = 0.002	CV(1)= 0.105	K factor**= 2.523	TL(1)= 0.027	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.856	S = 0.100	CV(2)= -0.026	K factor**= 2.523	TL(2)= -3.604	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
8/13/2002	0.025	-3.689					
9/16/2002	0.025	-3.689					
10/16/2002	0.02	-3.912					
1/13/2003	0.02	-3.912					
7/16/2003	0.02	-3.912					
10/14/2003	0.02	-3.912					
1/13/2004	0.02	-3.912					
4/12/2004	0.02	-3.912					

	0.02	0.012
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/17/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	0.01	N/A	-4.605	N/A
MW373	Downgradient	No	0.01	N/A	-4.605	N/A
MW385	Sidegradient	No	0.01	N/A	-4.605	N/A
MW388	Downgradient	No	0.01	N/A	-4.605	N/A
MW392	Downgradient	No	0.01	N/A	-4.605	N/A
MW395	Upgradient	No	0.01	N/A	-4.605	N/A
MW397	Upgradient	Yes	0.00778	NO NO	-4.856	N/A
N/A - Resu	lts identified as N	on-Detects of	luring lab	oratory analysis or	data validatior	and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.044	S = 0.034	CV(1)= 0.760	K factor**= 2.523	TL(1)= 0.129	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.342	S= 0.659	CV(2)= -0.197	K factor**= 2.523	TL(2)= -1.679	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					

Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/10/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.303
Date Collected	Result	
Date Collected 8/13/2002	Result 0.1	-2.303
Date Collected 8/13/2002 9/16/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.1 0.1 0.025	-2.303 -2.303 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.1 0.1 0.025 0.035	-2.303 -2.303 -3.689 -3.352
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.1 0.025 0.035 0.035	-2.303 -2.303 -3.689 -3.352 -3.352
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.1 0.025 0.035 0.035 0.02	-2.303 -2.303 -3.689 -3.352 -3.352 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t No	0.01	N/A	-4.605	N/A
MW373	Downgradient	t No	0.01	N/A	-4.605	N/A
MW385	Sidegradient	No	0.01	N/A	-4.605	N/A
MW388	Downgradient	t No	0.01	N/A	-4.605	N/A
MW392	Downgradient	t No	0.01	N/A	-4.605	N/A
MW395	Upgradient	No	0.01	N/A	-4.605	N/A
MW397	Upgradient	Yes	0.00357	7 NO	-5.635	N/A
N/A - Resul	ts identified as N	on-Detects d	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =289.750	0 S = 107.37	0 CV(1)=0.371	K factor**= 3.188	TL(1)= 632.044	LL(1)= N/A
Statistics-Transformed Background	X = 5.608	S = 0.376	CV(2) =0.067	K factor**= 3.188	TL(2)= 6.807	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW396	
Date Collected	Result	LN(Result)
1/8/2015	193	5.263
4/22/2015	469	6.151
7/16/2015	330	5.799
10/22/2015	159	5.069
1/5/2016	223	5.407
4/18/2016	384	5.951
7/19/2016	339	5.826
10/12/2016	221	5.398

Current Background Data from Upgradient

Wells with Transformed Result

Data

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	171	NO	5.142	N/A
MW390	Downgradient	Yes	380	NO	5.940	N/A
MW393	Downgradient	Yes	247	NO	5.509	N/A
MW396	Upgradient	Yes	209	NO	5.342	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonRadium-226UNITS: pCi/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Background Data from Upgr	adient				V(1) is less than	-
Statistics-Transformed Background Data	X =-0.506	S = 0.483	CV(2) =-0.954	K factor**= 3.188	TL(2)= 1.033	LL(2)= N/A
Statistics-Background Data	X =0.658	S = 0.258	CV(1)= 0.392	K factor**= 3.188	TL(1)= 1.482	LL(1)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW396		utilizing TL(1).
Date Collected	Result	LN(Result)	
1/8/2015	0.585	-0.536	
4/22/2015	0.786	-0.241	
7/16/2015	0.785	-0.242	
10/22/2015	0.988	-0.012	
1/5/2016	0.907	-0.098	Current Quarter Data
4/18/2016	0.239	-1.431	
7/19/2016	0.376	-0.978	Well No. Gradient Detected? Result Result >TL(1)? LN(Result) LN(Result) >TL(2)
10/12/2016	0.601	-0.509	MW390 Downgradient Yes 1.19 NO 0.174 N/A

Conclusion of Statistical Analysis on Current Data

Wells with Transformed Result

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Backg	ground Dat	a	X= -0.170	S = 7.707	CV(1)= -45.	.366 K	factor	**= 3.188	FL(1)= 24.39	8 LL(1)=N/A
Statistics-Trans Data	formed Ba	ckground	X = 0.977	S= 1.618	CV(2) =1.65	57 K	factor	**= 3.188]	TL(2)= 2.416	5 LL(2)=N/A
Current Back Wells with Tra-	0	-0	adient				1 c	Because CV(, assume no ontinue with tilizing TL(rmal distri n statistical	
Date Collected 1/8/2015 4/22/2015 7/16/2015	Result 11.2 2.84 0.171	LN(Resul 2.416 1.044 -1.766	lt)				р Т	Because the ossbile for a 'L was consi naximum ba	all backgrou idered equa	und values, the al to the
10/22/2015 1/5/2016	-7.28 6.24	#Func! 1.831		Current	Quarter Data					
4/18/2016 7/19/2016	-7.52 3.89	#Func! 1.358		Well No.	Gradient I	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(2)
10/12/2016	-10.9	#Func!		MW390	Downgradient	Yes	55.3	YES	4.013	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonThorium-230UNITS: pCi/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Back	ground Dat	a	X= 0.452	S= 0.677	CV(1)= 1.500	K factor**= 3.188	TL(1)= 2.612	LL(1)= N/A
Statistics-Trans Data	sformed Ba	ckground	X= -1.310	S = 1.533	CV(2) =-1.170	K factor**= 3.188	TL(2)= 0.708	LL(2)= N/A
Current Back Wells with Tr	ansformed H		ndient			natural log test well re	V(1) is greater t garithm of back sults were calcu L(2) for compa	ground and ulated
Well Number:	MW396					utilizing 1		115011.
Date Collected	Result	LN(Result	:)			#Because t	he natural log v	was not
1/8/2015	2.03	0.708				possbile fo	r all backgroun	d values, the
4/22/2015	0.468	-0.759				TL was co	nsidered equal	to the
7/16/2015	0.415	-0.879					background va	
10/22/2015	0.0132	-4.328					8	
1/5/2016	0.188	-1.671		Current	Quarter Data			
4/18/2016	0.233	-1.457		Į				
7/19/2016	0.456	-0.785		Well No.	Gradient Dete	cted? Result Result >TL	(1)? LN(Result) L	N(Result) > TL(2)

MW390 Downgradient Yes

0.661

N/A

-0.414

NO

Conclusion of Statistical Analysis on Current Data

#Func!

10/12/2016

-0.189

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Current Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.060	S= 0.053	CV(1)= 0.880	K factor**= 2.523	TL(1)= 0.193	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.110	S = 0.778	CV(2) =-0.250	K factor**= 2.523	TL(2)= -1.146	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No	Gradient	Detected?	Result	Result STI (1)?	I N(Result)	LN(Result) >TL(2
vell No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >1L

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

-1.575

-4.123

-2.996

-4.193

-2.996

-2.996

-2.996

-3.324

-2.017

-2.025

-2.996

-4.123

-3.316

-4.086

-2.996

-2.996

LN(Result)

MW220

Result

0.207

0.0162

0.0151

0.05

0.05

0.05

0.05

0.036

MW394

Result

0.133

0.132

0.05

0.0162

0.0363

0.0168

0.05

0.05

Wells with Transformed Result

Well Number: Date Collected

1/5/2015

4/14/2015

7/15/2015 10/15/2015

1/5/2016

4/12/2016

7/19/2016

10/10/2016

Well Number:

Date Collected

1/8/2015

4/22/2015

7/17/2015

10/22/2015

1/5/2016

4/18/2016 7/19/2016

10/12/2016

Wells with Exceedances MW222

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonBeta activityUNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.757	S= 6.163	CV(1)= 0.573	K factor**= 2.523	TL(1)= 26.305	LL(1)= N/A
Statistics-Transformed Background Data	X = 2.207	S= 0.623	CV(2)= 0.282	K factor**= 2.523	TL(2)= 3.779	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW384	Sidegradient	Yes	103	YES	4.635	N/A
MW387	Downgradient	t Yes	154	YES	5.037	N/A

Well Number:	MW220

Wells with Transformed Result

Date Collected	Result	LN(Result)
1/5/2015	21.8	3.082
4/14/2015	11.4	2.434
7/15/2015	9.31	2.231
10/15/2015	17	2.833
1/5/2016	18.1	2.896
4/12/2016	14.2	2.653
7/19/2016	6.61	1.889
10/10/2016	21.7	3.077
Well Number:	MW394	
wen number:	IVI W 394	
Date Collected		LN(Result)
		LN(Result) 1.623
Date Collected	Result	
Date Collected 1/8/2015	Result 5.07	1.623
Date Collected 1/8/2015 4/22/2015	Result 5.07 9.13	1.623 2.212
Date Collected 1/8/2015 4/22/2015 7/17/2015	Result 5.07 9.13 5.97	1.623 2.212 1.787
Date Collected 1/8/2015 4/22/2015 7/17/2015 10/22/2015	Result 5.07 9.13 5.97 11.6	1.623 2.212 1.787 2.451
Date Collected 1/8/2015 4/22/2015 7/17/2015 10/22/2015 1/5/2016	Result 5.07 9.13 5.97 11.6 6.13	1.623 2.212 1.787 2.451 1.813
Date Collected 1/8/2015 4/22/2015 7/17/2015 10/22/2015 1/5/2016 4/18/2016	Result 5.07 9.13 5.97 11.6 6.13 7.54	1.623 2.212 1.787 2.451 1.813 2.020

Current Background Data from Upgradient

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-8

Wells with Exceedances MW384 MW387

C-746-S/T First Quarter 2017 Statistical Analysis Current Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 24.394 S = 3.898	CV(1)= 0.160	K factor**= 2.523	TL(1)= 34.230	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.182 S = 0.165	CV(2) =0.052	K factor**= 2.523	TL(2)= 3.599	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

4/14/2015	23	3.135
7/15/2015	21.8	3.082
10/15/2015	18.5	2.918
1/5/2016	19.3	2.960
4/12/2016	25.7	3.246
7/19/2016	19.5	2.970
10/10/2016	20.5	3.020
Well Number:	MW394	
Date Collected	Result	LN(Result)
1/8/2015	27.2	3.303
4/22/2015	26.5	3.277
7/17/2015	26.8	3.288
10/22/2015	26.9	3.292
1/5/2016	27.7	3.321
4/18/2016	29.5	3.384
7/19/2016	28.8	3.360

LN(Result)

2.996

Current Background Data from Upgradient

MW220

Result

20

28.6

Wells with Transformed Result

Well Number:

Date Collected

1/5/2015

10/12/2016

utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW372	Downgradient	t Yes	47.5	YES	3.861	N/A	

Conclusion of Statistical Analysis on Current Data

3.353

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonDissolved SolidsUNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =206.188 S = 30.621	CV(1)= 0.149	K factor**= 2.523	TL(1)= 283.444	LL(1)= N/A
Statistics-Transformed Background	X =5.318 S = 0.154	CV(2) =0.029	K factor**= 2.523	TL(2)= 5.707	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)	? LN(Result)	LN(Result) >TL(2
MW372	Downgradient	Yes	326	YES	5.787	N/A

Conclusion of Statistical Analysis on Current Data

Data

Well Number:

Date Collected

1/5/2015

4/14/2015

7/15/2015

1/5/2016

4/12/2016

7/19/2016

10/10/2016

Well Number:

Date Collected

1/8/2015

4/22/2015

7/17/2015

10/22/2015

1/5/2016

4/18/2016 7/19/2016

10/12/2016

10/15/2015

Current Background Data from Upgradient

LN(Result)

4.942

5.283

5.412

5.464

5.342

5.609

5.298

5.231

5.112

5.198

5.303

5.347

5.421

5.293

5.442

5.389

LN(Result)

MW220

Result

140

197

224

236

209

273

200

187

MW394

Result

166

181

201

210

226

199

231

219

Wells with Transformed Result

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis **Current Background Comparison URGA** Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.306 S = 1.663	CV(1)= 0.161	K factor**= 2.523	TL(1)= 14.502	LL(1)= N/A
Statistics-Transformed Background Data	X = 2.320 S = 0.168	CV(2)= 0.072	K factor**= 2.523	TL(2)= 2.744	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW372	Downgradient	t Yes	18.6	YES	2.923	N/A	
MW391	Downgradient	t Yes	16.2	YES	2.785	N/A	

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

2.086

2.322 2.215

2.062

2.133

2.351

2.078

2.163

2.425

2.407

2.477

2.493

2.477

2.477

2.460

2.493

LN(Result)

MW220

Result

8.05

10.2

9.16

7.86

8.44

10.5

7.99

8.7

MW394

Result

11.3

11.1

11.9

12.1

11.9

11.9

11.7

12.1

Wells with Transformed Result

Well Number:

Date Collected

1/5/2015

4/14/2015

7/15/2015

1/5/2016

4/12/2016

7/19/2016

10/10/2016

Well Number:

Date Collected

1/8/2015

4/22/2015

7/17/2015

10/22/2015

1/5/2016

4/18/2016 7/19/2016

10/12/2016

10/15/2015

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-11

Wells with Exceedances MW372

MW391

Current	Quarter Data				
Well No.	Gradient	Detected?	Result	Result >TL(1	
MW372	Downgradient	Yes	18.6	YES	

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 489.500 S =	= 126.423	3 CV(1)=0.258	K factor**= 2.523	TL(1)= 808.464	LL(1)= N/A
Statistics-Transformed Background Data	X = 6.165 S =	= 0.241	CV(2)= 0.039	K factor**= 2.523	TL(2)= 6.773	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	417	NO	6.033	N/A	
MW223	Sidegradient	Yes	423	NO	6.047	N/A	
MW224	Sidegradient	Yes	442	NO	6.091	N/A	

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

6.597

6.190

6.510

6.590

6.107

6.082

6.052

6.026

6.116

6.133

6.410 6.019

5.861 6.182

5.852

5.911

LN(Result)

MW220

Result

733

488

672

728

449

438

425

414

MW394

Result

453

461

608

411

351

484

348

369

Wells with Transformed Result

Well Number:

Date Collected

1/5/2015

4/14/2015

9/3/2015

1/5/2016

4/12/2016

7/19/2016

10/10/2016

Well Number:

Date Collected

1/8/2015

4/22/2015

7/17/2015

10/22/2015

1/5/2016

4/18/2016

7/19/2016

10/12/2016

10/15/2015

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonRadium-226UNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.636	S = 0.267	CV(1)= 0.420	K factor**= 2.523	TL(1)= 1.311	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.529	S = 0.398	CV(2) =-0.754	K factor**= 2.523	TL(2)= 0.477	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW369	Downgradient	Yes	0.868	NO	-0.142	N/A	
MW384	Sidegradient	Yes	0.678	NO	-0.389	N/A	

Well Number: MW220

Wells with Transformed Result

Date Collected	Result	LN(Result)
1/5/2015	0.484	-0.726
4/14/2015	0.409	-0.894
7/15/2015	0.709	-0.344
10/15/2015	0.636	-0.453
1/5/2016	0.745	-0.294
4/12/2016	0.657	-0.420
7/19/2016	0.375	-0.981
10/10/2016	1.15	0.140
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -1.103
Date Collected	Result	· · ·
Date Collected 1/8/2015	Result 0.332	-1.103
Date Collected 1/8/2015 4/22/2015	Result 0.332 0.557	-1.103 -0.585
Date Collected 1/8/2015 4/22/2015 7/17/2015	Result 0.332 0.557 0.928	-1.103 -0.585 -0.075
Date Collected 1/8/2015 4/22/2015 7/17/2015 10/22/2015	Result 0.332 0.557 0.928 0.43	-1.103 -0.585 -0.075 -0.844
Date Collected 1/8/2015 4/22/2015 7/17/2015 10/22/2015 1/5/2016	Result 0.332 0.557 0.928 0.43 1.19	-1.103 -0.585 -0.075 -0.844 0.174
Date Collected 1/8/2015 4/22/2015 7/17/2015 10/22/2015 1/5/2016 4/18/2016	Result 0.332 0.557 0.928 0.43 1.19 0.757	-1.103 -0.585 -0.075 -0.844 0.174 -0.278

Current Background Data from Upgradient

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Current Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =36.394 S = 5.377	CV(1)= 0.148	K factor**= 2.523	TL(1)= 49.959	LL(1)=N/A
Statistics-Transformed Background Data	X =3.585 S = 0.141	CV(2) =0.039	K factor**= 2.523	TL(2)= 3.940	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected LN(Result) Result 1/5/2015 38.1 3.640 4/14/2015 44.9 3.804 7/15/2015 38.3 3.645 10/15/2015 3.512 33.5 1/5/2016 40.1 3.691 4/12/2016 49.2 3.896 7/19/2016 39.8 3.684 10/10/2016 39.6 3.679 Well Number: MW394 Date Collected Result LN(Result) 1/8/2015 33.8 3.520 4/22/2015 30.3 3.411 7/17/2015 31.2 3.440 10/22/2015 33.1 3.500 1/5/2016 32.3 3.475 3.459 4/18/2016 31.8 7/19/2016 31.4 3.447 10/12/2016 34.9 3.552

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW369	Downgradient	Yes	72	YES	4.277	N/A		
MW384	Sidegradient	Yes	83.2	YES	4.421	N/A		
MW387	Downgradient	Yes	65.4	YES	4.181	N/A		

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW369 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonSulfateUNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =13.928 S = 4.072	CV(1)= 0.292	K factor**= 2.523	TL(1)= 24.200	LL(1)= N/A
Statistics-Transformed Background Data	X =2.595 S = 0.285	CV(2)= 0.110	K factor**= 2.523	TL(2)= 3.314	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected Result LN(Result) 1/5/2015 14 2.639 17.9 4/14/2015 2.885 2.923 7/15/2015 18.6 10/15/2015 14.7 2.688 1/5/2016 16.5 2.803 4/12/2016 21.8 3.082 7/19/2016 17.9 2.885 10/10/2016 2.929 18.7 Well Number: MW394 Date Collected Result LN(Result) 1/8/2015 10.5 2.351 4/22/2015 10.3 2.332 7/17/2015 10.4 2.342 10/22/2015 10.7 2.370 1/5/2016 10.1 2.313 9.84 2.286 4/18/2016 7/19/2016 10.5 2.351 10/12/2016 10.4 2.342

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	18.4	NO	2.912	N/A			
MW372	Downgradient	Yes	66.2	YES	4.193	N/A			
MW384	Sidegradient	Yes	20.3	NO	3.011	N/A			
MW387	Downgradient	Yes	30.1	YES	3.405	N/A			
MW391	Downgradient	Yes	50.2	YES	3.916	N/A			

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW372 MW387 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Current Background Comparison C-746-S/T First Quarter 2017 Statistical Analysis **UNITS: pCi/L Technetium-99 URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.849 S = 8.736	CV(1)= 0.680	K factor**= 2.523	TL(1)= 34.891	LL(1)= N/A
Statistics-Transformed Background Data	X = 2.248 S = 0.950	CV(2)= 0.423	K factor**= 2.523	TL(2)= 4.645	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW384	Sidegradient	Yes	149	YES	5.004	N/A	
MW387	Downgradient	t Yes	249	YES	5.517	N/A	

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

3.481

2.501

2.695

2.451

2.912

2.565

3.364

2.510

2.845

2.442

1.135

-0.298

1.404

2.708

1.770

1.479

LN(Result)

MW220

Result

32.5

12.2

14.8

11.6

18.4

28.9

12.3

MW394

Result

17.2

11.5

3.11

0.742

4.07

5.87

4.39

15

13

Wells with Transformed Result

Well Number:

Date Collected

1/5/2015

4/14/2015

7/15/2015

1/5/2016

4/12/2016

7/19/2016

10/10/2016

Well Number:

Date Collected

1/8/2015

4/22/2015

7/17/2015

10/22/2015

1/5/2016

4/18/2016 7/19/2016

10/12/2016

10/15/2015

The test well(s) imit, which is evidence of elevated concentration w

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-16

Wells with Exceedances MW384

MW387

listed exceeded the Upper Tolerance Li
with respect to current background data

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Res
MW384	Sidegradient	Yes	149	YES	5.004	N/A
MW387	Downgradien	t Yes	249	YES	5.517	N/A

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonThorium-230UNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.418	S = 1.560	CV(1)= 3.727	K factor**= 2.523	TL(1)= 4.354	LL(1)= N/A
Statistics-Transformed Background	X =-1.190	S = 1.175	CV(2) =-0.988	K factor**= 2.523	TL(2)= 1.782	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
1/5/2015	5.94	1.782				
4/14/2015	0.145	-1.931				
7/15/2015	0.729	-0.316				
10/15/2015	-0.159	#Func!				
1/5/2016	-0.00535	#Func!				
4/12/2016	0.0887	-2.422				
7/19/2016	0.174	-1.749				
10/10/2016	-0.173	#Func!				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
1/8/2015	-1.65	#Func!				
4/22/2015	0.586	-0.534				
7/17/2015	0.407	-0.899				
10/22/2015	-0.0832	#Func!				
1/5/2016	0.182	-1.704				
4/18/2016	0.147	-1.917				
7/19/2016	0.172	-1.760				
10/12/2016	0.195	-1.635				

Data

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW384	Sidegradient	Yes	0.985	N/A	-0.015	NO	•

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonBeta activityUNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.343	S = 5.916	CV(1)= 0.806	K factor**= 2.523	TL(1)= 22.270	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.940	S = 0.752	CV(2) =0.388	K factor**= 2.523	TL(2)= 2.845	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW385	Sidegradient	Yes	54	YES	3.989	N/A		
MW388	Downgradien	t Yes	86.4	YES	4.459	N/A		

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

1.788

0.030

1.332

2.370

2.845

1.861

#Func!

1.286

2.791

1.681

2.833

#Func!

2.250

2.322 2.019

1.746

LN(Result)

MW395

Result

5.98

1.03

3.79

10.7

17.2

6.43

-1.87

3.62

MW397

Result

16.3

5.37

-1.02

9.49

10.2

7.53

5.73

17

Wells with Transformed Result

Well Number:

Date Collected

1/6/2015

4/22/2015

7/17/2015

1/5/2016

4/18/2016

7/19/2016

10/12/2016

1/7/2015

4/22/2015

7/15/2015

10/22/2015

1/5/2016

4/14/2016

7/19/2016

10/11/2016

Well Number:

Date Collected

10/22/2015

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-18

Wells with Exceedances MW385 MW388

C-746-S/T First Quarter 2017 Statistical Analysis Current Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =23.756 S = 5.076	CV(1)= 0.214	K factor**= 2.523	TL(1)= 36.563	LL(1)= N/A
Statistics-Transformed Background Data	X =3.147 S = 0.212	CV(2) =0.067	K factor**= 2.523	TL(2)= 3.682	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW373	Downgradien	Yes	69.6	YES	4.243	N/A			

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

3.250

3.273

3.277

3.296

3.311

3.318

3.270

3.303

2.923

2.929

2.874

2.955

2.955

2.896

3.558

2.960

LN(Result)

MW395

Result

25.8

26.4

26.5

27.4

27.6

26.3

27.2

MW397

Result

18.6

18.7

17.7

19.2

19.2

18.1

35.1

19.3

27

Wells with Transformed Result

Well Number:

Date Collected

1/6/2015

4/22/2015

7/17/2015

1/5/2016

4/18/2016

7/19/2016

10/12/2016

Well Number:

Date Collected

1/7/2015

4/22/2015

7/15/2015

10/22/2015

1/5/2016

4/14/2016

7/19/2016

10/11/2016

10/22/2015

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonConductivityUNITS: umho/cmLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 358.313 S = 29.594	CV(1)= 0.083	K factor**= 2.523	TL(1)= 432.979	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.878 S = 0.082	CV(2) =0.014	K factor**= 2.523	TL(2)= 6.085	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

1/6/2015	376	5.930
4/22/2015	338	5.823
7/17/2015	390	5.966
10/22/2015	372	5.919
1/5/2016	408	6.011
4/18/2016	399	5.989
7/19/2016	394	5.976
10/12/2016	377	5.932
Well Number:	MW397	
Date Collected	Result	LN(Result)
Date Collected 1/7/2015	Result 354	LN(Result) 5.869
		· /
1/7/2015	354	5.869
1/7/2015 4/22/2015	354 325	5.869 5.784
1/7/2015 4/22/2015 7/15/2015	354 325 334	5.869 5.784 5.811
1/7/2015 4/22/2015 7/15/2015 10/22/2015	354 325 334 323	5.869 5.784 5.811 5.778
1/7/2015 4/22/2015 7/15/2015 10/22/2015 1/5/2016	354 325 334 323 353	5.869 5.784 5.811 5.778 5.866
1/7/2015 4/22/2015 7/15/2015 10/22/2015 1/5/2016 4/14/2016	354 325 334 323 353 323	5.869 5.784 5.811 5.778 5.866 5.778

Current Background Data from Upgradient

LN(Result)

MW395

Result

Wells with Transformed Result

Well Number: Date Collected

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	t Yes	781	YES	6.661	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonDissolved SolidsUNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =185.500 S = 27.862	CV(1)= 0.150	K factor**= 2.523	TL(1)= 255.795	LL(1)=N/A
Statistics-Transformed Background Data	X =5.212 S = 0.151	CV(2) =0.029	K factor**= 2.523	TL(2)= 5.594	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

4/22/2015	179	5.187	
7/17/2015	203	5.313	
10/22/2015	194	5.268	r
1/5/2016	229	5.434	Current
4/18/2016	224	5.412	
7/19/2016	219	5.389	Well No.
10/12/2016	214	5.366	MW373
Well Number:	MW397		
Date Collected	Result	LN(Result)	
1/7/2015	159	5.069	
4/22/2015	144	4.970	
7/15/2015	190	5.247	
10/22/2015	160	5.075	
1/5/2016	204	5.318	
4/14/2016	167	5.118	
7/19/2016	169	5.130	

LN(Result)

4.990

Current Background Data from Upgradient

MW395

Result

147

166

Wells with Transformed Result

Well Number:

Date Collected

1/6/2015

10/11/2016

Current	t Quarter Data	1				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	413	YES	6.023	N/A

Conclusion of Statistical Analysis on Current Data

5.112

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonMagnesiumUNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.190 S = 2.251	CV(1)= 0.221	K factor**= 2.523	TL(1)= 15.869	LL(1)= N/A
Statistics-Transformed Background Data	X =2.299 S = 0.218	CV(2) =0.095	K factor**= 2.523	TL(2)= 2.849	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW373	Downgradient	Yes	23.9	YES	3.174	N/A		

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

2.299

2.425

2.468

2.510

2.468

2.442

2.407

2.485

2.033

2.091

2.022

2.156

2.102

2.044

2.721

2.111

LN(Result)

MW395

Result

9.96

11.3

11.8

12.3

11.8

11.5

11.1

12

MW397

Result

7.64

8.09

7.55

8.64

8.18

7.72

15.2

8.26

Wells with Transformed Result

Well Number:

Date Collected

1/6/2015

4/22/2015

7/17/2015

1/5/2016

4/18/2016

7/19/2016

10/12/2016

Well Number:

Date Collected

1/7/2015

4/22/2015

7/15/2015

10/22/2015

1/5/2016

4/14/2016

7/19/2016

10/11/2016

10/22/2015

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =465.375 S = 99.611	CV(1)= 0.214	K factor**= 2.523	TL(1)= 716.694	LL(1)=N/A
Statistics-Transformed Background Data	X = 6.122 S = 0.208	CV(2)= 0.034	K factor**= 2.523	TL(2)= 6.647	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	412	NO	6.021	N/A	
MW388	Downgradient	Yes	327	NO	5.790	N/A	
MW395	Upgradient	Yes	299	NO	5.700	N/A	
MW397	Upgradient	Yes	416	NO	6.031	N/A	

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW395

Date Collected	Result	LN(Result)
1/6/2015	586	6.373
4/22/2015	474	6.161
7/17/2015	468	6.148
10/22/2015	378	5.935
1/5/2016	380	5.940
4/18/2016	325	5.784
7/19/2016	428	6.059
10/12/2016	357	5.878
Well Number:	MW397	
wen Number.	IVI W 597	
Date Collected		LN(Result)
		LN(Result) 6.515
Date Collected	Result	
Date Collected 1/7/2015	Result 675	6.515
Date Collected 1/7/2015 4/22/2015	Result 675 471	6.515 6.155
Date Collected 1/7/2015 4/22/2015 7/15/2015	Result 675 471 599	6.515 6.155 6.395
Date Collected 1/7/2015 4/22/2015 7/15/2015 10/22/2015	Result 675 471 599 448	6.515 6.155 6.395 6.105
Date Collected 1/7/2015 4/22/2015 7/15/2015 10/22/2015 1/5/2016	Result 675 471 599 448 473	6.515 6.155 6.395 6.105 6.159
Date Collected 1/7/2015 4/22/2015 7/15/2015 10/22/2015 1/5/2016 4/14/2016	Result 675 471 599 448 473 586	6.515 6.155 6.395 6.105 6.159 6.373

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonRadium-226UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.599	S = 0.306	CV(1)= 0.511	K factor**= 2.523	TL(1)= 1.372	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.545	S = 0.521	CV(2) =-0.955	K factor**= 2.523	TL(2)= 0.182	LL(2)= N/A

Current Background Data from Upgradie Wells with Transformed Result								
MW395								
Result	LN(Result)							
0.566	-0.569							
0.892	-0.114							
1.2	0.182							
1.01	0.010							
0.707	-0.347							
0.13	-2.040							
0.654	-0.425							
0.669	-0.402							
MW397								
Result	LN(Result)							
0.45	-0.799							
0.69	-0.371							
0.516	-0.662							
0.356	-1.033							
0.748	-0.290							
-0.0439	#Func!							
0.464	-0.768							
0.575	-0.553							
	MW395 Result 0.566 0.892 1.2 1.01 0.707 0.13 0.654 0.669 MW397 Result 0.45 0.69 0.516 0.356 0.748 -0.0439 0.464							

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

i	Current Quarter Data						
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW370	Downgradient	t Yes	0.72	NO	-0.329	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonSodiumUNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 36.450	S = 18.510	CV(1)= 0.508	K factor**= 2.523	TL(1)= 83.150	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.533	S= 0.313	CV(2) =0.089	K factor**= 2.523	TL(2)= 4.321	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW395	
Date Collected	Result	LN(Result)
1/6/2015	25.8	3.250
4/22/2015	29.9	3.398
7/17/2015	31.7	3.456
10/22/2015	32.5	3.481
1/5/2016	31.2	3.440
4/18/2016	30.7	3.424
7/19/2016	29.3	3.378
10/12/2016	30.5	3.418
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.411
Date Collected	Result	
Date Collected 1/7/2015	Result 30.3	3.411
Date Collected 1/7/2015 4/22/2015	Result 30.3 35.4	3.411 3.567
Date Collected 1/7/2015 4/22/2015 7/15/2015	Result 30.3 35.4 30.3	3.411 3.567 3.411
Date Collected 1/7/2015 4/22/2015 7/15/2015 10/22/2015	Result 30.3 35.4 30.3 36	3.411 3.567 3.411 3.584
Date Collected 1/7/2015 4/22/2015 7/15/2015 10/22/2015 1/5/2016	Result 30.3 35.4 30.3 36 33.5	3.411 3.567 3.411 3.584 3.512

Current Background Data from Upgradient

Wells with Transformed Result

Well Marsher MW205

Current	Quarter Data	l				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	79.9	NO	4.381	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.528 S = 0.741	CV(1)= 0.070	K factor**= 2.523	TL(1)= 12.397	LL(1)= N/A
Statistics-Transformed Background Data	X =2.352 S = 0.070	CV(2)= 0.030	K factor**= 2.523	TL(2)= 2.528	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW395 Date Collected Result LN(Result) 1/6/2015 10.12.313 10.1 4/22/2015 2.313 10.2 2.322 7/17/2015 10/22/2015 10 2.303 1/5/2016 9.84 2.286 4/18/2016 9.73 2.275 7/19/2016 9.9 2.293 10/12/2016 9.86 2.288 Well Number: MW397 Date Collected Result LN(Result) 1/7/2015 11.7 2.460 4/22/2015 10.9 2.389 7/15/2015 11.4 2.434 10/22/2015 11.6 2.451 1/5/2016 11.2 2.416 4/14/2016 9.61 2.263 7/19/2016 11 2.398 10/11/2016 11.3 2.425

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	19.6	YES	2.976	N/A
MW373	Downgradient	Yes	110	YES	4.700	N/A
MW385	Sidegradient	Yes	19.9	YES	2.991	N/A
MW388	Downgradient	Yes	24.9	YES	3.215	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW370 MW373 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.219 S = 4.454	CV(1)= 0.436	K factor**= 2.523	TL(1)= 21.458	LL(1)= N/A
Statistics-Transformed Background Data	X = 2.209 S = 0.544	CV(2)= 0.246	K factor**= 2.523	TL(2)= 3.582	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW395 Date Collected Result LN(Result) 1/6/2015 17 2.833 1.981 4/22/2015 7.25 7/17/2015 14.7 2.688 10/22/2015 9.39 2.240 1/5/2016 5.69 1.739 4/18/2016 8.36 2.123 7/19/2016 13.2 2.580 10/12/2016 2.15 0.765 Well Number: MW397 Date Collected Result LN(Result) 1/7/2015 4.58 1.522 4/22/2015 9.32 2.232 7/15/2015 13.2 2.580 10/22/2015 9.83 2.285 1/5/2016 17.4 2.856 4/14/2016 7.44 2.007 7/19/2016 14.9 2.701 10/11/2016 9.1 2.208

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	82.8	YES	4.416	N/A	
MW385	Sidegradient	Yes	92.5	YES	4.527	N/A	
MW388	Downgradient	Yes	142	YES	4.956	N/A	

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-27

Wells with Exceedances MW370 MW385 MW388

C-746-S/T First Quarter 2017 Statistical Analysis **Current Background Comparison UNITS: pCi/L** Thorium-230 **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.576	S= 1.244	CV(1)= 2.161	K factor**= 2.523	TL(1)= 3.714	LL(1)= N/A
Statistics-Transformed Background	X =-1.129	S = 1.585	CV(2) =-1.404	K factor**= 2.523	TL(2)= 1.324	LL(2)= N/A

4/14/2016

7/19/2016

10/11/2016

Current Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
1/6/2015	3.76	1.324					
4/22/2015	-0.305	#Func!					
7/17/2015	0.645	-0.439					
10/22/2015	0.169	-1.778					
1/5/2016	0.0208	-3.873					
4/18/2016	-0.0374	#Func!					
7/19/2016	0.0725	-2.624					
10/12/2016	-0.154	#Func!					
Well Number:	MW397						
Date Collected	Result	LN(Result)					
1/7/2015	3.59	1.278					
4/22/2015	-0.154	#Func!					
7/15/2015	0.504	-0.685					
10/22/2015	-0.179	#Func!					
1/5/2016	0.109	-2.216					

0.676

0.354

0.139

Because CV(1) is greater than 1, the
natural logarithm of background and
test well results were calculated
utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

	Current Quarter Data							
,	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
	MW385	Sidegradient	Yes	1.4	N/A	0.336	NO	

Conclusion of Statistical Analysis on Current Data

-0.392

-1.038

-1.973

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2017 Statistical AnalysisCurrent Background ComparisonTrichloroetheneUNITS: ug/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.441	S= 1.692	CV(1)= 0.693	K factor**= 2.523	TL(1)= 6.710	LL(1)= N/A
Statistics-Transformed Background Data	X =0.558	S = 0.936	CV(2) =1.675	K factor**= 2.523	TL(2)= 2.919	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW392	Downgradient	Yes	22	YES	3.091	N/A

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

1.384

1.241 1.335

1.366

1.528

1.442

1.479

1.384

0.000

-1.022

0.000

0.000

-1.204

0.000

0.000

0.000

LN(Result)

MW395

Result

3.99

3.46

3.8

3.92

4.61

4.23

4.39

3.99

MW397

Result

1

1

1

1

1

1

0.3

0.36

Wells with Transformed Result

Well Number:

Date Collected

1/6/2015

4/22/2015

7/17/2015

1/5/2016

4/18/2016

7/19/2016

10/12/2016

1/7/2015

4/22/2015

7/15/2015

10/22/2015

1/5/2016

4/14/2016

7/19/2016

10/11/2016

Well Number:

Date Collected

10/22/2015

Wells with Exceedances MW392

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

April 25, 2017

Ms. Kelly Layne Fluor Federal Services, Inc. 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in biology, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Fluor Federal Services, Inc.

For this project, the statistical analyses conducted on the first quarter 2017 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

R. Blewett

Jennifer R. Blewett

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

GROUNDWATER FLOW RATE AND DIRECTION

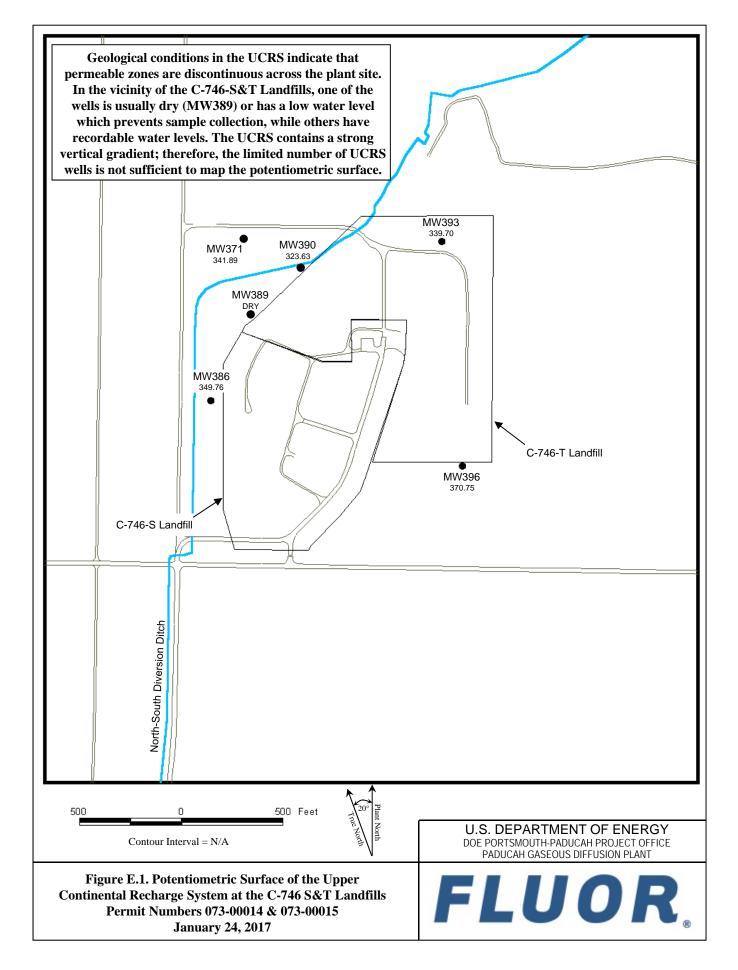
THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT—QUARTERLY, 1st CY 2017 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u> LAB ID: <u>None</u> For Official Use Only

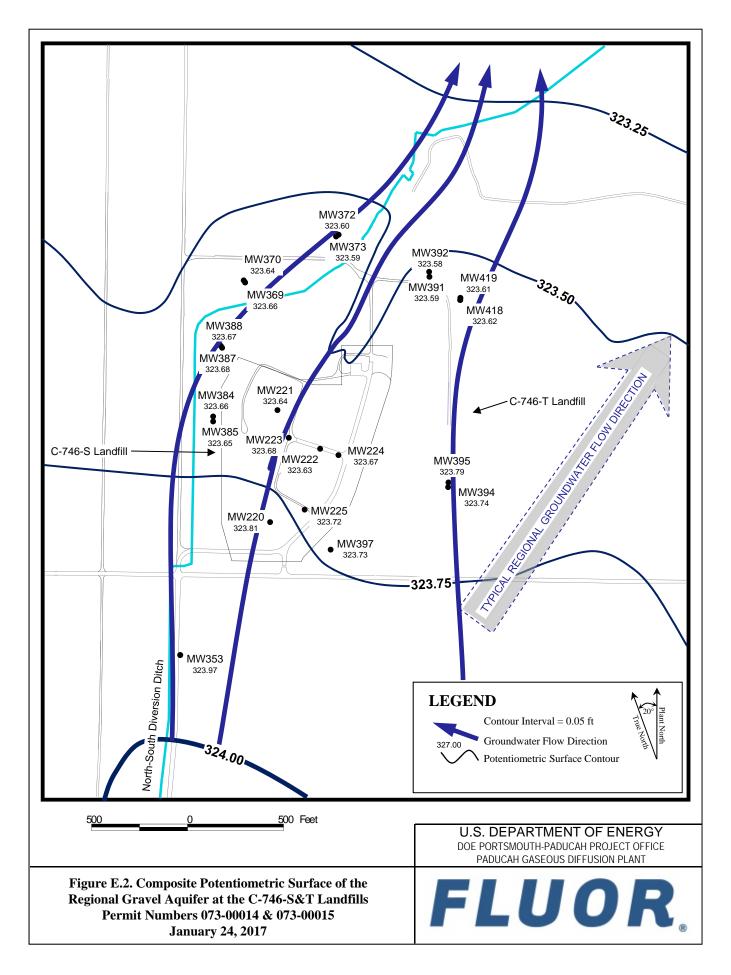
GROUNDWATER FLOW RATE AND DIRECTION

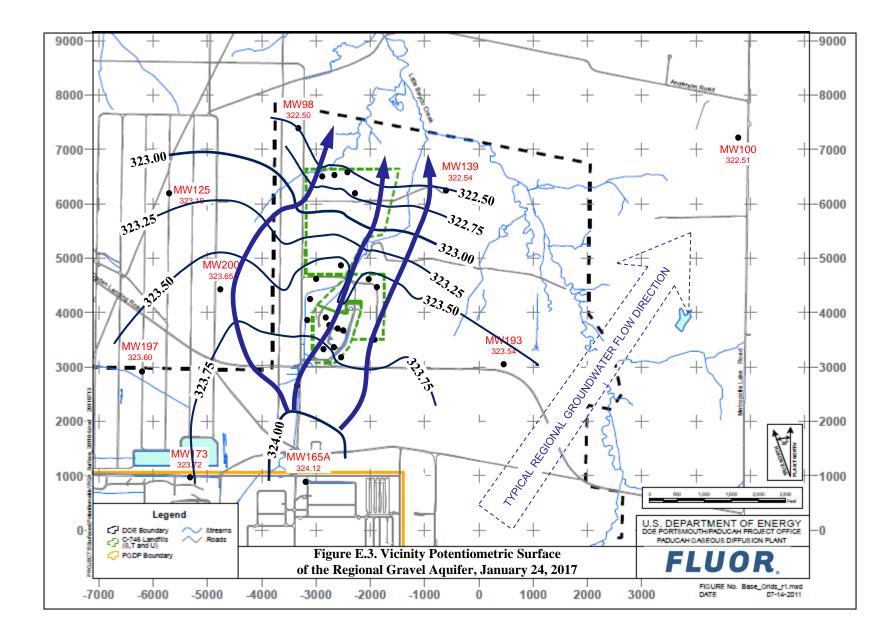
Whenever monitoring wells (MWs) are sampled, 401 *KAR* 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2017 and to determine the groundwater flow rate and direction.


Water levels during this reporting period were measured on January 24, 2017. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters.¹ Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill is 1.96×10^{-4} ft/ft. Additional water level measurements in January (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 3.03×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.


Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for January 2017, the groundwater flow direction in the immediate area of the landfill was oriented northeastward.


¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

	C-746-S&T Landfills (January 2017) Water Levels									
							Ra	w Data	*Corre	ected Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H ₂ O)	(ft)	(ft amsl)	(ft)	(ft amsl)
1/24/2017	10:01	MW220	URGA	381.44	29.92	0.00	57.63	323.81	57.63	323.81
1/24/2017	10:07	MW221	URGA	390.83	29.92	0.00	67.19	323.64	67.19	323.64
1/24/2017	10:13	MW222	URGA	394.87	29.92	0.00	71.24	323.63	71.24	323.63
1/24/2017	10:09	MW223	URGA	394.03	29.92	0.00	70.35	323.68	70.35	323.68
1/24/2017	10:15	MW224	URGA	395.41	29.92	0.00	71.74	323.67	71.74	323.67
1/24/2017	10:03	MW225	URGA	385.55	29.92	0.00	61.83	323.72	61.83	323.72
1/24/2017	10:30	MW353	LRGA	374.86	29.92	0.00	50.89	323.97	50.89	323.97
1/24/2017	9:58	MW384	URGA	365.06	29.93	-0.01	41.41	323.65	41.40	323.66
1/24/2017	9:59	MW385	LRGA	365.54	29.93	-0.01	41.90	323.64	41.89	323.65
1/24/2017	9:57	MW386	UCRS	365.21	29.93	-0.01	15.46	349.75	15.45	349.76
1/24/2017	9:54	MW387	URGA	363.27	29.93	-0.01	39.60	323.67	39.59	323.68
1/24/2017	9:55	MW388	LRGA	363.25	29.93	-0.01	39.59	323.66	39.58	323.67
1/24/2017	9:53	MW389	UCRS	363.82	29.93		DRY		DRY	
1/24/2017	9:51	MW390	UCRS	360.36	29.93	-0.01	36.74	323.62	36.73	323.63
1/24/2017	9:25	MW391	URGA	366.54	29.93	-0.01	42.96	323.58	42.95	323.59
1/24/2017	9:28	MW392	LRGA	365.67	29.93	-0.01	42.10	323.57	42.09	323.58
1/24/2017	9:27	MW393	UCRS	366.59	29.93	-0.01	26.90	339.69	26.89	339.70
1/24/2017	9:43	MW394	URGA	378.32	29.93	-0.01	54.59	323.73	54.58	323.74
1/24/2017	9:41	MW395	LRGA	379.01	29.93	-0.01	55.23	323.78	55.22	323.79
1/24/2017	9:42	MW396	UCRS	378.64	29.93	-0.01	7.90	370.74	7.89	370.75
1/24/2017	9:46	MW397	LRGA	386.90	29.93	-0.01	63.18	323.72	63.17	323.73
1/24/2017	9:36	MW418	URGA	366.78	29.93	-0.01	43.17	323.61	43.16	323.62
1/24/2017	9:38	MW419	LRGA	366.68	29.93	-0.01	43.08	323.60	43.07	323.61
Initial Barometric Pressure 29.92 Elev = elevation										
amsl = above mean sea level										
	BP = barometric pressure DTW = depth to water in feet below datum									
1										
$URGA = U_{1}$										
LRGA = Lc	-		-							
-	-		charge System							
*Assumes a	Darome	tric efficien	cy of 1.0							

Table E.1. C-746-S&T Landfills First Quarter 2017 (January) Water Levels

	ft/ft			
Beneath Landfill Mound	1.96×10^{-4}			
Vicinity	$3.03 imes 10^{-4}$			

Table E.2. C-746-S&T Landfills Hydraulic Gradients

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Conductivity (K)		Specific Discharge (q)		Average Linear Velocity (v)		
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s	
Beneath Landfill Mound						
725	0.256	0.142	5.01×10^{-5}	0.568	2.01×10^{-4}	
425	0.150	0.0832	2.94×10^{-5}	0.333	1.17×10^{-4}	
Vicinity						
725	0.256	0.219	7.75×10^{-5}	0.878	3.10×10^{-4}	
425	0.150	0.1.29	4.54×10^{-5}	0.515	$1.82 imes 10^{-4}$	

APPENDIX F

NOTIFICATIONS

THIS PAGE INTENTIONALLY LEFT BLANK

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the first quarter 2017 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	Parameter	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW369, MW384, MW387 MW384, MW387
Lower Regional Gravel Aquifer	Sodium Technetium-99	MW370 MW370, MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

2/28/2017

Fluor Federal Services PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S and -T LANDFILLS PERMIT NUMBERS 073-00014 and 073-00015 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4808	MW372	Trichloroethene	8260B	7.12	ug/L	5
8004-4792	MW373	Trichloroethene Trichloroethene	8260B 8260B	8.74 8.53	ug/L ug/L	5 5
8004-4809	MW384	Beta activity Beta activity	9310 9310	103 95.5	pCi/L pCi/L	50 50
8004-4810	MW385	Beta activity	9310	54	pCi/L	50
8004-4815	MW387	Beta activity	9310	154	pCi/L	50
8004-4816	MW388	Beta activity	9310	86.4	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	11	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	22	ug/L	5
8004-4802	MW394	Trichloroethene	8260B	7.86	ug/L	5

NOTE 1: These levels are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

THIS PAGE INTENTIONALLY LEFT BLANK

Groundwater Flow System	1		UCRS	5						1	JRGA	4]	LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
ACETONE																							
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
ALPHA ACTIVITY																							
Quarter 4, 2002				-	-								-										
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*						*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003							*	*			*			*									
Quarter 1, 2004			*				*	*			*												
Quarter 2, 2004	l –						*							*									
Quarter 3, 2004	l –						*							*									
Quarter 4, 2004	1		*																				
Quarter 1, 2005	i –		*																				
Quarter 2, 2005	-		*				*																
Quarter 3, 2005			*				*			*											*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2005	-						*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006			Ŧ				*																\vdash
			*				*				-												
Quarter 4, 2006			*				*				-						*						
Quarter 1, 2007																							⊢ –
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008							-				*												
Quarter 4, 2008							*				-												
Quarter 1, 2009			*				*				*												
Quarter 1, 2010			*				*				*												
Quarter 2, 2010			*								*												
Quarter 3, 2010			*								*			*			*			*			
Quarter 1, 2011							*				*												
Quarter 2, 2011			*								*												
Quarter 2, 2012	1		*																				
Quarter 3, 2012	1						*																
Quarter 1, 2013	i –						*				*												
Quarter 3, 2013	i –		*																				
Quarter 1, 2014							*																
Quarter 2, 2014											*												
Quarter 4, 2014	 		*	-	-			-	-				-					-				-	
Quarter 1, 2014			-				*																
Quarter 2, 2016	l –			-	-			-	-				-	*				-				-	
Quarter 1, 2017							*							-									
BARIUM				-	-								-					-					
Quarter 3, 2003																							
Quarter 4, 2003	-																						
BETA ACTIVITY							-																
Quarter 4, 2002						-																	
Quarter 1, 2002																							┍─┦
Quarter 2, 2003													<u> </u>										
Quarter 3, 2003				-																			
	-	L		-	-	<u> </u>							_	-	L			-					

Groundwater Flow System	1		UCRS	5						1	URG	4								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	_	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385			388			
BETA ACTIVITY																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 3, 2006																							
Quarter 4, 2006																							
Quarter 1, 2007																							
Quarter 2, 2007		1					I								I			I					
Quarter 3, 2007		1					I								I			I					
Quarter 4, 2007	1	1					1								l			l					
Quarter 1, 2008																							
Quarter 2, 2008	1																						
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																							
Quarter 2, 2014																							
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015																							
Quarter 2, 2015																							
Quarter 3, 2015																							
Quarter 4, 2015																							
Quarter 1, 2016																							
Quarter 2, 2016																							
Quarter 3, 2016																							
Quarter 4, 2016																							
Quarter 1, 2017																							
BROMIDE																							
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
0			ƙ																			. 7	1 7

*

Quarter 1, 2004

Groundwater Flow System			UCRS	5						1	URGA	ł]	LRGA	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BROMIDE																							
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM																							
Quarter 1, 2003	-		*																				
			*									*											
Quarter 2, 2003	_		*									*											
Quarter 3, 2003			*									*							*				
Quarter 4, 2003														÷									
Quarter 1, 2004			*									*		*					*				<u> </u>
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005											ſ	*							*				Γ
Quarter 3, 2005	1											*							*				
Quarter 4, 2005	1	1										*							*				1
Quarter 1, 2006	1	1										*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
	_											*							*				
Quarter 4, 2006																							<u> </u>
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009	-											*							*				
												*							*				
Quarter 3, 2009																							
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011	1	1									1	*							*				1
Quarter 2, 2011	1	1									l	*	*						*				1
Quarter 3, 2011	1			-								*							*				
Quarter 4, 2011	+	<u> </u>										*		<u> </u>		<u> </u>			*	<u> </u>			+
Quarter 1, 2012	-											*							*				
	1	<u> </u>										* *							* *				<u> </u>
Quarter 2, 2012	1	I	L		L		L	L	L	L			L		L			L			L	L	Ļ
Quarter 3, 2012	1										ļ	* :							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013											ſ	*		[[*	[Γ
Quarter 3, 2013	1											*							*				
Quarter 4, 2013	1	1										*							*				1
Quarter 1, 2014	1																	*	*				1
Quarter 2, 2014	1			-								*							*				<u> </u>
	1	<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		*	<u> </u>	<u> </u>	<u> </u>	<u> </u>		*	*	<u> </u>	<u> </u>	<u> </u>	
Quarter 3, 2014	1	<u> </u>	<u> </u>															*					<u> </u>
Quarter 4, 2014	1	I	L		L		L	L	L	L		*	44		L			L	*		L	L	Ļ
Quarter 1, 2015	1	I I	l		I		I				1	*	*	1					*	1			1

Groundwater Flow System			UCRS	3						1	URGA	4							1	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well			390	393	396	221	222	223	224	384	369	372		391	220	394	385	370	373	388	392		397
CALCIUM																							
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				
CARBON DISULFIDE																							
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		
CHEMICAL OXYGEN DEMANI	<u>)</u>														-								
Quarter 1, 2003				*											-								
Quarter 2, 2003	<u> </u>			€ *			J.			J.													
Quarter 3, 2003	I			*			*			*													
Quarter 4, 2003	*			* *																		<u> </u>	
Quarter 1, 2004 Quarter 4, 2004	*			*																		<u> </u>	
Quarter 4, 2004 Quarter 1, 2005	*					—	-				-		-									\vdash	<u> </u>
Quarter 1, 2005 Quarter 2, 2005	*					<u> </u>											<u> </u>						<u> </u>
Quarter 3, 2005	*									*		*									*		
Quarter 4, 2005	*									*		-17									-17	┝──┥	
Quarter 1, 2005	*									*												-	<u> </u>
Quarter 1, 2000 Quarter 2, 2006	*														-								
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						<u> </u>
Quarter 1, 2007	*									*													
Quarter 2, 2007	*																					-	<u> </u>
Quarter 3, 2007	*																					-	
Quarter 4, 2007	*														-							-	
Quarter 1, 2008	*														-							-	
Quarter 2, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																					-	
Quarter 2, 2009	*																			*		-	
Quarter 3, 2009	*																					-	
Quarter 4, 2009	*																					-	
Quarter 1, 2010	*																					-	
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*					-																	
Quarter 3, 2011	*																						
Quarter 4, 2011	*																						
Quarter 1, 2012	*				-	-			-										-				
Quarter 1, 2013	*																						
Quarter 3, 2013	*																						
Quarter 3, 2014	*								*				*					*					
Quarter 4, 2014							*			1	1		1										
Quarter 2, 2015																*							
Quarter 3, 2015															*								
Quarter 3, 2016			*								*												
Quarter 4, 2016																	*						
CHLORIDE																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*														L						

Groundwater Flow System			UCRS	5						1	URGA	4					1]	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393	396	221	222	223	224	384	369		387		220	394		370	373	388	392	395	397
CHLORIDE																							
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				
Quarter 3, 2005			*																				
Quarter 4, 2005	-		*																				
Quarter 1, 2006	-																	*					
Quarter 2, 2006	_		*																				
Quarter 3, 2006			*																				
	_		* *					-															
Quarter 4, 2006																							
Quarter 1, 2007	_		*																				
Quarter 2, 2007			*																			<u> </u>	Ļ
Quarter 3, 2007			*																			<u> </u>	L
Quarter 4, 2007			*																				
Quarter 1, 2008			*																				
Quarter 2, 2008			*																				
Quarter 3, 2008			*																				
Quarter 4, 2008			*								ſ												
Quarter 1, 2009			*																				
Quarter 2, 2009			*																				
Quarter 3, 2009			*																				
Quarter 4, 2009			*																				
Quarter 1, 2010			*																				
Quarter 2, 2010			*																				
Quarter 3, 2010			*																				
Quarter 4, 2010			*																				
Quarter 2, 2011	-		*																				
Quarter 3, 2011			*																				
Quarter 4, 2011	-		*																				
Quarter 3, 2012	_		*																				
Quarter 3, 2012 Quarter 3, 2013			*																				
-			* *																				
Quarter 4, 2013			* *																				
Quarter 4, 2014			*																				
CHROMIUM	_							_														-	
Quarter 4, 2002																						_	
Quarter 1, 2003								_															
Quarter 2, 2003	_					_																	
Quarter 3, 2009						_																	
COBALT							J.																
Quarter 3, 2003							*															Ĺ	
CONDUCTIVITY	_			-						4	1			1			_		40				
Quarter 4, 2002			4							*									*				
Quarter 1, 2003			*							*									*			<u> </u>	<u> </u>
Quarter 2, 2003	_		* *					. ال		* *									* *			└──	<u> </u>
Quarter 3, 2003	_	L	* *		L			*		*			L			L			* *	L		⊢	<u> </u>
Quarter 4, 2003	_		*							*									*			└──	<u> </u>
Quarter 1, 2004	_									ملو									* *			└──	<u> </u>
Quarter 2, 2004	_									*									* *			└──	<u> </u>
Quarter 3, 2004	_		44							*									*			└──	<u> </u>
Quarter 4, 2004			*							*									*			└──	L
Quarter 1, 2005										*		*							*			└──	<u> </u>
Quarter 2, 2005												*							*			└──	L
Quarter 3, 2005		L			L								L		L				*	L		L	L
Quarter 4, 2005										*		*							*			└──	L
Quarter 1, 2006												*							*				

Groundwater Flow System	1		UCRS	5						1	URGA	A]	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384			387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																							
Quarter 2, 2006												*							*	1			
Quarter 3, 2006												*							*				
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007												*					*		*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009	1											*					*		*				
Quarter 1, 2010	1											*							*				
Quarter 2, 2010	1								-	-		*							*				
Quarter 3, 2010	1								-	-		*							*				
Quarter 4, 2010	1								-	-		*							*				
Quarter 1, 2010	1									*		*							*				┝─┤
Quarter 1, 2011 Quarter 2, 2011										-	-	*							*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*							*				-
Quarter 1, 2012 Quarter 2, 2012												*							*				<u> </u>
Quarter 3, 2012												*							*				<u> </u>
Quarter 4, 2012												*							*				<u> </u>
Quarter 1, 2012												*							*				
· · ·												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*							*				
Quarter 2, 2014												*							*				<u> </u>
Quarter 3, 2014																							
Quarter 4, 2014												*							*				
Quarter 1, 2015																			*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												* :							*				
Quarter 4, 2015	1											* *							*				└──┦
Quarter 1, 2016	I	L										*							*				⊢
Quarter 2, 2016	I		L					L					L						*			L	
Quarter 3, 2016	1											*							* *				<u> </u>
Quarter 4, 2016	I		L					L					L						Ŧ			L	
Quarter 1, 2017																			*				
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																							
Quarter 4, 2002	I									*									*	ļ			
Quarter 1, 2003	I		*							*									*				\square
Quarter 2, 2003	I		*							*									*	ļ			
Quarter 3, 2003	I		*				*	*		*		*							*				
Quarter 4, 2003	I		*				*		*	*		*							*				
Quarter 1, 2004	I		*									*							*				
Quarter 2, 2004										*		*							*				
Quarter 3, 2004										*		*							*				
Quarter 4, 2004										*		*							*				

Groundwater Flow System			UCRS	5						1	URGA	A]	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393			222	223	224	384		372		391		394					392		
DISSOLVED SOLIDS																							
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007										-		-					-		*				
Quarter 2, 2007										*		*							*				
Quarter 3, 2007										*		*							*				
Quarter 4, 2007										*		*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2008												*							*				
· · ·												*							*				
Quarter 3, 2008										*		*							*				
Quarter 4, 2008										*		* *							*				
Quarter 1, 2009													J.										
Quarter 2, 2009												* *	*						*				
Quarter 3, 2009												* *	*						*				
Quarter 4, 2009												* *	*						*				
Quarter 1, 2010 Quarter 2, 2010										*		*	*						*				
Quarter 2, 2010 Quarter 3, 2010										*		*	*						*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2010										*		*							*				
Quarter 1, 2011 Quarter 2, 2011										*		*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*	*						*				
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*	*						*				
Quarter 2, 2014												*							*				
Quarter 3, 2014									*			*	*						*				
Quarter 4, 2014												*	*						*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015									*			*						*	*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*	*	*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016	I		L	L	L		L	L				*			L			L	*	L			L
Quarter 1, 2017												*							*				L
IODIDE																							
Quarter 4, 2002	<u> </u>																				*		
Quarter 2, 2003	<u> </u>	<u> </u>				*							-11-	<u> </u>									
Quarter 3, 2003				44									*										
Quarter 1, 2004				*																	44		┣
Quarter 3, 2010										ىبر											*		—
Quarter 2, 2013	1	1		l	l		l			*	1		1	1	l				l				1 '

Groundwater Flow System	I		UCRS	3		1				1	URGA	4							1	LRGA	1		
Gradient	S	D	D	, D	U	S	S	S	S	s	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*										\vdash	
Quarter 2, 2007											*											\vdash	
Quarter 2, 2007 Quarter 2, 2008												*										┝──┤	
Quarter 3, 2008												*										┝──┤	<u> </u>
MAGNESIUM																	-						
Quarter 1, 2003			*																				
Quarter 1, 2003 Quarter 2, 2003			*									*							*			┢──┤	$ \rightarrow $
Quarter 2, 2003 Quarter 3, 2003			*				*					*							-17			┢──┤	
Quarter 4, 2003			*									*							*				
Quarter 1, 2003			*									*		*					*			<u> </u>	
Quarter 1, 2004 Quarter 2, 2004			*									*		-1-					*			<u> </u>	
Quarter 3, 2004	-		*									*							*			<u> </u>	
Quarter 4, 2004	-		*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*			\vdash	-
Quarter 4, 2005												*							*			⊢	⊢
												*							*			\vdash	
Quarter 1, 2006												*							* *			\vdash	
Quarter 2, 2006																						\vdash	—
Quarter 3, 2006												* *							* *			\vdash	
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*			\square	
Quarter 4, 2007	<u> </u>		L				L	L		L		*		L					*			\vdash	
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*	*						*				
Quarter 3, 2010	1											*							*				
Quarter 4, 2010	1											*							*				
Quarter 1, 2011	1											*							*				
Quarter 2, 2011	i –											*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				<u> </u>
Quarter 1, 2012												*							*			┝──┤	
Quarter 2, 2012												*							*			┢──┤	<u> </u>
Quarter 3, 2012												*	*						*			┢──┤	
Quarter 3, 2012 Quarter 4, 2012												* *	* *						* *			┝──┦	
Quarter 4, 2012		L				L	L	L		L		*	*	L		L	_		*			ليب	

Groundwater Flow System			UCRS	S						1	URGA	A								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	_	390	393			222	223	224	384		372	387	391	220	394	385	370	373	388	392		397
MAGNESIUM																							
Quarter 1, 2013	-											*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
												*						*	*				
Quarter 1, 2014																		*					
Quarter 2, 2014												*	*						*				
Quarter 3, 2014										-		*							*				
Quarter 4, 2014										-		*	*						*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016		1				I		I				*		*					*		I		
Quarter 3, 2016		1				1		1				*							*		1		
Quarter 4, 2016		1		1	1			1				*		*					*		1		
Quarter 1, 2017				1	1	1		1				*		*					*	1	1		
MANGANESE																							
Quarter 4, 2002																					*		
Quarter 3, 2003							*	*	-				-		-			-			·		
Quarter 4, 2003							*	*															
Quarter 1, 2004							*																
Quarter 1, 2004 Quarter 2, 2004							*																
Quarter 4, 2004 Quarter 4, 2004							*	*															
							*	*															
Quarter 1, 2005							*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*									-													
OXIDATION-REDUCTION POT	ENT	IAL																					
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006		1	*			1		l										*			l		
Quarter 4, 2006		1	*			1																	
Quarter 1, 2007			*																				
Quarter 2, 2007		1	*				*																
Quarter 3, 2007	-	1	*				*																
Quarter 4, 2007			*				-																
Quarter 1, 2008			*			*			*				-		-			-					
Quarter 2, 2008	*		*	*		*	<u> </u>		<u> </u>				*			<u> </u>	*		*	*			
Quarter 3, 2008			*	*		*							*				*		*	*			
	<u> </u>	<u> </u>	*	*		*	*	*	*		<u> </u>		*	<u> </u>	<u> </u>	<u> </u>	*	*	-	*			
Quarter 4, 2008 Quarter 1, 2009			*	*		*	*	*	*				*	*			*	*		*			
			*	*		*	-		Ť				*	Ť			*	*	*	*			
Quarter 3, 2009	L		*	*		*			*								*	* *	*	*			
Quarter 4, 2009	*					*			ボ									*					
0 1 2010		<u> </u>	*			I			40		L			L	L		412	1 12		*			
Quarter 1, 2010	ملح		*	*					*		L		*	L	L		* *	* *		*			
Quarter 2, 2010	* *					*	1	1			I			I		1	*	*	*	*	1		
Quarter 2, 2010 Quarter 3, 2010	* *		*	*		Ť																	
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010	*		*					*			*			*			*	*	*	*			
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2011	* *		*	*		*	*	*	*		*		*	*			* *	*	*	*	*		
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010	*						* *		* *	* *			* * *		*		*	*		*	*		

Groundwater Flow System			UCRS	5						1	URGA	4								LRGA	1		
Gradient	S	D	D	D	U	s	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
OXIDATION-REDUCTION POT																							
Quarter 4, 2011	*	1	*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		
Quarter 3, 2014	*		*	*		*											*	*	*	*			
Quarter 4, 2014	*		*	*							*		*				*	*	*	*	*		
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	1	*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*	1	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*	1	*	*	*	*	*	*	*	*	1		*	1	*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 2, 2016	*	1	*	*	*	*		*	*	*			*	*	*	*	*	*		*	*	*	*
Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 4, 2016	*	1	*	*	*		*	*		*			*		*		*	*	*	*	*	*	*
Quarter 1, 2017	*		*	*	*			*	*						*			*		*		*	*
PCB, 1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												
Quarter 3, 2005							*				*												
Quarter 1, 2006											*												
Quarter 2, 2006											*												
Quarter 4, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007												*											
Quarter 3, 2007											*												
Quarter 2, 2008											*	*											
Quarter 3, 2008											*												
Quarter 4, 2008											*												
Quarter 1, 2009											*												
Quarter 2, 2009											*												
Quarter 3, 2009											*												
Quarter 4, 2009											*												
Quarter 1, 2010											*												
Quarter 2, 2010		-									*												
Quarter 3, 2010											*												— –
Quarter 4, 2010	<u> </u>	<u> </u>									*											<u> </u>	—
PCB-1232		-			L			L	L		-												
Quarter 1, 2011											*												
· · ·											*												
PCB-1248 Quarter 2, 2008												*											
· ·						_						Ť											
PCB-1260						_											_	*					
Quarter 2, 2006						_											_	*					
pH Overter 4, 2002		-				_											*		-				
Quarter 4, 2002																	*						
Quarter 2, 2003	1													<u> </u>			*						
Quarter 3, 2003		 					*										*						
Quarter 4, 2003	<u> </u>	<u> </u>					*					<u> </u>					*		<u> </u>				
Quarter 1, 2004		 					*										*						
Quarter 2, 2004	<u> </u>	<u> </u>										<u> </u>					*		<u> </u>				
Quarter 3, 2004	L			L	L	L	L	L	L	L	L			L	L		-		L			ш	

Groundwater Flow System	r –		UCRS								URGA	4								LRGA			
Gradient	S	D	D	, D	U	s	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391		394	385	370	373	388	392	395	397
pH	380	369	390	393	390	221	222	223	224	364	309	312	307	391	220	394	365	370	373	300	392	395	391
Quarter 4, 2004																	*						
Quarter 3, 2005										*							*				*		
Quarter 4, 2005										*							*				Ŧ		
Quarter 1, 2005																	*						
Quarter 2, 2006																	*						
																	*						
Quarter 3, 2006																	*						
Quarter 3, 2007 Quarter 4, 2007																	*						
																	*						
Quarter 4, 2008																	*						
Quarter 1, 2009	ļ																*						
Quarter 1, 2011											J.						*						
Quarter 2, 2011											*												
Quarter 3, 2011											*			4									
Quarter 1, 2012	I				L		L			-	L		-	*			<u>т</u>						
Quarter 1, 2013	<u> </u>									*			*				*		L		<i>.</i> .		
Quarter 4, 2014	<u> </u>																	U .			*		
Quarter 2, 2016																		*	*				
POTASSIUM																							
Quarter 4, 2002																		*	*				
Quarter 3, 2004																			*				
Quarter 2, 2005																		-	*			-	
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				
Quarter 3, 2013																			*				
RADIUM-226																							
Quarter 4, 2002	1		*										*	*							*		
Quarter 2, 2004																			*				
Quarter 2, 2005									*														
Quarter 1, 2009											*												
Quarter 3, 2014									*			*											
Quarter 4, 2014			*								*							*					
Quarter 1, 2015			*				*			*		*						*					
Quarter 2, 2015			*				*			*		*						*					
Quarter 3, 2015			*																				
Quarter 4, 2015					*	*									*		*				*	*	
Quarter 2, 2016			*						*		*	*	*	*		*		*					
Quarter 3, 2016																		*					
Quarter 4, 2016	*	-	*	-		*		-	*	-			*		*					*		*	-
Quarter 1, 2017	<u> </u>		*			-			-	*	*		-		-			*		<u> </u>			
RADIUM-228					-		-			-	<u> </u>			-									
Quarter 2, 2005						-																	
Quarter 2, 2005 Quarter 3, 2005							<u> </u>																
Quarter 4, 2005			_														<u> </u>						
		<u> </u>	<u> </u>	<u> </u>				<u> </u>	_	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>					<u> </u>			
Quarter 1, 2006 SELENIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003	 																<u> </u>		<u> </u>				
Quarter 3, 2003	I																						
Quarter 4, 2003	1						l																

Chart of MCL and Historical UT	Exceedances for the C-746-S and	T Landfills (Continued)
--------------------------------	---------------------------------	-------------------------

Groundwater Flow System	T		UCR	5						1	URG	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SODIUM																							
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*												
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*		*													
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006	1								*														
Quarter 3, 2006	1								*	*		*							*				
Quarter 4, 2006	+								*	*							*						
Quarter 1, 2007	+								*			*											
Quarter 2, 2007	1		-		-		-		*	*	-		-	-						-		-	
Quarter 3, 2007									*	-													
Quarter 4, 2007									*														
Quarter 1, 2007									*														
Quarter 3, 2008									т —			*											
	_								*	*		Ť											
Quarter 4, 2008									*	*		*							*				
Quarter 1, 2009									*			*							*				
Quarter 3, 2009									*			*											
Quarter 4, 2009									*														
Quarter 1, 2010										4		*											
Quarter 2, 2010										*		*											
Quarter 3, 2010										*													
Quarter 4, 2010									*	*													
Quarter 1, 2011										*													
Quarter 2, 2011									*														
Quarter 4, 2011																			*				
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
Quarter 2, 2014									*		*	*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014									*	*		*	*										
Quarter 1, 2015	1												*										
Quarter 2, 2015	1											*											
Quarter 3, 2015	1									*		*											
Quarter 4, 2015	1								*	*		*											
Quarter 2, 2016	1										*												
Quarter 3, 2016	1										*												*
Quarter 1, 2017	1									*	*		*					*					
STRONTIUM-90																							
Quarter 2, 2003																							
Quarter 1, 2004																							

Groundwater Flow System			UCRS	5						1	URGA	ł								LRGA	Ą		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*					*	*				
Quarter 3, 2005										*		*	*				*	*	*				
Quarter 4, 2005										*		*	*					*	*	*			
Quarter 1, 2006										*		*	*				*	*	*	*			
Quarter 2, 2006									*	*		*	*				*	*	*	*			
Quarter 3, 2006	-								*	*		*	*	1			*	-	*	*			
Quarter 4, 2006	_								*	*		*	*	<u> </u>			*		*	-			
			-						* *	*		*	*				*		*	*		-	
Quarter 1, 2007	_			<u> </u>				<u> </u>	* *	*		* *	*	<u> </u>			*	<u> </u>	*	*			
Quarter 2, 2007	_																						
Quarter 3, 2007									*	*		* :	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
Quarter 4, 2009	*									*		*	*				*	*	*				
Quarter 1, 2010	*								*	*		*	*				*		*				
Quarter 1, 2010 Quarter 2, 2010									*	*		*	*				*	*	*	*			
	_								Ť	*		*	*				*	*	*	*			
Quarter 3, 2010	*																			*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012		l					l			*	l	*	*				*	*	*	*		1	
Quarter 1, 2013										*		*	*	1			*	*	*	*			
Quarter 2, 2013	1	-					-			*	-	*	*	*			*	*	*	*	-		
Quarter 3, 2013	+	-	-				-			*	-	*	*	*			*	*	*	*		-	
Quarter 4, 2013	_									*		*	*	-			*	*	*	*			
Quarter 1, 2013			-					*		*		*	*				*	*	*	*		-	
								*		*		* *	*	*			*			*			
Quarter 2, 2014	_																	* *	*				
Quarter 3, 2014	_							L		*		*	*	*			*	*	*	*			
Quarter 4, 2014	_	L					L	L		*	L	*	*	<u> </u>			*	*	*	*			
Quarter 1, 2015	_									*	4	* *	*	4.	4.		*	* *	*	*			
Quarter 2, 2015	_	L					L			*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2015	_	L					L	*		*	L	* *	*	*	*		*	*	*	*			
Quarter 4, 2015	_									*		*	*	*			*		*	*			
Quarter 1, 2016								*		*		*	*	*			*	*	*	*			
Quarter 2, 2016	_	ļ	ļ				ļ	*		*	ļ	*	*	*	*		*	*	*	*		ļ	
Quarter 3, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2016										*		*	*	*	*		*	*	*	*			
Quarter 1, 2017										*		*	*	*	*		*	*	*	*			

Groundwater Flow System			UCRS	5	-					1	URGA	4								LRGA	4	_	
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003			*										*				*			*			
Quarter 4, 2003			*							*		*	*				*		*	*			
Quarter 1, 2004			*									*	*				*		*				
Quarter 2, 2004			*									*	*				*		*	*			
Quarter 3, 2004			*									*					*		*				
Quarter 4, 2004			*							*		*	*				*	*	*				
Quarter 1, 2005			*							*		*	*				*			*			
Quarter 2, 2005			*							*			*				*	*	*	*			
Quarter 3, 2005			*							*			*				*	*	*	*			
Quarter 4, 2005			*							*		*	*				*		*	*			
Quarter 1, 2006										*		*	*						*	*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006			*	-		-		-	-	*		-	*				*	*	*	*	-		<u> </u>
Quarter 4, 2006	*									*		*	*					-	*	*			<u> </u>
Quarter 1, 2007	-		*							*		-17	*				*		*	*			<u> </u>
	+		*							*		*	*				*	*	**	*			<u> </u>
Quarter 2, 2007	-										*						*	Ŧ	*				⊢
Quarter 3, 2007	-		* *							* *	*	* *	* *						* *	*			⊨_
Quarter 4, 2007	1		*		L					*	L	*	*		L		*		*	*		L	L
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*						
Quarter 1, 2010			*							*		*	*				*						
Quarter 2, 2010			*							*			*				*	*		*			
Quarter 3, 2010			*							*	*	*	*				*	-		-			
Quarter 4, 2010			*							*		*	*				*						
Quarter 1, 2010	_		Ŧ							*		т	*				*						
	_		*							*			*				*			*			
Quarter 2, 2011	_		*							*			*				*			*			
Quarter 3, 2011																				*			Ĺ
Quarter 4, 2011			*							*	*	*	*				*						
Quarter 1, 2012	_		*							*			*				*			*			
Quarter 2, 2012			*							*			*				*		*	*			
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012										*		*	*				*		*	*			
Quarter 1, 2013										*			*				*		*	*			
Quarter 2, 2013	1									*		*	*				*		*	*			
Quarter 3, 2013	1		*							*		*	*				*		*	*			<u> </u>
Quarter 4, 2013	1		*							*		*	*				*		*	*			
Quarter 1, 2013			*	-		-		-	-	*	*	-	*				*		*	*	-		<u> </u>
Quarter 2, 2014	+		*							*	*		*	*			*		*	*			<u> </u>
Quarter 3, 2014			*							*			*				*			*			<u> </u>
Quarter 4, 2014	-		*							*	*	*	*				*		*	*			<u> </u>
			*							*	*	* *	*				*		*	*			<u> </u>
Quarter 1, 2015	+											ボ				<u> </u>							⊢
Quarter 2, 2015	_		*							*	*	а.	*				*	44	a.	* *			⊨
Quarter 3, 2015	_		*							*	*	*	*				*	*	*	*			
Quarter 4, 2015			*							*	*	*	*				*	*		*			
Quarter 1, 2016			*							*	*		*				*		*	*			
Quarter 2, 2016			*			*				*			*				*	*		*			
Quarter 3, 2016			*							*		*	*				*	*		*			
Quarter 4, 2016			*							*	*		*				*			*			
Quarter 1, 2017			*							*			*				*	*		*			
		1	1		L		1				L			1	L					1			<u> </u>

Chart of MCL and Historical UTL Exceedances for the	e C-746-S and T Landfills (Continued)
---	---------------------------------------

Gradient S D D U S S S S D D U S D D U U S S D D D U U U U D<	Groundwater Flow System	r		UCRS								URGA	4								LRGA			
Namber Neuron 366 309 309 306 21 22 221 221 84 307 388 307 308 307 308 307 308 307 308 307 308 307 308 307 308 307 308 307 308	-	S		_		П	S	S	S	S		-		D	D	П	П	S	D			_	U	U
THORNARD Image: second se																	-							397
Quarder 1, 2012 • <td>8</td> <td>500</td> <td>507</td> <td>570</td> <td>575</td> <td>370</td> <td>221</td> <td></td> <td>225</td> <td>224</td> <td>504</td> <td>507</td> <td>512</td> <td>507</td> <td>371</td> <td>220</td> <td>574</td> <td>505</td> <td>570</td> <td>515</td> <td>500</td> <td>372</td> <td>375</td> <td>377</td>	8	500	507	570	575	370	221		225	224	504	507	512	507	371	220	574	505	570	515	500	372	375	377
Durart 3, 2014 Image 3, 2015 Ima		*								*					*									
Samer A 2015 * A * <t< td=""><td>· · ·</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td>-1-</td><td></td><td></td><td></td><td></td><td>.1.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>	· · ·			*						-1-					.1.								-	
Summer Summer<				т						*	*			*		*								<u> </u>
NONUMA24 No <	· · ·	т —		*						T				Ŧ		т —		*					l	<u> </u>
Quarter 2.003 Image: Solution of All and	· · ·			*			_				*							*						
Durant 2, 2007 Diameter 2, 2014 Diameter 2, 2014 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							*			*					*									
DUDUEN: Dame 2, 2014 Description	· · ·						*								*									
Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 QUARTER 4,	· · ·						_			*														
TOTAL ORGANIC CARBON Image: state of the st											4	4		4				_						
Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2005 QUARTER 1, 2007 QUARTER 1,											*	*		*										
Quarter 1, 2003Quarter 3, 2003Quarter 4, 2004Quarter 4, 2004Quarter 4, 2003Quarter 4, 2004Quarter 4, 200																								
Quarter 2.2003 Quarter 3.2003 Quarter 3.2003 Quarter 3.2004 QUARTER 3.2005 QUARTER 3.2005 QUARTER 3.2005 QUARTER 3.2005 QUARTER 3.2005 QUARTER 3.2006 QUARTER 3.2007 QUARTER 3.200																			_	_				
Quarter 3.2003 Quarter 4.2003 Quarter 4.2004 Quarter 3.2004 Quarter 3.2004 Quarter 3.2004 Quarter 4.2004 Quarter 3.2004 Quarter 4.2004 Quarter 3.2004 Quarter 4.2004 Quarter 3.2004 Quarter 3.2004 Quarter 3.2004 Quarter 3.2004 Quarter 3.2004 Quarter 3.2004 Quarter 3.2004 Quarter 3.2005 Quarter 3.2005 Quarter 3.2005 Quarter 3.2005 Quarter 4.2006 Quarter 3.2005 Quarter 4.2006 Quarter 3.2005 Quarter 4.2006 Quarter 3.2005 Quarter 4.2006 Quarter 3.2005 Quarter 3.2005 Quarter 3.2005 Quarter 3.2005 Quarter 3.2005 Quarter 3.2005 Quarter 3.2005 Quarter 3.2005 Quarter 3.2007 Quarter 3.2007 Quart					*														*	*				
Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 QUARTER 4, 2006 <td< td=""><td>Quarter 2, 2003</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td></td<>	Quarter 2, 2003													*								*		
Quarter 1.2004 Image: All of the second se	Quarter 3, 2003							*	*		*	*	*											
Quarter 3, 2004 Image: All of the second	Quarter 4, 2003							*		*														
Quarter 1, 2004 I <	Quarter 1, 2004																							
Quarter 1, 2005 Image: 1, 2005 Imag	Quarter 2, 2004										*	*												
Quarter 1, 2005 Image: 1, 2007 Imag	Quarter 3, 2004		L								*													
Quarter 3, 2005 Image: A sector of the s	Quarter 4, 2004										*													
Quarter 2, 2005 Image: 2, 2005 Imag	Quarter 1, 2005	1	1					1			*	1			1									
Quarter 3, 2005 Image: A grant and a grant a		İ –						1			*	1			1							*		
Quarter 1, 2005 Image: Constraint of the constraint of t	· · ·										*		*									*		
Quarter 1, 2006 Image: A sector of the s											*											*		
Quarter 2, 2006 Image: Constraint of the second	· · ·																							
Quarter 1, 2006 Image: A grade A													*										-	
Quarter 1, 2007 * * <											*		*					÷						
Quarter 3, 2007 *	•	4									4							*						
Quarter 2, 2011 Image: Constraint of the constraint of t																								
Quarter 3, 2012 * <th< td=""><td></td><td>*</td><td></td><td></td><td></td><td></td><td>*</td><td>*</td><td>*</td><td>*</td><td>*</td><td></td><td></td><td>*</td><td>*</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		*					*	*	*	*	*			*	*			*						
Quarter 3, 2016 Image: Constraint of the second	Quarter 2, 2011											*												
TOTAL ORGANIC HALIDES Image: state of the state of	Quarter 3, 2012	*																						
Quarter 4, 2002 Image: Constraint of the second	Quarter 3, 2016																			*				
Quarter 1, 2003 *	TOTAL ORGANIC HALIDES																							
Quarter 3, 2003 . * .	Quarter 4, 2002	1																	*	*		*		
Quarter 1, 2004 Image: Constraint of the second	Quarter 1, 2003				*														*			*		
Quarter 2, 2004 *	Quarter 3, 2003				*																	*		
Quarter 1, 2005 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td></td<>																						*		
Quarter 1, 2005 * <td< td=""><td>· · ·</td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	· · ·	*																						
Quarter 2, 2005 * Image: Constraint of the constraint of th	· · ·	*																						
Quarter 3, 2005 * <td< td=""><td>· · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	· · ·																							
Quarter 4, 2005 * <td< td=""><td></td><td></td><td> </td><td> </td><td></td><td> </td><td></td><td> </td><td></td><td> </td><td></td><td> </td><td></td><td></td><td> </td><td></td><td></td><td></td><td> </td><td> </td><td></td><td> </td><td></td><td></td></td<>																								
Quarter 1, 2006 * <td< td=""><td></td><td></td><td> </td><td>-</td><td></td><td>-</td><td></td><td> </td><td></td><td>-</td><td></td><td> </td><td></td><td></td><td> </td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td>-</td><td></td><td></td></td<>				-		-				-									-	-		-		
Quarter 2, 2006 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																		-						
Quarter 3, 2006 * <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td></td<>																		-					-	
Quarter 4, 2006 Image: Constraint of the constraint of t																								— —
Quarter 1, 2007 * Image: Constraint of the constraint of th		<u> </u>																*					<u> </u>	
Quarter 2, 2007 * <td< td=""><td>· · ·</td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td> </td><td>*</td><td></td><td></td><td></td><td></td><td> </td><td>—</td></td<>	· · ·	*																*						—
Quarter 3, 2007 * <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td>—</td></td<>			-																				<u> </u>	—
Quarter 4, 2007 * <td< td=""><td>· · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td> </td></td<>	· · ·																						<u> </u>	
Quarter 1, 2008 * <td< td=""><td>· · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td> </td><td> </td></td<>	· · ·																					*	 	
Quarter 4, 2008 * <td< td=""><td></td><td></td><td> </td><td></td><td></td><td> </td><td></td><td> </td><td> </td><td></td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td></td><td></td><td> </td><td> </td><td>*</td><td>\vdash</td><td> </td></td<>																						*	\vdash	
Quarter 4, 2008 * <td< td=""><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td> </td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>⊢</td><td>⊢</td></td<>																							⊢	⊢
Quarter 1, 2009 * <td< td=""><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td>L</td><td> </td><td></td><td>L</td><td> </td><td>L</td><td>L</td><td></td><td></td><td></td><td>L</td><td></td><td>⊢</td><td>⊢</td></td<>											L			L		L	L				L		⊢	⊢
Quarter 2, 2009 * <td< td=""><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td>L</td><td></td><td></td><td></td><td>L</td><td></td><td></td><td>L</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								L				L			L									
Quarter 3, 2009 * Image: Constraint of the co											L						L							
Quarter 4, 2009 * <	· · ·		ļ					ļ				ļ			ļ							*		
Quarter 1, 2010 * <																								
Quarter 2, 2010 * Image: Control of the second sec																								
	· · ·																							
Quarter 3, 2010 *	· · ·																							
	Quarter 3, 2010	*																						

Groundwater Flow System			UCRS	5						1	URGA	4								LRGA	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TOTAL ORGANIC HALIDES																							
Quarter 4, 2010	*																						
Quarter 1, 2011	*																						
Quarter 3, 2013																					*		
TRICHLOROETHENE																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005	1					-		-		-													-
Quarter 4, 2005	1									-													-
Quarter 1, 2005 Quarter 1, 2006																							
Quarter 2, 2006	1																						
Quarter 2, 2006 Quarter 2, 2007	1																						
Quarter 2, 2007 Quarter 3, 2007	-																						
	-																						
Quarter 4, 2007	1																I						
Quarter 1, 2008																_							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012	1		1										1		1		1						
Quarter 2, 2012	1																						
Quarter 3, 2012	1		1										1		1		1					1	
Quarter 4, 2012	1																						
Quarter 1, 2013	1																						
Quarter 2, 2013	1																1						
Quarter 3, 2013	1																						
Quarter 4, 2013	1							-		-													-
Quarter 1, 2013	1																						
Quarter 2, 2014	1															<u> </u>			<u> </u>				
Quarter 3, 2014	1																						
Quarter 4, 2014 Quarter 4, 2014	-																						
Quarter 1, 2015	1																						
	1																						
Quarter 2, 2015	-																						
Quarter 3, 2015	1															_	I						
Quarter 4, 2015	1																						
Quarter 1, 2016	1	L		L	L		L	L	L								I	L				L	
Quarter 2, 2016																_	I					L	
Quarter 3, 2016		L		L	L		L		L									L		<u> </u>		L	
Quarter 4, 2016			ļ										ļ		ļ								
Quarter 1, 2017																							

Groundwater Flow System			UCRS	5						1	URGA	ł								LRGA	7		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003																							
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														
																							_
* Statistical test results indicate	an eleva	ted co	oncen	tratio	n (i.e.	, a sta	tistic	ally si	gnific	ant in	crease	e)											
MCL Exceedance																							
UCRS Upper Continental Rechar	ge Syste	m																					
URGA Upper Regional Gravel Ad	quifer																						
LRGA Lower Regional Gravel Ac	quifer																						
S Sidegradient; D Downgradient;	U Upgr	adient	t																				

APPENDIX H

METHANE MONITORING DATA

C-746-S & T LANDFILL METHANE MONITORING REPORT

Date: 03/16/2													amr	ny	Smitl	h					
Weather Conditions Partly sunny at 37*		n win	ids o	out o	f the	SE															
Monitoring Equipm RAE Systems, Mult		e 44	94-5																		
				N	Ioni	torin	g Lo	ocati	on											eadin % LEL	
Ogden Landing Road Entrance	Che	ecked	l at gi	round	l leve	el														0	·
North Landfill Gate	orth Landfill Gate Checked at ground level																0				
Nest Side of Landfill:																					
North 37° 07.652' West 88° 48.029'	8° 48.029' Checked at ground level														_		0				
East Side of Landfill: North 37° 07.628' West 88° 47.798'	Ch	ecked	l at a	nun		2														0	
Cell 1 Gas Vent (17)	1 0	2 0	3 0	4 0	5 0	6 0	7 0	8 0	9 0	10 0	11 0	12 0	13 0	14 0	15 0	16 0	17			0	
Cell 2 Gas Vent (3)	1 0	2 0	3 0		I	1	1	L	- I	1	I		1							0	
Cell 3 Gas Vent (7)	1 • 0	2 0	3 0	4 0	5 0	6 0	7 0													0	
Landfill Office	Ch	ecked	d at fl	oor le	evel															0	
Suspect or Problem Areas	No	area	s note	ed					•												
Remarks:	יער	D 1"		ז אר		ודנו		\ / ET N													
ALL VENTS CHEC		וט			viot	חונ	UF	VEI	NI C		NIINC	2									
Performed by:		S	hn	um Si	gnat	A. ture	J.	1 . uŭ	Ħ								0;	3/1	6/201 D	17 ate	

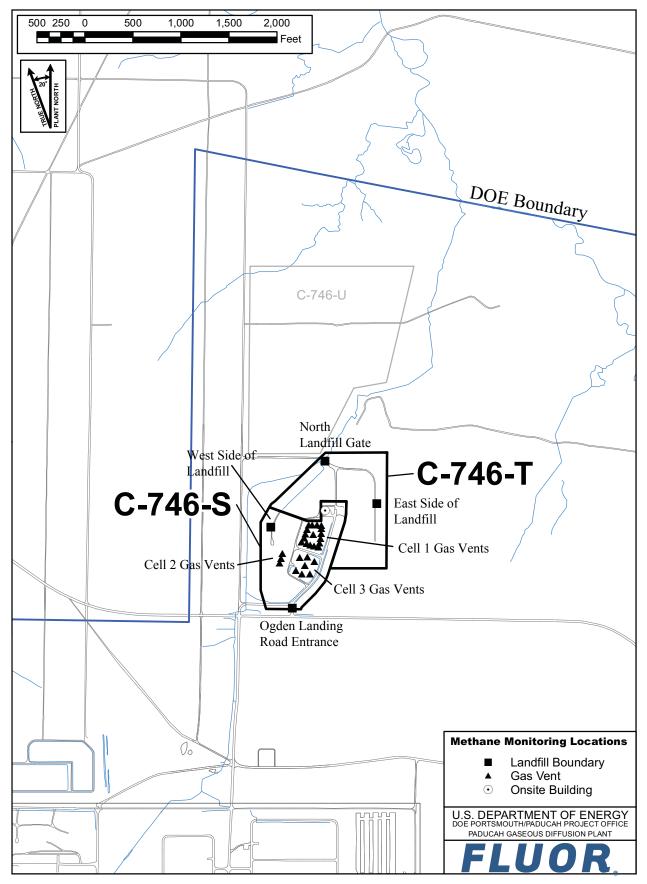


Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I

SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management **RESIDENTIAL/INERT-QUARTERLY** Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po	int	(KPDES Discharge Number, or "U	UPST	REAM", or "D	OWNSTREAM")	L135 UPSTRE	AM	L154 DOWNST	REAM	L136 AT SI	TE	Ν	
Sample Sequer	nce	#				1		1		1			
If sample is a	a Bl	lank, specify Type: (F)ield, (NA		NA		NA						
Sample Date a	and	Time (Month/Day/Year hour: m	ninu	tes)		2/7/2017 12:	33	2/7/2017 12:	21	3/7/2017 09	9:05		
Duplicate (")	Y" (or "N") ¹				N		N		Ν			7
Split ('Y' or	r "1	۲") ²				N		N		Ν			7
Facility Samp	ple	ID Number (if applicable)				L135SS2-1	7	L154US2-1	7	L136SS2-	17		[
Laboratory Sa	ampl	le ID Number (if applicable)				415912001		415936002	2	41808500)1		
Date of Analy	ysis	s (Month/Day/Year)				2/28/2017		2/27/2017		3/27/201	7		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷
A200-00-0	0	Flow	т	MGD	Field	0.1		0.24		0.69			
16887-00-6	2	Chloride(s)	т	MG/L	300.0	9.94		5.61		0.348			\backslash
14808-79-8	0	Sulfate	т	MG/L	300.0	22.7		24.5		6.08			Ι
7439-89-6	0	Iron	т	MG/L	200.8	1.4		2.06		0.837			\mathbb{N}
7440-23-5	0	Sodium	т	MG/L	200.8	7.22		4.87		1.14			\Box
S0268	0	Organic Carbon ⁶	т	MG/L	9060	17		18.8		10.1			\Box
s0097	0	BOD ⁶	т	MG/L	not applicable		*		*		*	/	\square
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	72.3		72.3		67.4		/	

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

Page 2 of 2

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	oint	: (KPDES Discharge Number, or	"DOWNSTREAM")	L135 UPSTRI	EAM	L154 DOWNSTR	REAM	L136 AT S	ITE				
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	G S ⁷
s0145	1	Specific Conductance	т	µHMS/CM	Field	268		224		157			[
S0270	0	Total Suspended Solids	т	MG/L	160.2	38.4	*	44.6		11.4	*		
S0266	0	Total Dissolved Solids	т	MG/L	160.1	206		189		114			
S0269	0	Total Solids	т	MG/L	SM-2540 B 17	247		229		134			
S0296	0	рН	т	Units	Field	7.36		7.34		6.51			
7440-61-1		Uranium	т	MG/L	200.8	0.0178		0.00639		0.00196			
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	13.9	*	7.2	*	2.61	*		
12587-47-2		Gross Beta (β)	т	pCi/L	9310	18.5	*	12.4	*	3.67	*	X	
													N
													\square
													$ \rangle$
													\square
													\square

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 & 073-00015 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: _____ None _____

For Official Use Only

SURFACE WATER WRITTEN COMMENTS

Monitorir Point	ng Facility Sample ID	Constituent	Flag	Description
L135	L135SS2-17	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity		TPU is 8.17. Rad error is 7.83.
		Beta activity		TPU is 8.95. Rad error is 8.37.
L154	L154US2-17	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.95. Rad error is 6.84.
		Beta activity		TPU is 7.92. Rad error is 7.65.
L136	L136SS2-17	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.54. Rad error is 4.51.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.13. Rad error is 7.1.