

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

FEB 2 7 2017

Ms. Robin Green
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Mr. Todd Hendricks
Division of Waste Management
Kentucky Department for Environmental Protection
300 Sower Boulevard, 2nd Floor
Frankfort, Kentucky 40601

Mr. Allan Shingleton
Division of Waste Management
Kentucky Department for Environmental Protection
625 Hospital Drive
Madisonville, Kentucky 42431

Dear Ms. Green, Mr. Hendricks, and Mr. Shingleton:

C-746-S&T LANDFILLS FOURTH QUARTER CALENDAR YEAR 2016 (OCTOBER-DECEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FPDP-RPT-0026/V4, PERMIT NUMBER SW07300014, SW07300015, SW07300045

Enclosed is the subject report for Fourth Quarter Calendar Year (CY) 2016. This report is required in accordance with Condition ACTV0006, Special Condition Number 3, of the C-746-S&T Solid Waste Landfill Permit Number (No.) SW07300014, SW07300015, SW07300045. The report includes groundwater and surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the Fourth Quarter CY 2016 monitoring well data collected from the C-746-S&T Landfills were performed in accordance with Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical increase notification for the Fourth Quarter CY 2016, in accordance with Condition GSTR0003, Standard Requirement 8, of the C-746-S&T Solid Waste Landfill Permit No. SW07300014, SW07300015, SW07300045.

PPPO-02-4037377-17A

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

Jennifer Woodard Paducah Site Lead

Portsmouth/Paducah Project Office

nufu Woodard

Enclosure:

C-746-S&T Landfills Fourth Quarter CY 2016 Compliance Monitoring Report

e-copy w/enclosure:

april.webb@ky.gov, KDEP/Frankfort brian.begley@ky.gov, KDEP/Frankfort christopher.jung@ky.gov, KDEP/Frankfort dave.dollins@lex.doe.gov, PPPO/PAD edward.winner@ky.gov, KDEP/Frankfort ffscorrespondence@ffspaducah.com, FFS/Kevil gave.brewer@kv.gov, KDEP/PAD jennifer.blewett@ffspaducah.com, FFS/Kevil jennifer.watson@ffspaducah.com, FFS/Kevil jennifer.woodard@lex.doe.gov, PPPO/PAD joseph.towarnicky@ffspaducah.com, FFS/Kevil karen.walker@ffspaducah.com, FFS/Kevil kelly.layne@ffspaducah.com, FFS/Kevil ken.davis@ffspaducah.com, FFS/Kevil kim.knerr@lex.doe.gov, PPPO/PAD leo.williamson@ky.gov, KDEP/Frankfort lisa.crabtree@ffspaducah.com, FFS/Kevil mike.guffey@ky.gov, KDEP/Frankfort myrna.redfield@ffspaducah.com, FFS/Kevil stephaniec.brock@ky.gov, KYRHB/Frankfort tracey.duncan@lex.doe.gov, PPPO/PAD

C-746-S&T Landfills

Fourth Quarter Calendar Year 2016
(October–December)

Compliance Monitoring Report,

Paducah Gaseous Diffusion Plant,

Paducah, Kentucky

FLUOR

This document is approved for public release per review by:

FPDP Classification Support

Date

C-746-S&T Landfills
Fourth Quarter Calendar Year 2016
(October–December)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—February 2017

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FLUOR FEDERAL SERVICES, INC.,
Paducah Deactivation Project
managing the
Deactivation Project at the
Paducah Gaseous Diffusion Plant
under Task Order DE-DT0007774

CONTENTS

FI	GURE	S		v
TA	BLES			v
A(CRON	YMS		vii
1.	INTF	RODUC	TION	1
	1.1	BACK	GROUND	1
	1.2	MONI	TORING PERIOD ACTIVITIES	1
		1.2.1	Groundwater Monitoring	1
		1.2.2	Methane Monitoring	3
		1.2.3	Surface Water Monitoring	
	1.3	KEY F	RESULTS	
2.	DAT	A EVA	LUATION/STATISTICAL SYNOPSIS	11
	2.1	STATI	STICAL ANALYSIS OF GROUNDWATER DATA	12
		2.1.1	Upper Continental Recharge System	12
		2.1.2	Upper Regional Gravel Aquifer	
		2.1.3	Lower Regional Gravel Aquifer	13
	2.2	DATA	VERIFICATION AND VALIDATION	13
3.	PRO	FESSIO	NAL GEOLOGIST AUTHORIZATION	15
4.	REF	ERENC	ES	17
ΑF	PENE	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑF	PENE	OIX B:	FACILITY INFORMATION SHEET	B-1
ΑF	PENE	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑF	PENE	OIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PENE	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑF	PENE	OIX F:	NOTIFICATIONS	F-1
ΑF	PENE	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑF	PENE	OIX H:	METHANE MONITORING DATA	H-1
ΔF	PPENI	IX I	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	T-1

FIGURES

	C-746-S&T Landfills Groundwater Monitoring Well Network	
	TABLES	
1.	Summary of MCL Exceedances	5
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells	6
	C-746-S and -T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations

CY calendar year

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

PGDP Paducah Gaseous Diffusion Plant

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

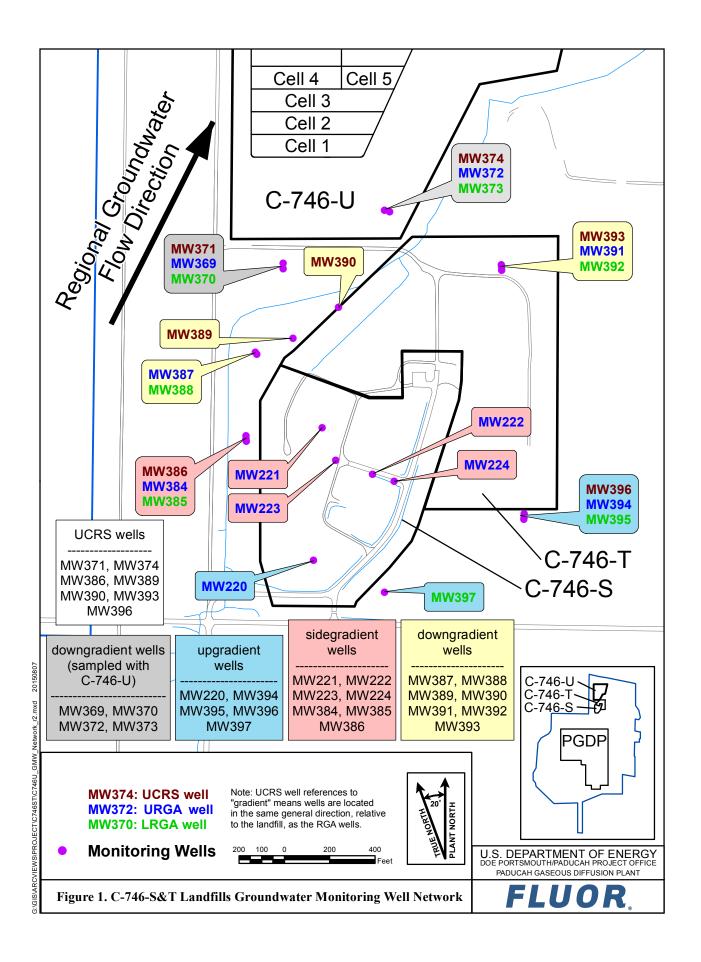
UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills Fourth Quarter Calendar Year 2016 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 4. Surface water results are provided in Appendix I.

1.1 BACKGROUND


The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Gaseous Diffusion Plant (PGDP) and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for PGDP. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from PGDP. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for the UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the RGA wells located in the same direction (relative to the landfill) as nearby UCRS wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the fourth quarter 2016 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using Fluor Federal Services, Inc., procedure CP4-ES-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on October 25 and 26, 2016, in MWs of the C-746-S&T Landfills (see Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is north to northeastward, toward the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in October was 4.89×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 4.76×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.809 to 1.38 ft/day (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 KAR 48:090 § 4 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application, Attachment 12, of the Solid Waste Landfill Permit. Landfill operations staff monitored for the occurrence of methane in 1 on-site building location, 4 locations along the landfill boundary, and 27 gas-passive vents located in Cells 1, 2, and 3 of the C-746-S Landfill on December 5, 2016. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the approved C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and KY-073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application Attachment 24, of the Solid Waste Landfill Permit. Sampling was performed at two of the three locations (see Figure 2) that are monitored for the C-746-S&T Landfills. The landfills have an upstream location, L135; a downstream location, L154; and a location capturing runoff from the landfill surface, L136.

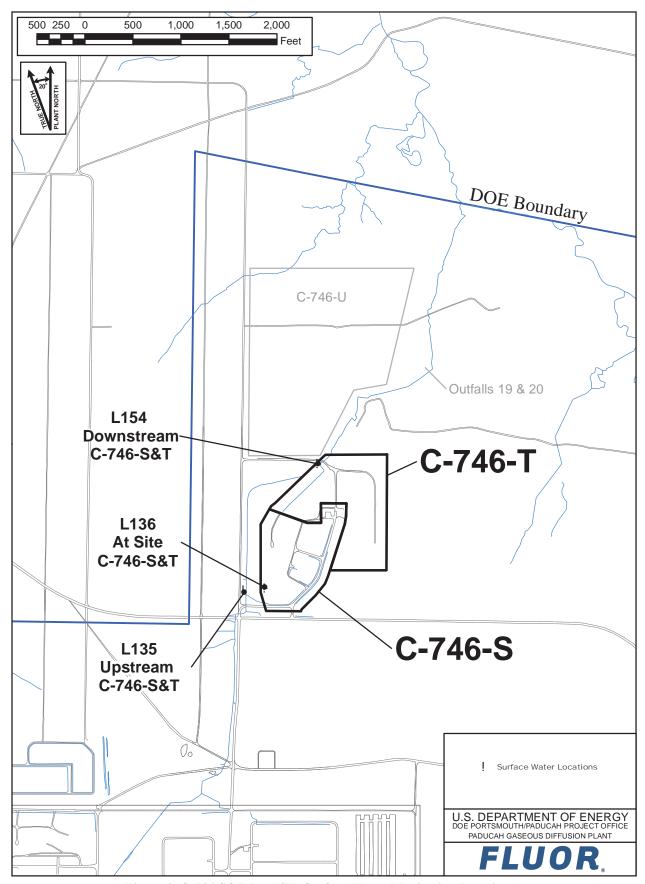


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

Location L136 could not be sampled due to insufficient flow during the reporting period. The parameters identified in the Solid Waste Landfill Permit were analyzed for report only format, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, (LATA Kentucky 2014) which is Technical Application, Attachment 25, of the Solid Waste Landfill permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were further evaluated against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL during the fourth quarter 2016, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

UCRSURGALRGANoneMW369: Beta activityMW373:TrichloroetheneMW372: TrichloroetheneMW385: Beta activityMW384: Beta activityMW388: Beta activityMW387: Beta activityMW392: TrichloroetheneMW391: TrichloroetheneMW394: Trichloroethene

Table 1. Summary of MCL Exceedances

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW372, MW373, and MW391 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedances for trichloroethene in MW392 and beta activity in MW369, MW387, and MW388 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances because the source(s) of these exceedances is not determined. To evaluate these preliminary Type 2 exceedances further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. MW392, MW369, MW387, and MW388 had no increasing Mann-Kendall trend for TCE or beta activity, and are considered to be Type 1 exceedances (not attributable to the landfill).

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 8, and 401 *KAR* 48:300 § 7.

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Oxidation-reduction	MW220: Oxidation-reduction	MW370: Oxidation-reduction
potential, radium-226	potential, radium-226, sulfate	potential, sulfate
MW390: Oxidation-reduction	MW221: Radium-226	MW373: Calcium, conductivity,
potential, radium-226,		dissolved solids, magnesium,
technetium-99		oxidation-reduction potential, sulfate
MW393: Oxidation-reduction	MW222: Oxidation-reduction	MW385: Beta activity, a chemical
potential	potential	oxygen demand, oxidation-reduction
		potential, sulfate, technetium-99
MW396: Oxidation-reduction	MW223: Oxidation-reduction	MW388: Beta activity, ^a
potential	potential	oxidation-reduction potential,
		radium-226, sulfate, technetium-99
	MW224: Radium-226	MW392: Oxidation-reduction
		potential, trichloroethene
	MW369: Beta activity, ^a	MW395: Oxidation-reduction
	technetium-99	potential, radium-226
	MW372: Calcium, dissolved solids,	MW397: Oxidation-reduction
	magnesium, sulfate	potential
	MW384: Beta activity, ^a	
	oxidation-reduction potential,	
	sulfate, technetium-99	
	MW387: Beta activity, ^a	
	oxidation-reduction potential,	
	radium-226, sulfate, technetium-99	
	MW391: Magnesium, sulfate	

^{*}Gradients in the UCRS are downward. UCRS gradient designations refer to locations of wells in the same direction, relative to the landfill as the RGA wells.

Table 3. Exceedances of Current Background UTL in **Downgradient Wells**

URGA	LRGA
MW369: Beta activity, technetium-99	MW370: Sulfate
MW372: Calcium, dissolved solids,	MW373: Calcium, conductivity,
magnesium, sulfate	dissolved solids, magnesium, sulfate
MW387: Beta activity, sulfate,	MW388: Beta activity, sulfate,
technetium-99	technetium-99
MW391: Magnesium, sulfate	MW392: Trichloroethene

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393 Upgradient wells: MW220, MW394, MW395, MW396, bMW397

^a Beta activity has an MCL; the exceedances of the MCL were subjected to a comparison against the statistically derived historical background. ^b In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

Table 4. C-746-S and -T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value 2	S^3	Var(S)4	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
	MW369	Beta Activity	8	0.05	0.452	2.000	0.000	0.450	0.071	No Trend
	W 309	Technetium-99	8	0.05	0.548	0.000	0.000	-0.050	0.000	No Trend
	MW370	Sulfate	8	0.05	0.500	1.000	64.33	0.050	0.036	No Trend
		Calcium	8	0.05	0.089	-12.00	0.000	-1.450	-0.429	No Trend
	MW372	Dissolved Solids	8	0.05	0.360	-4.000	0.000	-3.500	-0.143	No Trend
	W 3 / 2	Magnesium	8	0.05	0.054	-14.00	0.000	-0.855	-0.500	No Trend
		Sulfate	8	0.05	0.023	-17.00	64.33	-7.267	-0.618	Negative Trend
		Calcium	8	0.05	0.016	-18.00	0.000	-1.550	-0.643	Negative Trend
		Conductivity	8	0.05	0.016	-18.00	0.000	-31.00	-0.643	Negative Trend
C-746-S and T	MW373	Dissolved Solids	8	0.05	0.360	-4.000	0.000	-1.967	-0.143	No Trend
Landfills		Magnesium	8	0.05	0.007	-20.00	0.000	-0.850	-0.714	Negative Trend
Downgradient Wells		Sulfate	8	0.05	0.007	-20.00	0.000	-0.714	-10.37	Negative Trend
Wells		Beta Activity	8	0.05	0.138	-10.00	0.000	-7.000	-0.357	No Trend
	MW387	Sulfate	8	0.05	0.452	-2.000	0.000	-0.475	-0.071	No Trend
		Technetium-99	8	0.05	0.452	-2.000	0.000	-5.458	-0.071	No Trend
		Beta Activity	8	0.05	0.199	8.000	0.000	4.155	0.286	No Trend
	MW388	Sulfate	8	0.05	0.227	-7.000	64.33	-0.212	-0.255	No Trend
		Technetium-99	8	0.05	0.031	16.00	0.000	11.40	0.571	Positive Trend
	MW391	Magnesium	8	0.05	0.031	16.00	0.000	0.742	0.571	Positive Trend
	IVI VV 391	Sulfate	8	0.05	0.016	18.00	0.000	6.432	0.643	Positive Trend
	MW392	Trichloroethene	8	0.05	0.089	12.00	0.000	0.377	0.429	No Trend

Footnotes:

Note: Statistics generated using XLSTAT Version 2015

¹An alpha of 0.05 represents a 95% confidence interval.

²The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

⁴VAR(S) represents the varience of S in the sample set and takes into account statistical ties.

⁵The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all $(x_i - x_k)/(j - k)$, where x is a data point and j and k are values of time.

⁶Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is postive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend.

⁷The Mann-Kendall decision operates on two hypothesis, the H₀ and H_a. H₀ assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend. Two different tests were ran to test for positive or negative trends. This table reports the test with the lowest p-value.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as upgradient, to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

Those constituents listed in Table 3 exceed both the historical UTL and the current UTL and preliminarily are considered to be a Type 2 exceedance per the approved Groundwater Monitoring Plan. To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All but three of these preliminary Type 2 exceedances in downgradient wells—technetium-99 in MW388, magnesium in MW391, and sulfate in MW391—did not have an increasing trend and are considered to be Type 1 exceedances (not attributable to the landfill).

The Mann-Kendall statistical test indicates that there is an increasing trend of technetium-99 in MW388 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, this is considered a Type 2 exceedance (source unknown). The source of the trend is believed to be unrelated to the C-746-S&T Landfills for the following reasons:

- There is a known upgradient regional source of technetium-99 associated with the technetium-99 Northwest Plume;
- Although the deeper (LRGA) MW388 shows an increasing trend, the shallower, collocated (URGA) well, MW387, does not show the increasing Mann-Kendall trend for technetium-99 (refer to Table 4); and
- The recent technetium-99 in MW388 is within the range of historical levels (0.493–228 pCi/L) of technetium-99 since 2002.

The Mann-Kendall statistical test indicates that there is an increasing trend of magnesium and sulfate in MW391 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, these are considered Type 2 exceedances (source unknown). The source of the trends is believed to be unrelated to the C-746-S&T Landfills because the adjacent URGA well, MW372, does not show the increasing Mann-Kendall trends (refer to Table 4). In addition, the source of magnesium and sulfate in this well may be associated with non-landfill alternative sources that simultaneously could increase sulfate, dissolved solids, specific conductivity, calcium, and magnesium—all of which have similar concentration fluctuations over the past eight quarters.

In accordance with Permit Condition GSTR0003, Variance 2, of the Solid Waste Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the Permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS well MW390 with a technetium-99 value that exceeds both the historical and current backgrounds. Because this well is not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T sources and is considered to be a Type 1 exceedance (Table 5).

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells

UCRS	
MW390: Technetium-99	

All MCL and UTL exceedances, except for the listed parameters—technetium-99 in MW388; magnesium and sulfate in MW391, reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills. The increasing trends for these listed parameters do not appear to be landfill-related, given the data collected to date. The listed parameters will continue to be evaluated in the context of these observations.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the fourth quarter 2016 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the respective Kentucky solid waste facility MCL found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance.

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389***	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396**	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	\ 10 /
	MW387	
	MW391	
	MW394 (upgradient)	

^{*}A map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the UCRS. During the fourth quarter, oxidation-reduction potential, radium-226, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Technetium-99 exceeded the current background UTL and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 33 parameters, including those with MCLs, required statistical analysis in the URGA. During the fourth quarter, beta activity, calcium, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, dissolved solids, magnesium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

^{**}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^{***}MW389 had insufficient water to permit a water sample for laboratory analysis.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 30 parameters, including those with MCLs, required statistical analysis in the LRGA. During the fourth quarter, beta activity, calcium, chemical oxygen demand, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate, technetium-99, and trichloroethene displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, technetium-99, and trichloroethene exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms. A result has been considered a nondetect, if it has a "U" validation code.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices, and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples—such as matrix spikes, matrix spike duplicates, and method blanks—are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills

Fourth Quarter Calendar Year 2016 (October-December)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FPDP-RPT-0026/V4)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

PG 113927

RESIDENTIAL PROFESSIONAL PROFESSI

February 23, 2017 Date

Kennéth R. Davis

PG113927

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and KY-073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Paducah Gaseous Diffusion Plant			Activity:	C-746-S&T Landfills	
-	(As officially show	n on DWM Per	mit Face)			
SW07300014, Permit No: SW07300015, SW07300045		Finds	/Unit No:	Quarter & Year	4th Qtr. CY 2016	
Please check the	following as applicabl	e:				
Character	rization X Qu	arterly	Semiannual	Annual	Assessment	
Please check app	licable submittal(s):	X	Groundwater	XS	urface Water	
	:		Leachate	XN	Methane Monitoring	
45:160) or by statut jurisdiction of the D hours of making the lab report is No pages.	e (Kentucky Revised Sta Division of Waste Manage ne determination using a OT considered notificati	tues Chapter ement. You n statistical an on. Instructio	224) to conduct groundst report any indicalyses, direct comparions for completing the	ndwater and surface vation of contaminations, or other similar form are attached. Do	tions-401 KAR 48:300 and water monitoring under the on within forty-eight (48) ar techniques. Submitting o not submit the instruction rection or supervision in	
accordance with a s Based on my inquiry best of my knowledge	system designed to assure of the person or persons	e that qualified directly resp te, and compl	ed personnel properly consible for gathering i lete. I am aware that the	gather and evaluate t nformation, the informere are significant per	the information submitted. nation submitted is, to the nalties for submitting false	
BU	A			2/	27/2017	
Bobby D. Smith, Fluor Federal Se	, Program Manager rvices, Inc.			*	Date	
Xamp	Wordar	d		_2/	27/2017	
Jennifer Woodar U.S. Department	d, Paducah Site Lead	1		1	Date	
U.p./Department	or Ellergy					

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date: Facility Name:	Groundwater: October 2016 Surface Water: November 20 Methane: December 2016 U.S. DOE—Paducah Gaseou	O16 County: McCracken	_ Permit Nos.	SW07300014, SW07300015, SW07300045
Site Address:	5501 Hobbs Road Street	Kevil, Kentucky City/State		42053 Zip
DI M		•	T 1, 1	•
Phone No:	(270) 441-6800 La	itude: N 37° 07' 37.70"	Longitude:	W 88° 47' 55.41"
		OWNER INFORMATION		
Facility Owner:	U.S. DOE, Robert E. Edward	ls III, Manager	Phone No:	(859) 227-5020
Contact Person:	Myrna E. Redfield		-	(270) 441-5113
Contact Person Ti	tle: Director, Environment	al Management, Fluor Federal Services, Inc.	•	
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053
	Street	City/State		Zip
Company:	(IF OTH GEO Consultants, LLC	SAMPLING PERSONNEL ER THAN LANDFILL OR LABORATORY)		
Contact Person:	Sam Martin		Phone No:	(270) 441-6755
Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky		42053
	Street	City/State		Zip
		LABORATORY RECORD #1		
Laboratory:	GEL Laboratories, LLC	Lab ID No: _ K	XY90129	
Contact Person:	Valerie Davis		Phone No:	(843) 769-7391
Mailing Address:	2040 Savage Road	Charleston, South Carolina		29407
	Street	City/State		Zip
		LABORATORY RECORD #2		
Laboratory:	N/A	Lab ID No:	N/A	
Contact Person:	N/A		Phone No:	N/A
Mailing Address:	N/A			
Training Tradition	Street	City/State		Zip
		LABORATORY RECORD #3		
Laboratory:	N/A	Lab ID No:	N/A	
Contact Person:	N/A		Phone No:	N/A
Mailing Address:	N/A			
	Street	City/State		Zip

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management Solid Waste Branch

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

14 Reilly Road

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-520°	1	8000-52	202	8000-52	:42	8000-524	1 3
Facility's Loc	cal Well or Spring Number (e.g., N	ſW−1	, MW-2, etc	:.)	220		221		222		223	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/10/2016 1	3:50	10/12/2016	3 13:08	10/13/2016	08:25	10/13/2016	07:36
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	cility Sample ID Number (if applicable)					-17	MW221S0	G1-17	MW222S0	G1-17	MW223SG	1-17
Laboratory San	boratory Sample ID Number (if applicable)					3	408036	001	4081990	001	4081990	03
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					6	10/18/2	016	10/19/20)16	10/19/201	16
Gradient with	respect to Monitored Unit (UP, DC	SIDE, UNKN	IOWN)	UP		SIDE		SIDE		SIDE		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.22		0.426		0.435		0.429	
16887-00-6	Chloride(s)	Т	mg/L	9056	21.9		31.5		31.5		29.8	
16984-48-8	Fluoride	т	mg/L	9056	0.169		0.168		0.234		0.215	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.16		1.01		0.999		1.06	
14808-79-8	Sulfate	т	mg/L	9056	18.7		14.1		12		14.7	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.3		30.12		30.27		30.25	
s0145	Specific Conductance	т	μ MH 0/cm	Field	348		381		371		420	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved ⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	<u> </u>	8000-5243	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.87		325.75		325.61		325.73	
N238	Dissolved Oxygen	т	mg/L	Field	4.96		4.28		3.35		4.18	
s0266	Total Dissolved Solids	т	mg/L	160.1	187		213		130	*	140	*
s0296	рн	т	Units	Field	6.14		6.22		6.4		6.31	
NS215	Eh	т	mV	Field	414		378		424		429	
s0907	Temperature	т	°C	Field	18.5		18.78		15.72		15.28	
7429-90-5	Aluminum	Т	mg/L	6020	0.036	J	<0.05		0.0376	J	<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.205		0.227		0.282		0.231	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00859	J	0.015		0.00899	J	<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	20.5		21.2		18.2		21	
7440-47-3	Chromium	Т	mg/L	6020	0.00408	J	<0.01		<0.01		0.0234	
7440-48-4	Cobalt	Т	mg/L	6020	0.000263	J	0.000119	J	0.000563	J	0.000464	J
7440-50-8	Copper	Т	mg/L	6020	0.000966	J	0.000658	J	0.00048	J	0.00108	
7439-89-6	Iron	Т	mg/L	6020	0.0847	J	0.044	J	<0.1		<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	8.7		9.57		8.37		9.07	
7439-96-5	Manganese	Т	mg/L	6020	0.00203	J	<0.005		0.00326	J	0.00249	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8000-520	01	8000-52	02	8000-524	42	8000-52	43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	0.000626		0.00127		0.000326	J	0.00613	
7440-02-0	Nickel	Т	mg/L	6020	0.0256		0.00712		0.0482		0.174	
7440-09-7	Potassium	Т	mg/L	6020	2.73		1.22		0.609		1.72	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	39.6		48.4		46.8		45.9	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		0.00465	J	0.0047	J
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005	*	<0.005	*	<0.005	*
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8000-520	1	8000-520)2	8000-52	242	8000-5	243
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2,	etc.)	220		221		222		223	}
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	0.00063	J	0.00051	J	<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKO	GWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	12	8000-524	13
Fac	cility's Loca	al Well or Spring Number (e.g., M	īW−1	., MW-2, et	:c.)	220		221		222		223	
C	'AS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100	0-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
592	1-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-	-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124	4-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-	-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-	-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108	8-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-	-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.00002		<0.0000201		<0.0000197		<0.0000198	
78-	-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
100	061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
100	061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156	6-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-	-69-4	Trichlorofluoromethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-	-18-4	1,2,3-Trichloropropane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-	-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106	6-46-7	Benzene, 1,4-Dichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
133	36-36-3	PCB,Total	Т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.098	
126	674-11-2	PCB-1016	т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.098	
111	104-28-2	PCB-1221	т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.098	
111	141-16-5	PCB-1232	Т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.098	
534	469-21-9	PCB-1242	т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.098	
126	672-29-6	PCB-1248	T	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.098	╷

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	1 3
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.098	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.098	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.098	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.286	*	-1.05	*	1.7	*	0.844	*
12587-47-2	Gross Beta	Т	pCi/L	9310	21.7	*	10.8	*	2.44	*	5.15	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	1.15	*	0.603	*	0.306	*	0.31	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-4.92	*	-0.35	*	-0.998	*	-1.1	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	12.3	*	18	*	0.0157	*	3.25	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.173	*	0.037	*	0.119	*	0.391	*
10028-17-8	Tritium	Т	pCi/L	906.0	19.4	*	-174	*	-22.5	*	54.8	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	13.9	BJ	26.5	В	22.1	В	27.4	В
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.892	J	0.98	J	0.908	J	<2	
s0586	Total Organic Halides	Т	mg/L	9020	0.00714	J	0.0101		<0.01		<0.01	
					-							

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8000-524	4	8004-48	320	8004-48	318	8004-480)8		
Facility's Loc	cal Well or Spring Number (e.g., N	w-1	, MW-2, etc	:.)	224		369		370		372	
Sample Sequenc	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/11/2016 1	1:57	10/19/2016	08:55	10/19/2016	07:25	10/19/2016	09:42
Duplicate ("Y'	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW224SG1	-17	MW369U0	G1-17	MW370U0	G1-17	MW372UG	1-17
Laboratory San	poratory Sample ID Number (if applicable)						408780	003	408780	001	4087170	03
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					6	10/24/20	016	10/24/20	016	10/21/201	16
Gradient with	radient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)						DOWN		DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.429		0.355		0.436		0.606	
16887-00-6	Chloride(s)	Т	mg/L	9056	31.5		32.6		36.4		47.6	
16984-48-8	3			9056	0.227		0.204		0.186		0.136	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.645		0.466	*	1.11	*	0.0619	J
14808-79-8	Sulfate	Т	mg/L	9056	13.6		5.97		19.7		76.5	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.23		30.02		30		30.02	
s0145	Specific Conductance	т	μ MH 0/cm	Field	425		379		435		611	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-1	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.76		325.01		324.97		325	
N238	Dissolved Oxygen	т	mg/L	Field	3.91		3.01		4.01		1.78	
s0266	Total Dissolved Solids	Т	mg/L	160.1	291		239		227		376	
s0296	Нд	Т	Units	Field	6.26		6.4		6.29		6.34	
NS215	Eh	Т	mV	Field	395		365		402		242	
s0907	Temperature	т	°C	Field	18.72		19.94		18.72		18.44	
7429-90-5	Aluminum	т	mg/L	6020	0.0176	J	0.0492	J	<0.05		0.119	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00179	J	0.00289	J
7440-39-3	Barium	т	mg/L	6020	0.22		0.387		0.222		0.0445	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0197		0.0138	J	0.0304		0.901	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	22.1		16.4		27.3		49.1	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00037	J	0.00601		0.000538	J	0.000377	J
7440-50-8	Copper	Т	mg/L	6020	0.000369	J	0.00233		0.000723	J	<0.001	
7439-89-6	Iron	Т	mg/L	6020	0.0855	BJ	0.185		0.097	J	0.983	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	9.86		7.1		11.7		19.6	
7439-96-5	Manganese	Т	mg/L	6020	0.0048	J	0.0194		0.00648		0.0216	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	08
Facility's L	ocal Well or Spring Number (e.g.,	MW-	·1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	0.000474	J	<0.0005		<0.0005		0.000422	J
7440-02-0	Nickel	т	mg/L	6020	0.00341		0.00654		0.000813	J	0.000724	J
7440-09-7	Potassium	Т	mg/L	6020	0.815		0.489		2.44		2.14	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	56.5		52.2		40.1		49.7	
7440-25-7	Tantalum	T	mg/L	6020	<0.005		<0.005		<0.005		<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		0.00412	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005	*	<0.005		<0.005		<0.005	
67-64-1	Acetone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		0.00069	J
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8000-524	4	8004-482	20	8004-48	318	8004-48	308
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2, et	tc.)	224		369		370		372	
CAS RN⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		0.00095	J	0.00124		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	<0.001		0.00456		0.00478		0.00706	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	A NUMBER ¹ , Facility Well/Spring Number					4	8004-4820)	8004-48	18	8004-480	08
Facility's L	ocal Well or Spring Number (e.g., 1	∕w-1	L, MW-2, et	:c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.000198		<0.0000197		<0.0000198		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0943		<0.098		0.0752	J	0.0366	J
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0943		<0.098		<0.098		<0.0971	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0943		<0.098		<0.098		<0.0971	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0943		<0.098		<0.098		<0.0971	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0943		<0.098		0.0752	J	0.0366	J
12672-29-6	PCB-1248	т	ug/L	8082	<0.0943		<0.098		<0.098		<0.0971	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

		8000-5244		8004-4820		8004-481	0	8004-480	8		
al Well or Spring Number (e.g., M	IW-1	., MW-2, et	.c.)	224		369		370		372	
CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
PCB-1254	т	ug/L	8082	<0.0943		<0.098		<0.098		<0.0971	
PCB-1260	т	ug/L	8082	<0.0943		<0.098		<0.098		<0.0971	
PCB-1268	т	ug/L	8082	<0.0943		<0.098		<0.098		<0.0971	
Gross Alpha	т	pCi/L	9310	-0.212	*	0.37	*	0.356	*	2.28	*
Gross Beta	т	pCi/L	9310	5.36	*	57	*	19.1	*	9.61	*
Iodine-131	Т	pCi/L			*		*		*		*
Radium-226	Т	pCi/L	AN-1418	0.653	*	0.334	*	0.198	*	0.685	*
Strontium-90	Т	pCi/L	905.0	-0.741	*	7.2	*	-0.131	*	0.162	*
Technetium-99	Т	pCi/L	Tc-02-RC	5.9	*	83.3	*	31.7	*	10.3	*
Thorium-230	Т	pCi/L	Th-01-RC	0.421	*	0.0272	*	3.05	*	0.286	*
Tritium	т	pCi/L	906.0	57.8	*	106	*	61.9	*	95.9	*
Chemical Oxygen Demand	Т	mg/L	410.4	18.5	BJ	23		21.2		15.8	J
Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
Total Organic Carbon	Т	mg/L	9060	1.07	J	0.958	J	1.36	J	2.57	
Total Organic Halides	Т	mg/L	9020	0.00444	J	0.00734	J	0.0256		0.00712	J
											<u> </u>
	PCB-1254 PCB-1260 PCB-1268 Gross Alpha Gross Beta Iodine-131 Radium-226 Strontium-90 Technetium-99 Thorium-230 Tritium Chemical Oxygen Demand Cyanide Iodide Total Organic Carbon	PCB-1254 T PCB-1260 T PCB-1268 T Gross Alpha T Gross Beta T Iodine-131 T Radium-226 T Strontium-90 T Technetium-99 T Thorium-230 T Tritium T Chemical Oxygen Demand T Cyanide T Iodide T Total Organic Carbon T	D OF MEASURE	D OF MEASURE	D OF MEASURE VALUE OR PQL6	D OF MEASURE	D OF MEASURE	D OF MEASURE NEASURE NEASU	D OF MEASURE NEASURE NEASU	D OF MEASURE NAIUE L VALUE L OR A OR OR OR OR OR OR	D OF MEASURE C OR OR OR OR PQL6 S PQL6 S

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

14 Reilly Road

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-48	809	8004-48	10	8004-480	04
Facility's Loc	al Well or Spring Number (e.g., N	ſW−1	, MW-2, etc	:.)	373		384		385		386	
Sample Sequence	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/19/2016 1	2:18	10/10/2016	12:56	10/11/2016	10:17	10/11/2016	09:06
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW373UG1	-17	MW384S0	G1-17	MW385S0	G1-17	MW386SG	1-17
Laboratory Sam	boratory Sample ID Number (if applicable)						407701	005	4078430	005	4078430	09
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					6	10/12/20	016	10/13/20)16	10/13/20	16
Gradient with	radient with respect to Monitored Unit (UP, DOWN, SIDE, UN				DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.586		0.474		0.221		0.169	J
16887-00-6	Chloride(s)	т	mg/L	9056	44.4		45.4		27		16.1	
16984-48-8	Fluoride	т	mg/L	9056	0.162		0.244		0.171		0.535	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.54		1.31		0.578		<0.1	
14808-79-8	Sulfate	Т	mg/L	9056	148		20.5		19.9		44.1	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.01		30.3		30.25		30.24	
s0145	Specific Conductance	т	μ MH 0/cm	Field	798		484		464		615	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	W-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	324.99		325.19		325.16		344.29	
N238	Dissolved Oxygen	Т	mg/L	Field	1.81		4.85		1.03		1.28	
s0266	Total Dissolved Solids	Т	mg/L	160.1	497		267		257		351	
s0296	рн	Т	Units	Field	6.31		6.35		6.6		6.72	
NS215	Eh	т	mV	Field	322		401		295		206	
s0907	Temperature	т	°C	Field	19.83		19.06		17.56		17.5	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.0017	J	0.00195	٦	<0.005		0.00255	J
7440-39-3	Barium	т	mg/L	6020	0.0312		0.126		0.253		0.231	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	1.44		0.0124	J	0.0139	J	<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	67.5		28		39.6		22.7	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.00336	J	<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00183		<0.001		<0.001		0.0136	
7440-50-8	Copper	Т	mg/L	6020	<0.001		0.000511	J	0.000431	J	0.000844	J
7439-89-6	Iron	Т	mg/L	6020	0.0835	J	0.0512	J	0.0758	BJ	1.68	В
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	25.3		11.1		15		9.8	
7439-96-5	Manganese	Т	mg/L	6020	0.0749		0.00277	J	0.00618		1.63	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005		0.00084		0.000816	
7440-02-0	Nickel	Т	mg/L	6020	0.00385		0.000604	J	0.00124	J	0.00289	
7440-09-7	Potassium	Т	mg/L	6020	2.69		1.15		1.99		0.302	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.00263	J	<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	55.9		53.4		35		104	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000156	J	<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		0.00388	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	*
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-479	2	8004-480	09	8004-48	310	8004-48	804
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2, et	tc.)	373		384		385		386	i
CAS RN⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	0.00763		0.00054	J	0.00035	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-4809)	8004-481	10	8004-480	04
Facility's Loc	cal Well or Spring Number (e.g., M	1 W−1	l, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.00002		<0.0000201		<0.0000198		<0.0000199	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0952		<0.099		<0.098		<0.0943	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.099		<0.098		<0.0943	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.099		<0.098		<0.0943	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.099		<0.098		<0.0943	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.099		<0.098		<0.0943	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0952		<0.099		<0.098		<0.0943	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-4809)	8004-481	0	8004-480)4
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.099		<0.098		<0.0943	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0952		<0.099		<0.098		<0.0943	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0952		<0.099		<0.098		<0.0943	
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.56	*	-1.51	*	2.55	*	0.651	*
12587-47-2	Gross Beta	Т	pCi/L	9310	17.8	*	101	*	78.1	*	0.524	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.557	*	0.498	*	0.246	*	0.0419	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.172	*	1.23	*	-1	*	-1.97	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	19.9	*	167	*	147	*	-1.69	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.342	*	0.494	*	0.401	*	0.205	*
10028-17-8	Tritium	Т	pCi/L	906.0	-109	*	126	*	53.5	*	68.7	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	14	J	12.1	BJ	154	В	38.1	В
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.38	J	1.17	J	1.19	J	6.58	
s0586	Total Organic Halides	Т	mg/L	9020	0.00966	J	0.0114		0.00468	J	0.148	

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	316	8004-48	12	8004-481	1
Facility's Loc	al Well or Spring Number (e.g., 1	∕w-1	L, MW-2, etc	.)	387		388		389		390	
Sample Sequenc	e #				1		1		1		1	
If sample is a E	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/11/2016 0	7:35	10/11/2016	08:24	NA		10/10/2016 1	1:53
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW387SG1	-17	MW388S0	G1-17	NA		MW390SG1	-17
Laboratory Sam	mple ID Number (if applicable)				40784300	1	407843	011	NA		40770100	1
Date of Analys	sis (Month/Day/Year) For Volatile	e 01	ganics Anal	ysis	10/13/201	6	10/13/2	016	NA		10/12/201	6
Gradient with	respect to Monitored Unit (UP, DO	NWC	, SIDE, UNKN	OWN)	DOWN		DOW	N	DOWI	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.352		0.373			*	0.653	
16887-00-6	Chloride(s)	Т	mg/L	9056	35.7		32.8			*	69.9	
16984-48-8	Fluoride	Т	mg/L	9056	0.462		0.221			*	0.274	
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.08		1.07			*	3.23	
14808-79-8	Sulfate	Т	mg/L	9056	28.3		23.9			*	42.2	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.22		30.23			*	30.33	
s0145	Specific Conductance	Т	μ MH0/cm	Field	500		432		_	*	710	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

 $^{^{6}}$ "<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	325.32		325.23			*	325.19	
N238	Dissolved Oxygen	Т	mg/L	Field	4.65		5.07			*	6	
s0266	Total Dissolved Solids	T	mg/L	160.1	271		243			*	391	
s0296	рн	Т	Units	Field	6.4		6.15			*	6.54	
NS215	Eh	Т	mV	Field	450		455			*	431	
s0907	Temperature	т	°C	Field	16		16.83			*	18.67	
7429-90-5	Aluminum	Т	mg/L	6020	0.0209	J	<0.05			*	0.107	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	0.00236	J	<0.005			*	0.00172	J
7440-39-3	Barium	Т	mg/L	6020	0.118		0.211			*	0.257	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0411		0.0255			*	0.00872	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	32.8		26.5			*	32.9	
7440-47-3	Chromium	T	mg/L	6020	0.00355	J	<0.01			*	<0.01	
7440-48-4	Cobalt	T	mg/L	6020	<0.001		<0.001			*	0.000281	J
7440-50-8	Copper	Т	mg/L	6020	0.00101		0.000572	J		*	0.000857	J
7439-89-6	Iron	Т	mg/L	6020	0.131	В	0.0737	BJ		*	0.108	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	14		11.7			*	14	
7439-96-5	Manganese	Т	mg/L	6020	0.00226	J	<0.005			*	0.00152	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-48	15	8004-481	6	8004-48112	2	8004-4811	
Facility's L	ocal Well or Spring Number (e.g.,	, MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005		<0.0005			*	0.000596	
7440-02-0	Nickel	т	mg/L	6020	0.000745	J	0.000904	J		*	0.00177	J
7440-09-7	Potassium	т	mg/L	6020	1.78		2.17			*	0.369	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	т	mg/L	6020	53.2		49.2			*	98	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	0.000654	J
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	0.000137	J
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01			*	<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005	*	<0.005	*		*	<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-481	5	8004-48	16	8004-481	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	0.00079	J	0.00083	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA 1	NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	5	8004-4816	6	8004-4812	2	8004-481	1
Facilit	ty's Loca	al Well or Spring Number (e.g., N	/W−1	., MW-2, et	.c.)	387		388		389		390	
CAS	RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
100-41-	-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-	-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-	-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-	5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-	-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000193		<0.0000197			*	<0.0000196	
78-87-	5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-0	02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-0	01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-	-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-	-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36	6-3	PCB,Total	Т	ug/L	8082	<0.1		<0.0943			*	<0.1	
12674-3	11-2	PCB-1016	Т	ug/L	8082	<0.1		<0.0943			*	<0.1	
11104-2	28-2	PCB-1221	Т	ug/L	8082	<0.1		<0.0943			*	<0.1	
11141-1	16-5	PCB-1232	Т	ug/L	8082	<0.1		<0.0943			*	<0.1	
53469-2	21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.0943			*	<0.1	
12672-2	29-6	PCB-1248	Т	ug/L	8082	<0.1		<0.0943			*	<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815		8004-4816	;	8004-4812	2	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.0943			*	<0.1	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.1		<0.0943			*	<0.1	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.1		<0.0943			*	<0.1	
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.967	*	6.15	*		*	0.909	*
12587-47-2	Gross Beta	Т	pCi/L	9310	115	*	95.8	*		*	42.8	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.826	*	0.783	*		*	1.02	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.56	*	1.87	*		*	-1.29	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	215	*	162	*		*	56.7	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.027	*	0.402	*		*	0.318	*
10028-17-8	Tritium	Т	pCi/L	906.0	159	*	124	*		*	55.8	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	22.1	В	18.5	BJ		*	22.8	В
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.2	J	1.17	J		*	2.4	
s0586	Total Organic Halides	Т	mg/L	9020	0.00656	J	0.00638	J		*	0.0231	

Division of Waste Management Solid Waste Branch RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Pe Frankfort, KY 40601 (502)564-6716

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1
716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-48	306	8004-4807		8004-480	02
Facility's Loc	al Well or Spring Number (e.g., N	ſW−1	, MW-2, etc	.)	391		392		393		394	
Sample Sequence	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/12/2016 0	8:57	10/12/2016	07:27	10/12/2016	08:14	10/12/2016	12:16
Duplicate ("Y"	or "N") ²				N	N			N		N	
Split ("Y" or	Split ("Y" or "N") ³						N		N		N	
Facility Sampl	Facility Sample ID Number (if applicable)						MW392S0	G1-17	MW393S0	91-17	MW394SG	1-17
Laboratory Sam	Laboratory Sample ID Number (if applicable)						4080360	005	408036007		4080360	09
Date of Analys	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	10/18/2016		10/18/2016		10/18/2016		10/18/201	16
Gradient with	respect to Monitored Unit (UP, DO	, NWC	side, UNKN	OWN)	DOWN		DOWI	N	DOWN		UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.557		0.593		0.186	J	0.688	
16887-00-6	Chloride(s)	Т	mg/L	9056	43.9		49.4		13.4		49.4	
16984-48-8	Fluoride	Т	mg/L	9056	0.133		0.187		0.144		0.124	
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.949		0.474		<0.1		1.21	
14808-79-8	Sulfate	Т	mg/L	9056	54.6		6.43		14.5		10.4	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.15		30.14		30.15		30.12	
s0145	Specific Conductance	т	μ MH 0/cm	Field	481		413		403		406	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

 $^{^{6}}$ "<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-4806		8004-4807		8004-4802	1
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	325.31		325.3		340.54		325.69	
N238	Dissolved Oxygen	Т	mg/L	Field	3.5		1.47		2.18		4.28	
s0266	Total Dissolved Solids	Т	mg/L	160.1	271		199		233		219	
s0296	рн	Т	Units	Field	6.23		6.48		6.25		6.23	
NS215	Eh	Т	mV	Field	319		442		218		369	
s0907	Temperature	т	°C	Field	16.94		16.22		16.67		19.67	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0188	J	0.0206	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00435	J	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.23		0.208		0.125		0.279	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.146		0.0296		0.0219		0.0256	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	36.5		29.7		13		28.6	
7440-47-3	Chromium	T	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	T	mg/L	6020	<0.001		0.00013	J	<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	<0.001		<0.001		<0.001		0.000548	J
7439-89-6	Iron	Т	mg/L	6020	0.0882	J	0.218		2.3		0.083	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	15.8		10.9		3.88		12.1	
7439-96-5	Manganese	Т	mg/L	6020	0.00102	J	0.0455		0.0459		0.00324	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-480	05	8004-48	06	8004-48	07	8004-48)2
Facility's	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-02-0	Nickel	Т	mg/L	6020	0.000709	J	0.002		<0.002		0.00463	
7440-09-7	Potassium	Т	mg/L	6020	1.8		1.86		0.435		1.35	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	36.9		40.4		79.8		34.9	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		0.00711	BJ	<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	T	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-480	5	8004-480)6	8004-4807		8004-4	802
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	0.00051	J	0.00071	J	<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	0.0114		0.0258		<0.001		0.00706	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	6	8004-4807		8004-480	02
ľ	Facility's Loca	al Well or Spring Number (e.g., N	/W−1	L, MW-2, et	:c.)	391		392		393		394	
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
L	75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
=	96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000199		<0.0000199		<0.0000199		<0.0000198	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
L	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
L	96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
L	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
L	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
L	1336-36-3	PCB,Total	Т	ug/L	8082	<0.0962		<0.0971		<0.0962		<0.0962	
	12674-11-2	PCB-1016	т	ug/L	8082	<0.0962		<0.0971		<0.0962		<0.0962	
	11104-28-2	PCB-1221	т	ug/L	8082	<0.0962		<0.0971		<0.0962		<0.0962	
	11141-16-5	PCB-1232	т	ug/L	8082	<0.0962		<0.0971		<0.0962		<0.0962	
	53469-21-9	PCB-1242	т	ug/L	8082	<0.0962		<0.0971		<0.0962		<0.0962	
	12672-29-6	PCB-1248	Т	ug/L	8082	<0.0962		<0.0971		<0.0962		<0.0962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4805		8004-4806		8004-4807		8004-480)2
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0962		<0.0971		<0.0962		<0.0962	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0962		<0.0971		<0.0962		<0.0962	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0962		<0.0971		<0.0962		<0.0962	
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.04	*	0.475	*	2.13	*	-1.82	*
12587-47-2	Gross Beta	Т	pCi/L	9310	6.44	*	-0.658	*	1.8	*	2.51	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.353	*	0.315	*	0.591	*	0.419	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.985	*	-0.313	*	-0.817	*	-0.151	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	8.63	*	1.55	*	0.082	*	4.39	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.184	*	0.44	*	0.555	*	0.195	*
10028-17-8	Tritium	Т	pCi/L	906.0	26.1	*	-111	*	-38.5	*	-51.8	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	15.4	BJ	22.8	В	21	В	13.6	BJ
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.02	J	1.19	J	2.75		0.885	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0128		0.073		0.0201		<0.01	
		Щ										
		Щ										

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-48	303	8004-4817		0000-0000	
Facility's Loc	al Well or Spring Number (e.g., N	ſW−1	L, MW-2, etc	.)	395		396		397		E. BLANI	K
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		Е	
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)					9:44	10/12/2016	10:26	10/11/2016	11:05	10/11/2016 0	7:00
Duplicate ("Y"	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or	Split ("Y" or "N") ³						N		N		N	
Facility Sampl	e ID Number (if applicable)	MW395SG1	-17	MW396S0	G1-17	MW397SG	91-17	RI1SG1-1	7			
Laboratory Sam	ple ID Number (if applicable)				40803601	1	408036	013	4078430)13	40784301	6
Date of Analys	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	10/18/2016		10/18/2016		10/13/2016		10/13/201	6
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	OWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.572		1.23		0.489			*
16887-00-6	Chloride(s)	т	mg/L	9056	47.1		70.4		39.7			*
16984-48-8	Fluoride	т	mg/L	9056	0.0987	J	0.467		0.145			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.64		<0.1		1.54			*
14808-79-8	Sulfate	Т	mg/L	9056	9.86		23.3		11.3			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.15		30.15		30.24			*
s0145	Specific Conductance	т	μ M H0/cm	Field	377		760		334			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

	·				1 00110	<u> </u>						
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480)1	8004-480	3	8004-4817	7	0000-0000	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.12		368.26		325.54			*
N238	Dissolved Oxygen	т	mg/L	Field	4.9		2.38		5.5			*
s0266	Total Dissolved Solids	т	mg/L	160.1	214		396		166			*
s0296	рн	т	Units	Field	6.14		6.5		6.25			*
NS215	Eh	т	mV	Field	357		221		378			*
s0907	Temperature	т	°C	Field	16.94		17.89		19.11			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0228	J	0.0378	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		0.00218	J	<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.271		0.435		0.134		<0.002	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0255		0.00841	J	0.00871	J	0.172	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	27.2		39.2		19.3		<0.2	
7440-47-3	Chromium	T	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	T	mg/L	6020	<0.001		0.00381		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000508	J	0.000726	J	0.000544	J	0.00317	
7439-89-6	Iron	Т	mg/L	6020	0.0517	J	1.29		0.095	BJ	<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		0.000561	J
7439-95-4	Magnesium	Т	mg/L	6020	12		17.4		8.26		<0.03	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.588		0.00172	J	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's	Local Well or Spring Number (e.g.	, MW-	·1, MW-2, e	tc.)	395		396		397		E. BLAN	1K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.000478	J	<0.0005		<0.0005	
7440-02-0	Nickel	Т	mg/L	6020	0.00078	J	0.0015	J	0.000624	J	<0.002	
7440-09-7	Potassium	Т	mg/L	6020	1.61		0.894		1.81		<0.3	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	30.5		115		33.2		<0.25	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.000102	J	<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		0.00532	J
7440-66-6	Zinc	т	mg/L	6020	<0.01		0.00389	J	<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480)3	8004-48	317	0000-00	000
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		0.00141	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		0.0231	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00399		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48′	17	0000-000	00
ľ	Facility's Loca	al Well or Spring Number (e.g., N	/W−1	L, MW-2, et	:c.)	395		396		397		E. BLAN	IK
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
ľ	591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
7	96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000199		<0.0000199		<0.0000198		<0.0000199	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
L	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3	PCB,Total	т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.0935	
	12674-11-2	PCB-1016	т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.0935	
	11104-28-2	PCB-1221	т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.0935	
	11141-16-5	PCB-1232	т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.0935	
	53469-21-9	PCB-1242	т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.0935	
	12672-29-6	PCB-1248	Т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.0935	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4801		8004-4803		8004-481	7	0000-000	0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	395		396		397		E. BLAN	К
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.0935	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.0935	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0971		<0.0971		<0.0943		<0.0935	
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.135	*	2.93	*	-1.77	*	-1.82	*
12587-47-2	Gross Beta	Т	pCi/L	9310	3.62	*	2.09	*	5.73	*	1.44	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.669	*	0.601	*	0.575	*	0.301	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.488	*	-0.903	*	-1.72	*	-2.47	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	2.15	*	-10.9	*	9.1	*	-1.69	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.154	*	-0.189	*	0.139	*	0.282	*
10028-17-8	Tritium	Т	pCi/L	906.0	-37.4	*	-25.9	*	-93.7	*	55.7	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	11.7	BJ	22.8	В	16.7	BJ		*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		0.628		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.98	J	5.83		0.838	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.00666	J	<0.01		0.00564	J		*
		Щ										
		Щ										

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

Frankfort, KY 40601 (502)564-6716

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000)0
Facility's Loca	al Well or Spring Number (e.g., N	/W−1	L, MW-2, etc	:.)	F. BLAN	K	T. BLAN	K 1	T. BLANK	(2	T. BLANK	3
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	F		Т		Т		Т	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		10/11/2016	09:10	10/10/2016	11:30	10/11/2016	06:55	10/12/2016 ()7:00
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				FB1SG1-	17	TB1SG1	-17	TB2SG1-	17	TB3SG1-	17
Laboratory Sam	ple ID Number (if applicable)		4078430	15	4077010	07	4078430	17	40803601	15		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						10/12/20	16	10/14/20	16	10/19/201	16
Gradient with:	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	OWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	Т	μ MHO/cm	Field		*		*		*	_	*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., MV	I-1,	MW-2, BLANK-	F, etc.)	F. BLANI	<	T. BLANK	. 1	T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рн	T	Units	Field		*		*		*		*
NS215	Eh	T	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	Т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	Т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	Т	mg/L	6020	<0.002			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	0.161			*		*		*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	Т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	Т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	т	mg/L	6020	0.00219			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	Т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	Т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	Т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	0000-00	00	0000-00	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	K 1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	Т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	Т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	Т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	T	mg/L	6020	0.00682	J		*		*		*
7440-66-6	Zinc	Т	mg/L	6020	<0.01			*		*		*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005	*	<0.005		<0.005	*	<0.005	*
67-64-1	Acetone	Т	mg/L	8260	0.00176	J	<0.005		0.00185	J	0.00227	J
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			0000-000	0	0000-000	00	0000-00	000	0000-00	000
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	F. BLAN	<	T. BLAN	〈 1	T. BLAN	NK 2	T. BLAN	1K 3
CAS RN⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	T mg/L	8260	0.00137		0.00057	J	0.00142		0.00157	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T mg/L	8260	0.0169		0.0251		0.023		0.0271	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-000	00
	Facility's Loca	al Well or Spring Number (e.g., N	/W−1	L, MW-2, et	:c.)	F. BLANK	(T. BLANK	1	T. BLAN	ζ2	T. BLAN	(3
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
Ŀ	75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
C-43	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
7	96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000196		<0.0000198		<0.0000197		<0.0000201	
Ŀ	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
Ŀ	10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
Ŀ	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
ا	96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
<u> </u>	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3	PCB,Total	Т	ug/L	8082	<0.0943			*		*		*
	12674-11-2	PCB-1016	Т	ug/L	8082	<0.0943			*		*		*
	11104-28-2	PCB-1221	Т	ug/L	8082	<0.0943			*		*		*
	11141-16-5	PCB-1232	т	ug/L	8082	<0.0943			*		*		*
	53469-21-9	PCB-1242	т	ug/L	8082	<0.0943			*		*		*
:	12672-29-6	PCB-1248	Т	ug/L	8082	<0.0943			*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-0000		0000-0000		0000-0000	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	F. BLANK		T. BLANK 1		T. BLANK 2		T. BLANK 3	}
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0943			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.0943			*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0943			*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.08	*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	1.11	*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.365	*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.371	*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-0.816	*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.526	*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0	117	*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5			*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Frankfort, KY 40601 (502)564-6716

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKCMA MIMBED1	Facility Well/Spring Number				0000-000	00	8004-480)4	N			/
-							386	, т				-/
Facility's Loc	cal Well or Spring Number (e.g., M	W-1	L, MW-2, etc	.)	T. BLANK	. 4						
Sample Sequenc	ce #				1		2					
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	Т		N/	4				
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		10/13/2016 (07:10	10/11/2016	09:06				
Duplicate ("Y"	or "N") ²				N		Y					
Split ("Y" or	"N") ³				N		١	I	\	\		
Facility Sampl	le ID Number (if applicable)				TB4SG1-	17	MW386DS0	G1-17				
Laboratory Sam	mple ID Number (if applicable)		40819900)5	4078430	07						
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analysis					16	10/13/20	16				
Gradient with	respect to Monitored Unit (UP, DC	WN,	, SIDE, UNKN	OWN)	NA		SIDE			,	X	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*	0.191	J	/	/		
16887-00-6	Chloride(s)	Т	mg/L	9056		*	16		/			
16984-48-8	Fluoride	Т	mg/L	9056		*	0.513					
s0595	Nitrate & Nitrite	Т	mg/L	9056		*	<0.1					
14808-79-8	Sulfate	Т	mg/L	9056		*	43.7					
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*	30.24					
s0145	Specific Conductance	Т	μ MH0/cm	Field		*	615		/			

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

					1 00110	- ,						
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	8004-480	4	\setminus			
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	W-2, BLANK-1	F, etc.)	T. BLANK	4	386					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*	344.29				/	
N238	Dissolved Oxygen	Т	mg/L	Field		*	1.28					
s0266	Total Dissolved Solids	Т	mg/L	160.1		*	376					
s0296	рН	Т	Units	Field		*	6.72					
NS215	Eh	Т	mV	Field		*	206			\		
s0907	Temperature	Т	°C	Field		*	17.5					
7429-90-5	Aluminum	Т	mg/L	6020		*	<0.05					
7440-36-0	Antimony	T	mg/L	6020		*	<0.003					
7440-38-2	Arsenic	T	mg/L	6020		*	0.00308	J			X	
7440-39-3	Barium	T	mg/L	6020		*	0.234					
7440-41-7	Beryllium	T	mg/L	6020		*	<0.0005					
7440-42-8	Boron	T	mg/L	6020		*	<0.015					
7440-43-9	Cadmium	T	mg/L	6020		*	<0.001		/	/		
7440-70-2	Calcium	Т	mg/L	6020		*	23					
7440-47-3	Chromium	T	mg/L	6020		*	<0.01					
7440-48-4	Cobalt	T	mg/L	6020		*	0.0139					
7440-50-8	Copper	Т	mg/L	6020		*	0.000885	J				
7439-89-6	Iron	T	mg/L	6020		*	1.71	В				\
7439-92-1	Lead	Т	mg/L	6020		*	<0.002					
7439-95-4	Magnesium	Т	mg/L	6020		*	9.85					
7439-96-5	Manganese	Т	mg/L	6020		*	1.69					\
7439-97-6	Mercury	T	mg/L	7470		*	<0.0002		/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	8004-48	04	\			
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK 4		386	386				
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	NETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020		*	0.000797				/	
7440-02-0	Nickel	т	mg/L	6020		*	0.011					
7440-09-7	Potassium	т	mg/L	6020		*	0.308		\			
7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005					
7782-49-2	Selenium	Т	mg/L	6020		*	<0.005		Ì	\		
7440-22-4	Silver	Т	mg/L	6020		*	<0.001					
7440-23-5	Sodium	т	mg/L	6020		*	105					
7440-25-7	Tantalum	т	mg/L	6020		*	<0.005					
7440-28-0	Thallium	Т	mg/L	6020		*	<0.002			\rangle		
7440-61-1	Uranium	Т	mg/L	6020		*	0.000067	J				
7440-62-2	Vanadium	Т	mg/L	6020		*	0.00469	J				
7440-66-6	Zinc	т	mg/L	6020		*	0.00381	J		/		
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005	*	<0.005	*	/			
67-64-1	Acetone	т	mg/L	8260	0.00199	J	<0.005					
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005					
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005					
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001					
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001					$\sqrt{}$
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003					
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		/			
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001					
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			0000-0000	0	8004-480	04	\			
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1, MW-2, et)	T. BLANK	4	386					
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR EQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	T mg/L	8260	0.00174		<0.001				/	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001					
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001					
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005				/	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005					
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005					
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001					
67-66-3	Chloroform	T mg/L	8260	0.0282		<0.001					
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001				X	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001					
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001					
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001					
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001					
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		/			
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001					
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001					
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001					
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001					
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001					
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		/			
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001					
79-01-6	Ethene, Trichloro-	T mg/L	8260	<0.001		<0.001		$\sqrt{}$			

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

Z	KGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	8004-4804	4	\			
E	acility's Loca	al Well or Spring Number (e.g., M	/W−1	, MW-2, et	:c.)	T. BLANK	4	386					
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	FLAGS	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
1	.00-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001					
5	91-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005					
7	4-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005					
1	.24-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001					
5	66-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001			\setminus		
7	75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005					
C-49	.08-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005					
ع إو	6-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000202		<0.0000202			\		
7	/8-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001				X	
1	.0061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001					
1	.0061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001					
1	.56-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001					
7	75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001			/		
9	6-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		/			
2	5-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001					
1	.06-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001					
	.336-36-3	PCB,Total	Т	ug/L	8082		*	<0.099					
]	.2674-11-2	PCB-1016	Т	ug/L	8082		*	<0.099					
]	.1104-28-2	PCB-1221	Т	ug/L	8082		*	<0.099					
	.1141-16-5	PCB-1232	Т	ug/L	8082		*	<0.099					
	3469-21-9	PCB-1242	т	ug/L	8082		*	<0.099					
	.2672-29-6	PCB-1248	Т	ug/L	8082		*	<0.099		/			

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	8004-4804		\		/
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	., MW-2, et	.c.)	T. BLANK	4	386				
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED F L A PQL ⁶ S
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.099				
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.099				
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.099				
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	0.416	*		\.	
12587-47-2	Gross Beta	Т	pCi/L	9310		*	1.69	*			
10043-66-0	Iodine-131	Т	pCi/L			*		*			
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*	0.756	*			
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	-1.14	*			\bigvee
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	-1.08	*		/	\wedge
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	0.512	*			
10028-17-8	Tritium	Т	pCi/L	906.0		*	-8.23	*			
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*	32.8	В			
57-12-5	Cyanide	Т	mg/L	9012		*	<0.2			/	
20461-54-5	Iodide	Т	mg/L	300.0		*	<0.5				
s0268	Total Organic Carbon	Т	mg/L	9060		*	6.53				
s0586	Total Organic Halides	Т	mg/L	9020		*	0.148				
									/		

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5201 MW22	20 MW220SG1-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 2.64. Rad error is 2.64.
		Gross beta		TPU is 4.97. Rad error is 3.49.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.647. Rad error is 0.645.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 3.26. Rad error is 3.26.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 11.9. Rad error is 11.8.
	Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 0.28. Rad error is 0.28.	
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 132. Rad error is 132.
8000-5202 MW22	21 MW221SG1-17	Vinyl acetate	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 2.22. Rad error is 2.22.
		Gross beta		TPU is 3.08. Rad error is 2.53.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.494. Rad error is 0.493.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 1.9. Rad error is 1.9.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 11.6. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 0.323. Rad error is 0.321.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 145. Rad error is 145.
000-5242 MW22	22 MW222SG1-17	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Vinyl acetate	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 2.41. Rad error is 2.39.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 2.19. Rad error is 2.15.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 0.426. Rad error is 0.426.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 1.6. Rad error is 1.6.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 11. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPi is 0.4. Rad error is 0.396.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 153. Rad error is 153.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5243 MW223 M	1W223SG1-17	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Vinyl acetate	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.5. Rad error is 2.5.
		Gross beta		TPU is 3.11. Rad error is 2.99.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.377. Rad error is 0.377.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 2.31. Rad error is 2.31.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 11.4. Rad error is 11.3.
	Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.663. Rad error is 0.654.	
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 162. Rad error is 162.
000-5244 MW224 MW224SG1-17	Vinyl acetate	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria	
	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.35. Rad error is 2.35.	
		Gross beta		TPU is 2.41. Rad error is 2.24.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.511. Rad error is 0.511.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.93. Rad error is 1.93.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 8.55. Rad error is 8.53.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.55. Rad error is 0.541.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 135. Rad error is 134.
004-4820 MW369 M	1W369UG1-17	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		1,2-Dichloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.28. Rad error is 1.28.
		Gross beta		TPU is 9.75. Rad error is 2.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.575. Rad error is 0.575.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.77. Rad error is 4.63.
		Technetium-99		TPU is 14.7. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.81. Rad error is 1.8.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 144. Rad error is 142.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

8004-4818 MW370 MW370UG1-17 Nitrate & Nitrite 1,2-Dichloroethane 1,2-Dichloroethane Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, b is 0.907. Rad error is 0.905. Gross beta Iodine-131 Radium-226 Strontium-90 U Indicates analyte/nuclide was analyzed for, b is 0.703. Rad error is 0.702. Strontium-99 Thorium-230 Thorium-230 Thorium-230 U Indicates analyte/nuclide was analyzed for, b is 3.75. Rad error is 1.8. Tritium U Indicates analyte/nuclide was analyzed for, b is 139. Rad error is 138. 8004-4808 MW372 MW372UG1-17 Tantalum Gross alpha Gross beta Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, b is 139. Rad error is 138. TPU is 1.38. Rad error is 1.33. Gross beta TPU is 1.38. Rad error is 1.43. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, b is 1.36. Tru is 2.14. Rad error is 1.43. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835. Strontium-90 U Indicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835. Rad error is	
Gross alpha Gross beta Gross beta Indicates analyte/nuclide was analyzed for, b is 0.907. Rad error is 0.905. Gross beta Indicates analyte/nuclide was analyzed for, b is 0.907. Rad error is 1.58. Iodine-131 Radium-226 Undicates analyte/nuclide was analyzed for, b is 0.703. Rad error is 0.702. Strontium-90 Undicates analyte/nuclide was analyzed for, b is 2.45. Rad error is 2.45. Technetium-99 Thorium-230 Undicates analyte/nuclide was analyzed for, b is 3.75. Rad error is 10.8. Tritium Undicates analyte/nuclide was analyzed for, b is 3.75. Rad error is 3.64. Tritium Undicates analyte/nuclide was analyzed for, b is 139. Rad error is 138. Sample spike (MS/MSD) recovery not withing Gross alpha Gross alpha Gross beta Indicates analyte/nuclide was analyzed for, b is 1.38. Rad error is 1.43. Gross beta Indicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835. Strontium-90 Undicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835. Strontium-90 Undicates analyte/nuclide was analyzed for, b is 2.65. Rad error is 0.835.	irement
is 0.907. Rad error is 0.905. Gross beta Iodine-131 Radium-226 Strontium-90 Technetium-99 Thorium-230 Tritium Undicates analyte/nuclide was analyzed for, b is 3.75. Rad error is 1.68. Tritium Undicates analyte/nuclide was analyzed for, b is 2.45. Rad error is 2.45. Tritium Undicates analyte/nuclide was analyzed for, b is 3.75. Rad error is 3.64. Tritium Undicates analyte/nuclide was analyzed for, b is 3.75. Rad error is 3.64. Tritium Undicates analyte/nuclide was analyzed for, b is 139. Rad error is 138. Gross alpha Gross alpha Gross beta IpU is 1.38. Rad error is 1.33. Gross beta IpU is 1.38. Rad error is 1.43. Iodine-131 Radium-226 Undicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835. Strontium-90 Undicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835. Rad error is 0.835. Rad error is 0.835.	a
lodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, b is 0.703. Rad error is 0.702. Strontium-90 U Indicates analyte/nuclide was analyzed for, b is 2.45. Rad error is 2.45. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, b is 3.75. Rad error is 10.8. Tritium U Indicates analyte/nuclide was analyzed for, b is 139. Rad error is 3.64. Tritium N Sample spike (MS/MSD) recovery not within Gross alpha Gross alpha TPU is 1.38. Rad error is 1.33. TPU is 2.14. Rad error is 1.43. Analysis of constituent not required and not p is 0.835. Rad error is 0.835. Strontium-90 U Indicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835. Rad error is 0.835. Rad error is 0.835.	ut not detected. T
Radium-226 U Indicates analyte/nuclide was analyzed for, b is 0.703. Rad error is 0.702. Strontium-90 U Indicates analyte/nuclide was analyzed for, b is 2.45. Rad error is 2.45. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, b is 3.75. Rad error is 10.8. Tritium U Indicates analyte/nuclide was analyzed for, b is 3.75. Rad error is 3.64. Indicates analyte/nuclide was analyzed for, b is 139. Rad error is 138. Sample spike (MS/MSD) recovery not within Gross alpha Gross alpha TPU is 1.38. Rad error is 1.33. Gross beta TPU is 2.14. Rad error is 1.43. Analysis of constituent not required and not p Radium-226 U Indicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835. Strontium-90 U Indicates analyte/nuclide was analyzed for, b is 2.65. Rad error is 2.65.	
is 0.703. Rad error is 0.702. Strontium-90 U Indicates analyte/nuclide was analyzed for, b is 2.45. Rad error is 2.45. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, b is 3.75. Rad error is 3.64. Tritium U Indicates analyte/nuclide was analyzed for, b is 139. Rad error is 138. Tantalum Gross alpha Gross beta Indicates analyte/nuclide was analyzed for, b is 139. Rad error is 138. The is 1.33. Rad error is 1.33. Gross beta The is 1.34. Rad error is 1.43. Indicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835. Strontium-90 U Indicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835. Strontium-90 U Indicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835.	erformed.
is 2.45. Rad error is 2.45. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, b is 3.75. Rad error is 3.64. Tritium U Indicates analyte/nuclide was analyzed for, b is 139. Rad error is 138. 8004-4808 MW372 MW372UG1-17 Tantalum Gross alpha Gross beta TPU is 1.38. Rad error is 1.33. Gross beta TPU is 2.14. Rad error is 1.43. Analysis of constituent not required and not p is 0.835. Rad error is 0.835. Strontium-90 U Indicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835. Rad error is 2.45. TPU is 1.13. Rad error is 2.45. TPU is 1.38. Rad error is 1.33. TPU is 2.14. Rad error is 1.43. Analysis of constituent not required and not p is 0.835. Rad error is 0.835. Strontium-90 U Indicates analyte/nuclide was analyzed for, b is 2.65. Rad error is 2.65.	ut not detected. T
Thorium-230 Thorium-230 U Indicates analyte/nuclide was analyzed for, b is 3.75. Rad error is 3.64. Tritium U Indicates analyte/nuclide was analyzed for, b is 139. Rad error is 138. Rad error is 138. Tantalum Gross alpha Gross beta IPU is 1.38. Rad error is 1.33. Gross beta Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835. Strontium-90 U Indicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835. Rad error is 2.65.	ut not detected. T
is 3.75. Rad error is 3.64. Tritium U Indicates analyte/nuclide was analyzed for, b is 139. Rad error is 138. Tantalum Gross alpha Gross beta Iodine-131 Radium-226 Strontium-90 Is 3.75. Rad error is 3.64. Indicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 1.43. U Indicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835. Rad error is 2.65.	
is 139. Rad error is 138. 8004-4808 MW372 MW372UG1-17 Tantalum N Sample spike (MS/MSD) recovery not within Gross alpha TPU is 1.38. Rad error is 1.33. Gross beta TPU is 2.14. Rad error is 1.43. Iodine-131 Analysis of constituent not required and not pure formula is 1.39. Rad error is 1.39. Indicates analyte/nuclide was analyzed for, but is 0.835. Rad error is 0.835. Strontium-90 U Indicates analyte/nuclide was analyzed for, but is 2.65. Rad error is 2.65.	ut not detected. T
Gross alpha Gross beta TPU is 1.38. Rad error is 1.33. TPU is 2.14. Rad error is 1.43. Iodine-131 Analysis of constituent not required and not put in the constituent in the constituen	ut not detected. T
Gross beta Iodine-131 Radium-226 Strontium-90 TPU is 2.14. Rad error is 1.43. Analysis of constituent not required and not pure is 0.835. Rad error is 0.835. Indicates analyte/nuclide was analyzed for, but is 0.835. Rad error is 0.835. Indicates analyte/nuclide was analyzed for, but is 2.65. Rad error is 2.65.	control limits
lodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835. Strontium-90 U Indicates analyte/nuclide was analyzed for, b is 2.65. Rad error is 2.65.	
Radium-226 U Indicates analyte/nuclide was analyzed for, b is 0.835. Rad error is 0.835. Strontium-90 U Indicates analyte/nuclide was analyzed for, b is 2.65. Rad error is 2.65.	
is 0.835. Rad error is 0.835. Strontium-90 U Indicates analyte/nuclide was analyzed for, b is 2.65. Rad error is 2.65.	erformed.
is 2.65. Rad error is 2.65.	ut not detected. T
Technetium-99 U Indicates analyte/nuclide was analyzed for, b	ut not detected. T
is 9.82. Rad error is 9.75.	ut not detected. T
Thorium-230 U Indicates analyte/nuclide was analyzed for, b is 1.07. Rad error is 1.06.	ut not detected. T
Tritium U Indicates analyte/nuclide was analyzed for, b is 145. Rad error is 144.	ut not detected. T
004-4792 MW373 MW373UG1-17 Tantalum N Sample spike (MS/MSD) recovery not within	control limits
Gross alpha U Indicates analyte/nuclide was analyzed for, b is 2.43. Rad error is 2.39.	ut not detected. T
Gross beta TPU is 3.94. Rad error is 2.61.	
lodine-131 Analysis of constituent not required and not p	erformed.
Radium-226 U Indicates analyte/nuclide was analyzed for, b is 0.696. Rad error is 0.695.	ut not detected. T
Strontium-90 U Indicates analyte/nuclide was analyzed for, b is 2.89. Rad error is 2.89.	ut not detected. T
Technetium-99 TPU is 10.7. Rad error is 10.5.	
Thorium-230 U Indicates analyte/nuclide was analyzed for, b is 2.03. Rad error is 2.03.	ut not detected. T
Tritium U Indicates analyte/nuclide was analyzed for, b is 120. Rad error is 120.	ut not detected. T

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4809 MW384	MW384SG1-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 1.83. Rad error is 1.83.
		Gross beta		TPU is 17.9. Rad error is 7.54.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 0.509. Rad error is 0.509.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 3.46. Rad error is 3.45.
		Technetium-99		TPU is 24.1. Rad error is 15.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 0.517. Rad error is 0.506.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 138. Rad error is 136.
8004-4810 MW385	MW385SG1-17	Vinyl acetate	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 2.93. Rad error is 2.89.
		Gross beta		TPU is 14.1. Rad error is 6.24.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 0.365. Rad error is 0.365.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 1.99. Rad error is 1.99.
		Technetium-99		TPU is 20.1. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 0.462. Rad error is 0.453.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 135. Rad error is 134.
3004-4804 MW386	MW386SG1-17	Vinyl acetate	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 2.56. Rad error is 2.56.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 2.25. Rad error is 2.24.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 0.27. Rad error is 0.27.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 2.4. Rad error is 2.4.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 8.18. Rad error is 8.18.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 0.371. Rad error is 0.366.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI is 138. Rad error is 137.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4815 MW38	7 MW387SG1-17	Vinyl acetate	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.29. Rad error is 3.23.
		Gross beta		TPU is 20. Rad error is 7.04.
		lodine-131		Analysis of constituent not required and not performed.
	Radium-226		TPU is 0.554. Rad error is 0.553.	
	Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. Ti is 1.95. Rad error is 1.95.	
	Technetium-99		TPU is 27.2. Rad error is 13.1.	
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.303. Rad error is 0.301.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 141. Rad error is 138.
3004-4816 MW38	8 MW388SG1-17	Vinyl acetate	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		Gross alpha		TPU is 4.29. Rad error is 3.97.
		Gross beta		TPU is 16.8. Rad error is 6.28.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.536. Rad error is 0.536.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 3.23. Rad error is 3.22.
		Technetium-99		TPU is 22. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.501. Rad error is 0.492.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 140. Rad error is 138.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description	
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample wa collected.	
		Chloride		During sampling, the well was dry; therefore, no sample wa collected.	
		Fluoride		During sampling, the well was dry; therefore, no sample wa collected.	
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample wa collected.	
		Sulfate		During sampling, the well was dry; therefore, no sample wa collected.	
			Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample wa collected.
			Specific Conductance		During sampling, the well was dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample wa collected.	
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample wa collected.	
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample wa collected.	
		рН		During sampling, the well was dry; therefore, no sample was collected.	
		Eh		During sampling, the well was dry; therefore, no sample w collected.	
		Temperature		During sampling, the well was dry; therefore, no sample w collected.	
		Aluminum		During sampling, the well was dry; therefore, no sample was collected.	
		Antimony		During sampling, the well was dry; therefore, no sample was collected.	
		Arsenic		During sampling, the well was dry; therefore, no sample was collected.	
		Barium		During sampling, the well was dry; therefore, no sample was collected.	
		Beryllium		During sampling, the well was dry; therefore, no sample was collected.	
		Boron		During sampling, the well was dry; therefore, no sample wa collected.	
		Cadmium		During sampling, the well was dry; therefore, no sample wa collected.	
		Calcium		During sampling, the well was dry; therefore, no sample was collected.	
		Chromium		During sampling, the well was dry; therefore, no sample was collected.	
		Cobalt		During sampling, the well was dry; therefore, no sample was collected.	
		Copper		During sampling, the well was dry; therefore, no sample was collected.	
		Iron		During sampling, the well was dry; therefore, no sample was collected.	
		Lead		During sampling, the well was dry; therefore, no sample was collected.	
		Magnesium		During sampling, the well was dry; therefore, no sample was collected.	
		Manganese		During sampling, the well was dry; therefore, no sample wa collected.	
		Mercury		During sampling, the well was dry; therefore, no sample was collected.	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample wa collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample wa collected.
		Selenium		During sampling, the well was dry; therefore, no sample was collected.
		Silver		During sampling, the well was dry; therefore, no sample was collected.
		Sodium		During sampling, the well was dry; therefore, no sample was collected.
		Tantalum		During sampling, the well was dry; therefore, no sample was collected.
		Thallium		During sampling, the well was dry; therefore, no sample wa collected.
		Uranium		During sampling, the well was dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well was dry; therefore, no sample was collected.
		Zinc		During sampling, the well was dry; therefore, no sample w collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample w collected.
		Acetone		During sampling, the well was dry; therefore, no sample w collected.
		Acrolein		During sampling, the well was dry; therefore, no sample w collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample w collected.
		Benzene		During sampling, the well was dry; therefore, no sample w collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample w collected.
		Xylenes		During sampling, the well was dry; therefore, no sample was collected.
		Styrene		During sampling, the well was dry; therefore, no sample w collected.
		Toluene		During sampling, the well was dry; therefore, no sample w collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample w collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Chloroform		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample w collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample w collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample w collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample w collected.
		lodomethane		During sampling, the well was dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample w collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample we collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well was dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well was dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well was dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample wa collected.
		Tritium		During sampling, the well was dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well was dry; therefore, no sample wa collected.
		lodide		During sampling, the well was dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4811 MW39	0 MW390SG1-17	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.45. Rad error is 2.44.
		Gross beta		TPU is 8.85. Rad error is 5.47.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.617. Rad error is 0.615.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.53. Rad error is 2.53.
		Technetium-99		TPU is 14.6. Rad error is 13.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.444. Rad error is 0.437.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 133. Rad error is 133.
004-4805 MW39	1 MW391SG1-17	Vinyl acetate	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.87. Rad error is 2.84.
		Gross beta		TPU is 3.28. Rad error is 3.08.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.404. Rad error is 0.403.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 1.9. Rad error is 1.9.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 11.4. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.379. Rad error is 0.374.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 148. Rad error is 148.
004-4806 MW39	2 MW392SG1-17	Vinyl acetate	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.51. Rad error is 2.51.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 1.68. Rad error is 1.68.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.506. Rad error is 0.506.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.25. Rad error is 2.25.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 10.4. Rad error is 10.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.488. Rad error is 0.478.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 147. Rad error is 147.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4807 MW393 M	1W393SG1-17	Vinyl acetate	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.81. Rad error is 2.79.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.01. Rad error is 1.99.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.52. Rad error is 0.519.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.4. Rad error is 2.4.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 10.7. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.5. Rad error is 0.488.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 156. Rad error is 156.
8004-4802 MW394 M	1W394SG1-17	Vinyl acetate	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.13. Rad error is 2.13.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.28. Rad error is 2.24.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.449. Rad error is 0.449.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.46. Rad error is 2.46.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 11. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.402. Rad error is 0.397.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 153. Rad error is 153.
3004-4801 MW395 M	1W395SG1-17	Vinyl acetate	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.38. Rad error is 2.38.
		Gross beta		TPU is 2.23. Rad error is 2.14.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.542. Rad error is 0.541.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 2.35. Rad error is 2.35.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 10.9. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.347. Rad error is 0.346.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 154. Rad error is 154.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4803 MW396 MW396SG1-17		Vinyl acetate	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. This 3.07. Rad error is 3.03.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. The is 1.62. Rad error is 1.58.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.521. Rad error is 0.521.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.03. Rad error is 2.03.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 10.4. Rad error is 10.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.292. Rad error is 0.291.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 155. Rad error is 155.
3004-4817 MW39	97 MW397SG1-17	Vinyl acetate	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.28. Rad error is 2.28.
		Gross beta		TPU is 2.37. Rad error is 2.17.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.548. Rad error is 0.548.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 3.2. Rad error is 3.2.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 8.64. Rad error is 8.58.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.342. Rad error is 0.338.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 126. Rad error is 126.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-0000 QC	RI1SG1-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Vinyl acetate	LY1	LCS or LCSD recovery outside of control limits AND MS/MS recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.74. Rad error is 1.74.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.94. Rad error is 1.92.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.42. Rad error is 0.42.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.58. Rad error is 1.58.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 8.13. Rad error is 8.13.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.435. Rad error is 0.428.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 132. Rad error is 132.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1SG1-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Vinyl acetate	LY1	LCS or LCSD recovery outside of control limits AND MS/MS recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.01. Rad error is 2.01.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.03. Rad error is 2.02.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.481. Rad error is 0.481.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.54. Rad error is 2.54.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 8.43. Rad error is 8.43.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.495. Rad error is 0.483.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 132. Rad error is 130.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG1-17	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG1-17	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG1-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG1-17	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate	LY1	LCS or LCSD recovery outside of control limits AND MS/MS/ recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
		i otal Organic Halldes		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG1-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Point	Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG1-17	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG1-17	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG1-17	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
3004-4804 MW386	MW386DSG1-17	Vinyl acetate	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.57. Rad error is 2.56.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 2.36. Rad error is 2.35.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.612. Rad error is 0.611.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 3.69. Rad error is 3.69.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 8.23. Rad error is 8.23.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 0.568. Rad error is 0.556.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF is 132. Rad error is 132.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/INERT—QUARTERLY, 4th CY 2016

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Lab ID: None Permit Number: SW07300014, SW07300015, SW07300045 For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Finds/Unit: <u>KY8-980-008-982/1</u>

Introduction

The statistical analyses conducted on the fourth quarter 2016 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The fourth quarter 2016 data used to conduct the statistical analyses were collected in October 2016. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that exceeded the historical background, using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

-

 $^{^{1}}$ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations:

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, fourth quarter 2016. The observations are representative of the current quarter data. Background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

		Groundwater
Station	Type	Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
$MW390^1$	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

¹NOTE: The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters Aluminum Beta Activity Boron Bromide Calcium

Chemical Oxygen Demand (COD)

Chloride

cis-1,2-Dichloroethene

Cobalt

Conductivity

Copper

Dissolved Oxygen

Dissolved Solids

Iodide

Iron

Magnesium

Manganese

Molybdenum

Nickel

Oxidation-Reduction Potential

PCB, Total

PCB-1242

pH*

Potassium

Radium-226

Sodium

Sulfate

Technetium-99

Thallium

Toluene

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

Trichloroethene

Uranium

Vanadium

Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	1	3	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Boron	4	1	3	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	4	0	No
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	1	3	Yes
Conductivity	4	0	4	Yes
Copper	4	1	3	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No
Iodide	4	3	1	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	0	4	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	3	1	Yes
Nickel	4	1	3	Yes
Oxidation-Reduction Potential	4	0	4	Yes
PCB, Total	4	4	0	No
PCB-1016	4	4	0	No
PCB-1221	4	4	0	No
PCB-1232	4	4	0	No
PCB-1242	4	4	0	No
PCB-1248	4	4	0	No
PCB-1254	4	4	0	No
PCB-1260	4	4	0	No
pН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	2	2	Yes
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	3	1	Yes
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	1	3	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Uranium	4	1	3	Yes
Vanadium	4	3	1	Yes
Vinyl Acetate	4	4	0	No
Zinc	4	2	2	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	5	6	Yes
Antimony	11	11	0	No
Aroclor-1268	2	2	0	No
Beryllium	11	11	0	No
Beta activity	11	2	9	Yes
Boron	11	1	10	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	9	2	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	9	2	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	4	7	Yes
Conductivity	11	0	11	Yes
Copper	11	2	9	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Solids	11	0	11	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Ethylbenzene	11	11	0	No
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	4	7	Yes
Magnesium	11	0	11	Yes
Manganese	11	1	10	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	9	2	Yes
Nickel	11	0	11	Yes
Oxidation-Reduction Potential	11	0	11	Yes
PCB, Total	11	10	1	Yes
PCB-1016	11	11	0	No
PCB-1221	11	11	0	No
PCB-1232	11	11	0	No
PCB-1242	11	10	1	Yes
PCB-1248	11	11	0	No
PCB-1254	11	11	0	No
PCB-1260	11	11	0	No
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	7	4	Yes
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	8	3	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	10	1	Yes
Total Organic Carbon (TOC)	11	1	10	Yes
Total Organic Halides (TOX)	11	3	8	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	3	8	Yes
Trichlorofluoromethane	11	11	0	No
Uranium	11	11	0	No
Vanadium	11	9	2	Yes
Vinyl Acetate	11	11	0	No
Zinc	11	10	1	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	5	2	Yes
Antimony	7	7	0	No
Aroclor-1268	2	2	0	No
Beryllium	7	7	0	No
Beta activity	7	1	6	Yes
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	4	3	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	5	2	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	4	3	Yes
Conductivity	7	0	7	Yes
Copper	7	2	5	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iron	7	3	4	Yes
Magnesium	7	0	7	Yes
Manganese	7	2	5	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	7	0	No
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	6	1	Yes
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	6	1	Yes
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	5	2	Yes
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	3	4	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	0	7	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	1	6	Yes
Trichlorofluoromethane	7	7	0	No
Uranium	7	6	1	Yes
Vanadium	7	7	0	No
Vinyl Acetate	7	7	0	No
Zinc	7	7	0	No

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 29, 33, and 30 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background UTL for oxidation-reduction potential, radium-226, and technetium-99.

<u>URGA</u>

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, chemical oxygen demand, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate, technetium-99, and trichloroethene.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential, radium-226	MW220: Oxidation-reduction potential, radium-226, sulfate	MW370: Oxidation-reduction potential, sulfate
MW390: Oxidation-reduction potential, radium-226, technetium-99	MW221: Radium-226	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate
MW393: Oxidation-reduction potential	MW222: Oxidation-reduction potential	MW385: Beta activity, chemical oxygen demand, oxidation-reduction potential, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW223: Oxidation-reduction potential	MW388: Beta activity, oxidation-reduction potential, radium-226, sulfate, technetium-99
	MW224: Radium-226	MW392: Oxidation-reduction potential, trichloroethene
	MW369: Beta activity, technetium-99	MW395: Oxidation-reduction potential, radium-226
	MW372: Calcium, dissolved solids, magnesium, sulfate	MW397: Oxidation-reduction potential
	MW384: Beta activity, oxidation-reduction potential, sulfate, technetium-99	
	MW387: Beta activity, oxidation-reduction potential, radium-226, sulfate, technetium-99	
	MW391: Magnesium, sulfate	

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
pН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	1.78	Current results exceed statistically derived historical background concentration in MW386 and MW390.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Thallium	Tolerance Interval	1.61	No exceedance of statistically derived historical background concentration.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentration in MW369, MW384, and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW391.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220, MW222, MW223, MW384, and MW387.
PCB, Total	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.59	Current results exceed statistically derived historical background concentration in MW220, MW221, MW224, and MW387.
Sodium	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW220, MW372, MW384, MW387, and MW391.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW384, and MW387.
Toluene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.08	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW385 and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand	Tolerance Interval	0.04	Current results exceed statistically derived historical background concentration in MW385.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, MW395, and MW397.
PCB, Total	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.74	Current results exceed statistically derived historical background concentration in MW388 and MW395.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW385 and MW388.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	Current results exceed statistically derived historical background concentration in MW392.
Uranium	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 8, and 11 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10, presented by well number.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW369: Beta activity, technetium-99	MW370: Sulfate
MW372: Calcium, dissolved solids, magnesium, sulfate	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
MW387: Beta activity, sulfate, technetium-99	MW388: Beta activity, sulfate, technetium-99
MW391: Magnesium, sulfate	MW392: Trichloroethene

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted, however, that the technetium-99 concentrations in one UCRS well (i.e., MW390) were higher than the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, dissolved solids, magnesium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, technetium-99, and trichloroethene.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.42	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Radium-226	Tolerance Interval	0.39	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	4.00	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill. However, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.52	MW369, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.16	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.16	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.17	MW372 and MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.25	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Radium-226	Tolerance Interval	0.37	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.28	MW372, MW387, and MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.66	MW369, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.75	MW385 and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.21	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.61	MW385 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.08	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.15	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.22	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.22	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Radium-226	Tolerance Interval	0.52	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.08	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.36	MW385 and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Trichloroethene	Tolerance Interval	0.73	MW392 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.320

S = 0.182 CV(1) = 0.567

K factor=** 3.188

TL(1)= 0.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.259 S

S = 0.503

CV(2) = -0.400

K factor**= 3.188

TL(2) = 0.345

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396			
Date Collected	Result	LN(Result)		
8/13/2002	0.393	-0.934		
9/16/2002	0.2	-1.609		
10/16/2002	0.2	-1.609		
1/13/2003	0.501	-0.691		
4/8/2003	0.2	-1.609		
7/16/2003	0.2	-1.609		
10/14/2003	0.2	-1.609		
1/14/2004	0.668	-0.403		

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW390	Downgradien	t Yes	0.107	NO	-2.235	N/A	
MW393	Downgradien	t Yes	0.0206	NO	-3.882	N/A	
MW396	Upgradient	Yes	0.0228	NO	-3.781	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S= 0.833 **CV(1)**=1.282

K factor=** 3.188

TL(1) = 3.306

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.034 **S**= 1.066

CV(2) = -1.031

K factor=** 3.188

TL(2)= 2.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.015	N/A	-4.200	N/A	
MW390	Downgradien	t Yes	0.00872	N/A	-4.742	NO	
MW393	Downgradien	t Yes	0.0219	N/A	-3.821	NO	
MW396	Upgradient	Yes	0.00841	N/A	-4.778	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.388

CV(1)=0.236

K factor=** 3.188

TL(1) = 2.430

LL(1)=N/A

Statistics-Transformed Background Data

X= 0.301 **S**=

S = 0.252

S = 0.327

CV(2)=0.838

K factor=** 3.188

TL(2) = 1.105

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.191	NO	-1.655	N/A	
MW390	Downgradien	t Yes	0.653	NO	-0.426	N/A	
MW393	Downgradien	t Yes	0.186	NO	-1.682	N/A	
MW396	Upgradient	Yes	1.23	NO	0.207	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.825 S = 8.445 CV(1) = 0.202

K factor=** 3.188

TL(1)= 68.748

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.711 **S**= 0.241

CV(2) = 0.065

K factor=** 3.188

TL(2) = 4.479

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396				
Date Collected	Result	LN(Result)			
8/13/2002	38.4	3.648			
9/16/2002	42.9	3.759			
10/16/2002	40.2	3.694			
1/13/2003	46.7	3.844			
4/8/2003	49.8	3.908			
7/16/2003	43.3	3.768			
10/14/2003	49.7	3.906			
1/14/2004	23.6	3.161			

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	23	NO	3.135	N/A	
MW390	Downgradien	t Yes	32.9	NO	3.493	N/A	
MW393	Downgradien	t Yes	13	NO	2.565	N/A	
MW396	Upgradient	Yes	39.2	NO	3.669	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 101.725 S = 5.245 CV(1) = 0.052

S = 0.053

K factor=** 3.188

TL(1)= 118.447 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.621

CV(2) = 0.011

K factor=** 3.188

TL(2) = 4.789

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	16.1	NO	2.779	N/A	
MW390	Downgradien	t Yes	69.9	NO	4.247	N/A	
MW393	Downgradien	t Yes	13.4	NO	2.595	N/A	
MW396	Upgradient	Yes	70.4	NO	4.254	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.008

S= 0.011 **CV(1)**=1.340

K factor=** 3.188

TL(1)= 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.645 S = 1.339

CV(2) = -0.237

K factor=** 3.188

TL(2) = -1.377

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.68910/16/2002 0.001 -6.9081/13/2003 0.00324 -5.7320.00436 -5.435 4/8/2003 7/16/2003 0.00276 -5.89310/14/2003 0.001 -6.908 1/14/2004 0.001 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
1	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW386	Sidegradient	Yes	0.0139	N/A	-4.276	NO
	MW390	Downgradien	t Yes	0.00028	1 N/A	-8.177	NO
	MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
	MW396	Upgradient	Yes	0.00381	N/A	-5.570	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 922.500 S = 107.616 CV(1) = 0.117

K factor=** 3.188

TL(1)= 1265.579 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.822

 $S = 0.111 \quad CV(2) = 0.016$

K factor=** 3.188

TL(2) = 7.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 784 6.664 9/30/2002 871 6.770 10/16/2002 868 6.766 1/13/2003 912 6.816 4/8/2003 942 6.848 7/16/2003 910 6.813 10/14/2003 935 6.841 1/14/2004 1158 7.054

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	615	NO	6.422	N/A		
MW390	Downgradien	t Yes	710	NO	6.565	N/A		
MW393	Downgradien	t Yes	403	NO	5.999	N/A		
MW396	Upgradient	Yes	760	NO	6.633	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

CV(1)=0.481 S = 0.014

K factor=** 3.188

TL(1) = 0.072

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.650 S = 0.414

CV(2) = -0.113

K factor=** 3.188

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:		MW396	
	Date Collected	Result	LN(Result)
	8/13/2002	0.05	-2.996
	9/16/2002	0.05	-2.996
	10/16/2002	0.026	-3.650
	1/13/2003	0.02	-3.912
	4/8/2003	0.02	-3.912
	7/16/2003	0.02	-3.912
	10/14/2003	0.02	-3.912
	1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.00088	5 NO	-7.030	N/A	
MW390	Downgradien	t Yes	0.00085	7 NO	-7.062	N/A	
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW396	Upgradient	Yes	0.00072	6 NO	-7.228	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-10

C-746-S/T Fourth Quarter 2016 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.395

CV(1) = 1.202

K factor=** 3.188

TL(1) = 6.743

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.043 S = 0.814

S = 1.677

CV(2) = -18.867

K factor=** 3.188

TL(2) = 2.553

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 1.696 5.45 9/16/2002 0.4 -0.91610/16/2002 0.54 -0.6161/13/2003 0.72 -0.329-0.3714/8/2003 0.69 7/16/2003 1.1 0.095 10/14/2003 0.71 -0.3421/14/2004 1.55 0.438

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.28	N/A	0.247	NO
MW390	Downgradien	t Yes	6	N/A	1.792	NO
MW393	Downgradien	t Yes	2.18	N/A	0.779	NO
MW396	Upgradient	Yes	2.38	N/A	0.867	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-11

C-746-S/T Fourth Quarter 2016 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

K factor=** 3.188

TL(1)= 882.980 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.298

S = 0.162CV(2) = 0.026 **K factor**=** 3.188

TL(2) = 6.815

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	376	NO	5.930	N/A
MW390	Downgradien	t Yes	391	NO	5.969	N/A
MW393	Downgradien	t Yes	233	NO	5.451	N/A
MW396	Upgradient	Yes	396	NO	5.981	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-12

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.150

CV(1)=0.132

K factor=** 3.188

TL(1) = 3.052

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.759

S= 0.123

S = 0.283

CV(2)=0.162

K factor=** 3.188

TL(2)=1.150

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.693 9/16/2002 2 0.693 10/16/2002 2 0.693 1/13/2003 2 0.693 2 4/8/2003 0.693 7/16/2003 2.7 0.993 10/14/2003 2.5 0.916 1/14/2004 2 0.693

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A
MW396	Upgradient	Yes	0.628	NO	-0.465	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.796

S= 3.723 **CV(1)**=0.478

K factor=** 3.188

TL(1)= 19.666

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.880

S= 0.723

CV(2) = 0.384

K factor=** 3.188

TL(2) = 4.184

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.8	0.588
9/16/2002	9.53	2.254
10/16/2002	7.43	2.006
1/13/2003	9.93	2.296
4/8/2003	10.2	2.322
7/16/2003	9.16	2.215
10/14/2003	11.9	2.477
1/14/2004	2.42	0.884

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.71	NO	0.536	N/A
MW390	Downgradien	t Yes	0.108	NO	-2.226	N/A
MW393	Downgradien	t Yes	2.3	NO	0.833	N/A
MW396	Upgradient	Yes	1.29	NO	0.255	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 16.876 **S**= 3.313

3 **CV(1)=**0.196

K factor=** 3.188

TL(1) = 27.438

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.804

S= 0.240

CV(2)=0.086

K factor=** 3.188

TL(2) = 3.569

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	9.85	NO	2.287	N/A
MW390	Downgradien	t Yes	14	NO	2.639	N/A
MW393	Downgradien	t Yes	3.88	NO	1.356	N/A
MW396	Upgradient	Yes	17.4	NO	2.856	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.774

S = 0.353 CV(1) = 0.456

K factor=** 3.188

TL(1)= 1.900

LL(1)=N/A

Statistics-Transformed Background Data

X= -0.566 **S**= 1.192

.192 **CV(2)=**-2.105

K factor=** 3.188

TL(2)= 3.235

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.69	NO	0.525	N/A
MW390	Downgradien	t Yes	0.00152	NO	-6.489	N/A
MW393	Downgradien	t Yes	0.0459	NO	-3.081	N/A
MW396	Upgradient	Yes	0.588	NO	-0.531	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.011 CV(1) = 1.507

K factor=** 3.188

TL(1)= 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.928 S = 1.420

CV(2) = -0.240

K factor=** 3.188

TL(2) = -1.400

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.68910/16/2002 0.001 -6.9081/13/2003 0.00128 -6.661 0.00271 -5.911 4/8/2003 7/16/2003 0.00117 -6.75110/14/2003 0.001 -6.908 1/14/2004 0.001 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.00081	6 N/A	-7.111	N/A
MW390	Downgradien	t No	0.00059	6 N/A	-7.425	N/A
MW393	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW396	Upgradient	Yes	0.00047	8 N/A	-7.646	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

S = 0.021 CV(1) = 1.272

K factor=** 3.188

TL(1)= 0.083

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.706 S = 1.057

CV(2) = -0.225

K factor=** 3.188

TL(2) = -1.338

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.011	N/A	-4.510	NO		
MW390	Downgradien	t Yes	0.00177	N/A	-6.337	NO		
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A		
MW396	Upgradient	Yes	0.0015	N/A	-6.502	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis **Historical Background Comparison UNITS: mV Oxidation-Reduction Potential**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.000 S = 61.952 CV(1) = 4.766

K factor=** 3.188

TL(1)= 210.502 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.364

S = 0.333

CV(2) = 0.076

K factor=** 3.188

TL(2) = 4.736

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW386	Sidegradient	Yes	206	N/A	5.328	YES
	MW390	Downgradien	t Yes	431	N/A	6.066	YES
	MW393	Downgradien	t Yes	218	N/A	5.384	YES
	MW396	Upgradient	Yes	221	N/A	5.398	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390 MW393

MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-19

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.460

S= 0.350 **CV(1)**=0.054

K factor=** 3.736

TL(1) = 7.766

LL(1)=5.1541

Statistics-Transformed Background Data

X = 1.864

S= 0.054

CV(2)=0.029

K factor=** 3.736

TL(2) = 2.067

LL(2)=1.6621

L(2)? L(2)?

Historical Background Data from Upgradient Wells with Transformed Result

Wel	l Number:	MW396	
Date	Collected	Result	LN(Result)
8/13	/2002	6.17	1.820
9/16	5/2002	6.4	1.856
10/1	6/2002	5.9	1.775
1/13	/2003	6.4	1.856
4/8/	2003	6.65	1.895
7/16	5/2003	6.4	1.856
10/1	4/2003	6.71	1.904
1/14	/2004	7.05	1.953

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quai	rter	Data
--------------	------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL LN(Result) <ll< th=""></ll<></th></ll(1)?<>	LN(Result)	LN(Result) >TL LN(Result) <ll< th=""></ll<>
MW386	Sidegradient	Yes	6.72	NO	1.905	N/A
MW390	Downgradien	t Yes	6.54	NO	1.878	N/A
MW393	Downgradien	t Yes	6.25	NO	1.833	N/A
MW396	Upgradient	Yes	6.5	NO	1.872	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.411

CV(1)=0.282

K factor=** 3.188

TL(1)= 2.682

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.311 S = 0.271

CV(2)=0.870

K factor=** 3.188

TL(2) = 1.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Partially Dry Wells

Well No. Gradient

S = 0.399

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.308	NO	-1.178	N/A	
MW390	Downgradien	t Yes	0.369	NO	-0.997	N/A	
MW393	Downgradien	t Yes	0.435	NO	-0.832	N/A	
MW396	Upgradient	Yes	0.894	NO	-0.112	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.157

 $S = 0.280 \quad CV(1) = 1.782$

K factor=** 3.188

TL(1)= 1.050

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.836 S = 1.229

CV(2) = -0.669

K factor**= 3.188

TL(2) = -0.371

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
10/16/2002	0.69	-0.371
1/13/2003	-0.00693	#Func!
10/14/2003	-0.0514	#Func!
1/14/2004	0.494	-0.705
4/12/2004	-0.082	#Func!
7/20/2004	0.0879	-2.432
10/12/2004	0.0408	-3.199
1/18/2005	0.0844	-2.472

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.756	N/A	-0.280	YES
MW390	Downgradien	t Yes	1.02	N/A	0.020	YES
MW393	Downgradien	t No	0.591	N/A	-0.526	N/A
MW396	Upgradient	No	0.601	N/A	-0.509	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

K factor=** 3.188

TL(1)= 208.973 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.595 S = 0.492

CV(2) = 0.107

K factor=** 3.188

TL(2) = 6.163

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

1	Well Number:	MW396	
I	Date Collected	Result	LN(Result)
8	3/13/2002	115	4.745
ç	9/16/2002	116	4.754
1	10/16/2002	117	4.762
1	1/13/2003	122	4.804
4	1/8/2003	106	4.663
7	7/16/2003	117	4.762
1	10/14/2003	132	4.883
1	1/14/2004	29.6	3.388

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	105	NO	4.654	N/A	
MW390	Downgradien	t Yes	98	NO	4.585	N/A	
MW393	Downgradien	t Yes	79.8	NO	4.380	N/A	
MW396	Upgradient	Yes	115	NO	4.745	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.463 **S**= 8.876

CV(1)=0.395

K factor=** 3.188

TL(1) = 50.759

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.054

S = 0.351 CV(2) = 0.115

K factor=** 3.188

TL(2)= 4.173

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	44.1	NO	3.786	N/A		
MW390	Downgradien	t Yes	42.2	NO	3.742	N/A		
MW393	Downgradien	t Yes	14.5	NO	2.674	N/A		
MW396	Upgradient	Yes	23.3	NO	3.148	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.624

CV(1)=0.860

K factor=** 3.188

TL(1)= 28.531

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.498

S= 1.321

S = 6.558

CV(2) = 0.882

K factor=** 3.188

TL(2) = 5.710

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

ur	rent	. Qu	artei	· Data	l
					_

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	-1.08	N/A	#Error	N/A
MW390	Downgradien	t Yes	56.7	YES	4.038	N/A
MW393	Downgradien	t No	0.082	N/A	-2.501	N/A
MW396	Upgradient	No	-10.9	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Thallium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.056

S= 0.089 **CV(1)**=1.608

K factor=** 3.188

TL(1)= 0.340

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.259 S = 1.780

CV(2) = -0.418

K factor=** 3.188

TL(2) = 1.415

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.01	-4.605
1/13/2003	0.01	-4.605
4/8/2003	0.01	-4.605
7/16/2003	0.01	-4.605
10/14/2003	0.002	-6.215
1/14/2004	0.002	-6.215

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	0.002	N/A	-6.215	N/A		
MW390	Downgradien	t Yes	0.000654	4 N/A	-7.332	NO		
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A		
MW396	Upgradient	No	0.002	N/A	-6.215	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.988

S= 4.696 **CV(1)**=0.470

K factor=** 3.188

TL(1)= 24.959

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.210

S = 0.454

CV(2) = 0.205

K factor=** 3.188

TL(2) = 3.657

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 19 2.944 9/16/2002 14.6 2.681 10.4 10/16/2002 2.342 1/13/2003 1.482 4.4 7 4/8/2003 1.946 7/16/2003 7.3 1.988 10/14/2003 9.1 2.208 1/14/2004 8.1 2.092

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	6.58	NO	1.884	N/A		
MW390	Downgradien	t Yes	2.4	NO	0.875	N/A		
MW393	Downgradien	t Yes	2.75	NO	1.012	N/A		
MW396	Upgradient	Yes	5.83	NO	1.763	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 142.650 S = 53.533 CV(1) = 0.375

K factor=** 3.188

TL(1)= 313.314 **LL(1)**=N/A

Statistics-Transformed Background Data

X= 4.896

 $S = 0.390 \quad CV(2) = 0.080$

K factor**= 3.188

TL(2)= 6.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	148	NO	4.997	N/A		
MW390	Downgradien	t Yes	23.1	NO	3.140	N/A		
MW393	Downgradien	t Yes	20.1	NO	3.001	N/A		
MW396	Upgradient	No	10	N/A	2.303	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.001

S= 0.000 **CV(1)**=0.314

K factor=** 3.188

TL(1) = 0.002

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.821 S = 0.245

CV(2) = -0.036

K factor=** 3.188

TL(2)= -6.040

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.002	-6.215
9/16/2002	0.001	-6.908
10/16/2002	0.001	-6.908
1/13/2003	0.001	-6.908
4/8/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.00006	7 NO	-9.611	N/A		
MW390	Downgradien	t Yes	0.00013	7 NO	-8.896	N/A		
MW393	Downgradien	t No	0.0002	N/A	-8.517	N/A		
MW396	Upgradient	Yes	0.00010	2 NO	-9.191	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.021

S= 0.002 **CV(1)**=0.109

K factor**= 3.188

TL(1)= 0.029

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.856 S = 0.103

0.103 **CV(2)=**-0.027

K factor=** 3.188

TL(2) = -3.527

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)					
MW386	Sidegradient	Yes	0.00469	NO	-5.362	N/A					
MW390	Downgradien	t No	0.01	N/A	-4.605	N/A					
MW393	Downgradien	t No	0.00711	N/A	-4.946	N/A					
MW396	Upgradient	No	0.01	N/A	-4.605	N/A					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.044

S= 0.035 **CV(1)**=0.786

K factor=** 3.188

TL(1) = 0.156

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.342 S = 0.682

CV(2)=-0.204

K factor=** 3.188

TL(2) = -1.168

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/8/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)					
MW386	Sidegradient	Yes	0.00388	NO	-5.552	N/A					
MW390	Downgradien	t No	0.01	N/A	-4.605	N/A					
MW393	Downgradien	t No	0.01	N/A	-4.605	N/A					
MW396	Upgradient	Yes	0.00389	NO	-5.549	N/A					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.221

CV(1)=0.277

K factor=** 2.523

TL(1)= 0.376

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.534 S = 0.212

S = 0.061

CV(2)=-0.138

K factor=** 2.523

TL(2) = -0.999

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.2 -1.6097/14/2003 0.2 -1.609-0.851 10/13/2003 0.427 1/13/2004 0.309 -1.1744/13/2004 0.2 -1.609 7/21/2004 0.202 -1.599Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.2 -1.6099/16/2002 0.2 -1.609 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW220	Upgradient	Yes	0.036	NO	-3.324	N/A			
MW221	Sidegradient	No	0.05	N/A	-2.996	N/A			
MW222	Sidegradient	Yes	0.0376	NO	-3.281	N/A			
MW223	Sidegradient	No	0.05	N/A	-2.996	N/A			
MW224	Sidegradient	Yes	0.0176	NO	-4.040	N/A			
MW369	Downgradien	t Yes	0.0492	NO	-3.012	N/A			
MW372	Downgradien	t Yes	0.119	NO	-2.129	N/A			
MW384	Sidegradient	No	0.05	N/A	-2.996	N/A			
MW387	Downgradien	t Yes	0.0209	NO	-3.868	N/A			
MW391	Downgradien	t No	0.05	N/A	-2.996	N/A			
MW394	Upgradient	No	0.05	N/A	-2.996	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 14.273 S = 13.883 CV(1) = 0.973

K factor=** 2.523

TL(1)= 49.300

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.213 **S**= 1.033

CV(2) = 0.467

K factor=** 2.523

TL(2) = 4.819

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 15.2 2.721 1/15/2003 42.5 3.750 4/10/2003 45.4 3.816 7/14/2003 8.53 2.144 10/13/2003 11.7 2.460 1/13/2004 13.5 2.603 4/13/2004 33.5 3.512 7/21/2004 13.7 2.617 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 5.03 1.615 9/16/2002 5.57 1.717 10/16/2002 12.8 2.549 1/13/2003 4.3 1.459 4/10/2003 9.52 2.253 7/16/2003 3.92 1.366 10/14/2003 0.058 1.06 1/13/2004 2.14 0.761

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW220	Upgradient	Yes	21.7	N/A	3.077	N/A			
MW221	Sidegradient	Yes	10.8	N/A	2.380	N/A			
MW222	Sidegradient	No	2.44	N/A	0.892	N/A			
MW223	Sidegradient	Yes	5.15	N/A	1.639	N/A			
MW224	Sidegradient	Yes	5.36	N/A	1.679	N/A			
MW369	Downgradien	t Yes	57	YES	4.043	N/A			
MW372	Downgradien	t Yes	9.61	N/A	2.263	N/A			
MW384	Sidegradient	Yes	101	YES	4.615	N/A			
MW387	Downgradien	t Yes	115	YES	4.745	N/A			
MW391	Downgradien	t Yes	6.44	N/A	1.863	N/A			
MW394	Upgradient	No	2.51	N/A	0.920	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.425 S = 0.615 CV(1) = 1.447 K factor**= 2.523
 TL(1) = 1.976 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.322 S = 0.786 CV(2) = -0.595 K factor**= 2.523
 TL(2) = 0.663 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.2 -1.6097/14/2003 0.2 -1.60910/13/2003 0.2 -1.6091/13/2004 0.2 -1.6094/13/2004 0.2 -1.609 7/21/2004 0.2 -1.609Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609

0.2

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	0.00859	N/A	-4.757	NO			
MW221	Sidegradient	Yes	0.015	N/A	-4.200	NO			
MW222	Sidegradient	Yes	0.00899	N/A	-4.712	NO			
MW223	Sidegradient	No	0.015	N/A	-4.200	N/A			
MW224	Sidegradient	Yes	0.0197	N/A	-3.927	NO			
MW369	Downgradien	t Yes	0.0138	N/A	-4.283	NO			
MW372	Downgradien	t Yes	0.901	N/A	-0.104	NO			
MW384	Sidegradient	Yes	0.0124	N/A	-4.390	NO			
MW387	Downgradien	t Yes	0.0411	N/A	-3.192	NO			
MW391	Downgradien	t Yes	0.146	N/A	-1.924	NO			
MW394	Upgradient	Yes	0.0256	N/A	-3.665	NO			
N/A - Resul	lts identified as N	Ion-Detects	luring labo	oratory analysis or	data validation	and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1 0.000 0.000 4/10/2003 7/14/2003 1 0.000 1 0.000 10/13/2003 1/13/2004 1 0.000 4/13/2004 1 0.000 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/16/2002 1 0.000 1/13/2003 0.000 4/10/2003 0.000 7/16/2003 1 0.000 10/14/2003 0.000 1 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.22	NO	-1.514	N/A		
MW221	Sidegradient	Yes	0.426	NO	-0.853	N/A		
MW222	Sidegradient	Yes	0.435	NO	-0.832	N/A		
MW223	Sidegradient	Yes	0.429	NO	-0.846	N/A		
MW224	Sidegradient	Yes	0.429	NO	-0.846	N/A		
MW369	Downgradien	t Yes	0.355	NO	-1.036	N/A		
MW372	Downgradien	t Yes	0.606	NO	-0.501	N/A		
MW384	Sidegradient	Yes	0.474	NO	-0.747	N/A		
MW387	Downgradien	t Yes	0.352	NO	-1.044	N/A		
MW391	Downgradien	t Yes	0.557	NO	-0.585	N/A		
MW394	Upgradient	Yes	0.688	NO	-0.374	N/A		
N/A - Resu	lts identified as N	Ion-Detects (luring lah	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 27.638 S = 4.743 CV(1) = 0.172 K factor**= 2.523
 TL(1) = 39.604 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.304 S = 0.183 CV(2) = 0.055 K factor**= 2.523
 TL(2) = 3.765 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 23.6 3.161 1/15/2003 25.9 3.254 4/10/2003 30.4 3.414 7/14/2003 33.9 3.523 10/13/2003 21.3 3.059 1/13/2004 20.3 3.011 4/13/2004 23.8 3.170 7/21/2004 19 2.944 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 29.5 3.384 9/16/2002 29.9 3.398 10/16/2002 31.2 3.440 1/13/2003 30.7 3.424 4/10/2003 34.4 3.538 7/16/2003 29.6 3.388 10/14/2003 30.3 3.411 1/13/2004 28.4 3.346

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	20.5	NO	3.020	N/A			
MW221	Sidegradient	Yes	21.2	NO	3.054	N/A			
MW222	Sidegradient	Yes	18.2	NO	2.901	N/A			
MW223	Sidegradient	Yes	21	NO	3.045	N/A			
MW224	Sidegradient	Yes	22.1	NO	3.096	N/A			
MW369	Downgradien	t Yes	16.4	NO	2.797	N/A			
MW372	Downgradien	t Yes	49.1	YES	3.894	N/A			
MW384	Sidegradient	Yes	28	NO	3.332	N/A			
MW387	Downgradien	t Yes	32.8	NO	3.490	N/A			
MW391	Downgradien	t Yes	36.5	NO	3.597	N/A			
MW394	Upgradient	Yes	28.6	NO	3.353	N/A			
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validation	and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 35.000 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 35.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 3.555 S = 0.000 CV(2) = 0.000 K factor** = 2.523
 TL(2) = 3.555 LL(2) = N/A

Historical Background Data from

Upgradient Wells with Transformed Result

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

MW220	
Result	LN(Result)
35	3.555
35	3.555
35	3.555
35	3.555
35	3.555
35	3.555
35	3.555
35	3.555
MW394	
MW394 Result	LN(Result)
	LN(Result) 3.555
Result	
Result 35	3.555
Result 35 35	3.555 3.555
Result 35 35 35	3.555 3.555 3.555
Result 35 35 35 35	3.555 3.555 3.555 3.555
Result 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555
	Result 35 35 35 35 35 35 35 35 35

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	No	13.9	N/A	2.632	N/A			
MW221	Sidegradient	No	26.5	N/A	3.277	N/A			
MW222	Sidegradient	No	22.1	N/A	3.096	N/A			
MW223	Sidegradient	No	27.4	N/A	3.311	N/A			
MW224	Sidegradient	No	18.5	N/A	2.918	N/A			
MW369	Downgradien	t Yes	23	NO	3.135	N/A			
MW372	Downgradien	t Yes	15.8	NO	2.760	N/A			
MW384	Sidegradient	No	12.1	N/A	2.493	N/A			
MW387	Downgradien	t No	22.1	N/A	3.096	N/A			
MW391	Downgradien	t No	15.4	N/A	2.734	N/A			
MW394	Upgradient	No	13.6	N/A	2.610	N/A			
M/A Dagu	lte identified as N	Ion Datacts	luring lab	oratory analysis or	data validation	and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.044 S = 11.278 CV(1) = 0.230

K factor=** 2.523

TL(1)= 77.499

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.866 **S**=

S= 0.244 **CV(2)**= 0.063

K factor=** 2.523

TL(2)= 4.482

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.798 44.6 1/15/2003 43.2 3.766 4/10/2003 31.5 3.450 7/14/2003 30.8 3.428 40.9 10/13/2003 3.711 1/13/2004 40.8 3.709 4/13/2004 37.5 3.624 7/21/2004 40.8 3.709 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 60.4 4.101 9/16/2002 60.3 4.099 10/16/2002 58 4.060 1/13/2003 60.7 4.106 4/10/2003 62.9 4.142 7/16/2003 4.062 58.1 10/14/2003 58.2 4.064

56

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	21.9	NO	3.086	N/A		
MW221	Sidegradient	Yes	31.5	NO	3.450	N/A		
MW222	Sidegradient	Yes	31.5	NO	3.450	N/A		
MW223	Sidegradient	Yes	29.8	NO	3.395	N/A		
MW224	Sidegradient	Yes	31.5	NO	3.450	N/A		
MW369	Downgradien	t Yes	32.6	NO	3.484	N/A		
MW372	Downgradien	t Yes	47.6	NO	3.863	N/A		
MW384	Sidegradient	Yes	45.4	NO	3.816	N/A		
MW387	Downgradien	t Yes	35.7	NO	3.575	N/A		
MW391	Downgradien	t Yes	43.9	NO	3.782	N/A		
MW394	Upgradient	Yes	49.4	NO	3.900	N/A		
NT/A D	1, 11 1 N	T D	1 . 11		1 / 11 /	1 .		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.025

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor**= 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 5 1.609 1/15/2003 5 1.609 4/10/2003 5 1.609 7/14/2003 5 1.609 5 10/13/2003 1.609 1/13/2004 5 1.609 4/13/2004 5 1.609 5 7/21/2004 1.609 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	1	N/A	0.000	N/A	
MW221	Sidegradient	No	1	N/A	0.000	N/A	
MW222	Sidegradient	No	1	N/A	0.000	N/A	
MW223	Sidegradient	No	1	N/A	0.000	N/A	
MW224	Sidegradient	No	1	N/A	0.000	N/A	
MW369	Downgradien	t Yes	0.95	NO	-0.051	N/A	
MW372	Downgradien	t No	1	N/A	0.000	N/A	
MW384	Sidegradient	No	1	N/A	0.000	N/A	
MW387	Downgradien	t No	1	N/A	0.000	N/A	
MW391	Downgradien	t Yes	0.51	NO	-0.673	N/A	
MW394	Upgradient	No	1	N/A	0.000	N/A	
N/A Pagu	lte identified as N	Ion Detects	luring lab	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.016 S = 0.040 CV(1) = 2.440 K factor**= 2.523
 TL(1) = 0.116 LL(1) = N/A

 Statistics-Transformed Background
 X = -5.582 S = 1.573 CV(2) = -0.282 K factor**= 2.523
 TL(2) = -1.613 LL(2) = N/A

Data

Upgradient Wells with Transformed Result

Historical Background Data from

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0041	-5.497
1/15/2003	0.00496	-5.306
4/10/2003	0.00289	-5.846
7/14/2003	0.161	-1.826
10/13/2003	0.0226	-3.790
1/13/2004	0.00464	-5.373
4/13/2004	0.001	-6.908
7/21/2004	0.00264	-5.937
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.000263	3 N/A	-8.243	NO	
MW221	Sidegradient	Yes	0.000119	9 N/A	-9.036	NO	
MW222	Sidegradient	Yes	0.000563	3 N/A	-7.482	NO	
MW223	Sidegradient	Yes	0.000464	4 N/A	-7.676	NO	
MW224	Sidegradient	Yes	0.00037	N/A	-7.902	NO	
MW369	Downgradien	t Yes	0.00601	N/A	-5.114	NO	
MW372	Downgradien	t Yes	0.00037	7 N/A	-7.883	NO	
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW394	Upgradient	No	0.001	N/A	-6.908	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 382.132 S = 107.134 CV(1) = 0.280

K factor=** 2.523

TL(1)= 652.432 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.716 S = 1.164 CV(2) = 0.204

K factor=** 2.523

TL(2)= 8.652

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 5.908 368 1/15/2003 433.2 6.071 489 4/10/2003 6.192 7/14/2003 430 6.064 10/13/2003 346 5.846 1/13/2004 365 5.900 4/13/2004 416 6.031 7/21/2004 353 5.866 Well Number: MW394 Date Collected LN(Result) Result 406 8/13/2002 6.006 9/16/2002 418 6.035 10/16/2002 411 6.019 1/13/2003 422 6.045 4/10/2003 420 6.040 7/16/2003 438 6.082 10/14/2003 3.91 1.364 5.979 1/13/2004 395

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	348	NO	5.852	N/A	
MW221	Sidegradient	Yes	381	NO	5.943	N/A	
MW222	Sidegradient	Yes	371	NO	5.916	N/A	
MW223	Sidegradient	Yes	420	NO	6.040	N/A	
MW224	Sidegradient	Yes	425	NO	6.052	N/A	
MW369	Downgradien	t Yes	379	NO	5.938	N/A	
MW372	Downgradien	t Yes	611	NO	6.415	N/A	
MW384	Sidegradient	Yes	484	NO	6.182	N/A	
MW387	Downgradien	t Yes	500	NO	6.215	N/A	
MW391	Downgradien	t Yes	481	NO	6.176	N/A	
MW394	Upgradient	Yes	406	NO	6.006	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.010 CV(1) = 0.429 K factor** = 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.794 S = 0.312 CV(2) = -0.082 K factor** = 2.523
 TL(2) = -3.007 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0211 -3.8581/15/2003 0.02 -3.9120.02 -3.912 4/10/2003 7/14/2003 0.02 -3.912 0.02 -3.912 10/13/2003 1/13/2004 0.02 -3.912 4/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.99610/16/2002 0.02 -3.9121/13/2003 0.02 -3.912 4/10/2003 0.02 -3.9127/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.000966	6 NO	-6.942	N/A		
MW221	Sidegradient	Yes	0.000658	8 NO	-7.326	N/A		
MW222	Sidegradient	Yes	0.00048	NO	-7.642	N/A		
MW223	Sidegradient	Yes	0.00108	NO	-6.831	N/A		
MW224	Sidegradient	Yes	0.000369	9 NO	-7.905	N/A		
MW369	Downgradien	t Yes	0.00233	NO	-6.062	N/A		
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW384	Sidegradient	Yes	0.00051	l NO	-7.579	N/A		
MW387	Downgradien	t Yes	0.00101	NO	-6.898	N/A		
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A		
MW394	Upgradient	Yes	0.000548	8 NO	-7.509	N/A		
N/A - Resu	lts identified as N	Ion-Detects	luring laho	ratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 3.784
 S= 1.887
 CV(1)=0.499
 K factor**= 2.523
 TL(1)= 8.545
 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.182
 S= 0.612
 CV(2)=0.518
 K factor**= 2.523
 TL(2)= 2.727
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.915 6.79 1/15/2003 7.25 1.981 4/10/2003 3.6 1.281 7/14/2003 0.94 -0.0620.501 10/13/2003 1.65 1/13/2004 3.48 1.247 4/13/2004 1.05 0.049 7/21/2004 4.46 1.495 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 6.09 1.807 9/16/2002 3.85 1.348 10/16/2002 5.11 1.631 1/13/2003 1.343 3.83 4/10/2003 4.15 1.423 7/16/2003 0.604 1.83 10/14/2003 3.33 1.203 1/13/2004 3.14 1.144

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW220	Upgradient	Yes	4.96	NO	1.601	N/A		
MW221	Sidegradient	Yes	4.28	NO	1.454	N/A		
MW222	Sidegradient	Yes	3.35	NO	1.209	N/A		
MW223	Sidegradient	Yes	4.18	NO	1.430	N/A		
MW224	Sidegradient	Yes	3.91	NO	1.364	N/A		
MW369	Downgradien	t Yes	3.01	NO	1.102	N/A		
MW372	Downgradien	t Yes	1.78	NO	0.577	N/A		
MW384	Sidegradient	Yes	4.85	NO	1.579	N/A		
MW387	Downgradien	t Yes	4.65	NO	1.537	N/A		
MW391	Downgradien	t Yes	3.5	NO	1.253	N/A		
MW394	Upgradient	Yes	4.28	NO	1.454	N/A		
NI/A D	1, 11 1 N	T D			1 / 11 /	1 4		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 232.688 S = 27.490 CV(1) = 0.118

K factor=** 2.523

TL(1)= 302.045 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.443 S = 0.118 CV(2) = 0.022

K factor=** 2.523

TL(2) = 5.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	187	NO	5.231	N/A	
MW221	Sidegradient	Yes	213	NO	5.361	N/A	
MW222	Sidegradient	Yes	130	NO	4.868	N/A	
MW223	Sidegradient	Yes	140	NO	4.942	N/A	
MW224	Sidegradient	Yes	291	NO	5.673	N/A	
MW369	Downgradien	t Yes	239	NO	5.476	N/A	
MW372	Downgradien	t Yes	376	YES	5.930	N/A	
MW384	Sidegradient	Yes	267	NO	5.587	N/A	
MW387	Downgradien	t Yes	271	NO	5.602	N/A	
MW391	Downgradien	t Yes	271	NO	5.602	N/A	
MW394	Upgradient	Yes	219	NO	5.389	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-44

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.897 S = 1.050 CV(1) = 1.170 K factor** = 2.523
 TL(1) = 3.545 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.565 S = 0.951 CV(2) = -1.683 K factor** = 2.523
 TL(2) = 1.834 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.429 -0.8467/14/2003 4.33 1.466 0.593 10/13/2003 1.81 1/13/2004 0.793 -0.2324/13/2004 0.13 -2.040 7/21/2004 0.382 -0.962Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 1.34 0.293 9/16/2002 0.328 -1.115 0.322 10/16/2002 1.38 1/13/2003 0.262 1.3 4/10/2003 0.494 -0.7057/16/2003 0.62 -0.47810/14/2003 0.37 -0.9941/13/2004 0.251 -1.382

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.0847	N/A	-2.469	NO	
MW221	Sidegradient	Yes	0.044	N/A	-3.124	NO	
MW222	Sidegradient	No	0.1	N/A	-2.303	N/A	
MW223	Sidegradient	No	0.1	N/A	-2.303	N/A	
MW224	Sidegradient	No	0.0855	N/A	-2.459	N/A	
MW369	Downgradien	t Yes	0.185	N/A	-1.687	NO	
MW372	Downgradien	t Yes	0.983	N/A	-0.017	NO	
MW384	Sidegradient	Yes	0.0512	N/A	-2.972	NO	
MW387	Downgradien	t No	0.131	N/A	-2.033	N/A	
MW391	Downgradien	t Yes	0.0882	N/A	-2.428	NO	
MW394	Upgradient	Yes	0.083	N/A	-2.489	NO	
N/A - Recui	Its identified as N	Jon-Detects	during lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 10.796 S = 1.703 CV(1) = 0.158 K factor**= 2.523
 TL(1) = 15.092 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.368 X = 0.158 X

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 9.16 2.215 1/15/2003 10 2.303 4/10/2003 10.8 2.380 7/14/2003 14.7 2.688 10/13/2003 9.03 2.201 1/13/2004 8.49 2.139 4/13/2004 9.7 2.272 7/21/2004 8.06 2.087 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 11.8 2.468 9/16/2002 12.1 2.493 10/16/2002 11.3 2.425 1/13/2003 10.3 2.332 4/10/2003 11.7 2.460 7/16/2003 12 2.485 10/14/2003 2.501 12.2 1/13/2004 11.4 2.434

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	8.7	NO	2.163	N/A	
MW221	Sidegradient	Yes	9.57	NO	2.259	N/A	
MW222	Sidegradient	Yes	8.37	NO	2.125	N/A	
MW223	Sidegradient	Yes	9.07	NO	2.205	N/A	
MW224	Sidegradient	Yes	9.86	NO	2.288	N/A	
MW369	Downgradien	t Yes	7.1	NO	1.960	N/A	
MW372	Downgradien	t Yes	19.6	YES	2.976	N/A	
MW384	Sidegradient	Yes	11.1	NO	2.407	N/A	
MW387	Downgradien	t Yes	14	NO	2.639	N/A	
MW391	Downgradien	t Yes	15.8	YES	2.760	N/A	
MW394	Upgradient	Yes	12.1	NO	2.493	N/A	
N/A - Resu	lts identified as N	Ion-Detects	luring lab	oratory analysis or	data validatior	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.287 S = 0.619 CV(1) = 2.156 K factor**= 2.523
 TL(1) = 1.848 LL(1) = N/A

 Statistics-Transformed Background
 X = -2.455 S = 1.619 CV(2) = -0.659 K factor**= 2.523
 TL(2) = 1.630 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0306 -3.4871/15/2003 0.0291 -3.5370.0137 -4.290 4/10/2003 7/14/2003 2.54 0.932 -0.97310/13/2003 0.378 1/13/2004 0.159 -1.8394/13/2004 0.00707 -4.952 7/21/2004 0.0841 -2.476Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.542 -0.6129/16/2002 0.155 -1.864 10/16/2002 0.103 -2.2731/13/2003 0.128 -2.056 4/10/2003 0.005 -5.2987/16/2003 0.272 -1.30210/14/2003 0.0795 -2.532 1/13/2004 0.0658 -2.721

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00203	N/A	-6.200	NO	
MW221	Sidegradient	No	0.005	N/A	-5.298	N/A	
MW222	Sidegradient	Yes	0.00326	N/A	-5.726	NO	
MW223	Sidegradient	Yes	0.00249	N/A	-5.995	NO	
MW224	Sidegradient	Yes	0.0048	N/A	-5.339	NO	
MW369	Downgradien	t Yes	0.0194	N/A	-3.942	NO	
MW372	Downgradien	t Yes	0.0216	N/A	-3.835	NO	
MW384	Sidegradient	Yes	0.00277	N/A	-5.889	NO	
MW387	Downgradien	t Yes	0.00226	N/A	-6.092	NO	
MW391	Downgradien	t Yes	0.00102	N/A	-6.888	NO	
MW394	Upgradient	Yes	0.00324	N/A	-5.732	NO	
N/A - Resu	lts identified as N	Ion-Detects o	luring labo	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.006 S = 0.008 CV(1) = 1.261 K factor**= 2.523
 TL(1) = 0.026 LL(1) = N/A

 Statistics-Transformed Background
 X = -5.747 S = 1.205 CV(2) = -0.210 K factor**= 2.523
 TL(2) = -2.708 LL(2) = N/A

Data

Historical Rackground Data from

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Historical Background Data from								
Upgradient W	ells with	Transformed Result						
Well Number	MW220)						

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.00558	-5.189
1/15/2003	0.00983	-4.622
4/10/2003	0.0109	-4.519
7/14/2003	0.00245	-6.012
10/13/2003	0.00566	-5.174
1/13/2004	0.00572	-5.164
4/13/2004	0.001	-6.908
7/21/2004	0.00392	-5.542
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	No	0.000626	6 N/A	-7.376	N/A		
MW221	Sidegradient	Yes	0.00127	N/A	-6.669	NO		
MW222	Sidegradient	No	0.00032	6 N/A	-8.029	N/A		
MW223	Sidegradient	Yes	0.00613	N/A	-5.095	NO		
MW224	Sidegradient	No	0.000474	4 N/A	-7.654	N/A		
MW369	Downgradien	t No	0.0005	N/A	-7.601	N/A		
MW372	Downgradien	t No	0.000422	2 N/A	-7.771	N/A		
MW384	Sidegradient	No	0.0005	N/A	-7.601	N/A		
MW387	Downgradien	t No	0.0005	N/A	-7.601	N/A		
MW391	Downgradien	t No	0.0005	N/A	-7.601	N/A		
MW394	Upgradient	No	0.0005	N/A	-7.601	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.127 S = 0.228 CV(1)=1.790 K factor**= 2.523 TL(1)=0.701 LL(1)=N/A Statistics-Transformed Background X = -3.617 S = 1.837 CV(2)=-0.508 K factor**= 2.523 TL(2)=1.019 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.418 -0.8721/15/2003 0.738 -0.3044/10/2003 0.544 -0.6097/14/2003 0.106-2.244-2.939 10/13/2003 0.0529 1/13/2004 0.0209 -3.8684/13/2004 0.005 -5.298 7/21/2004 0.0192 -3.953Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.996 10/16/2002 0.005 -5.2981/13/2003 0.005 -5.298 4/10/2003 0.005 -5.2987/16/2003 0.005 -5.29810/14/2003 0.005 -5.298 1/13/2004 0.005 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.0256	N/A	-3.665	NO		
MW221	Sidegradient	Yes	0.00712	N/A	-4.945	NO		
MW222	Sidegradient	Yes	0.0482	N/A	-3.032	NO		
MW223	Sidegradient	Yes	0.174	N/A	-1.749	NO		
MW224	Sidegradient	Yes	0.00341	N/A	-5.681	NO		
MW369	Downgradien	t Yes	0.00654	N/A	-5.030	NO		
MW372	Downgradien	t Yes	0.00072	4 N/A	-7.231	NO		
MW384	Sidegradient	Yes	0.00060	4 N/A	-7.412	NO		
MW387	Downgradien	t Yes	0.00074	5 N/A	-7.202	NO		
MW391	Downgradien	t Yes	0.00070	9 N/A	-7.252	NO		
MW394	Upgradient	Yes	0.00463	N/A	-5.375	NO		
N/A - Resu	Its identified as N	Ion-Detects o	luring labo	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 179.872 **S**= 86.318 **CV(1)**=0.480

K factor=** 2.523

TL(1) = 397.652

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.861

S = 1.252

CV(2) = 0.258

K factor=** 2.523

TL(2) = 8.021

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	205	5.323
1/15/2003	1.95	0.668
4/10/2003	203	5.313
7/14/2003	30	3.401
10/13/2003	107	4.673
1/13/2004	295	5.687
4/13/2004	190	5.247
7/21/2004	319	5.765
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 90	4.500
Date Collected 8/13/2002 9/16/2002	Result 90 240	4.500 5.481
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 90 240 185	4.500 5.481 5.220
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 90 240 185 220	4.500 5.481 5.220 5.394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 90 240 185 220 196	4.500 5.481 5.220 5.394 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	414	YES	6.026	N/A	
MW221	Sidegradient	Yes	378	NO	5.935	N/A	
MW222	Sidegradient	Yes	424	YES	6.050	N/A	
MW223	Sidegradient	Yes	429	YES	6.061	N/A	
MW224	Sidegradient	Yes	395	NO	5.979	N/A	
MW369	Downgradien	t Yes	365	NO	5.900	N/A	
MW372	Downgradien	t Yes	242	NO	5.489	N/A	
MW384	Sidegradient	Yes	401	YES	5.994	N/A	
MW387	Downgradien	t Yes	450	YES	6.109	N/A	
MW391	Downgradien	t Yes	319	NO	5.765	N/A	
MW394	Upgradient	Yes	369	NO	5.911	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW220 MW222

MW223

MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-50

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison PCB, Total UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.212

S = 0.152 C

CV(1)=0.715 K f:

K factor=** 2.523

TL(1) = 0.594

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.655 S = 0.376

0.376 **CV(2)=**-0.227

K factor=** 2.523

TL(2) = -0.706

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 7/14/2003 0.78 -0.24810/13/2003 0.17 -1.7727/21/2004 0.18 -1.7157/14/2005 0.18 -1.715 -1.715 7/17/2006 0.18 7/18/2007 0.17 -1.77210/24/2007 0.17 -1.772-1.7721/24/2008 0.17 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.17 -1.7729/16/2002 0.17 -1.772-1.7727/16/2003 0.17 10/14/2003 0.17 -1.7727/20/2004 0.18 -1.715 7/11/2005 0.18 -1.7157/17/2006 -1.715 0.18 -1.772 7/17/2007 0.17

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	No	0.0962	N/A	-2.341	N/A	
MW221	Sidegradient	No	0.0952	N/A	-2.352	N/A	
MW222	Sidegradient	No	0.0962	N/A	-2.341	N/A	
MW223	Sidegradient	No	0.098	N/A	-2.323	N/A	
MW224	Sidegradient	No	0.0943	N/A	-2.361	N/A	
MW369	Downgradien	t No	0.098	N/A	-2.323	N/A	
MW372	Downgradien	t Yes	0.0366	NO	-3.308	N/A	
MW384	Sidegradient	No	0.099	N/A	-2.313	N/A	
MW387	Downgradien	t No	0.1	N/A	-2.303	N/A	
MW391	Downgradien	t No	0.0962	N/A	-2.341	N/A	
MW394	Upgradient	No	0.0962	N/A	-2.341	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison PCB-1242 UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.146 S = 0.170 CV(1) = 1.164 K factor**= 2.523 TL(1) = 0.573

Statistics-Transformed Background Data

X = -2.149 S = 0.517 CV(2) = -0.241

K factor=** 2.523

TL(2)= -0.844

LL(2)=N/A

LL(1)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 7/14/2003 0.78 -0.24810/13/2003 0.09 -2.4087/21/2004 0.1 -2.3037/14/2005 0.1 -2.303-2.3037/17/2006 0.1 7/18/2007 0.1 -2.30310/24/2007 0.1 -2.303 1/24/2008 0.1 -2.303Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.11 -2.207 9/16/2002 0.13 -2.040-2.0407/16/2003 0.13 10/14/2003 0.09 -2.408 7/20/2004 0.1 -2.303-2.303 7/11/2005 0.1 7/17/2006 -2.3030.1 7/17/2007 0.1 -2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.0962	N/A	-2.341	N/A
MW221	Sidegradient	No	0.0952	N/A	-2.352	N/A
MW222	Sidegradient	No	0.0962	N/A	-2.341	N/A
MW223	Sidegradient	No	0.098	N/A	-2.323	N/A
MW224	Sidegradient	No	0.0943	N/A	-2.361	N/A
MW369	Downgradien	t No	0.098	N/A	-2.323	N/A
MW372	Downgradien	t Yes	0.0366	N/A	-3.308	NO
MW384	Sidegradient	No	0.099	N/A	-2.313	N/A
MW387	Downgradien	t No	0.1	N/A	-2.303	N/A
MW391	Downgradien	t No	0.0962	N/A	-2.341	N/A
MW394	Upgradient	No	0.0962	N/A	-2.341	N/A
NI/A D	1. '1 .'C 1 N	. D			1. 11.1.2	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.138 S = 0.282 CV(1) = 0.046 K factor** = 2.904 TL(1) = 6.957 LL(1) = 5.3179

Statistics-Transformed Background Data

X= 1.813 **S**= 0.047 **CV(2)**= 0.026

K factor=** 2.904

TL(2)= 1.950

LL(2)=1.6765

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.798 6.04 1/15/2003 6.31 1.842 4/10/2003 6.5 1.872 7/14/2003 6.3 1.841 10/13/2003 6.34 1.847 1/13/2004 6.33 1.845 4/13/2004 6.3 1.841 7/21/2004 5.9 1.775 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 5.8 1.758 9/30/2002 5.93 1.780 10/16/2002 5.42 1.690 1.792 1/13/2003 6 4/10/2003 6.04 1.798 7/16/2003 6.2 1.825 10/14/2003 1.856 6.4 1/13/2004 6.39 1.855

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Qu	ıarter l	Data
------------	----------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>` /</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	` /	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	6.14	NO	1.815	N/A
MW221	Sidegradient	Yes	6.22	NO	1.828	N/A
MW222	Sidegradient	Yes	6.4	NO	1.856	N/A
MW223	Sidegradient	Yes	6.31	NO	1.842	N/A
MW224	Sidegradient	Yes	6.26	NO	1.834	N/A
MW369	Downgradien	t Yes	6.4	NO	1.856	N/A
MW372	Downgradien	t Yes	6.34	NO	1.847	N/A
MW384	Sidegradient	Yes	6.35	NO	1.848	N/A
MW387	Downgradien	t Yes	6.4	NO	1.856	N/A
MW391	Downgradien	t Yes	6.23	NO	1.829	N/A
MW394	Upgradient	Yes	6.23	NO	1.829	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.654 S = 9.310 CV(1) = 1.399 K factor** = 2.523
 TL(1) = 30.144 LL(1) = N/A

 Statistics-Transformed Background
 X = 1.130 X = 1.208 X =

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.902 6.7 1/15/2003 29.7 3.391 4/10/2003 24.9 3.215 7/14/2003 1.13 0.122 10/13/2003 3.43 1.233 1/13/2004 6.71 1.904 4/13/2004 19.3 2.960 7/21/2004 3.97 1.379 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 1.03 0.030 1/13/2003 0.095 1.1 4/10/2003 1.24 0.215 7/16/2003 1.14 0.131 10/14/2003 1.05 0.049 1/13/2004 1.07 0.068

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	2.73	N/A	1.004	NO	
MW221	Sidegradient	Yes	1.22	N/A	0.199	NO	
MW222	Sidegradient	Yes	0.609	N/A	-0.496	NO	
MW223	Sidegradient	Yes	1.72	N/A	0.542	NO	
MW224	Sidegradient	Yes	0.815	N/A	-0.205	NO	
MW369	Downgradien	t Yes	0.489	N/A	-0.715	NO	
MW372	Downgradien	t Yes	2.14	N/A	0.761	NO	
MW384	Sidegradient	Yes	1.15	N/A	0.140	NO	
MW387	Downgradien	t Yes	1.78	N/A	0.577	NO	
MW391	Downgradien	t Yes	1.8	N/A	0.588	NO	
MW394	Upgradient	Yes	1.35	N/A	0.300	NO	
N/A - Recu	lts identified as N	Jon-Detects	luring lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.036 S = 0.382 CV(1) = 10.588 K factor**= 2.523
 TL(1) = 1.001 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.873 S = 1.110 CV(2) = -0.592 K factor**= 2.523
 TL(2) = -0.538 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	-0.804	#Func!
1/15/2003	0	#Func!
10/13/2003	0.389	-0.944
1/13/2004	-0.12	#Func!
4/13/2004	0.159	-1.839
7/21/2004	0.382	-0.962
10/11/2004	0.211	-1.556
1/20/2005	0.229	-1.474
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -0.538
Date Collected	Result	, ,
Date Collected 10/16/2002	Result 0.584	-0.538
Date Collected 10/16/2002 1/13/2003	Result 0.584 -0.839	-0.538 #Func!
Date Collected 10/16/2002 1/13/2003 10/14/2003	Result 0.584 -0.839 0.0325	-0.538 #Func! -3.427
Date Collected 10/16/2002 1/13/2003 10/14/2003 1/13/2004	Result 0.584 -0.839 0.0325 -0.00402	-0.538 #Func! -3.427 #Func!
Date Collected 10/16/2002 1/13/2003 10/14/2003 1/13/2004 4/12/2004	Result 0.584 -0.839 0.0325 -0.00402 -0.000337	-0.538 #Func! -3.427 #Func! #Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.15	N/A	0.140	YES
MW221	Sidegradient	Yes	0.603	N/A	-0.506	YES
MW222	Sidegradient	No	0.306	N/A	-1.184	N/A
MW223	Sidegradient	No	0.31	N/A	-1.171	N/A
MW224	Sidegradient	Yes	0.653	N/A	-0.426	YES
MW369	Downgradien	t No	0.334	N/A	-1.097	N/A
MW372	Downgradien	t No	0.685	N/A	-0.378	N/A
MW384	Sidegradient	No	0.498	N/A	-0.697	N/A
MW387	Downgradien	t Yes	0.826	N/A	-0.191	YES
MW391	Downgradien	t No	0.353	N/A	-1.041	N/A
MW394	Upgradient	No	0.419	N/A	-0.870	N/A
N/A - Resu	lts identified as N	Ion-Detects	luring lah	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW220 MW221

MW224

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 36.363 S = 8.666 CV(1) = 0.238 K factor**= 2.523 TL(1) = 58.227 LL(1) = N/A Statistics-Transformed Background X = 3.570 S = 0.222 CV(2) = 0.062 K factor**= 2.523 TL(2) = 4.129 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35.4 3.567 1/15/2003 40.6 3.704 4/10/2003 51 3.932 7/14/2003 58.2 4.064 10/13/2003 38.1 3.640 1/13/2004 37 3.611 4/13/2004 43.2 3.766 7/21/2004 33.8 3.520 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 32.9 3.493 9/16/2002 29.9 3.398 10/16/2002 29 3.367 1/13/2003 27.1 3.300 4/10/2003 24.8 3.211 7/16/2003 3.572 35.6 10/14/2003 3.523 33.9 1/13/2004 31.3 3.444

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	39.6	NO	3.679	N/A
MW221	Sidegradient	Yes	48.4	NO	3.879	N/A
MW222	Sidegradient	Yes	46.8	NO	3.846	N/A
MW223	Sidegradient	Yes	45.9	NO	3.826	N/A
MW224	Sidegradient	Yes	56.5	NO	4.034	N/A
MW369	Downgradien	t Yes	52.2	NO	3.955	N/A
MW372	Downgradien	t Yes	49.7	NO	3.906	N/A
MW384	Sidegradient	Yes	53.4	NO	3.978	N/A
MW387	Downgradien	t Yes	53.2	NO	3.974	N/A
MW391	Downgradien	t Yes	36.9	NO	3.608	N/A
MW394	Upgradient	Yes	34.9	NO	3.552	N/A
NI/A D	1, 11 1 N	T D			1 / 11 /	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 10.481 S = 2.648 CV(1) = 0.253 K factor**= 2.523
 TL(1) = 17.161 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.322 X = 0.239 X

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 10.4 2.342 1/15/2003 9.8 2.282 4/10/2003 15.4 2.734 7/14/2003 14.9 2.701 10/13/2003 13.5 2.603 1/13/2004 10.3 2.332 4/13/2004 14.3 2.660 7/21/2004 10.5 2.351 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 11.2 2.416 9/16/2002 8.3 2.116 2.079 10/16/2002 8 1/13/2003 2.140 8.5 4/10/2003 7.9 2.067 7/16/2003 2.128 8.4 10/14/2003 2.104 8.2 1/13/2004 8.1 2.092

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	18.7	YES	2.929	N/A
MW221	Sidegradient	Yes	14.1	NO	2.646	N/A
MW222	Sidegradient	Yes	12	NO	2.485	N/A
MW223	Sidegradient	Yes	14.7	NO	2.688	N/A
MW224	Sidegradient	Yes	13.6	NO	2.610	N/A
MW369	Downgradien	t Yes	5.97	NO	1.787	N/A
MW372	Downgradien	t Yes	76.5	YES	4.337	N/A
MW384	Sidegradient	Yes	20.5	YES	3.020	N/A
MW387	Downgradien	t Yes	28.3	YES	3.343	N/A
MW391	Downgradien	t Yes	54.6	YES	4.000	N/A
MW394	Upgradient	Yes	10.4	NO	2.342	N/A
N/A - Recu	Its identified as N	Ion-Detects	luring lah	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW220 MW372 MW384

MW387

MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 9.354
 S= 9.280
 CV(1)=0.992
 K factor**= 2.523
 TL(1)= 32.768
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.270
 S= 0.849
 CV(2)=0.374
 K factor**= 2.523
 TL(2)= 3.262
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 2.981 19.7 1/15/2003 26.1 3.262 1.270 4/10/2003 3.56 7/14/2003 0 #Func! 3.045 10/13/2003 2.1 1/13/2004 6.32 1.844 4/13/2004 3 1.099 7/21/2004 14.6 2.681 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 14 2.639 9/16/2002 5.45 1.696 0.912 10/16/2002 2.49 1/13/2003 2.907 18.3 4/10/2003 -1.45#Func! 7/16/2003 -1.71#Func! 10/14/2003 18.3 2.907 1/13/2004 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	12.3	N/A	2.510	N/A
MW221	Sidegradient	No	18	N/A	2.890	N/A
MW222	Sidegradient	No	0.0157	N/A	-4.154	N/A
MW223	Sidegradient	No	3.25	N/A	1.179	N/A
MW224	Sidegradient	No	5.9	N/A	1.775	N/A
MW369	Downgradien	t Yes	83.3	YES	4.422	N/A
MW372	Downgradien	t No	10.3	N/A	2.332	N/A
MW384	Sidegradient	Yes	167	YES	5.118	N/A
MW387	Downgradien	t Yes	215	YES	5.371	N/A
MW391	Downgradien	t No	8.63	N/A	2.155	N/A
MW394	Upgradient	No	4.39	N/A	1.479	N/A
N/A - Resu	Its identified as N	Ion-Detects	luring lah	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Toluene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor**= 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.609 5 1/15/2003 5 1.609 4/10/2003 5 1.609 7/14/2003 5 1.609 5 10/13/2003 1.609 1/13/2004 5 1.609 4/13/2004 5 1.609 5 7/21/2004 1.609 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t No	1	N/A	0.000	N/A
MW372	Downgradien	t Yes	0.69	NO	-0.371	N/A
MW384	Sidegradient	No	1	N/A	0.000	N/A
MW387	Downgradien	t No	1	N/A	0.000	N/A
MW391	Downgradien	t No	1	N/A	0.000	N/A
MW394	Upgradient	No	1	N/A	0.000	N/A
N/A Pagu	Its identified as N	Ion Detects of	luring lah	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.494
 S= 0.737
 CV(1)=0.493
 K factor**= 2.523
 TL(1)= 3.353
 LL(1)=N/A

 Statistics-Transformed Background
 X= 0.315
 S= 0.402
 CV(2)= 1.279
 K factor**= 2.523
 TL(2)= 1.330
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1.1 0.095 1 0.000 4/10/2003 7/14/2003 3.3 1.194 10/13/2003 1.8 0.588 1/13/2004 1 0.000 4/13/2004 2 0.693 7/21/2004 3.1 1.131 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.3 0.262 9/16/2002 1 0.000 10/16/2002 1 0.000 1/13/2003 0.470 4/10/2003 1 0.000 7/16/2003 1.4 0.336 10/14/2003 1.3 0.262 0.000 1/13/2004 1

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	0.892	NO	-0.114	N/A
MW221	Sidegradient	Yes	0.98	NO	-0.020	N/A
MW222	Sidegradient	Yes	0.908	NO	-0.097	N/A
MW223	Sidegradient	No	2	N/A	0.693	N/A
MW224	Sidegradient	Yes	1.07	NO	0.068	N/A
MW369	Downgradien	t Yes	0.958	NO	-0.043	N/A
MW372	Downgradien	t Yes	2.57	NO	0.944	N/A
MW384	Sidegradient	Yes	1.17	NO	0.157	N/A
MW387	Downgradien	t Yes	1.2	NO	0.182	N/A
MW391	Downgradien	t Yes	1.02	NO	0.020	N/A
MW394	Upgradient	Yes	0.885	NO	-0.122	N/A
M/A Dogu	Ite identified as N	Ion Detects	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 63.475 S = 163.135 CV(1) = 2.570

K factor=** 2.523

TL(1)= 475.063 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.103 S = 1.145 CV(2) = 0.369

K factor=** 2.523

TL(2) = 5.992

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.912 50 1/15/2003 10 2.303 10 4/10/2003 2.303 7/14/2003 10 2.303 10 10/13/2003 2.303 1/13/2004 10 2.303 4/13/2004 10 2.303 7/21/2004 10 2.303 Well Number: MW394 Date Collected Result LN(Result) 50 8/13/2002 3.912 9/16/2002 672 6.510 10/16/2002 50 3.912 1/13/2003 36.1 3.586 4/10/2003 10 2.303 7/16/2003 42.7 3.754 10/14/2003 22 3.091 1/13/2004 12.8 2.549

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	7.14	N/A	1.966	NO
MW221	Sidegradient	Yes	10.1	N/A	2.313	NO
MW222	Sidegradient	No	10	N/A	2.303	N/A
MW223	Sidegradient	No	10	N/A	2.303	N/A
MW224	Sidegradient	Yes	4.44	N/A	1.491	NO
MW369	Downgradien	t Yes	7.34	N/A	1.993	NO
MW372	Downgradien	t Yes	7.12	N/A	1.963	NO
MW384	Sidegradient	Yes	11.4	N/A	2.434	NO
MW387	Downgradien	t Yes	6.56	N/A	1.881	NO
MW391	Downgradien	t Yes	12.8	N/A	2.549	NO
MW394	Upgradient	No	10	N/A	2.303	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-61

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 8.813
 S= 8.376
 CV(1)=0.951 K factor**= 2.523
 TL(1)=29.946 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.395
 S= 1.449
 CV(2)=1.039 K factor**= 2.523
 TL(2)=5.052 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1 0.000 0.000 4/10/2003 7/14/2003 1 0.000 1 0.000 10/13/2003 1/13/2004 1 0.000 4/13/2004 1 0.000 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 16 2.773 9/30/2002 20 2.996 10/16/2002 17 2.833 1/13/2003 15 2.708 4/10/2003 10 2.303 7/16/2003 19 2.944 10/14/2003 20 2.996 1/13/2004 16 2.773

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.63	N/A	-0.462	N/A
MW221	Sidegradient	Yes	0.51	N/A	-0.673	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t Yes	4.56	N/A	1.517	N/A
MW372	Downgradien	t Yes	7.06	NO	1.954	N/A
MW384	Sidegradient	Yes	0.54	N/A	-0.616	N/A
MW387	Downgradien	t Yes	0.79	N/A	-0.236	N/A
MW391	Downgradien	t Yes	11.4	NO	2.434	N/A
MW394	Upgradient	Yes	7.06	NO	1.954	N/A
N/A - Recu	lte identified as N	Ion-Detects	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.021 S = 0.002 CV(1) = 0.083 K factor** = 2.523
 TL(1) = 0.025 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.884 S = 0.076 CV(2) = -0.020 K factor** = 2.523
 TL(2) = -3.692 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.02 -3.912 1/15/2003 0.02 -3.912-3.912 4/10/2003 0.02 7/14/2003 0.02 -3.912 0.02 -3.912 10/13/2003 1/13/2004 0.02 -3.912 4/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/16/2002 0.02 -3.9121/13/2003 0.02 -3.912 4/10/2003 0.02 -3.912 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.01	N/A	-4.605	N/A
MW221	Sidegradient	No	0.01	N/A	-4.605	N/A
MW222	Sidegradient	Yes	0.00465	NO	-5.371	N/A
MW223	Sidegradient	Yes	0.0047	NO	-5.360	N/A
MW224	Sidegradient	No	0.01	N/A	-4.605	N/A
MW369	Downgradien	t No	0.01	N/A	-4.605	N/A
MW372	Downgradien	t No	0.01	N/A	-4.605	N/A
MW384	Sidegradient	No	0.01	N/A	-4.605	N/A
MW387	Downgradien	t No	0.01	N/A	-4.605	N/A
MW391	Downgradien	t No	0.01	N/A	-4.605	N/A
MW394	Upgradient	No	0.01	N/A	-4.605	N/A
N/A - Resu	lts identified as N	Ion-Detects (luring laha	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.036 S = 0.026 CV(1) = 0.722 K factor** = 2.523
 TL(1) = 0.101 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.485 S = 0.525 CV(2) = -0.151 K factor** = 2.523
 TL(2) = -2.162 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.025 -3.6891/15/2003 0.035 -3.3524/10/2003 0.035 -3.3527/14/2003 0.0389 -3.2470.026 10/13/2003 -3.6501/13/2004 0.02 -3.9124/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.1 -2.303 9/16/2002 0.1 -2.30310/16/2002 0.025 -3.6891/13/2003 0.035 -3.352 4/10/2003 0.035 -3.3527/16/2003 0.02 -3.91210/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.01	N/A	-4.605	N/A
MW221	Sidegradient	No	0.01	N/A	-4.605	N/A
MW222	Sidegradient	No	0.01	N/A	-4.605	N/A
MW223	Sidegradient	No	0.01	N/A	-4.605	N/A
MW224	Sidegradient	No	0.01	N/A	-4.605	N/A
MW369	Downgradien	t No	0.01	N/A	-4.605	N/A
MW372	Downgradien	t Yes	0.00412	NO	-5.492	N/A
MW384	Sidegradient	No	0.01	N/A	-4.605	N/A
MW387	Downgradien	t No	0.01	N/A	-4.605	N/A
MW391	Downgradien	t No	0.01	N/A	-4.605	N/A
MW394	Upgradient	No	0.01	N/A	-4.605	N/A
M/A Dogg	Ita idantified as N	Ion Datasta	عامله مشمرا	anatami analissia an	data validation	and rrone not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.258

S= 0.221 **CV(1)**=0.856

6 **K factor**=** 2.523

TL(1) = 0.815

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.266 S = 2.485

CV(2) = -1.097

K factor=** 2.523

TL(2) = 4.003

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.194
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 0.824	-0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	-0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	-0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	-0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	-0.194 -1.609 -8.517 -1.013 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW370	Downgradient	No	0.05	N/A	-2.996	N/A				
MW373	Downgradient	No	0.05	N/A	-2.996	N/A				
MW385	Sidegradient	No	0.05	N/A	-2.996	N/A				
MW388	Downgradient	No	0.05	N/A	-2.996	N/A				
MW392	Downgradient	Yes	0.0188	NO	-3.974	N/A				
MW395	Upgradient	No	0.05	N/A	-2.996	N/A				
MW397	Upgradient	Yes	0.0378	NO	-3.275	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 7.183 S = 2.612 CV(1) = 0.364 K factor** = 2.523
 TL(1) = 13.773 LL(1) = N/A

 Statistics-Transformed Background
 X = 1.870 X = 0.552 X =

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.086 1.09 9/16/2002 5.79 1.756 1.920 10/16/2002 6.82 1/13/2003 5.01 1.611 4/10/2003 6.1 1.808 7/16/2003 8.51 2.141 10/14/2003 4.99 1.607 1/13/2004 6.58 1.884 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 9.57 2.259 9/16/2002 11 2.398 10/17/2002 9.3 2.230 1/13/2003 8.63 2.155 4/8/2003 10 2.303 7/16/2003 1.930 6.89 10/14/2003 2.313 10.1 1/13/2004 4.55 1.515

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW370	Downgradient	Yes	19.1	N/A	2.950	N/A				
MW373	Downgradient	Yes	17.8	N/A	2.879	N/A				
MW385	Sidegradient	Yes	78.1	YES	4.358	N/A				
MW388	Downgradient	Yes	95.8	YES	4.562	N/A				
MW392	Downgradient	No	-0.658	N/A	#Error	N/A				
MW395	Upgradient	Yes	3.62	N/A	1.286	N/A				
MW397	Upgradient	Yes	5.73	N/A	1.746	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Boron LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 0.650S = 0.805CV(1) = 1.238TL(1) = 2.681LL(1)=N/A **Statistics-Transformed Background**

Data

X = -1.034 S = 1.030CV(2) = -0.996 **K factor**=** 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 2. 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.6090.2 -1.609 4/10/2003 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/17/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/8/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW370	Downgradient	Yes	0.0304	N/A	-3.493	NO				
MW373	Downgradient	Yes	1.44	N/A	0.365	NO				
MW385	Sidegradient	Yes	0.0139	N/A	-4.276	NO				
MW388	Downgradient	Yes	0.0255	N/A	-3.669	NO				
MW392	Downgradient	Yes	0.0296	N/A	-3.520	NO				
MW395	Upgradient	Yes	0.0255	N/A	-3.669	NO				
MW397	Upgradient	Yes	0.00871	N/A	-4.743	NO				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.000 S= 0.000 CV(1)=0.000 K factor**= 2.523 TL(1)=1.000 LL(1)=N/A

 Statistics-Transformed Background
 X= 0.000 S= 0.000 CV(2)=#Num! K factor**= 2.523 TL(2)=0.000 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.000 9/16/2002 1 0.000 0.000 10/16/2002 1 1/13/2003 1 0.000 1 0.000 4/10/2003 7/16/2003 1 0.000 10/14/2003 1 0.000 1/13/2004 1 0.000 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/17/2002 1 0.000 1/13/2003 0.000 4/8/2003 0.000 7/16/2003 1 0.000 10/14/2003 0.000 1 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data										
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
•	MW370	Downgradient	t Yes	0.436	NO	-0.830	N/A				
	MW373	Downgradient	t Yes	0.586	NO	-0.534	N/A				
	MW385	Sidegradient	Yes	0.221	NO	-1.510	N/A				
	MW388	Downgradient	t Yes	0.373	NO	-0.986	N/A				
	MW392	Downgradient	t Yes	0.593	NO	-0.523	N/A				
	MW395	Upgradient	Yes	0.572	NO	-0.559	N/A				
	MW397	Upgradient	Yes	0.489	NO	-0.715	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 23.103 **S**= 11.538 **CV(1)**=0.499

K factor=** 2.523

TL(1)= 52.213

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.357

S = 2.411 CV

CV(2) = 1.023

K factor=** 2.523

TL(2)= 8.439

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.965
Date Collected	Result	` '
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW370	Downgradient	Yes	27.3	NO	3.307	N/A				
MW373	Downgradient	Yes	67.5	YES	4.212	N/A				
MW385	Sidegradient	Yes	39.6	NO	3.679	N/A				
MW388	Downgradient	Yes	26.5	NO	3.277	N/A				
MW392	Downgradient	Yes	29.7	NO	3.391	N/A				
MW395	Upgradient	Yes	27.2	NO	3.303	N/A				
MW397	Upgradient	Yes	19.3	NO	2.960	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.313 S = 1.250

CV(1)=0.035

K factor=** 2.523

TL(1)= 38.466

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.564

S= 0.033

CV(2)=0.009

K factor**= 2.523

TL(2)= 3.648

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	3.555
4/10/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/13/2004	35	3.555
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.689
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 40	3.689
Date Collected 8/13/2002 9/16/2002	Result 40 35	3.689 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 40 35 35	3.689 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 40 35 35 35	3.689 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 40 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW370	Downgradient	Yes	21.2	NO	3.054	N/A				
MW373	Downgradient	Yes	14	NO	2.639	N/A				
MW385	Sidegradient	Yes	154	YES	5.037	N/A				
MW388	Downgradient	No	18.5	N/A	2.918	N/A				
MW392	Downgradient	No	22.8	N/A	3.127	N/A				
MW395	Upgradient	No	11.7	N/A	2.460	N/A				
MW397	Upgradient	No	16.7	N/A	2.815	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW385

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.844 S = 11.652 CV(1) = 0.225

K factor=** 2.523

TL(1) = 81.242

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.924 **S**= 0.229

CV(2)=0.058

K factor=** 2.523

TL(2)= 4.501

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	62.2	4.130
9/16/2002	64.7	4.170
10/16/2002	62.2	4.130
1/13/2003	63.5	4.151
4/10/2003	64.1	4.160
7/16/2003	64	4.159
10/14/2003	63.2	4.146
1/13/2004	60.6	4.104
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.661
Date Collected	Result	
Date Collected 8/13/2002	Result 38.9	3.661
Date Collected 8/13/2002 9/16/2002	Result 38.9 39.8	3.661 3.684
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 38.9 39.8 39.3	3.661 3.684 3.671
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 38.9 39.8 39.3 40.5	3.661 3.684 3.671 3.701
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 38.9 39.8 39.3 40.5 42.1	3.661 3.684 3.671 3.701 3.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW370	Downgradient	Yes	36.4	NO	3.595	N/A				
MW373	Downgradient	Yes	44.4	NO	3.793	N/A				
MW385	Sidegradient	Yes	27	NO	3.296	N/A				
MW388	Downgradient	Yes	32.8	NO	3.490	N/A				
MW392	Downgradient	Yes	49.4	NO	3.900	N/A				
MW395	Upgradient	Yes	47.1	NO	3.852	N/A				
MW397	Upgradient	Yes	39.7	NO	3.681	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor** = 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.609 5 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 5 1/13/2004 1.609 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 5 1.609 1/13/2003 5 1.609 5 4/8/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW370	Downgradien	t Yes	1.24	NO	0.215	N/A				
MW373	Downgradien	t No	1	N/A	0.000	N/A				
MW385	Sidegradient	No	1	N/A	0.000	N/A				
MW388	Downgradien	t No	1	N/A	0.000	N/A				
MW392	Downgradien	t Yes	0.71	NO	-0.342	N/A				
MW395	Upgradient	No	1	N/A	0.000	N/A				
MW397	Upgradient	No	1	N/A	0.000	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S= 0.011 **CV(1)**=1.515

K factor=** 2.523

TL(1)= 0.034

LL(1)=N/A

Statistics-Transformed Background Data

X= -6.053 **S**= 1.416

CV(2) = -0.234

K factor=** 2.523

TL(2) = -2.480

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.68910/16/2002 0.001 -6.9081/13/2003 0.00148 -6.516 0.00151 -6.496 4/10/2003 7/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/17/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/8/2003 0.001 -6.908 7/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW370	Downgradient	Yes	0.00053	8 N/A	-7.528	NO				
MW373	Downgradient	Yes	0.00183	N/A	-6.303	NO				
MW385	Sidegradient	No	0.001	N/A	-6.908	N/A				
MW388	Downgradient	No	0.001	N/A	-6.908	N/A				
MW392	Downgradient	Yes	0.00013	N/A	-8.948	NO				
MW395	Upgradient	No	0.001	N/A	-6.908	N/A				
MW397	Upgradient	No	0.001	N/A	-6.908	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis **Historical Background Comparison Conductivity UNITS:** umho/cm **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

K factor=** 2.523

TL(1)= 509.326 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.926 S = 0.136 CV(2) = 0.023

K factor=** 2.523

TL(2) = 6.270

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 405 6.004 9/16/2002 401 5.994 5.971 10/16/2002 392 1/13/2003 404 6.001 4/10/2003 488 6.190 7/16/2003 450 6.109 10/14/2003 6.016 410 1/13/2004 413 6.023 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 322 5.775 5.753 9/16/2002 315 10/17/2002 317 5.759 1/13/2003 320 5.768 4/8/2003 390 5.966 7/16/2003 354 5.869 10/14/2003 331 5.802 1/13/2004 334 5.811

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW370	Downgradient	Yes	435	NO	6.075	N/A			
MW373	Downgradient	Yes	798	YES	6.682	N/A			
MW385	Sidegradient	Yes	464	NO	6.140	N/A			
MW388	Downgradient	Yes	432	NO	6.068	N/A			
MW392	Downgradient	Yes	413	NO	6.023	N/A			
MW395	Upgradient	Yes	377	NO	5.932	N/A			
MW397	Upgradient	Yes	334	NO	5.811	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.028 S = 0.013 CV(1) = 0.474 K factor** = 2.523
 TL(1) = 0.061 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.662 S = 0.406 CV(2) = -0.111 K factor** = 2.523
 TL(2) = -2.638 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.99610/16/2002 0.0281 -3.5721/13/2003 0.02 -3.9120.02 -3.912 4/10/2003 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 1/13/2004 0.02 -3.912Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.996 10/17/2002 0.02 -3.9121/13/2003 0.02 -3.912 4/8/2003 0.02 -3.912 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >'	TL(1)? LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	0.00072	3 NO	-7.232	N/A		
MW373	Downgradient	No	0.001	N/A	-6.908	N/A		
MW385	Sidegradient	Yes	0.00043	1 NO	-7.749	N/A		
MW388	Downgradient	Yes	0.000572	2 NO	-7.466	N/A		
MW392	Downgradient	t No	0.001	N/A	-6.908	N/A		
MW395	Upgradient	Yes	0.00050	8 NO	-7.585	N/A		
MW397	Upgradient	Yes	0.00054	4 NO	-7.517	N/A		
						_		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 4.678 S = 2.431 CV(1) = 0.520 K factor** = 2.523
 TL(1) = 10.812 LL(1) = N/A

 Statistics-Transformed Background
 X = 1.414 X = 0.550 X

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 7.29 1.987 9/30/2002 4.03 1.394 10/16/2002 3.85 1.348 1/13/2003 2.36 0.859 4/10/2003 1.14 0.131 7/16/2003 1.76 0.565 10/14/2003 4.05 1.399 1/13/2004 4.26 1.449 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 11.56 2.448 9/16/2002 5.86 1.768 10/17/2002 5.94 1.782 1/13/2003 1.539 4.66 4/8/2003 3.77 1.327 7/16/2003 3.47 1.244 10/14/2003 5.34 1.675 1/13/2004 5.51 1.707

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW370	Downgradient	t Yes	4.01	NO	1.389	N/A			
MW373	Downgradient	t Yes	1.81	NO	0.593	N/A			
MW385	Sidegradient	Yes	1.03	NO	0.030	N/A			
MW388	Downgradient	t Yes	5.07	NO	1.623	N/A			
MW392	Downgradient	t Yes	1.47	NO	0.385	N/A			
MW395	Upgradient	Yes	4.9	NO	1.589	N/A			
MW397	Upgradient	Yes	5.5	NO	1.705	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

K factor=** 2.523

TL(1)= 305.301

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.379 S = 0.152 CV(2) = 0.028

K factor=** 2.523

TL(2) = 5.762

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.231
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW370	Downgradient	Yes	227	NO	5.425	N/A			
MW373	Downgradient	Yes	497	YES	6.209	N/A			
MW385	Sidegradient	Yes	257	NO	5.549	N/A			
MW388	Downgradient	Yes	243	NO	5.493	N/A			
MW392	Downgradient	Yes	199	NO	5.293	N/A			
MW395	Upgradient	Yes	214	NO	5.366	N/A			
MW397	Upgradient	Yes	166	NO	5.112	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-77

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.400

S= 0.514 **CV(1)**=1.286

K factor=** 2.523

TL(1)= 1.698

LL(1)=N/A

Statistics-Transformed Background Data

X= -2.197 **S**= 2.634

CV(2)=-1.199

K factor=** 2.523

TL(2) = 4.449

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.294	-1.224
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	1.33	0.285
4/10/2003	1.31	0.270
7/16/2003	0.2	-1.609
10/14/2003	0.1	-2.303
1/13/2004	0.1	-2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.457
Date Collected	Result	` ,
Date Collected 8/13/2002	Result 1.58	0.457
Date Collected 8/13/2002 9/16/2002	Result 1.58 0.232	0.457 -1.461
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1.58 0.232 0.0002	0.457 -1.461 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1.58 0.232 0.0002 0.453	0.457 -1.461 -8.517 -0.792
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1.58 0.232 0.0002 0.453 0.2	0.457 -1.461 -8.517 -0.792 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW370	Downgradient	Yes	0.097	N/A	-2.333	NO			
MW373	Downgradient	Yes	0.0835	N/A	-2.483	NO			
MW385	Sidegradient	No	0.0758	N/A	-2.580	N/A			
MW388	Downgradient	No	0.0737	N/A	-2.608	N/A			
MW392	Downgradient	Yes	0.218	N/A	-1.523	NO			
MW395	Upgradient	Yes	0.0517	N/A	-2.962	NO			
MW397	Upgradient	No	0.095	N/A	-2.354	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 9.102 S = 4.685 CV(1) = 0.515 K factor**= 2.523 TL(1) = 20.922 LL(1) = N/A Statistics-Transformed Background X = 1.423 S = 2.408 CV(2) = 1.692 K factor**= 2.523 TL(2) = 7.500 LL(2) = N/A Data

Historical Racksmannd Data from

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 12.5 2.526 9/16/2002 13 2.565 0.0127 10/16/2002 -4.3661/13/2003 11.2 2.416 4/10/2003 17.5 2.862 7/16/2003 12.9 2.557 10/14/2003 13.4 2.595 1/13/2004 12.4 2.518 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 7.83 2.058 9/16/2002 7.64 2.033 10/17/2002 0.00658 -5.0241/13/2003 6.69 1.901 4/8/2003 7.28 1.985 7/16/2003 2.057 7.82 10/14/2003 2.072 7.94 1/13/2004 7.51 2.016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No	. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW370	Downgradien	t Yes	11.7	NO	2.460	N/A			
MW373	3 Downgradien	t Yes	25.3	YES	3.231	N/A			
MW385	5 Sidegradient	Yes	15	NO	2.708	N/A			
MW388	8 Downgradien	t Yes	11.7	NO	2.460	N/A			
MW392	2 Downgradien	t Yes	10.9	NO	2.389	N/A			
MW395	5 Upgradient	Yes	12	NO	2.485	N/A			
MW397	7 Upgradient	Yes	8.26	NO	2.111	N/A			
NI/A D	1, 11 ,:C 1 N	D		. 1 .	1 / 11 /	1 .			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.131

S= 0.195 **CV(1)**=1.487

K factor**= 2.523

TL(1)= 0.624

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.104 S = 1.529

CV(2) = -0.493

K factor=** 2.523

TL(2) = 0.755

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.466	-0.764
9/16/2002	0.077	-2.564
10/17/2002	0.028	-3.576
1/13/2003	0.0164	-4.110
4/8/2003	0.0407	-3.202
7/16/2003	0.0167	-4.092
10/14/2003	0.00555	-5.194
1/13/2004	0.005	-5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	0.00648	N/A	-5.039	NO		
MW373	Downgradient	Yes	0.0749	N/A	-2.592	NO		
MW385	Sidegradient	Yes	0.00618	N/A	-5.086	NO		
MW388	Downgradient	No	0.005	N/A	-5.298	N/A		
MW392	Downgradient	Yes	0.0455	N/A	-3.090	NO		
MW395	Upgradient	No	0.005	N/A	-5.298	N/A		
MW397	Upgradient	Yes	0.00172	N/A	-6.365	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.018

S = 0.020

CV(1)=1.089 **K factor**=** 2.523

TL(1) = 0.068

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.540 S = 1.020

CV(2) = -0.225

K factor=** 2.523

TL(2) = -1.965

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	•
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.005 0.005	-2.996 -2.996 -5.298 -5.294
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.005 0.005 0.00502 0.005	-2.996 -2.996 -5.298 -5.294 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	t Yes	0.00081	3 N/A	-7.115	NO		
MW373	Downgradient	t Yes	0.00385	N/A	-5.560	NO		
MW385	Sidegradient	Yes	0.00124	N/A	-6.693	NO		
MW388	Downgradient	t Yes	0.00090	4 N/A	-7.009	NO		
MW392	Downgradient	t Yes	0.002	N/A	-6.215	NO		
MW395	Upgradient	Yes	0.00078	N/A	-7.156	NO		
MW397	Upgradient	Yes	0.00062	4 N/A	-7.379	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 157.250 S = 52.376 CV(1) = 0.333

K factor=** 2.523

TL(1)= 289.395 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.003

S = 0.348 C

CV(2) = 0.069

K factor=** 2.523

TL(2) = 5.880

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395			
Date Collected	Result	LN(Result)		
8/13/2002	80	4.382		
9/16/2002	145	4.977		
10/16/2002	125	4.828		
1/13/2003	85	4.443		
4/10/2003	159	5.069		
7/16/2003	98	4.585		
10/14/2003	138	4.927		
1/13/2004	233	5.451		
Well Number:	MW397			
Well Number: Date Collected	MW397 Result	LN(Result)		
		LN(Result) 4.745		
Date Collected	Result	` ′		
Date Collected 8/13/2002	Result 115	4.745		
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942		
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220		
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438		
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	402	YES	5.996	N/A		
MW373	Downgradient	Yes	322	YES	5.775	N/A		
MW385	Sidegradient	Yes	295	YES	5.687	N/A		
MW388	Downgradient	Yes	455	YES	6.120	N/A		
MW392	Downgradient	Yes	442	YES	6.091	N/A		
MW395	Upgradient	Yes	357	YES	5.878	N/A		
MW397	Upgradient	Yes	378	YES	5.935	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW370
MW373
MW385
MW388
MW392
MW395
MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison PCB, Total UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.174

S= 0.005 **CV(1)**=0.029

K factor=** 2.523

TL(1)= 0.186

LL(1)=N/A

Statistics-Transformed Background Data

X= -1.751 **S**= 0.029

0.029 **CV(2)=**-0.016

K factor=** 2.523

TL(2) = -1.678

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.17	-1.772
9/16/2002	0.17	-1.772
7/16/2003	0.17	-1.772
10/14/2003	0.17	-1.772
7/20/2004	0.18	-1.715
7/11/2005	0.18	-1.715
7/17/2006	0.18	-1.715
7/17/2007	0.17	-1.772
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -1.772
Date Collected	Result	,
Date Collected 8/13/2002	Result 0.17	-1.772
Date Collected 8/13/2002 9/16/2002	Result 0.17 0.17	-1.772 -1.772
Date Collected 8/13/2002 9/16/2002 7/16/2003	Result 0.17 0.17 0.17	-1.772 -1.772 -1.772
Date Collected 8/13/2002 9/16/2002 7/16/2003 10/14/2003	Result 0.17 0.17 0.17 0.17	-1.772 -1.772 -1.772 -1.772
Date Collected 8/13/2002 9/16/2002 7/16/2003 10/14/2003 7/21/2004	Result 0.17 0.17 0.17 0.17 0.18	-1.772 -1.772 -1.772 -1.772 -1.715

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	0.0752	NO	-2.588	N/A	
MW373	Downgradient	No	0.0952	N/A	-2.352	N/A	
MW385	Sidegradient	No	0.098	N/A	-2.323	N/A	
MW388	Downgradient	No	0.0943	N/A	-2.361	N/A	
MW392	Downgradient	No	0.0971	N/A	-2.332	N/A	
MW395	Upgradient	No	0.0971	N/A	-2.332	N/A	
MW397	Upgradient	No	0.0943	N/A	-2.361	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison PCB-1242 UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.108 S = 0.014 CV(1) = 0.134 K factor**= 2.523
 TL(1) = 0.144 LL(1) = N/A

 Statistics-Transformed Background
 X = -2.238 S = 0.129 CV(2) = -0.058 K factor**= 2.523
 TL(2) = -1.913 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.11 -2.2079/16/2002 0.13 -2.0407/16/2003 0.13 -2.04010/14/2003 0.09 -2.408 -2.3037/20/2004 0.1 7/11/2005 0.1 -2.3037/17/2006 0.1 -2.303 7/17/2007 0.1 -2.303Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.11 -2.207 9/16/2002 0.13 -2.0407/16/2003 0.13 -2.04010/14/2003 0.09 -2.408 7/21/2004 0.1 -2.3037/11/2005 0.1 -2.303 7/18/2006 0.1 -2.303-2.303 7/18/2007 0.1

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradien	t Yes	0.0752	NO	-2.588	N/A	
MW373	Downgradien	t No	0.0952	N/A	-2.352	N/A	
MW385	Sidegradient	No	0.098	N/A	-2.323	N/A	
MW388	Downgradien	t No	0.0943	N/A	-2.361	N/A	
MW392	Downgradien	t No	0.0971	N/A	-2.332	N/A	
MW395	Upgradient	No	0.0971	N/A	-2.332	N/A	
MW397	Upgradient	No	0.0943	N/A	-2.361	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.048 S = 0.248 CV(1) = 0.041 K factor** = 2.904 TL(1) = 6.767 LL(1) = 5.3289

Statistics-Transformed Background X = 1.799 **S**= 0.042 **CV(2)**=0.023 **K factor****= 2.904 **TL(2)**= 1.920 **LL(2)**=1.6782 **Data**

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 5.8 1.758 9/16/2002 1.792 5.47 10/16/2002 1.699 1/13/2003 6 1.792 4/10/2003 6.18 1.821 7/16/2003 6 1.792 10/14/2003 6.31 1.842 1/13/2004 6.24 1.831 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 5.84 1.765 9/30/2002 1.792 6 10/17/2002 5.75 1.749 1/13/2003 1.792 6 4/8/2003 6.3 1.841 7/16/2003 6.2 1.825 10/14/2003 6.36 1.850 1/13/2004 6.32 1.844

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter

Well No.	Gradient	Detected?	Result		LN(Result)	LN(Result) > TL(2)?
				Result <ll(1)?< td=""><td></td><td>LN(Result) < LL(2)?</td></ll(1)?<>		LN(Result) < LL(2)?
MW370	Downgradien	t Yes	6.29	NO	1.839	N/A
MW373	Downgradien	t Yes	6.31	NO	1.842	N/A
MW385	Sidegradient	Yes	6.6	NO	1.887	N/A
MW388	Downgradien	t Yes	6.15	NO	1.816	N/A
MW392	Downgradien	t Yes	6.48	NO	1.869	N/A
MW395	Upgradient	Yes	6.14	NO	1.815	N/A
MW397	Upgradient	Yes	6.25	NO	1.833	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.590

S= 0.642 **CV(1)**=0.404

K factor=** 2.523

TL(1) = 3.208

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.306 S = 2.457

CV(2)=-8.028

K factor=** 2.523

TL(2)= 5.892

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 2. 9/16/2002 2 0.693 0.00129 10/16/2002 -6.6531/13/2003 1.51 0.412 0.513 4/10/2003 1.67 7/16/2003 1.73 0.548 10/14/2003 1.7 0.531 1/13/2004 1.58 0.457 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2.03 0.708 9/16/2002 0.693 2 0.00145 10/17/2002 -6.5361/13/2003 1.69 0.525 4/8/2003 1.73 0.548 7/16/2003 2 0.693 10/14/2003 1.92 0.652 1/13/2004 1.87 0.626

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
We	ll No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
M	W370	Downgradient	Yes	2.44	NO	0.892	N/A	
M	W373	Downgradient	Yes	2.69	NO	0.990	N/A	
M	W385	Sidegradient	Yes	1.99	NO	0.688	N/A	
M	W388	Downgradient	Yes	2.17	NO	0.775	N/A	
M	W392	Downgradient	Yes	1.86	NO	0.621	N/A	
M	W395	Upgradient	Yes	1.61	NO	0.476	N/A	
M	W397	Upgradient	Yes	1.81	NO	0.593	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.039

S = 0.419

CV(1)=10.740

K factor=** 2.523

TL(1)= 1.096

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.695 **S**= 1.043

CV(2) = -0.615

K factor=** 2.523

TL(2) = -0.414

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/16/2002	0.661	-0.414
1/13/2003	-0.839	#Func!
10/14/2003	0.0266	-3.627
1/13/2004	-0.0777	#Func!
4/12/2004	-0.115	#Func!
7/20/2004	0.105	-2.254
10/12/2004	0.408	-0.896
1/18/2005	0.0564	-2.875
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.552
Date Collected	Result	` ′
Date Collected 10/17/2002	Result 0.576	-0.552
Date Collected 10/17/2002 1/13/2003	Result 0.576 -0.841	-0.552 #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003	Result 0.576 -0.841 -0.179	-0.552 #Func! #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003 1/13/2004	Result 0.576 -0.841 -0.179 -0.0564	-0.552 #Func! #Func! #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003 1/13/2004 4/12/2004	Result 0.576 -0.841 -0.179 -0.0564 0.174	-0.552 #Func! #Func! #Func! -1.749

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	No	0.198	N/A	-1.619	N/A	
MW373	Downgradient	No	0.557	N/A	-0.585	N/A	
MW385	Sidegradient	No	0.246	N/A	-1.402	N/A	
MW388	Downgradient	Yes	0.783	N/A	-0.245	YES	
MW392	Downgradient	No	0.315	N/A	-1.155	N/A	
MW395	Upgradient	Yes	0.669	N/A	-0.402	YES	
MW397	Upgradient	No	0.575	N/A	-0.553	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW388 MW395

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2016 Statistical Analysis **Historical Background Comparison Sodium** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 29.560 S = 13.894 CV(1) = 0.470

K factor=** 2.523

TL(1)= 64.616

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.615 S = 2.411CV(2) = 0.922

K factor=** 2.523

TL(2)= 8.699

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.561
Date Collected	Result	` '
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

4								
Current Quarter Data								
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	40.1	NO	3.691	N/A		
MW373	Downgradient	Yes	55.9	NO	4.024	N/A		
MW385	Sidegradient	Yes	35	NO	3.555	N/A		
MW388	Downgradient	Yes	49.2	NO	3.896	N/A		
MW392	Downgradient	Yes	40.4	NO	3.699	N/A		
MW395	Upgradient	Yes	30.5	NO	3.418	N/A		
MW397	Upgradient	Yes	33.2	NO	3.503	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-88

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.756 S = 2.147

CV(1)=0.200

K factor=** 2.523

TL(1)= 16.173

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.356

S = 0.203

CV(2) = 0.086

K factor**= 2.523

TL(2) = 2.869

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	10.3	2.332
9/16/2002	9.1	2.208
10/16/2002	8.8	2.175
1/13/2003	9	2.197
4/10/2003	8.3	2.116
7/16/2003	8.2	2.104
10/14/2003	8.3	2.116
1/13/2004	8.2	2.104
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.639
Date Collected	Result	•
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 12.8	2.639 2.549
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 14 12.8 12.3	2.639 2.549 2.510
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 14 12.8 12.3 12.7	2.639 2.549 2.510 2.542
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 14 12.8 12.3 12.7 12.8	2.639 2.549 2.510 2.542 2.549

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	19.7	YES	2.981	N/A		
MW373	Downgradient	Yes	148	YES	4.997	N/A		
MW385	Sidegradient	Yes	19.9	YES	2.991	N/A		
MW388	Downgradient	Yes	23.9	YES	3.174	N/A		
MW392	Downgradient	Yes	6.43	NO	1.861	N/A		
MW395	Upgradient	Yes	9.86	NO	2.288	N/A		
MW397	Upgradient	Yes	11.3	NO	2.425	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 11.359
 S= 9.138
 CV(1)=0.805 K factor**= 2.523
 TL(1)=34.414 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.398
 S= 0.859
 CV(2)=0.358 K factor**= 2.523
 TL(2)=3.246 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	20.8	3.035
9/16/2002	16.2	2.785
10/16/2002	8.28	2.114
1/13/2003	13	2.565
4/10/2003	-9.37	#Func!
7/16/2003	0.826	-0.191
10/14/2003	14.1	2.646
1/13/2004	0	#Func!
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.802
Date Collected	Result	,
Date Collected 8/13/2002	Result 6.06	1.802
Date Collected 8/13/2002 9/16/2002	Result 6.06 17.3	1.802 2.851
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 6.06 17.3 25.7	1.802 2.851 3.246
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 6.06 17.3 25.7 20.9	1.802 2.851 3.246 3.040
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 6.06 17.3 25.7 20.9 20.1	1.802 2.851 3.246 3.040 3.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	31.7	NO	3.456	N/A
MW373	Downgradient	Yes	19.9	NO	2.991	N/A
MW385	Sidegradient	Yes	147	YES	4.990	N/A
MW388	Downgradient	Yes	162	YES	5.088	N/A
MW392	Downgradient	No	1.55	N/A	0.438	N/A
MW395	Upgradient	No	2.15	N/A	0.765	N/A
MW397	Upgradient	No	9.1	N/A	2.208	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.544 S = 0.856 CV(1) = 0.554 K factor** = 2.523
 TL(1) = 3.702 LL(1) = N/A

 Statistics-Transformed Background
 X = 0.325 X = 0.452 X = 0

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1.6	0.470
9/16/2002	1.1	0.095
10/16/2002	1	0.000
1/13/2003	2	0.693
4/10/2003	3.4	1.224
7/16/2003	2	0.693
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 3.6	0.000 0.000 0.000 1.281
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 3.6 1.9	0.000 0.000 0.000 1.281 0.642

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	1.36	NO	0.307	N/A
MW373	Downgradient	Yes	1.38	NO	0.322	N/A
MW385	Sidegradient	Yes	1.19	NO	0.174	N/A
MW388	Downgradient	Yes	1.17	NO	0.157	N/A
MW392	Downgradient	Yes	1.19	NO	0.174	N/A
MW395	Upgradient	Yes	0.98	NO	-0.020	N/A
MW397	Upgradient	Yes	0.838	NO	-0.177	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 31.513 S = 18.609 CV(1) = 0.591

K factor**= 2.523

TL(1) = 78.462 LI

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.240 **S**= 0.707

CV(2) = 0.218

K factor**= 2.523

TL(2) = 5.024

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	50	3.912
9/16/2002	50	3.912
10/16/2002	50	3.912
1/13/2003	18.3	2.907
4/10/2003	51.2	3.936
7/16/2003	42.6	3.752
10/14/2003	12.3	2.510
1/13/2004	10	2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	•
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 50	3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 50 50 50	3.912 3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 50 50 12	3.912 3.912 3.912 2.485
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 50 50 12 19.9	3.912 3.912 3.912 2.485 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	25.6	NO	3.243	N/A
MW373	Downgradient	Yes	9.66	NO	2.268	N/A
MW385	Sidegradient	Yes	4.68	NO	1.543	N/A
MW388	Downgradient	Yes	6.38	NO	1.853	N/A
MW392	Downgradient	Yes	73	NO	4.290	N/A
MW395	Upgradient	Yes	6.66	NO	1.896	N/A
MW397	Upgradient	Yes	5.64	NO	1.730	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.313

CV(1)=0.780

K factor=** 2.523

TL(1)= 21.695

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.467

S= 1.213

S = 5.701

CV(2)=0.827

K factor**= 2.523

TL(2) = 4.528

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	14	2.639
10/16/2002	12	2.485
1/13/2003	14	2.639
4/10/2003	14	2.639
7/16/2003	13	2.565
10/14/2003	12	2.485
1/13/2004	11	2.398
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result)
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1	1.609 1.609 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1 1	1.609 1.609 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	4.78	N/A	1.564	N/A
MW373	Downgradient	Yes	7.63	NO	2.032	N/A
MW385	Sidegradient	Yes	0.35	N/A	-1.050	N/A
MW388	Downgradient	Yes	0.83	N/A	-0.186	N/A
MW392	Downgradient	Yes	25.8	YES	3.250	N/A
MW395	Upgradient	Yes	3.99	N/A	1.384	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW392

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.001 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 0.001 LL(1) = N/A

 Statistics-Transformed Background
 X = -6.908 S = 0.000 CV(2) = 0.000 K factor** = 2.523
 TL(2) = -6.908 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.001 -6.9089/16/2002 0.001 -6.90810/16/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/10/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.001 -6.908 9/16/2002 0.001 -6.908 10/17/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/8/2003 0.001 -6.908 7/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	0.0002	N/A	-8.517	N/A
MW373	Downgradient	No	0.0002	N/A	-8.517	N/A
MW385	Sidegradient	Yes	0.00015	6 NO	-8.766	N/A
MW388	Downgradient	No	0.0002	N/A	-8.517	N/A
MW392	Downgradient	No	0.0002	N/A	-8.517	N/A
MW395	Upgradient	No	0.0002	N/A	-8.517	N/A
MW397	Upgradient	No	0.0002	N/A	-8.517	N/A
37/4 5						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-S/T Fourth Quarter 2016 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 279.750 S = 117.897 CV(1) = 0.421

K factor**= 3.188 **TL**(

TL(1)= 655.605 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.552 S = 0.440

CV(2) = 0.079

K factor=** 3.188

TL(2) = 6.955

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
10/27/2014	141	4.949
1/8/2015	193	5.263
4/22/2015	469	6.151
7/16/2015	330	5.799
10/22/2015	159	5.069
1/5/2016	223	5.407
4/18/2016	384	5.951
7/19/2016	339	5.826

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	206	NO	5.328	N/A
MW390	Downgradien	t Yes	431	NO	6.066	N/A
MW393	Downgradien	t Yes	218	NO	5.384	N/A
MW396	Upgradient	Yes	221	NO	5.398	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Current Bac Radium-226 UNITS: pCi/L

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.662

CV(1)=0.389

K factor=** 3.188

TL(1)=1.483

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.499 S = 0.483

S = 0.258

CV(2) = -0.967

K factor=** 3.188

TL(2) = 1.040

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 10/27/2014 0.633 -0.4571/8/2015 0.585 -0.5364/22/2015 0.786-0.2417/16/2015 0.785 -0.24210/22/2015 0.988 -0.012 1/5/2016 0.907 -0.098 4/18/2016 0.239 -1.431-0.978 7/19/2016 0.376

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.756	NO	-0.280	N/A
MW300	Downgradien	t Voc	1.02	NO	0.020	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 1.603	S = 6.407	CV(1) =3.998	K factor**= 3.188	TL(1)= 22.029	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.012	S = 1.450	CV(2)= 1.433	K factor**= 3.188	TL(2)= 2.416	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 10/27/2014 3.28 1.188 1/8/2015 11.2 2.416 4/22/2015 1.044 2.84 7/16/2015 0.171 -1.76610/22/2015 -7.28#Func! 1/5/2016 6.24 1.831 4/18/2016 -7.52#Func! 7/19/2016 3.89 1.358

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW390	Downgradien	t Yes	56.7	N/A	4.038	YES	

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.118 **S**= 5.302

CV(1)=0.524

K factor**= 2.523

TL(1) = 23.495

LL(1)=N/A

Statistics-Transformed Background

X = 2.188 §

S = 0.522 CV

CV(2) = 0.239

K factor=** 2.523

TL(2) = 3.505

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected LN(Result) Result 10/21/2014 9.99 2.302 1/5/2015 21.8 3.082 4/14/2015 11.4 2.434 7/15/2015 9.31 2.231 10/15/2015 17 2.833 1/5/2016 18.1 2.896 4/12/2016 14.2 2.653 7/19/2016 1.889 6.61 Well Number: MW394 Date Collected Result LN(Result) 10/27/2014 3.99 1.384

5.07

9.13

5.97

11.6

6.13

7.54

4.04

1/8/2015

4/22/2015

7/17/2015

1/5/2016

4/18/2016

7/19/2016

10/22/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

C4	0	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradient	t Yes	57	YES	4.043	N/A
MW384	Sidegradient	Yes	101	YES	4.615	N/A
MW387	Downgradient	t Yes	115	YES	4.745	N/A

Conclusion of Statistical Analysis on Current Data

1.623

2.212

1.787

2.451

1.813

2.020

1.396

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW369 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2016 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 24.131 **S**= 3.953

CV(1)=0.164

K factor**= 2.523

TL(1) = 34.104

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.170

S = 0.170

CV(2)=0.054

K factor=** 2.523

TL(2) = 3.599

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/21/2014 18.4 2.912 1/5/2015 20 2.996 4/14/2015 23 3.135 21.8 7/15/2015 3.082 10/15/2015 18.5 2.918 1/5/2016 19.3 2.960 4/12/2016 25.7 3.246 7/19/2016 2.970 19.5

Well Number:	MW394	
Date Collected	Result	LN(Result)
10/27/2014	26.5	3.277
1/8/2015	27.2	3.303
4/22/2015	26.5	3.277
7/17/2015	26.8	3.288
10/22/2015	26.9	3.292
1/5/2016	27.7	3.321
4/18/2016	29.5	3.384

28.8

7/19/2016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	Yes	49 1	YES	3.894	N/A

Conclusion of Statistical Analysis on Current Data

3.360

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis **Current Background Comparison Dissolved Solids** UNITS: mg/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 202.438 S = 32.560 CV(1) = 0.161

K factor=** 2.523

TL(1) = 284.585

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.298S = 0.165CV(2) = 0.031 **K factor**=** 2.523

TL(2) = 5.713

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW394	
7/19/2016	200	5.298
4/12/2016	273	5.609
1/5/2016	209	5.342
10/15/2015	236	5.464
7/15/2015	224	5.412
4/14/2015	197	5.283
1/5/2015	140	4.942
10/21/2014	159	5.069
Date Concerca	resure	Di ((Itebuit)

7/17/2010	200	3.270
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/27/2014	187	5.231
1/8/2015	166	5.112
4/22/2015	181	5.198
7/17/2015	201	5.303
10/22/2015	210	5.347
1/5/2016	226	5.421
4/18/2016	199	5.293
7/19/2016	231	5.442

C4	0	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Ves	376	YES	5 930	N/Δ

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2016 Statistical Analysis Magnesium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.157 S = 1.717

CV(1)=0.169

K factor=** 2.523

TL(1)= 14.488

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.304

S = 0.177 CV(2) = 0.077

K

K factor=** 2.523

TL(2) = 2.751

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/21/2014	7.41	2.003
1/5/2015	8.05	2.086
4/14/2015	10.2	2.322
7/15/2015	9.16	2.215
10/15/2015	7.86	2.062
1/5/2016	8.44	2.133
4/12/2016	10.5	2.351
7/19/2016	7.99	2.078

Well Number:	MW394	
Date Collected	Result	LN(Result)
10/27/2014	11	2.398
1/8/2015	11.3	2.425
4/22/2015	11.1	2.407
7/17/2015	11.9	2.477
10/22/2015	12.1	2.493
1/5/2016	11.9	2.477
4/18/2016	11.9	2.477
7/19/2016	11.7	2.460

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	19.6	YES	2.976	N/A
MW391	Downgradien	t Yes	15.8	YES	2.760	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2016 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 493.938 S = 123.388 CV(1) = 0.250

K factor=** 2.523

TL(1)= 805.245 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.176S = 0.233CV(2) = 0.038 **K factor**=** 2.523

TL(2) = 6.764

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/21/2014	401	5.994
1/5/2015	733	6.597
4/14/2015	488	6.190
9/3/2015	672	6.510
10/15/2015	728	6.590
1/5/2016	449	6.107
4/12/2016	438	6.082
7/19/2016	425	6.052
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 6.116
Date Collected	Result	` ′
Date Collected 10/27/2014	Result 453	6.116
Date Collected 10/27/2014 1/8/2015	Result 453 453	6.116 6.116
Date Collected 10/27/2014 1/8/2015 4/22/2015	Result 453 453 461	6.116 6.116 6.133
Date Collected 10/27/2014 1/8/2015 4/22/2015 7/17/2015	Result 453 453 461 608	6.116 6.116 6.133 6.410
Date Collected 10/27/2014 1/8/2015 4/22/2015 7/17/2015 10/22/2015	Result 453 453 461 608 411	6.116 6.116 6.133 6.410 6.019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	414	NO	6.026	N/A
MW222	Sidegradient	Yes	424	NO	6.050	N/A
MW223	Sidegradient	Yes	429	NO	6.061	N/A
MW384	Sidegradient	Yes	401	NO	5.994	N/A
MW387	Downgradien	t Yes	450	NO	6.109	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-10

C-746-S/T Fourth Quarter 2016 Statistical Analysis Current Background Comparison Radium-226 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.636 S = 0.233 CV(1) = 0.367 K factor** = 2.523
 TL(1) = 1.225 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.514 X = 0.364 X =

Data

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/21/2014	0.858	-0.153
1/5/2015	0.484	-0.726
4/14/2015	0.409	-0.894
7/15/2015	0.709	-0.344
10/15/2015	0.636	-0.453
1/5/2016	0.745	-0.294
4/12/2016	0.657	-0.420
7/19/2016	0.375	-0.981
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -0.348
Date Collected	Result	
Date Collected 10/27/2014	Result 0.706	-0.348
Date Collected 10/27/2014 1/8/2015	Result 0.706 0.332	-0.348 -1.103
Date Collected 10/27/2014 1/8/2015 4/22/2015	Result 0.706 0.332 0.557	-0.348 -1.103 -0.585
Date Collected 10/27/2014 1/8/2015 4/22/2015 7/17/2015	Result 0.706 0.332 0.557 0.928	-0.348 -1.103 -0.585 -0.075
Date Collected 10/27/2014 1/8/2015 4/22/2015 7/17/2015 10/22/2015	Result 0.706 0.332 0.557 0.928 0.43	-0.348 -1.103 -0.585 -0.075 -0.844

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.15	NO	0.140	N/A
MW221	Sidegradient	Yes	0.603	NO	-0.506	N/A
MW224	Sidegradient	Yes	0.653	NO	-0.426	N/A
MW387	Downgradient	t Yes	0.826	NO	-0.191	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Sulfate UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 13.646 **S**= 3.833

CV(1)=0.281

K factor**= 2.523

TL(1) = 23.317

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.579

S = 0.268

CV(2) = 0.104

K factor=** 2.523

TL(2) = 3.254

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/21/2014 13.5 2.603 1/5/2015 14 2.639 4/14/2015 17.9 2.885 7/15/2015 2.923 18.6

 10/15/2015
 16.6

 10/15/2015
 14.7

 2.688

 1/5/2016
 16.5

 2.803

 4/12/2016
 21.8

 3.082

 7/19/2016
 17.9

 2.885

Well Number: MW394

Date Collected Result

LN(Result) 10/27/2014 2.407 11.1 1/8/2015 10.5 2.351 4/22/2015 10.3 2.332 7/17/2015 10.4 2.342 10/22/2015 10.7 2.370 10.1 2.313 1/5/2016 4/18/2016 9.84 2.286 7/19/2016 10.5 2.351

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW220	Upgradient	Yes	18.7	NO	2.929	N/A
MW372	Downgradien	t Yes	76.5	YES	4.337	N/A
MW384	Sidegradient	Yes	20.5	NO	3.020	N/A
MW387	Downgradien	t Yes	28.3	YES	3.343	N/A
MW391	Downgradien	t Yes	54.6	YES	4.000	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2016 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 15.068 **S**= 10.013 **CV(1)**=0.664

K factor=** 2.523

TL(1) = 40.330

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.398

S = 0.986 C

CV(2) = 0.411

K factor=** 2.523

TL(2) = 4.886

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/21/2014 35 3.555 1/5/2015 32.5 3.481 12.2 2.501 4/14/2015 7/15/2015 14.8 2.695 10/15/2015 11.6 2.451 1/5/2016 18.4 2.912 4/12/2016 13 2.565 28.9 3.364 7/19/2016

Well Number:	MW394	
Date Collected	Result	LN(Result)
10/27/2014	17.2	2.845
1/8/2015	17.2	2.845
4/22/2015	11.5	2.442
7/17/2015	3.11	1.135
10/22/2015	0.742	-0.298
1/5/2016	4.07	1.404
4/18/2016	15	2.708
7/19/2016	5.87	1.770

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradient	Yes	83.3	YES	4.422	N/A
MW384	Sidegradient	Yes	167	YES	5.118	N/A
MW387	Downgradient	Yes	215	YES	5.371	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW369 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2016 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 8.602 S = 6.485 CV(1) = 0.754 K factor** = 2.523
 TL(1) = 24.963 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.101 X = 0.770 X

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/27/2014 19.1 2.950 1/6/2015 5.98 1.788 4/22/2015 0.030 1.03 7/17/2015 3.79 1.332 10/22/2015 10.7 2.370 1/5/2016 17.2 2.845 4/18/2016 6.43 1.861 7/19/2016 -1.87 #Func! Well Number: MW397 Date Collected Result LN(Result) 10/21/2014 10.4 2.342 1/7/2015 16.3 2.791 4/22/2015 5.37 1.681 7/15/2015 17 2.833 10/22/2015 -1.02#Func! 1/5/2016 9.49 2.250 4/14/2016 10.2 2.322 7/19/2016 7.53 2.019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

	Current Quarter Data						
1	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW385	Sidegradient	Yes	78.1	YES	4.358	N/A
	MW388	Downgradient	t Yes	95.8	YES	4.562	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2016 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 23.750 S = 5.023

CV(1)=0.212

K factor=** 2.523

TL(1) = 36.424

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.147

S = 0.210

CV(2) = 0.067

K factor=** 2.523

TL(2) = 3.676

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected LN(Result) Result 10/27/2014 26.6 3.281 1/6/2015 25.8 3.250 4/22/2015 26.4 3.273 7/17/2015 26.5 3.277 10/22/2015 27 3.296 1/5/2016 27.4 3.311 4/18/2016 27.6 3.318 7/19/2016 26.3 3 270

//19/2010	20.5	3.270
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/21/2014	19.8	2.986
1/7/2015	18.6	2.923
4/22/2015	18.7	2.929
7/15/2015	17.7	2.874
10/22/2015	19.2	2.955
1/5/2016	19.2	2.955
4/14/2016	18.1	2.896

35.1

7/19/2016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW373	Downgradien	t Ves	67.5	YES	4 212	N/A

Conclusion of Statistical Analysis on Current Data

3.558

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis **Current Background Comparison** UNITS: mg/L

Chemical Oxygen Demand (COD)

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 25.275 S = 15.356 CV(1) = 0.608

K factor=** 2.523

TL(1)= 64.019

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.120

S = 0.439

CV(2) = 0.141

K factor=** 2.523

TL(2) = 4.227

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/27/2014 20 2.996 1/6/2015 20 2.996 4/22/2015 20 2.996 7/17/2015 20 2.996 10/22/2015 20 2.996 1/5/2016 20 2.996 4/18/2016 30.8 3.428 7/19/2016 4.305 74.1

Well Number:	MW397	
Date Collected	Result	LN(Result)
10/21/2014	20	2.996
1/7/2015	20	2.996
4/22/2015	20	2.996
7/15/2015	20	2.996
10/22/2015	10.4	2.342
1/5/2016	20	2.996
4/14/2016	20	2.996
7/19/2016	49.1	3.894

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW385	Sidegradient	Yes	154	YES	5.037	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW385

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2016 Statistical Analysis **Current Background Comparison Conductivity LRGA UNITS:** umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 359.125 S = 29.960 CV(1) = 0.083

K factor=** 2.523

TL(1)= 434.713 **LL(1)**=N/A

Statistics-Transformed Background

X = 5.880

S = 0.083CV(2) = 0.014

K factor=** 2.523

TL(2) = 6.090

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/27/2014 387 5.958 1/6/2015 5.930 376 4/22/2015 338 5.823 7/17/2015 390 5.966 10/22/2015 372 5.919 1/5/2016 408 6.011 4/18/2016 399 5.989 7/19/2016 5.976 394

Well Number: MW397 Date Collected Result LN(Result) 10/21/2014 337 5.820 1/7/2015 354 5.869 4/22/2015 325 5.784 7/15/2015 334 5.811 10/22/2015 323 5.778 1/5/2016 5.866 353 4/14/2016 323 5.778

333

7/19/2016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Ves	798	VES	6.682	N/Δ

Conclusion of Statistical Analysis on Current Data

5.808

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2016 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 183.125 S = 27.058 CV(1) = 0.148

K factor=** 2.523

TL(1)= 251.391

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.200 S = 0.147 CV(2) = 0.028

K factor=** 2.523

utilizing TL(1).

TL(2) = 5.571

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected Result LN(Result) 10/27/2014 181 5.198 1/6/2015 147 4.990 4/22/2015 179 5.187 7/17/2015 203 5.313 10/22/2015 194 5.268 1/5/2016 229 5.434 4/18/2016 224 5.412 5.389 7/19/2016 219

Current Quarter Data

Well No. Gradient Detected? Result Result >TL(1)? LN(Result) LN(Result) >TL(2)

MW373 Downgradient Yes 497 YES 6.209 N/A

Well Number:	MW397	
Date Collected	Result	LN(Result)
10/21/2014	161	5.081
1/7/2015	159	5.069
4/22/2015	144	4.970
7/15/2015	190	5.247
10/22/2015	160	5.075
1/5/2016	204	5.318
4/14/2016	167	5.118
7/19/2016	169	5.130

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2016 Statistical Analysis Current Magnesium UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.134 **S**= 2.231

CV(1)=0.220

K factor=** 2.523

TL(1) = 15.763

LL(1)=N/A

Statistics-Transformed Background

X = 2.294

S= 0.216 **CV(2)**= 0.094

K factor=** 2.523

TL(2) = 2.840

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/27/2014 11.3 2.425 1/6/2015 9.96 2.299 4/22/2015 11.3 2.425 7/17/2015 11.8 2.468 10/22/2015 12.3 2.510 1/5/2016 11.8 2.468 4/18/2016 11.5 2.442 7/19/2016 2 407 11 1

7/17/2010	11.1	2.407
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/21/2014	8.07	2.088
1/7/2015	7.64	2.033
4/22/2015	8.09	2.091
7/15/2015	7.55	2.022
10/22/2015	8.64	2.156

8.18

7.72

15.2

1/5/2016

4/14/2016

7/19/2016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	25.3	YES	3.231	N/A

Conclusion of Statistical Analysis on Current Data

2.102

2.044

2.721

Wells with Exceedances
MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 462.375 S = 103.822 CV(1) = 0.225

K factor=** 2.523

TL(1) = 724.317

LL(1)=N/A

Statistics-Transformed Background Data

X = 6.113 S = 0.222 CV(2) = 0.036

K factor=** 2.523

TL(2) = 6.674

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/27/2014 307 5.727 1/6/2015 586 6.373 4/22/2015 474 6.161 7/17/2015 468 6.148 10/22/2015 378 5.935 1/5/2016 380 5.940 4/18/2016 325 5.784 7/19/2016 6.059 428 Well Number: MW397 Date Collected Result LN(Result) 10/21/2014 380 5.940 1/7/2015 675 6.515 4/22/2015 471 6.155 7/15/2015 599 6.395 10/22/2015 448 6.105 1/5/2016 473 6.159 4/14/2016 586 6.373

420

7/19/2016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

5.935

N/A

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	402	NO	5.996	N/A
MW373	Downgradient	t Yes	322	NO	5.775	N/A
MW385	Sidegradient	Yes	295	NO	5.687	N/A
MW388	Downgradient	t Yes	455	NO	6.120	N/A
MW392	Downgradient	t Yes	442	NO	6.091	N/A
MW395	Upgradient	Yes	357	NO	5.878	N/A

NO

Conclusion of Statistical Analysis on Current Data

6.040

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW397 Upgradient

Yes

378

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Current Background Comparison Radium-226 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.586	S = 0.307	CV(1) = 0.524	K factor**= 2.523	TL(1)= 1.360	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.570	S = 0.521	CV(2)= -0.913	K factor**= 2.523	TL(2)= 0.182	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/27/2014	0.537	-0.622
1/6/2015	0.566	-0.569
4/22/2015	0.892	-0.114
7/17/2015	1.2	0.182
10/22/2015	1.01	0.010
1/5/2016	0.707	-0.347
4/18/2016	0.13	-2.040
7/19/2016	0.654	-0.425
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.709
Date Collected	Result	
Date Collected 10/21/2014	Result 0.492	-0.709
Date Collected 10/21/2014 1/7/2015	Result 0.492 0.45	-0.709 -0.799
Date Collected 10/21/2014 1/7/2015 4/22/2015	Result 0.492 0.45 0.69	-0.709 -0.799 -0.371
Date Collected 10/21/2014 1/7/2015 4/22/2015 7/15/2015	Result 0.492 0.45 0.69 0.516	-0.709 -0.799 -0.371 -0.662
Date Collected 10/21/2014 1/7/2015 4/22/2015 7/15/2015 10/22/2015	Result 0.492 0.45 0.69 0.516 0.356	-0.709 -0.799 -0.371 -0.662 -1.033

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW388	Downgradien	t Yes	0.783	NO	-0.245	N/A
MW395	Upgradient	Yes	0.669	NO	-0.402	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Cu Sulfate UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.655 **S**= 0.865

CV(1)=0.081

K factor=** 2.523

TL(1)= 12.839

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.363

S = 0.080

CV(2) = 0.034

K factor=** 2.523

TL(2) = 2.564

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/27/2014 10.6 2.361 1/6/2015 10.1 2.313 4/22/2015 10.1 2.313 7/17/2015 10.2 2.322 10/22/2015 10 2.303 1/5/2016 9.84 2.286 4/18/2016 9.73 2.275

7.75	2.273
9.9	2.293
MW397	
Result	LN(Result)
12.6	2.534
11.7	2.460
10.9	2.389
11.4	2.434
11.6	2.451
11.2	2.416
9.61	2.263
11	2.398
	9.9 MW397 Result 12.6 11.7 10.9 11.4 11.6 11.2 9.61

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	19.7	YES	2.981	N/A
MW373	Downgradient	t Yes	148	YES	4.997	N/A
MW385	Sidegradient	Yes	19.9	YES	2.991	N/A
MW388	Downgradient	t Yes	23.9	YES	3.174	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2016 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.335 **S**= 4.073

CV(1)=0.359

K factor**= 2.523

TL(1)= 21.612

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.358

S = 0.404

CV(2) = 0.171

K factor=** 2.523

TL(2) = 3.376

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/27/2014 14.4 2.667 1/6/2015 17 2.833 4/22/2015 1.981 7.25 7/17/2015 14.7 2.688 10/22/2015 9.39 2.240 1/5/2016 5.69 1.739 4/18/2016 8.36 2.123 7/19/2016 13.2 2.580

//1//2010	13.2	2.300	
Well Number:	MW397		
Date Collected	Result	LN(Result)	
10/21/2014	14.7	2.688	
1/7/2015	4.58	1.522	
4/22/2015	9.32	2.232	
7/15/2015	13.2	2.580	
10/22/2015	9.83	2.285	
1/5/2016	17.4	2.856	
4/14/2016	7.44	2.007	
7/19/2016	14.9	2.701	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW385	Sidegradient	Yes	147	YES	4.990	N/A
MW388	Downgradient	t Yes	162	YES	5.088	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Fourth Quarter 2016 Statistical Analysis Trichloroethene UNITS: ug/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.407

S= 1.746 **CV(1)**=0.725

K factor**= 2.523

TL(1) = 6.812

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.491

S = 1.019 CV(

CV(2) = 2.075

K factor=** 2.523

TL(2) = 3.062

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/27/2014 4.12 1.416 1/6/2015 3.99 1.384 4/22/2015 3.46 1.241 7/17/2015 3.8 1.335 10/22/2015 3.92 1.366 1/5/2016 4.61 1.528 4/18/2016 4.23 1.442 7/19/2016 4.39 1.479

Well Number:	MW397	
Date Collected	Result	LN(Result)
10/21/2014	0.33	-1.109
1/7/2015	1	0.000
4/22/2015	0.36	-1.022
7/15/2015	1	0.000
10/22/2015	1	0.000
1/5/2016	0.3	-1.204
4/14/2016	1	0.000
7/19/2016	1	0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW392	Downgradien	t Yes	25.8	YES	3 250	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances
MW392

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

January 24, 2017

Ms. Kelly Layne Fluor Federal Services, Inc. 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in biology, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Fluor Federal Services, Inc.

For this project, the statistical analyses conducted on the fourth quarter 2016 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Jennifer R. Blewett

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/INERT—QUARTERLY, 4th CY 2016 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant LAB ID: None
Permit Numbers: SW07300014, SW07300015, SW07300045

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Finds/Unit: KY8-890-008-982/1

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the fourth quarter 2016 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on October 25 and 26, 2016. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill is 4.76×10^{-4} ft/ft. Additional water level measurements in October (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 4.89×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for October 2016, the groundwater flow direction in the immediate area of the landfill was oriented north to northeastward.

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

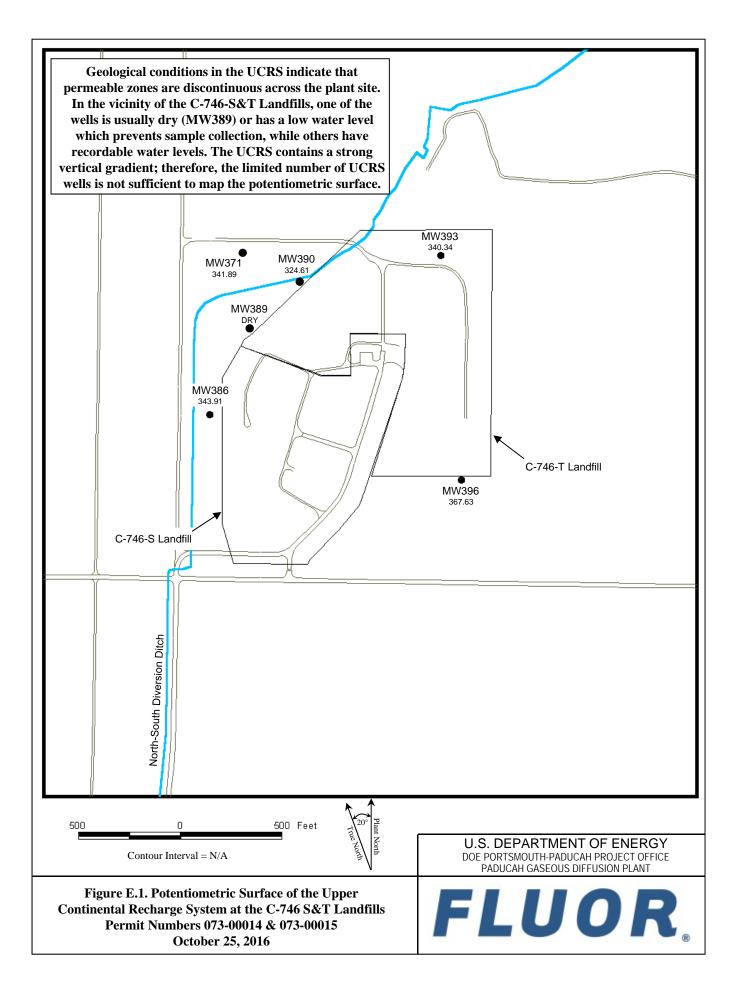


Table E.1. C-746-S&T Landfills Fourth Quarter 2016 (October) Water Levels

			C-746-S&T	Landfills (October 20	16) Water l	Levels			
							Rav	w Data	*Corre	ected Data
Date	Time	Well	Formation	Datum Elev (ft amsl)	BP (in Hg)	Delta BP (ft H ₂ 0)	DTW (ft)	Elev (ft amsl)	DTW (ft)	Elev (ft amsl)
10/25/2016	9:00	MW220	URGA	381.44	30.32	0.00	56.43	325.01	56.43	325.01
10/25/2016	9:06	MW221	URGA	390.83	30.32	0.00	66.10	324.73	66.10	324.73
10/25/2016	9:09	MW222	URGA	394.87	30.32	0.00	70.12	324.75	70.12	324.75
10/25/2016	9:07	MW223	URGA	394.03	30.32	0.00	69.27	324.76	69.27	324.76
10/25/2016	9:10	MW224	URGA	395.41	30.32	0.00	70.60	324.81	70.60	324.81
10/25/2016	9:02	MW225	URGA	385.55	30.32	0.00	60.62	324.93	60.62	324.93
10/25/2016	7:53	MW353	LRGA	374.86	30.32	0.00	49.35	325.51	49.35	325.51
10/25/2016	8:58	MW384	URGA	365.06	30.32	0.00	40.34	324.72	40.34	324.72
10/25/2016	8:56	MW385	LRGA	365.54	30.32	0.00	40.83	324.71	40.83	324.71
10/25/2016	8:57	MW386	UCRS	365.21	30.32	0.00	21.30	343.91	21.30	343.91
10/25/2016	8:54	MW387	URGA	363.27	30.32	0.00	38.58	324.69	38.58	324.69
10/25/2016	8:53	MW388	LRGA	363.25	30.32	0.00	38.58	324.67	38.58	324.67
10/25/2016	8:50	MW389	UCRS	363.82	30.32		DRY		DRY	
10/25/2016	8:48	MW390	UCRS	360.36	30.32	0.00	35.75	324.61	35.75	324.61
10/25/2016	8:32	MW391	URGA	366.54	30.32	0.00	41.90	324.64	41.90	324.64
10/25/2016	8:34	MW392	LRGA	365.67	30.32	0.00	41.05	324.62	41.05	324.62
10/25/2016	8:33	MW393	UCRS	366.59	30.32	0.00	26.25	340.34	26.25	340.34
10/25/2016	8:43	MW394	URGA	378.32	30.32	0.00	53.36	324.96	53.36	324.96
10/25/2016	8:41	MW395	LRGA	379.01	30.32	0.00	54.02	324.99	54.02	324.99
10/25/2016	8:42	MW396	UCRS	378.64	30.32	0.00	11.01	367.63	11.01	367.63
10/25/2016	8:45	MW397	LRGA	386.90	30.32	0.00	61.90	325.00	61.90	325.00
10/25/2016	8:36	MW418	URGA	366.78	30.32	0.00	42.09	324.69	42.09	324.69
10/26/2016	14:28	MW419	LRGA	366.68	30.09	0.26	41.75	324.93	42.01	324.67

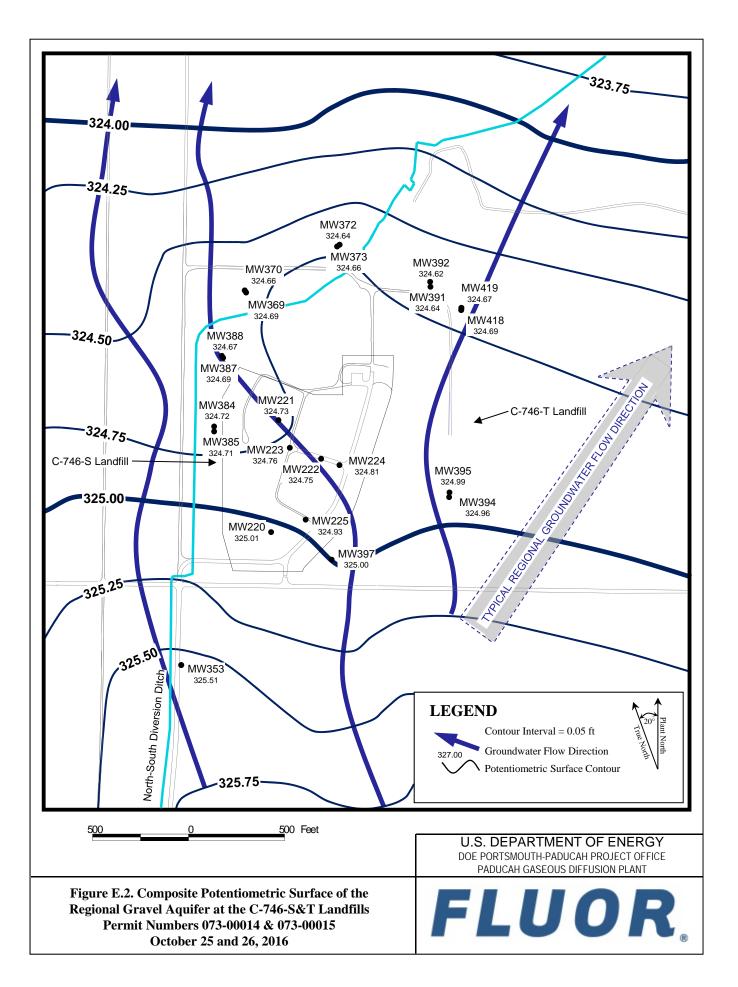
Initial Barometric Pressure

30.32

Elev = elevation

amsl = above mean sea level

BP = barometric pressure

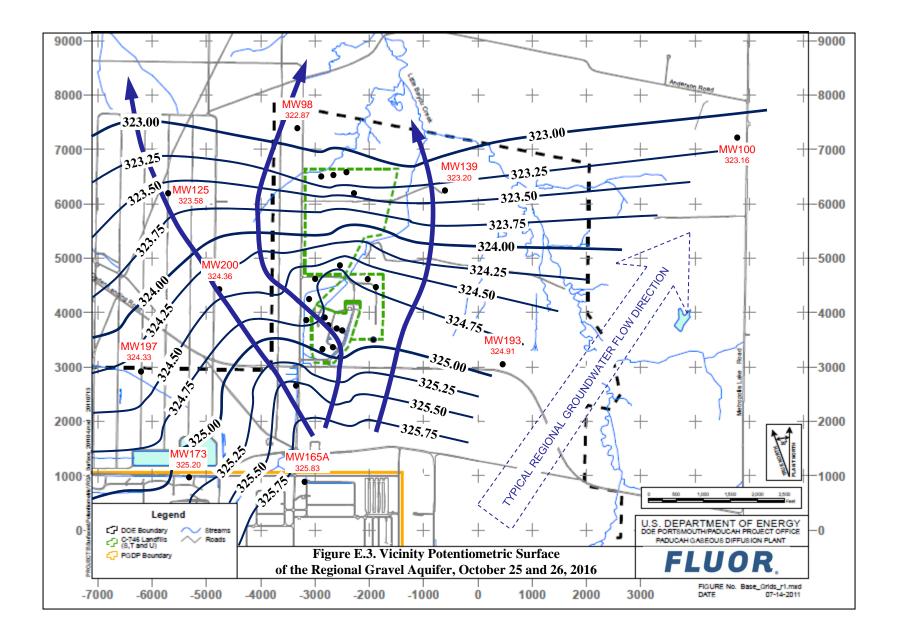

DTW = depth to water in feet below datum

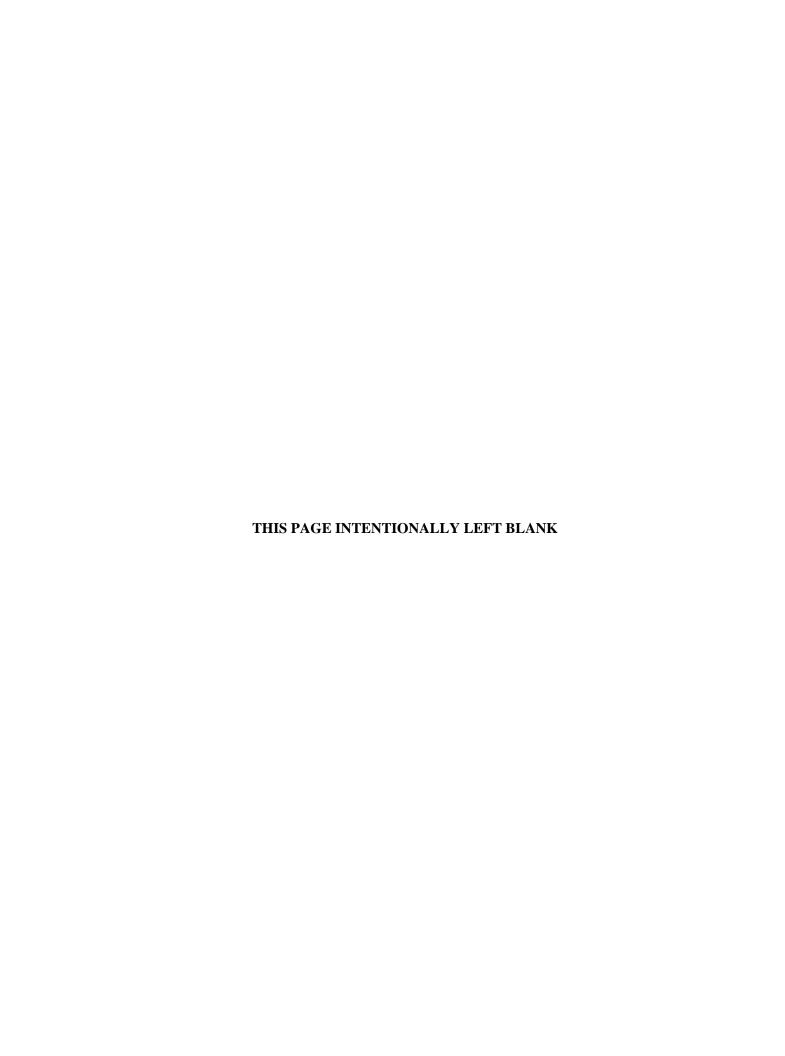
URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0




Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	4.76×10^{-4}
Vicinity	4.89×10^{-4}

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific	Discharge (q)	Average	Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Beneath Landfill	Mound				
725	0.256	0.345	1.22×10^{-4}	1.38	4.87×10^{-4}
425	0.150	0.202	7.13×10^{-5}	0.809	2.85×10^{-4}
<u>Vicinity</u>					
725	0.256	0.354	1.25×10^{-4}	1.42	5.00×10^{-4}
425	0.150	0.208	7.33×10^{-5}	0.831	2.93×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the fourth quarter 2016 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).*

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Technetium-99	MW369, MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

2/23/2017

Fluor Federal Services PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S and -T LANDFILLS PERMIT NUMBERS 073-00014 and 073-00015 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4820	MW369	Beta activity	9310	57	pCi/L	50
8004-4808	MW372	Trichloroethene	8260B	7.06	ug/L	5
8004-4792	MW373	Trichloroethene	8260B	7.63	ug/L	5
8004-4809	MW384	Beta activity	9310	101	pCi/L	50
8004-4810	MW385	Beta activity	9310	78.1	pCi/L	50
8004-4815	MW387	Beta activity	9310	115	pCi/L	50
8004-4816	MW388	Beta activity	9310	95.8	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	11.4	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	25.8	ug/L	5
8004-4802	MW394	Trichloroethene	8260B	7.06	ug/L	5

NOTE 1: These levels are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills

Monitoring Well 386 389 390 393 396 221 222 223 224 384 369 372 387 391 220 394 385 370 373 388 392 395 397 (Amount of a control of a c	Groundwater Flow System			UCRS	S						Ţ	URG	A]	LRG	A		
CEPTONE	Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Quarter 4, 2003 Quarter 4, 2002 Quarter 4, 2004 Quarter 4, 2006 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2007 Quarter 4,	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Daumer 4, 2003 Daumer 4, 2005 Daumer 4, 2006 Daumer 4, 2007 Daumer 4, 2008 Daumer	ACETONE																							
April Apri	Quarter 3, 2003							*					*											
Marce A. 2008	Quarter 4, 2003											*								*				
Description	Quarter 1, 2005									*														
Summer 4, 2008 Summer 4, 2010 Summer 5, 2003 Summer 5, 2003 Summer 6, 2004 Summer 6, 2005 Summer 6, 2006 Summer 6, 2007 Summ	ALPHA ACTIVITY																							
Description	Quarter 4, 2002																							
SUMINUM	Quarter 4, 2008																							
Quarter 1, 2003	Quarter 4, 2010																							
Daurer 2, 2003	ALUMINUM																							
Daurier 3, 2003	Quarter 1, 2003			*				*					*	*	*									
Damer 1,2003	Quarter 2, 2003			*				*						*	*									
Daurter 1, 2004 * * * * * * * * *	Quarter 3, 2003			*				*	*					*	*									
Dunter 2, 2004	Quarter 4, 2003							*	*			*			*									
Quarter 3, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 4, 2008 Quarter 1, 2009 Quarter 4, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 4, 2008 Quarter 1, 2009 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2014 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2003 Quarter 4, 2008 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2003 Quarter 4, 2003 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2003 Quarter 4, 2003 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2003 Quarter 4, 2003 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2003 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2006 Quarter 4, 2003 Quarter 5, 2003 Quarter 6, 2003 Quarter 6, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 5, 2003 Quarter 6, 200	Quarter 1, 2004			*				*	*			*												
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 2, 2016 Quarter 4, 2014 Quarter 3, 2003 Quarter 4, 2014 Quarter 2, 2016 Quarter 4, 2014 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2004 Quarter 3, 2005 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2002 Quarter 4, 2003	Quarter 2, 2004							*							*									
Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2008 Quarter 1, 2019 Quarter 2, 2011 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2003 Quarter 2, 2003	Quarter 3, 2004							*							*									
Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2008 Quarter 2, 2018 Quarter 1, 2019 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 2, 2000 Quarter 3, 2003 Quarter 3, 2003 Quarter 2, 2000 Quarter 2, 2001 Quarter 3, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 2, 2003	Quarter 4, 2004			*																				
Quarter 2, 2005 Quarter 3, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2016 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2008 Quarter 3, 2003 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 5, 2012 Quarter 6, 2012 Quarter 6, 2012 Quarter 7, 2014 Quarter 7, 2014 Quarter 7, 2016 Quarter 7, 2016 Quarter 7, 2016 Quarter 7, 2019 Quarter 3, 2003 Quarter 2, 2003	Quarter 1, 2005	1		*																				T
Quarter 3, 2005 * * * * * * * * *	Quarter 2, 2005	1		*				*		1			1									1		\vdash
Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2010 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 4, 2014 Quarter 3, 2013 Quarter 1, 2016 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2010 Quarter 4, 2012 Quarter 3, 2013 Quarter 4, 2014 Quarter 3, 2016 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003		+		*				*			*											*		
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 6, 2011 Quarter 6, 2012 Quarter 7, 2014 Quarter 1, 2016 Quarter 2, 2016 Quarter 4, 2003 Quarter 2, 2003		1										*												\vdash
Quarter 2, 2006		-												*										
Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2012 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2000 Quarter 3, 2003 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2003 Quarter 4, 2003 Quarter 2, 2003	-	-		*																				
Quarter 4, 2006	-	-		-																				<u> </u>
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2016 Quarter 1, 2016 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 3, 2015 Quarter 4, 2016 Quarter 3, 2018 Quarter 4, 2014 Quarter 3, 2018 Quarter 4, 2016 Quarter 4, 2001 Quarter 4, 2003 Quarter 2, 2003	,	-		- Ju																				-
Duarter 2, 2007				不														- JE						<u> </u>
Quarter 3, 2007		-																						<u> </u>
	-																	*						
Duarter 1, 2008																								<u> </u>
Quarter 2, 2008 Quarter 4, 2008 Quarter 1, 2009																								
Duarter 1, 2008	Quarter 1, 2008							*							*									
Quarter 1, 2009	Quarter 2, 2008											*												
Part	Quarter 4, 2008																							
Quarter 2, 2010	Quarter 1, 2009			*				*				*												
Water 1,2010	Quarter 1, 2010			*				*				*												
Quarter 1, 2011	Quarter 2, 2010			*								*												
Quarter 2, 2011	Quarter 3, 2010			*								*			*			*			*			
Quarter 2, 2012 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2016 BARIUM Quarter 3, 2003 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003	Quarter 1, 2011							*				*												
Quarter 2, 2012	Quarter 2, 2011	1		*								*												
Quarter 3, 2012 Quarter 1, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 5, 2003 Quarter 6, 2003 Quarter 6, 2003 Quarter 7, 2003 Quarter 7, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 6, 2003 Quarter 7, 2003 Quarter 7, 2003 Quarter 9, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003				*																				
Quarter 1, 2013		1						*																
Record R	` '	1										*												\vdash
*	-	+		*				Ė	 	-		H	-			 				 		-		\vdash
Quarter 2, 2014 Quarter 4, 2014 ##	0 1 2011	+		_				*																\vdash
*		+		-				-		-		*	-									-		\vdash
Quarter 1, 2016		+	-	*			-					_ ·r			-			-			-			├
Quarter 2, 2016	-	+	-	*			-	*							-			-			-			├
BARIUM Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter		-		-				*		-			-		**							-		
Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 3, 200		-													*									
Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Duarter 2, 2003																								
Control Cont	-	+		-						-			-									-		\vdash
Quarter 4, 2002	-							_	_															
Quarter 1, 2003																								
Quarter 2, 2003		+	-				-								-						-			\vdash
Ç		-							<u> </u>	-		<u> </u>	-			<u> </u>				<u> </u>		-		
QUALUE 3, 2003	-	-							<u> </u>	-		<u> </u>	-			<u> </u>				<u> </u>	-	-		
	Quarter 5, 2005				_							_		_				_					_	

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCR	S						1	URG	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 3, 2006																							
Quarter 4, 2006																							
Quarter 1, 2007																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008															1								
Quarter 2, 2008																							
Quarter 3, 2008																	-						
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011			F																				
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012			F																	H			
Quarter 4, 2012																							
Quarter 1, 2013										Ī							_						
Quarter 2, 2013										ī		_							-				
Quarter 3, 2013										i			H				H			i		H	
Quarter 4, 2013	_												H						_	i		\vdash	\vdash
Quarter 1, 2014																				-		H	
Quarter 1, 2014 Ouarter 2, 2014	_		-									_	H				i					\vdash	\vdash
Quarter 3, 2014	_					 				=			=				H			-		H	\vdash
Quarter 4, 2014		-	-	-			-			-					-		H	-				-	
Quarter 1, 2015		-	-	-			-			=			=		-		i	-		ī		-	
Quarter 2, 2015	_					-						-			-							┝	
Quarter 2, 2015 Quarter 3, 2015	_					-				-		-			-							┝	\vdash
Quarter 4, 2015	_					-									-							┝	\vdash
Quarter 4, 2015 Quarter 1, 2016	 	-								=	<u> </u>		=	-				-	-	-		\vdash	
Quarter 2, 2016	_		-			-				-		-			-							┝	\vdash
	_					-				-		-			-							┝	\vdash
Quarter 4, 2016	!	-	-	<u> </u>		-	<u> </u>					-			-			-				-	<u> </u>
Quarter 4, 2016										_	_		_				_			-			
BROMIDE			*																				
Quarter 1, 2003			*														_					lacksquare	<u> </u>
Quarter 4, 2003		-	*															-				\vdash	<u> </u>
Quarter 1, 2004	_		木			_											_						_

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS								URGA		-							LRGA			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BROMIDE																							
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				<u> </u>
Quarter 4, 2004			*																				<u> </u>
Quarter 1, 2005			*																				<u> </u>
Quarter 3, 2006			*																				<u></u>
CALCIUM			_																				
Quarter 1, 2003			*																				<u> </u>
Quarter 2, 2003			*									*											<u> </u>
Quarter 3, 2003			*									NJ.							44				<u> </u>
Quarter 4, 2003	_		*									*							*				—
Quarter 1, 2004	_		*									*		*					*				
Quarter 2, 2004	_		*									*							*				<u> </u>
Quarter 3, 2004	_		*									*							*				<u> </u>
Quarter 4, 2004	_		不																				<u> </u>
Quarter 1, 2005	_											*							*				Ь—
Quarter 2, 2005	4_											*							*				Щ
Quarter 3, 2005												*							*				<u> </u>
Quarter 4, 2005												*							*				<u> </u>
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				T
Quarter 1, 2009												*							*				T
Quarter 2, 2009	1											*							*				
Quarter 3, 2009												*							*				-
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010	1											*							*				1
Quarter 3, 2010	+											*							*				-
Quarter 4, 2010	+											*							*				-
Quarter 1, 2011	-											*							*				-
Quarter 2, 2011	-											*	*						*				-
Quarter 2, 2011 Quarter 3, 2011	-											*	•						*				-
,	-											*							*				-
Quarter 4, 2011	-											*							*				-
Quarter 1, 2012	_																						<u> </u>
Quarter 2, 2012	-									<u> </u>	<u> </u>	*		<u> </u>					*			<u> </u>	₩
Quarter 3, 2012										ļ	ļ	*							*			ļ	Щ
Quarter 4, 2012	_											*		<u> </u>					*				<u> </u>
Quarter 1, 2013										ļ	ļ	*							*			ļ	Щ
Quarter 2, 2013												*							*				<u> </u>
Quarter 3, 2013												*							*				<u> </u>
Quarter 4, 2013												*							*				<u> </u>
Quarter 1, 2014		L								L	L			L	L			*	*			L	L
Quarter 2, 2014												*							*				
Quarter 3, 2014												*						*	*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*	*						*				
		_	_		_										_	_							_

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System		-	UCRS	S						1	URGA	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CALCIUM																							
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*							*				
CARBON DISULFIDE																							
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		
CHEMICAL OXYGEN DEMANI)																						
Quarter 1, 2003				*																			
Quarter 2, 2003				*																			
Quarter 3, 2003				*			*			*													
Quarter 4, 2003				*																			1
Quarter 1, 2004	*			*																		\vdash	
Quarter 4, 2004	*			Ė																		\vdash	
Quarter 1, 2005	*															-			-			\vdash	
Quarter 2, 2005	*																					\vdash	
Quarter 3, 2005	*					-	-			*		*	-	-		<u> </u>	-		<u> </u>		*	₩	<u> </u>
	*	-	-		-			-		*	-	- T			-	-			-		- T	 	<u> </u>
Quarter 4, 2005	*						-			*				-								 	<u> </u>
Quarter 1, 2006	*	<u> </u>	<u> </u>		<u> </u>			<u> </u>			<u> </u>	<u> </u>			<u> </u>	<u> </u>			<u> </u>		<u> </u>	—	₩
Quarter 2, 2006																						Щ.	<u> </u>
Quarter 3, 2006	*																					<u> </u>	<u> </u>
Quarter 4, 2006																	*					<u> </u>	<u> </u>
Quarter 1, 2007	*									*													
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																						
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						t
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*																					 	1
Quarter 4, 2009	*																					 	1
Quarter 1, 2010	*																					-	
Quarter 2, 2010	*																					\vdash	
Quarter 3, 2010	*	-	-		-			-			-	-			-	-			-		-	├	₩
Quarter 4, 2010	*	-	<u> </u>		-			<u> </u>			-	-			<u> </u>						-	├	<u> </u>
•	*	-	<u> </u>		-			<u> </u>			-	-			<u> </u>						-	├	<u> </u>
Quarter 3, 2011																						₩	<u> </u>
Quarter 4, 2011	*	<u> </u>	<u> </u>		<u> </u>			<u> </u>			<u> </u>	<u> </u>			<u> </u>	<u> </u>			<u> </u>		<u> </u>	—	₩
Quarter 1, 2012	*																					<u> </u>	Ь
Quarter 1, 2013	*															<u> </u>			<u> </u>			Щ	—
Quarter 3, 2013	*																					Щ	<u> </u>
Quarter 3, 2014	*								*				*					*				<u> </u>	上
Quarter 4, 2014							*																匚
Quarter 2, 2015																*			L	L			L
Quarter 3, 2015															*								
Quarter 3, 2016			*								*												
Quarter 4, 2016																	*						
CHLORIDE																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*																				
Quarter 3, 2003			*																				
			*																				T T
Quarter 4, 2003			***		l									1						1	l		
Quarter 4, 2003 Quarter 1, 2004			*																			T	

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCR	S						Ţ	URG	4]	LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHLORIDE																							
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				
Quarter 3, 2005			*																				
Quarter 4, 2005			*																				
Quarter 1, 2006																		*					
Quarter 2, 2006			*																				
Quarter 3, 2006			*																				
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*																				
Quarter 3, 2007	Ĭ		*																				
Quarter 4, 2007	1		*																				
Quarter 1, 2008	l		*																				
Quarter 2, 2008	l		*																				
Quarter 3, 2008	t		*																				
Quarter 4, 2008	l		*																				
Quarter 1, 2009	t		*																				_
Quarter 2, 2009	1		*	 							 				 						 		-
Quarter 3, 2009	1		*																				
Quarter 4, 2009			*																				
Quarter 1, 2010			*																				
Quarter 2, 2010			*																				
	-		*																				
Quarter 3, 2010	-		*																				
Quarter 4, 2010																							
Quarter 2, 2011			*																				
Quarter 3, 2011			*																				
Quarter 4, 2011			*																				
Quarter 3, 2012			*																				
Quarter 3, 2013			*																				
Quarter 4, 2013			*																				
Quarter 4, 2014			*																				
CHROMIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2009						•																	
COBALT																							
Quarter 3, 2003							*																
CONDUCTIVITY																							
Quarter 4, 2002	<u> </u>									*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003	<u> </u>		*							*									*				
Quarter 3, 2003	<u> </u>		*					*		*									*				
Quarter 4, 2003	<u> </u>		*							*									*				
Quarter 1, 2004	<u> </u>																		*				
Quarter 2, 2004										*									*				
Quarter 3, 2004	<u> </u>									*					ļ				*		ļ		
Quarter 4, 2004	<u> </u>		*							*									*				
Quarter 1, 2005	<u> </u>									*		*			ļ				*		ļ		
Quarter 2, 2005												*							*				
Quarter 3, 2005	<u> </u>														ļ				*		ļ		
Quarter 4, 2005										*		*							*				
Quarter 1, 2006												*			<u> </u>				*		<u> </u>		<u></u>

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System Gradient Monitoring Well CONDUCTIVITY Quarter 2, 2006 Quarter 3, 2006	S 386	D	D	D	U	S	S	S	S			-	ь.	D	TT								_
CONDUCTIVITY Quarter 2, 2006	386	290							S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Quarter 2, 2006		309	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2006																							
												*							*				
												*							*				
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 1, 2007 Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
												*					*		*				-
Quarter 4, 2007																	不						
Quarter 1, 2008												*							*				<u> </u>
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011										*		*							*				
												*							*				-
Quarter 2, 2011												*							*				-
Quarter 3, 2011																							
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				İ
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*							*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*							*				
												*							*				-
Quarter 2, 2015																			*				
Quarter 3, 2015												*											
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016																			*				
Quarter 3, 2016												*							*				
Quarter 4, 2016																			*				
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004			*									*							*				
Quarter 2, 2004			-							*		*							*				
		-							-	*	<u> </u>	*							*	<u> </u>			<u> </u>
Quarter 3, 2004										*		*							*				<u> </u>
Quarter 4, 2004		<u> </u>								木		木	<u> </u>						木				<u> </u>

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS								URGA									LRG			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS																							
Quarter 1, 2005												*							*				<u> </u>
Quarter 2, 2005																			*				<u> </u>
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007																			*				
Quarter 2, 2007										*		*							*				
Quarter 3, 2007										*		*							*				t
Quarter 4, 2007												*							*				t
Quarter 1, 2008	\top											*							*			t	t
Quarter 2, 2008	+											*							*			 	t
Quarter 3, 2008	+									-		*						-	*			<u> </u>	+
Quarter 4, 2008	+									*		*							*			 	+
Quarter 1, 2009	+									<u> </u>		*							*				\vdash
Quarter 1, 2009 Quarter 2, 2009	+					_						*	*				-		*			├	\vdash
Quarter 2, 2009 Quarter 3, 2009	+						-	-	-			*	*				1	-	*		1	 	\vdash
Quarter 4, 2009	+											*	*						*				₩
Quarter 1, 2010	+											*	*						*			-	₩
Quarter 2, 2010	+									*		*	*						*			-	₩
Quarter 3, 2010	+									*		*	*						*				₩
Quarter 4, 2010	+									*		*							*				₩
Quarter 1, 2011	+									*		*							*				₩
Quarter 2, 2011	+									-11		*	*						*				+-
Quarter 3, 2011	+											*	-						*				+
Quarter 4, 2011	+											*							*				+
Quarter 1, 2012	+										*	*	*						*				+
Quarter 2, 2012	+											*							*			-	+
Quarter 3, 2012	+									*		*	*						*			-	+
Quarter 4, 2012	+											*	*						*			-	+
Quarter 1, 2013	+									*		*							*			-	+
Quarter 2, 2013												*							*				+
Quarter 3, 2013												*							*				+
Quarter 4, 2013												*							*				+
Quarter 1, 2014												*	*						*				+
Quarter 2, 2014	1											*							*				t
Quarter 3, 2014	+								*			*	*						*				t
Quarter 4, 2014	+								<u> </u>			*	*						*				t
Quarter 1, 2015	+											*							*			 	t
Quarter 2, 2015												*							*				\vdash
Quarter 3, 2015												*							*			†	\vdash
Quarter 4, 2015									*			*						*	*				\vdash
Quarter 1, 2016												*							*				T
Quarter 2, 2016												*	*	*					*				\vdash
Quarter 3, 2016												*							*				T
Quarter 4, 2016												*							*			<u> </u>	T
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	T
Quarter 3, 2003													*										
Quarter 1, 2004				*																			T
Quarter 3, 2010																					*	<u> </u>	T
Quarter 2, 2013										*										1			\vdash
· ·										_												_	

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						ī	JRGA	A								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391		394	385	370		388	392	395	_
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*									\vdash	
Quarter 3, 2003							*	*	*	*	*	*											-
Quarter 4, 2003							-	-		-	*												-
Quarter 1, 2004											*											\vdash	
Quarter 2, 2004										*	*												-
Quarter 3, 2004										*													-
Quarter 4, 2004										*													-
Quarter 1, 2005												*										$\vdash \vdash$	-
Quarter 2, 2005	┢										*	*									$\vdash \vdash \vdash$	$\vdash\vdash\vdash$	-
Quarter 1, 2006							*				т-	т.						—		-	$\vdash \vdash$	$\vdash \vdash$	-
							*					*						\vdash			\vdash	$\vdash \vdash$	-
Quarter 2, 2006											J.	不						\vdash				igwdap	
Quarter 3, 2006											*										ш		
Quarter 1, 2007											*	*										igsquare	
Quarter 2, 2007											*												
Quarter 2, 2008												*							<u> </u>		oxdot		
Quarter 3, 2008												*									L		L
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*			\vdash	
Quarter 2, 2005												*							*				-
Quarter 3, 2005	\vdash											*							*		\vdash	$\vdash \vdash$	
	-											*						\vdash	*		\vdash	$\vdash\vdash$	-
Quarter 4, 2005												*						\vdash	*		\vdash	$\vdash \vdash$	-
Quarter 1, 2006																		\vdash	*		\vdash	$\vdash \vdash$	-
Quarter 2, 2006												*						ш		<u> </u>		Ш	
Quarter 3, 2006												*						ш	*	<u> </u>		Ш	
Quarter 4, 2006												*							*			igsquare	
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*		М	\Box	
Quarter 4, 2008												*							*		\vdash	\sqcap	t
Quarter 1, 2009										 		*							*		\vdash	-	
Quarter 2, 2009	H									-		*							*	\vdash	\vdash	\vdash	1
Quarter 3, 2009	\vdash					-				-		*	*						*	 	Н	$\vdash\vdash$	├
	┝─									-		*	-17				\vdash	 	*	-	$\vdash \vdash$	Щ	
Quarter 4, 2009	<u> </u>	-				-				-			-	-				-	*	 	$\vdash \vdash$	\vdash	<u> </u>
Quarter 1, 2010	<u> </u>					-				<u> </u>		*	ىدر					\vdash		—	ш	igwdap	
Quarter 2, 2010	<u> </u>											*	*					$ldsymbol{\sqcup}$	*	—	ш	ш	<u> </u>
Quarter 3, 2010	<u> </u>											*					Ш		*	<u> </u>	ш	لـــــا	<u> </u>
Quarter 4, 2010												*							*	<u> </u>	Ш	igsqcut	
Quarter 1, 2011	L_'	<u></u>							L	<u></u>	L	*	<u></u>	<u></u>					*	L	L_I		
Quarter 2, 2011	L									L		*	*						*		LT	┖┚	
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012										1		*							*	†		\Box	
Quarter 3, 2012	\vdash									1		*	*						*	 	\vdash		\vdash
		İ																		Щ_	لـــــــا	$oldsymbol{ol}}}}}}}}}}}}}}}}}$	₩
Quarter 4, 2012												*	*					1 1	*			1 1	

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	A								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
MAGNESIUM																							
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*	*						*				
Quarter 3, 2014												*							*				1
Quarter 4, 2014												*	*						*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*		*					*				
MANGANESE																							
Quarter 4, 2002																					*		
Quarter 3, 2003							*	*															
Quarter 4, 2003							*	*															
Quarter 1, 2004							*																
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															
Quarter 1, 2005							*																
Quarter 3, 2005																					*		1
Quarter 3, 2009	*																						
OXIDATION-REDUCTION POT		TAL																					
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				<u> </u>
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	<u> </u>
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006			*															*					
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*				*																
Quarter 3, 2007			*				*																
Quarter 4, 2007			*																				
Quarter 1, 2008			*			*			*														
Quarter 2, 2008	*		*	*		*							*				*		*	*			
Quarter 3, 2008			*	*		*							*				*		*	*			
Quarter 4, 2008			*	*		*	*	*	*				*				*	*		*			
Quarter 1, 2009			*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*											*	*	*	*			
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*											*	*	*	*			
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 2, 2011	***																						
Quarter 2, 2011 Quarter 3, 2011	*		*	*			*	*		*			*		*		*	*	*	*			

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URG	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
OXIDATION-REDUCTION POT	ENT	IAL																					
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		
Quarter 3, 2014	*		*	*		*											*	*	*	*			
Quarter 4, 2014	*		*	*							*		*				*	*	*	*	*		
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*		*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*		*	*	*	*	*	*	*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 2, 2016	*		*	*	*	*		*	*	*			*	*	*	*	*	*		*	*	*	*
Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 4, 2016	*		*	*	*		*	*		*			*		*		*	*	*	*	*	*	*
PCB, 1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												
Quarter 3, 2005							*				*												
Quarter 1, 2006											*												
Quarter 2, 2006											*												
Quarter 4, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007												*											
Quarter 3, 2007											*												
Quarter 2, 2008											*	*											
Quarter 3, 2008											*												
Quarter 4, 2008											*												
Quarter 1, 2009											*												
Quarter 2, 2009											*												
Quarter 3, 2009											*												
Quarter 4, 2009											*												
Quarter 1, 2010											*												
Quarter 2, 2010											*												\vdash
Quarter 3, 2010	1							-	-		*	-	-						-	-			$\vdash\vdash$
Quarter 3, 2010 Quarter 4, 2010	-	-				-					*	-		-									₩
											~												
PCB-1232											*												
Quarter 1, 2011											*												
PCB-1248												*											
Quarter 2, 2008												*											
PCB-1260																		*					
Quarter 2, 2006																		不					
pH																	yı.						
Quarter 4, 2002	 	-										-					*						$\vdash \vdash$
Quarter 2, 2003	 	-										-					*						$\vdash \vdash$
Quarter 3, 2003	 	-					JL.					-											$\vdash \vdash$
Quarter 4, 2003							*	-	<u> </u>				-		-		*		-	-			ш
Quarter 1, 2004							*										*						ш
Quarter 2, 2004							-	<u> </u>	<u> </u>				<u> </u>		-		*		<u> </u>	<u> </u>			ш
Quarter 3, 2004			<u> </u>	<u> </u>		Ц_	<u> </u>	Щ		<u> </u>			Щ		<u> </u>		*		Щ	Щ	<u> </u>	<u> </u>	ш

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System Gradient Monitoring Well pH Quarter 4, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011	S 386	D	D 390	D 393	U 396	S	S	S	S	S	JRGA D	D	D	D	U	ΙT	C	_		LRGA		т.	
Monitoring Well pH Quarter 4, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011										i)	U	ν			U	U	S	D	D	D	D	U	U
pH Quarter 4, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011			-/-		270	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011					570			220		50.	507	372	501	571	220	57.	505	570	5,5	500	372	575	<u> </u>
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011		1															*						
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011										*							*				*		
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011										*							*						
Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011																	*						
Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011																	*						
Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011																	*						
Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011																	*						
Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011																	*						
Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011																	*						
Quarter 1, 2011 Quarter 2, 2011																	*						
Quarter 2, 2011																	*						
											*						-						
Quarter 5, 2011											*												
Quarter 1, 2012											-			*									
Quarter 1, 2013										*			*				*						
Quarter 4, 2014										-			-								*		
Quarter 2, 2016																	\vdash	*	*				
POTASSIUM																							
Quarter 4, 2002																		*	*				
Quarter 3, 2004																		-	*				
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				-
Quarter 2, 2006																			*				-
Quarter 3, 2006																			*				<u> </u>
																			*				<u> </u>
Quarter 4, 2006																			*				
Quarter 4, 2008 Quarter 3, 2012																			*				-
Quarter 1, 2013																			*				<u> </u>
Quarter 2, 2013																			*				-
Quarter 3, 2013																			*				
																			т				
RADIUM-226			*										*	*							*		
Quarter 4, 2002 Quarter 2, 2004			т.										Ψ.	Ψ					*		Ψ.		<u> </u>
Quarter 2, 2005									*										т-				-
									Ψ.		*												
Quarter 1, 2009									*		*	*											—
Quarter 3, 2014			*						*		*	不						*					—
Quarter 4, 2014			*				JL.			- JL	不	- JL						*					<u> </u>
Quarter 1, 2015			*				*			*		*					\vdash	*					<u> </u>
Quarter 2, 2015		-	*				不			不		*					\vdash	不					
Quarter 3, 2015		-	*		*	*									*		*				*	*	
Quarter 4, 2015 Quarter 2, 2016		-	*		*	*			*		*	*	*	*	*	*	不	*			**	不	
,		-	*						不		不	*	不	不	不	不	\vdash	*					
Quarter 3, 2016	*		*			*			*				*		*		\vdash	不		*		*	<u> </u>
Quarter 4, 2016	ボ		木			*			本				本		本					*		ボ	
RADIUM-228																							
Quarter 2, 2005			_														\square						<u> </u>
Quarter 3, 2005		-															$\vdash \vdash$						
Quarter 4, 2005									-								\square						<u> </u>
Quarter 1, 2006					•																		
SELENIUM																							
Quarter 4, 2002																	\square						<u> </u>
Quarter 1, 2003			_																				<u> </u>
Quarter 2, 2003																							<u> </u>
Quarter 3, 2003			-														\sqcup						<u> </u>
Quarter 4, 2003												<u> </u>											

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCR	S						1	URG	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SODIUM																							
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*												
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*		*													
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005	-									*									*				_
Quarter 2, 2005	-									*									*				
Quarter 3, 2005									*	*									*				-
	-								*	*									т-				
Quarter 4, 2005	-								*	*													
Quarter 1, 2006	_									不													
Quarter 2, 2006									*	46		4							44				<u> </u>
Quarter 3, 2006									*	*		*							*				<u> </u>
Quarter 4, 2006									*	*		<u> </u>					*						<u> </u>
Quarter 1, 2007									*			*											
Quarter 2, 2007									*	*													
Quarter 3, 2007									*														
Quarter 4, 2007									*														
Quarter 1, 2008									*														
Quarter 3, 2008												*											
Quarter 4, 2008									*	*													
Quarter 1, 2009									*			*							*				
Quarter 3, 2009												*											
Quarter 4, 2009	-								*			*											
Quarter 1, 2010												*											-
Quarter 2, 2010										*		*											-
	_									*													-
Quarter 3, 2010									- JL														
Quarter 4, 2010									*	*													<u> </u>
Quarter 1, 2011										*													
Quarter 2, 2011									*														<u> </u>
Quarter 4, 2011																			*				
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											
Quarter 3, 2013												*							*				
Quarter 4, 2013	1											*							*				
Quarter 1, 2014												*											
Quarter 2, 2014	1								*		*	*							*				
Quarter 3, 2014	+											*							*				
Quarter 4, 2014	+				-	1	 		*	*		*	*			-				-	 	 	_
Quarter 1, 2015	+				-	1	 		Ė	H		H	*			-				-	 	 	_
Quarter 2, 2015	+					1						*	<u> </u>										
Quarter 3, 2015	+					1				*		*											
Quarter 4, 2015	+				-	1	 		*	*		*				-				-	 	 	
Quarter 2, 2016	+				-	1	 		Ë	<u> </u>	*	<u> </u>				-				-	 	 	
Quarter 3, 2016	_					1					*												*
STRONTIUM-90																							Ė
Quarter 2, 2003																							
Quarter 1, 2004	_					1																	
VuuriUI 1, 400T		1	1	1	ı			1	i	_	1	ı	1	1	1	ı			i	ı	ı	ı	1

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URG	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				<u> </u>
Quarter 3, 2003										*		*	*						*				<u> </u>
Quarter 4, 2003										*		*	*					- JL	*				<u> </u>
Quarter 1, 2004										*		*	*				- JL	*	*				Ь—
Quarter 2, 2004									No.	*		*	*				*	*	*	*			Ь—
Quarter 3, 2004									*	*		*	*					*	*				<u> </u>
Quarter 4, 2004																	.						
Quarter 1, 2005										*		*	*				*	*	*				<u> </u>
Quarter 2, 2005										*		*	*					*	*				<u> </u>
Quarter 3, 2005										*		*	*				*	*	*				
Quarter 4, 2005										*		*	*					*	*	*			
Quarter 1, 2006										*		*	*				*	*	*	*			
Quarter 2, 2006									*	*		*	*				*	*	*	*			<u> </u>
Quarter 3, 2006									*	*		*	*				*		*	*			
Quarter 4, 2006									*	*		*	*				*		*				
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*			L	*		*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
Quarter 4, 2009	*									*		*	*				*	*	*				
Quarter 1, 2010	*								*	*		*	*				*		*				
Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 3, 2010										*		*	*				*	*	*	*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			<u> </u>
Quarter 2, 2012	*									*		*	*				*	*	*	*			<u> </u>
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012	+									*		*	*				*	*	*	*			
Quarter 1, 2013	-									*		*	*				*	*	*	*			1
Quarter 1, 2013 Quarter 2, 2013	+					-				*		*	*	*			*	*	*	*			-
Quarter 2, 2013 Quarter 3, 2013	+			_			_			*	_	*	*	*		_	*	*	*	*			-
Quarter 3, 2013 Quarter 4, 2013	-									*		*	*	*			*	*	*	*			
,	+	-				<u> </u>		*		*		*				<u> </u>	*						<u> </u>
Quarter 1, 2014								*		*		*	*	*				*	*	*			
Quarter 2, 2014													*				*						
Quarter 3, 2014	-			<u> </u>			<u> </u>			*	<u> </u>	*	*	*	<u> </u>	<u> </u>	*	*	*	*	<u> </u>		₩
Quarter 4, 2014										*		*	*				*	*	*	*			
Quarter 1, 2015										*	JL.	*	*	JIL.	JI.		*	*	*	*			
Quarter 2, 2015								JI.		*	*	*	*	*	*		*	*	*	*			<u> </u>
Quarter 3, 2015								*		*		*	*	*	*		*	*	*	*			<u> </u>
Quarter 4, 2015								JI.		*		*	*	*			*	JL.	*	*			
Quarter 1, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 2, 2016	-							*				*		*	*		*						
Quarter 3, 2016	-			-			-	*		*	-	*	*	*	*		*	*	*	*	<u> </u>		<u> </u>
Quarter 4, 2016		1		l	1		l	1	1	· *	l	· *	~	~	· *		*	•	· *	· *	l	1	<u> </u>

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						Į	JRG	4								LRGA	1		\neg
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003			*										*				*			*			
Quarter 4, 2003			*							*		*	*				*		*	*			
Quarter 1, 2004			*									*	*				*		*				
Quarter 2, 2004			*									*	*				*		*	*			
Quarter 3, 2004			*									*					*		*				
Quarter 4, 2004			*							*		*	*				*	*	*				
Quarter 1, 2005			*							*		*	*				*			*			
Quarter 2, 2005			*							*			*				*	*	*	*			
Quarter 3, 2005			*							*			*				*	*	*	*			
Quarter 4, 2005			*							*		*	*				*		*	*			
Quarter 1, 2006										*		*	*						*	*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006			*							*			*				*	*	*	*		$\vdash\vdash$	\vdash
Quarter 4, 2006	*	-	-	-			-	-		*		*	*						*	*		$\vdash\vdash\vdash$	$\vdash\vdash$
	╨		*			-				*			*			\vdash	*		*	*			$\vdash\vdash$
Quarter 1, 2007	-	-	*	<u> </u>			<u> </u>	-		*		*	*				*	*	<u> </u>	*		ш	${igspace}$
Quarter 2, 2007											3E						*	不	<u> 1</u> 2			igwdap	igwdapprox
Quarter 3, 2007	_	<u> </u>	*	<u> </u>			<u> </u>	<u> </u>		*	*	*	*						*	*		igwdap	igspace
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*						
Quarter 1, 2010			*							*		*	*				*						
Quarter 2, 2010			*							*			*				*	*		*			
Quarter 3, 2010			*							*	*	*	*				*					\vdash	
Quarter 4, 2010			*							*		*	*				*					$\vdash \vdash$	
Quarter 1, 2011										*			*				*					$\vdash \vdash$	
Quarter 2, 2011			*							*			*				*			*			
Quarter 3, 2011			*							*			*				*			*		$\vdash\vdash\vdash$	\vdash
			*							*	*	*	*				*			Ψ.		$\vdash \vdash$	
Quarter 4, 2011											不	不								44		igspace	
Quarter 1, 2012	_		*							*			*			Щ	*		J.	*		ш	ш
Quarter 2, 2012			*							*			*				*		*	*		ш	
Quarter 3, 2012			*							*		*	*				*		L.	L		ш	ш
Quarter 4, 2012										*		*	*				*		*	*		$oxed{oxed}$	Ш
Quarter 1, 2013										*			*				*		*	*		$oxed{oxed}$	Ш
Quarter 2, 2013										*		*	*				*		*	*			ш
Quarter 3, 2013		L	*	L		L	L	L		*		*	*				*		*	*			
Quarter 4, 2013			*							*		*	*				*		*	*			
Quarter 1, 2014			*							*	*		*				*		*	*			
Quarter 2, 2014			*							*	*		*	*			*		*	*			
Quarter 3, 2014			*							*			*				*			*			
Quarter 4, 2014			*							*	*	*	*				*		*	*			
Quarter 1, 2015			*							*	*	*	*				*			*			
Quarter 2, 2015		1	*					1		*	*		*				*			*		\Box	\vdash
Quarter 3, 2015			*							*	*	*	*			H	*	*	*	*		\Box	\vdash
Quarter 4, 2015			*							*	*	*	*				*	*		*		-	\vdash
Quarter 1, 2016	1	-	*	-			-	-		*	*	-	*				*	-	*	*		$\vdash\vdash\vdash$	$\vdash\vdash$
Quarter 2, 2016	1	-	*	-		*	-	-		*			*				*	*	-	*		$\vdash\vdash$	$\vdash\vdash$
Quarter 2, 2016 Quarter 3, 2016	-	<u> </u>	*	-		_	-	<u> </u>		*		*	*				*	*		*		$\vdash \vdash$	$\vdash\vdash$
-	-		*							*	*	~	*				*	ボ		*		$\vdash \vdash$	oxdot
Quarter 4, 2016			*		\Box	_				*	*		*	\Box			┸		_	*			Щ

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URG	4								LRGA	1		\neg
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393	396	221	222	223	224	384	369	372	387	391	220	394	385			388	392	395	397
THORIUM-230																							
Quarter 1, 2012	*								*					*									
Quarter 4, 2014	*		*																				
Quarter 3, 2015	*								*	*			*		*								
THORIUM-234																							
Quarter 2, 2003						*			*					*									
Quarter 4, 2007									*														
TOLUENE																							
Quarter 2, 2014										*	*		*										
TOTAL ORGANIC CARBON																							
Quarter 4, 2002																					*		
Quarter 1, 2003				*						*	*							*	*		*		
Quarter 2, 2003										*	*		*								*		
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003							*		*	*													
Quarter 1, 2004										*													
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005										*													
Quarter 2, 2005										*											*		
Quarter 3, 2005										*		*									*		
Quarter 4, 2005										*											*		
Quarter 1, 2006										*													
Quarter 2, 2006										*		*											-
-										~		~					*						
Quarter 4, 2006	*									*							不						
Quarter 1, 2007						46	44	46	4				44	46			46						
Quarter 3, 2007	*					*	*	*	*	*	46		*	*			*						
Quarter 2, 2011											*												
Quarter 3, 2012	*																						
Quarter 3, 2016																			*				
TOTAL ORGANIC HALIDES																							
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*														*			*		
Quarter 3, 2003				*																	*		
Quarter 2, 2004																					*		
Quarter 3, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*																						
Quarter 4, 2005	*																						
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*																						
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																				*		
Quarter 1, 2008	*																						
Quarter 4, 2008	*					L																	L
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																				*		
Quarter 3, 2009	*																						
Quarter 4, 2009	*					L																	
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
																							_

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System	l		UCRS	S						Ţ	URGA	A								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TOTAL ORGANIC HALIDES																							
Quarter 4, 2010	*																						
Quarter 1, 2011	*																						
Quarter 3, 2013																					*		
TRICHLOROETHENE																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004	1																						1
Quarter 1, 2005																							t
Quarter 2, 2005	l																						
Quarter 3, 2005	1																						<u> </u>
Quarter 4, 2005	1																						\vdash
Quarter 1, 2006	1																				-		\vdash
Quarter 2, 2006	1																				-		┢
Quarter 2, 2007	1		1					1					1										\vdash
Quarter 3, 2007	1		-	 				-			 		-					 			Ī		\vdash
Quarter 4, 2007	1																						
Quarter 1, 2008	1											F		Ħ					1		Ŧ	-	₩
Quarter 2, 2008	1											H		H					Ħ		Ŧ		₩
Quarter 3, 2008	1													i							Ŧ		₩
Quarter 4, 2008																			H		i		₩
Quarter 1, 2009																			H		i		₩
	!																						₩
Quarter 2, 2009	!																						₩
Quarter 3, 2009																			H		i		₩
Quarter 4, 2009	1										-												₩
Quarter 1, 2010	1																						₩
Quarter 2, 2010	1																				-		₩
Quarter 3, 2010	<u> </u>											_									-		
Quarter 4, 2010																					_		₩
Quarter 1, 2011																					_		₩
Quarter 2, 2011																					_		₩
Quarter 3, 2011	ļ																				•		<u> </u>
Quarter 4, 2011	1																				_	-	—
Quarter 1, 2012	<u> </u>		<u> </u>					<u> </u>					<u> </u>	_							_		<u> </u>
Quarter 2, 2012	<u> </u>		<u> </u>					<u> </u>					<u> </u>								_		<u> </u>
Quarter 3, 2012	<u> </u>		ļ					ļ					ļ								_		<u> </u>
Quarter 4, 2012																							<u> </u>
Quarter 1, 2013																							
Quarter 2, 2013	<u> </u>																						
Quarter 3, 2013	匚																				•		匚
Quarter 4, 2013																					•		匚
Quarter 1, 2014																					•		匚
Quarter 2, 2014	L			L		L					L							L	L	L		L	L
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015																							
Quarter 2, 2015																							
Quarter 3, 2015																							
Quarter 4, 2015																							
Quarter 1, 2016																							
Quarter 2, 2016	1																						
Quarter 3, 2016	1																						
-	1	1					 																
Quarter 4, 2016												_		_		_			_		_		

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCR.	S						1	URGA	A]	LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														

* Statistical test results indicate an elevated concentration (i.e., a statistically significant increase)

■ MCL Exceedance

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

LRGA Lower Regional Gravel Aquifer

S Sidegradient; D Downgradient; U Upgradient

APPENDIX H METHANE MONITORING DATA

C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	12/05/1	12/05/16							13	3:45	45 Mor						Tammy Smith		
Weather Co Mostly cloud			th w	inds	out	of th	ne N	E						1					
	Monitoring Equipment: RAE System, Multi Rae 4494-5																		
Monitoring Location										Reading (% LEL)									
Ogden Landir Road Entrand	ng e	Che	Checked at ground level											0					
North Landfill	l Gate	Che	Checked at ground level												0				
West Side of Landfill: North 37° (West 88° 4		Che	Checked at ground level												0				
East Side of Landfill: North 37° (West 88° 4	07.628'		Checked at ground level												0				
Cell 1 Gas Ve	ent (17)	1 0	2 0	3 0	4 0	5 0	6 0	7 0	8	9	10 0	11 0	12 0	13 0	14 0	15 0	16 0	17 0	0
Cell 2 Gas Ve	ent (3)	1 0	2 0	3 0															0
Cell 3 Gas Ve	Vent (7) 1 2 3 4 5 6 7 0 0 0 0 0 0 0										0								
Landfill		Che	ecked	d at flo	oor le	evel													18 12-5-16
Suspect or Pi	roblem Areas	No	areas	s note	ed		,												\$ 12-5-10
Remarks:			D 4"	ED (~														
ALL VENTS	3 CHEC	KEI	"1 ט	FR	JM	IHE	MC	UII	H OF	- I -	IE VI	=N I							
Performed b	oy:			,	Ĵ.	l Emu	mes	L.S.	, . vuë	K								12/	05/2016
Performed by: Lammy Smill Signature 12/0									Date										

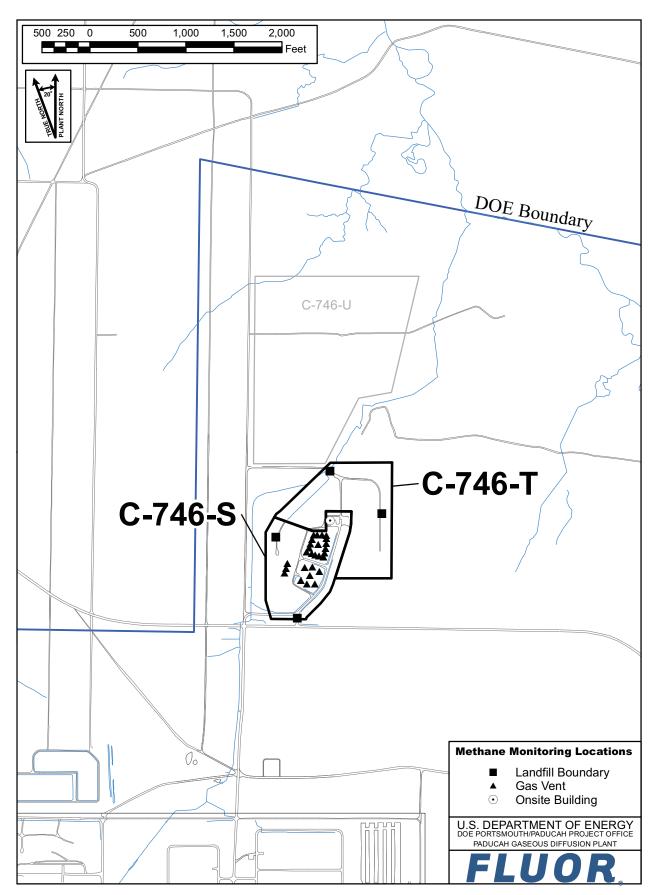


Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

For Official Use Only

LAB ID: None

SURFACE WATER SAMPLE ANALYSIS (s)

	Monitoring Point (KPDES Discharge Number, or "UPSTREAM", or "DOWNSTREAM")							L135 UPSTREAM		L154 DOWNSTREAM		ΤE	F. BLANK	
	Sample Sequence #							1		1			1	
	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment						NA		NA		NA		F	
	Sample Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		11/28/2016 15:	40	11/28/2016 13:53		NA		11/28/2016 15:42	
ſ	Duplicate ("Y	" c	or "N") ¹				N		N		N		N	
ſ	Split ('Y' or	"N	I") ²				N		N	N		N		
ſ	Facility Samp	le	ID Number (if applicable)				L135SS1-17		L154US1-17	L154US1-17			FB1SS1-17	,
	Laboratory Sa	mpl	e ID Number (if applicable)				411495002		411422003		NA		411495003	
L	Date of Analysis (Month/Day/Year)						12/22/2016		12/19/2016		NA		12/21/2016	
13	CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G s ⁷
	A200-00-0	0	Flow	Т	MGD	Field	0.25		0.04			*		*
Ī	16887-00-6	2	Chloride(s)	Т	mg/L	300.0	5.72		3			*	<1	
	14808-79-8	0	Sulfate	T	mg/L	300.0	20.4		3.48			*	<2	
	7439-89-6	0	Iron	Т	mg/L	200.8	0.488	В	0.294			*	<0.1	
I	7440-23-5	0	Sodium	Т	mg/L	200.8	5.47	В	1.06			*	<0.25	
	s0268	0	Organic Carbon ⁶	Т	mg/L	9060	12.4		16.8			*		*
	s0097	0	BOD ⁶	Т	mg/L	not applicable		*		*		*		*
	s0130	0	Chemical Oxygen Demand	Т	mg/L	410.4	53.6		69.7			*		*

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Point (KPDES Discharge Number, or "UPSTREAM" or "DOWNSTREAM")							EAM	L154 DOWNST	REAM	L136 AT S	SITE	F. BLANK	
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G
s0145	1	Specific Conductance	т	µhmo/cm	Field	195		59			*		*
s0270	0	Total Suspended Solids	Т	mg/L	160.2	22.7		5.2	*		*		*
s0266	0	Total Dissolved Solids	Т	mg/L	160.1	201		77.1	*		*		*
s0269	0	Total Solids	т	mg/L	SM-2540B	173		91	*		*		*
s0296	0	рН	т	Units	Field	7.06		7.49			*		*
7440-61-1		Uranium	Т	mg/L	200.8	0.00363		0.000222			*	<0.0002	
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	3.25	*	1.11	*		*	-2.03	*
12587-47-2		Gross Beta (β)	Т	pCi/L	9310	29.4	*	21.3	*		*	0.291	*
													$oxed{oxed}$
													igspace
													igspace
													igspace

4

Division of Waste Management Solid Waste Branch RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Pe Frankfort, KY 40601 (502)564-6716

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po	Monitoring Point (KPDES Discharge Number, or "UPSTREAM", or "DOWNSTREAM")												
Sample Sequer	Sample Sequence #												
If sample is	а В	lank, specify Type: (F)ield, (T)r:	ip, (M)ethod	, or (E)quipment	NA							
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		11/28/2016 15	5:40						
Duplicate ("	Y" (or "N") ¹				Υ							
Split ('Y' or	r "1	V") ²				N							
Facility Samp	ole	ID Number (if applicable)				L135DSS1-1	17						
Laboratory Sa	amp.	le ID Number (if applicable)				411495001							
Date of Analy	Date of Analysis (Month/Day/Year)						12/21/2016						
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	VALUE OF FQL ⁵	F A G S	DETECTED VALUE OR PQL ⁵	F L A G
A200-00-0	0	Flow	Т	MGD	Field	0.25							
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	5.71							
14808-79-8	0	Sulfate	Т	MG/L	300.0	20.6			<u>/_</u>				
7439-89-6	0	Iron	Т	MG/L	200.8	0.448	В						
7440-23-5	0	Sodium	Т	MG/L	200.8	5.32	В						
S0268	0	Organic Carbon ⁶	Т	MG/L	9060	11.8							
s0097	0	BOD ⁶	Т	MG/L	not applicable		*						
s0130	0	Chemical Oxygen Demand	Т	MG/L	410.4	47.1		\bigvee					

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

<u>1-5</u>

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	oint	: (KPDES Discharge Number, or	r "(JPSTREAM" or	"DOWNSTREAM")	L135 UPSTR	EAM	Ν					7
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR POD ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	VALUE I OR PQL ⁵	F L A G
s0145	1	Specific Conductance	T	µmho/cm	Field	195							
s0270	0	Total Suspended Solids	Т	mg/L	160.2	21.6							
s0266	0	Total Dissolved Solids	T	mg/L	160.1	187							
s0269	0	Total Solids	Т	mg/L	SM-2540B	185							
s0296	0	рн	Т	Units	Field	7.06							
7440-61-1		Uranium	Т	mg/L	200.8	0.00376							
12587-46-1		Gross Alpha (α)	T	pCi/L	900.0	0.604	*						
12587-47-2		Gross Beta (β)	Т	pCi/L	900.0	19.8	*						
								/					
													_
								/					

I-6

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 & 073-00015

Finds/Unit:	KY8-890-008-982	/ 1						
LAB ID:	None							
For Official Use Only								

SURFACE WATER WRITTEN COMMENTS

Monitorin Point	ng Facility Sample ID	Constituent	Flag	Description
L135	L135SS1-17	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.55. Rad error is 6.53.
1.454	1.4541104.47	Beta activity		TPU is 9.85. Rad error is 8.57.
L154	L154US1-17	Biochemical Oxygen Demand (BOD	*	Analysis of constituent not required and not performed
		Suspended Solids		Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.65. Rad error is 4.64.
		Beta activity		TPU is 8.83. Rad error is 8.06.
L136		Flow Rate		Insufficient flow to collect a sample.
		Chloride		Insufficient flow to collect a sample.
		Sulfate		Insufficient flow to collect a sample.
		Iron		Insufficient flow to collect a sample.
		Sodium		Insufficient flow to collect a sample.
		Total Organic Carbon (TOC)		Insufficient flow to collect a sample.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed
		Chemical Oxygen Demand (COD)		Insufficient flow to collect a sample.
		Conductivity		Insufficient flow to collect a sample.
		Suspended Solids		Insufficient flow to collect a sample.
		Dissolved Solids		Insufficient flow to collect a sample.
		Total Solids		Insufficient flow to collect a sample.
		рН		Insufficient flow to collect a sample.
		Uranium		Insufficient flow to collect a sample.
		Alpha activity		Insufficient flow to collect a sample.
		Beta activity		Insufficient flow to collect a sample.

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 & 073-00015

Finds/Unit:	KY8-890-008-982 /	1						
LAB ID:	None							
For Official Use Only								

SURFACE WATER WRITTEN COMMENTS

Monitorin Point	g Facility Sample ID	Constituent	Flag	Description
QC	FB1SS1-17	Flow Rate		Analysis of constituent not required and not performed.
		Total Organic Carbon (TOC)		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)		Analysis of constituent not required and not performed.
		Conductivity		Analysis of constituent not required and not performed.
		Suspended Solids		Analysis of constituent not required and not performed.
		Dissolved Solids		Analysis of constituent not required and not performed.
		Total Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.84. Rad error is 4.83.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.1. Rad error is 6.1.
L135	L135DSS1-17	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.47. Rad error is 4.46.
		Beta activity		TPU is 8.44. Rad error is 7.81.