

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

AUG 29 2016

PPPO-02-3707251-16A

Ms. Robin Green
Division of Waste Management
Kentucky Department for Environmental Protection
200 Fair Oaks Lane, 2nd Floor
Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 200 Fair Oaks Lane, 2nd Floor Frankfort, Kentucky 40601

Mr. Allan Shingleton Division of Waste Management Kentucky Department for Environmental Protection 625 Hospital Drive Madisonville, Kentucky 42431

Dear Ms. Green, Mr. Hendricks, and Mr. Shingleton:

C-746-S&T LANDFILLS SECOND QUARTER CALENDAR YEAR 2016 (APRIL-JUNE) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FPDP-RPT-0026/V2, PERMIT NUMBER SW07300014, SW07300015, SW07300045

Enclosed is the subject report for second quarter calendar year 2016. This report is required in accordance with Condition ACTV0006, Special Condition Number 3, of the C-746-S&T Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The report includes groundwater and surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the second quarter 2016 monitoring well data collected from the C-746-S&T Landfills were performed in accordance with Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical increase notification for the second quarter calendar year 2016, in accordance with Condition GSTR0003, Standard Requirement 8, of the C-746-S&T Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely, Junifer Wooderd

Jennifer Woodard Paducah Site Lead

Portsmouth/Paducah Project Office

Enclosure:

C-746-S&T Landfills Second Quarter Calendar Year 2016 (April-June) Compliance Monitoring Report

e-copy w/enclosure:

april.webb@ky.gov, KDEP/Frankfort brian.begley@ky.gov, KDEP/Frankfort dave.dollins@lex.doe.gov, PPPO/PAD ffscorrespondence@ffspaducah.com, FFS/Kevil gary.hines@ffspaducah.com, FFS/Kevil gaye.brewer@ky.gov, KDEP/PAD jennifer.blewett@ffspaducah.com, FFS/Kevil jennifer.watson@ffspaducah.com, FFS/Kevil jennifer.woodard@lex.doe.gov, PPPO/PAD john.morgan@ffspaducah.com, FFS/Kevil joseph.towarnicky@ffspaducah.com, FFS/Kevil ken.davis@ffspaducah.com, FFS/Kevil leo.williamson@ky.gov, KDEP/Frankfort lisa.crabtree@ffspaducah.com, FFS/Kevil mike.guffey@ky.gov, KDEP/Frankfort myrna.redfield@ffspaducah.com, FFS/Kevil pad.rmc@swiftstaley.com, SSI/Kevil stephaniec.brock@ky.gov, KYRHB/Frankfort

C-746-S&T Landfills
Second Quarter Calendar Year 2016
(April–June)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

FLUOR

This document is approved for public release per review by:

PDP Classification Support

8-24-/6 Date

C-746-S&T Landfills
Second Quarter Calendar Year 2016
(April–June)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—August 2016

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FLUOR FEDERAL SERVICES, INC.,
Paducah Deactivation Project
managing the
Deactivation Project at the
Paducah Gaseous Diffusion Plant
under Task Order DE-DT0007774

CLEARED FOR PUBLIC RELEASE

CONTENTS

FI	GURE	S		V
ΤA	BLES	S		v
ΑC	CRON	YMS		vii
1.	INTI	RODUC	TION	1
	1.1		GROUND	
	1.2	MONI	TORING PERIOD ACTIVITIES	1
		1.2.1	Groundwater Monitoring	1
		1.2.2	Methane Monitoring	3
		1.2.3	Surface Water Monitoring	3
	1.3	KEY R	ESULTS	5
2.	DAT	'A FVA	LUATION/STATISTICAL SYNOPSIS	11
	2.1		STICAL ANALYSIS OF GROUNDWATER DATA	
	2.1	2.1.1	Upper Continental Recharge System	
		2.1.2	Upper Regional Gravel Aquifer	
		2.1.3	Lower Regional Gravel Aquifer	13
	2.2	DATA	VERIFICATION AND VALIDATION	
3.	PRO	FESSIO	NAL GEOLOGIST AUTHORIZATION	15
4.	REF	ERENC:	ES	17
ΑF	PENI	OIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑF	PENI	OIX B:	FACILITY INFORMATION SHEET	B-1
ΑF	PENI	OIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	
ΑF	PENI	OIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PENI	OIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑF	PENI	OIX F:	NOTIFICATIONS	F-1
ΑF	PENI	OIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑF	PENI	OIX H:	METHANE MONITORING DATA	H-1
ΑF	PENI	OIX I·	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	2
2.	C-746-S&T Landfill Surface Water Monitoring Locations	4
	TABLES	
1.	Summary of MCL Exceedances	5
2.	Exceedances of Statistically Derived Historical Background Concentrations	6
3.	Exceedances of Current Background UTL in Downgradient Wells	6
4.	C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Exceedances of Current Background UTL in UCRS Wells	9
6.	Monitoring Wells Included in Statistical Analysis	12

ACRONYMS

CFR Code of Federal Regulations

CY calendar year

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

PGDP Paducah Gaseous Diffusion Plant

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

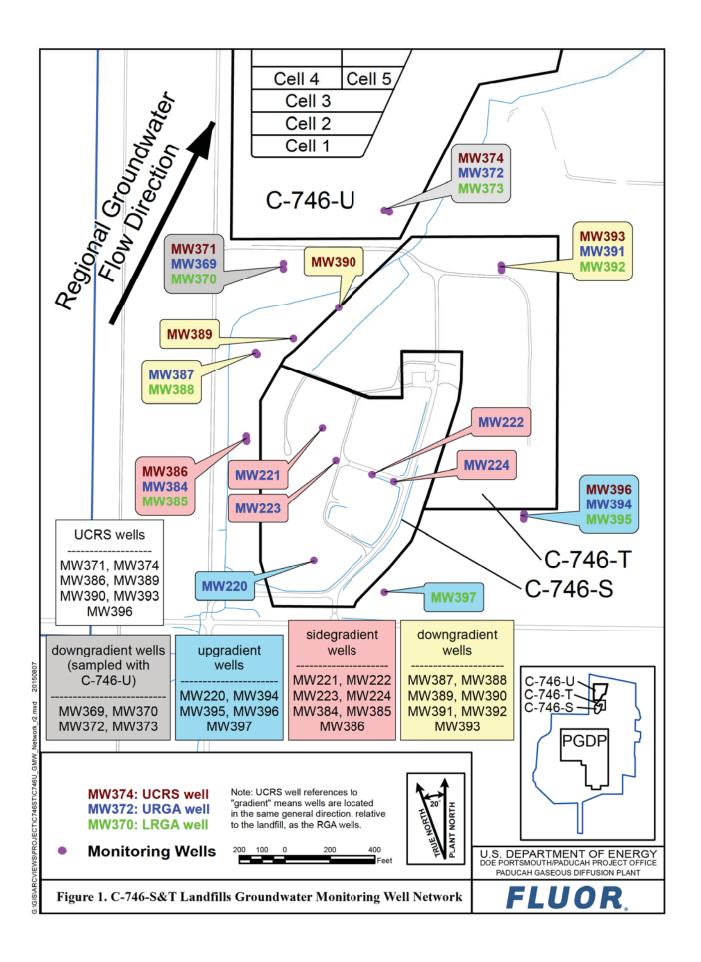
UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills Second Quarter Calendar Year 2016 (April—June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 4. Surface water results are provided in Appendix I.

1.1 BACKGROUND


The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Gaseous Diffusion Plant (PGDP) and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for PGDP. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from PGDP. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for the UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the RGA wells located in the same direction (relative to the landfill) as nearby UCRS wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the second quarter 2016 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using Fluor Federal Services, Inc., procedure CP4-ES-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on April 28, 2016, in MWs of the C-746-S&T Landfills (see Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is northeastward, toward the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in April was 2.89×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 1.80×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.31 to 0.84 ft/day (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 KAR 48:090 § 4 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application, Attachment 12, of the Solid Waste Landfill Permit. Landfill operations staff monitored for the occurrence of methane in 1 on-site building location, 4 locations along the landfill boundary, and 27 gas-passive vents located in Cells 1, 2, and 3 of the C-746-S Landfill on June 7, 2016. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the approved C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and KY-073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application Attachment 24, of the Solid Waste Landfill Permit. Sampling was performed at the three locations (see Figure 2) that are monitored for the C-746-S&T Landfills. The landfills have an upstream location, L135;

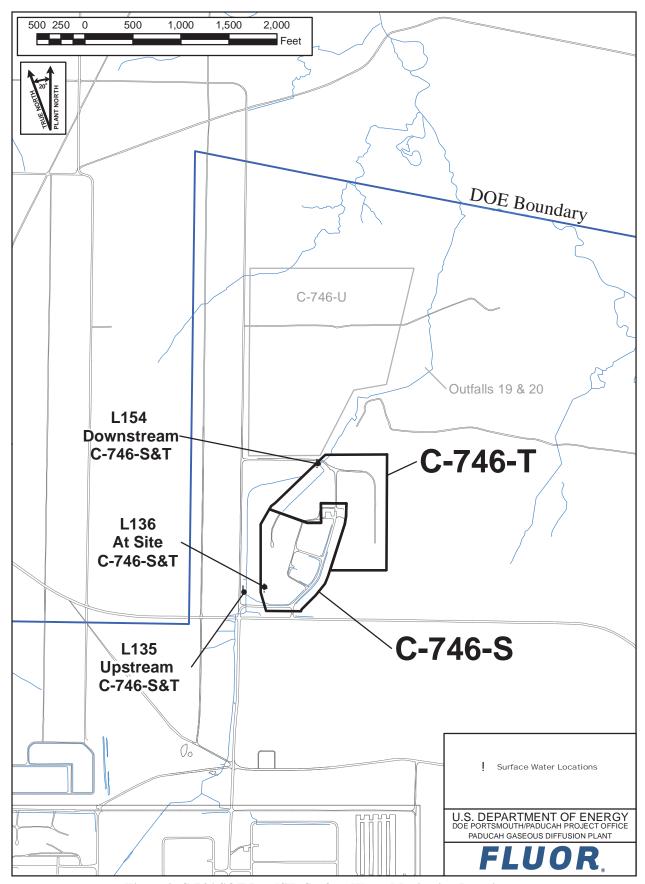


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

a downstream location, L154; and a location capturing runoff from the landfill surface, L136. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled for report only format, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Landfill permit. Parameters that had concentrations that exceeded the respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were further evaluated against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL during the second quarter 2016, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).*

UCRSURGALRGANoneMW372: TrichloroetheneMW373:TrichloroetheneMW384: Beta activityMW385: Beta activityMW387: Beta activityMW388: Beta activityMW391: TrichloroetheneMW392: Trichloroethene

Table 1. Summary of MCL Exceedances

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW372, MW373, MW391, and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedances for beta activity in MW387 and MW388 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances because the source(s) of these exceedances is not determined. To evaluate these preliminary Type 2 exceedances further, these parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. Neither MW387 nor MW388 had an increasing Mann-Kendall trend, and both are considered to be Type 1 exceedances (not attributable to the landfill).

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 8, and 401 *KAR* 48:300 § 7.

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Oxidation-reduction	MW220: Oxidation-reduction	MW370: Oxidation-reduction
potential	potential, radium-226, sulfate	potential, pH, radium-226, sulfate,
		technetium-99
MW390: Oxidation-reduction	MW221: Oxidation-reduction	MW373: Calcium, conductivity,
potential, radium-226,	potential, technetium-99	dissolved solids, magnesium, pH,
technetium-99		sulfate
MW393: Oxidation-reduction	MW223: Oxidation-reduction	MW385: Beta activity, ^a
potential	potential, sulfate	oxidation-reduction potential,
		sulfate, technetium-99
MW396: Oxidation-reduction	MW224: Oxidation-reduction	MW388: Beta activity, ^a
potential	potential, radium-226	oxidation-reduction potential,
		sulfate, technetium-99
	MW369: Radium-226, sodium	MW392: Oxidation-reduction
		potential
	MW372: Calcium, dissolved solids,	MW395: Oxidation-reduction
	magnesium, radium-226, sulfate	potential
	MW384: Beta activity, a oxidation-	MW397: Oxidation-reduction
	reduction potential, sulfate,	potential
	technetium-99	
	MW387: Beta activity, a dissolved	
	solids, oxidation-reduction potential,	
	radium-226, sulfate, technetium-99	
	MW391: Aluminum, calcium,	
	dissolved solids, magnesium,	
	oxidation-reduction potential,	
	radium-226, sulfate	
	MW394: Oxidation-reduction	
	potential, radium-226	

^{*}Gradients in the UCRS are downward. UCRS gradient designations refer to locations of wells in the same direction, relative to the landfill as the RGA wells.

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW369: Sodium	MW370: pH, sulfate, technetium-99
MW372: Calcium, magnesium, sulfate	MW373: Calcium, conductivity, dissolved solids, magnesium, pH, sulfate
MW387: Beta activity, technetium-99	MW388: Beta activity, sulfate, technetium-99
MW391: Aluminum, calcium, magnesium, sulfate	MW392: Oxidation-reduction potential

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Upgradient wells: MW220, MW394, MW395, MW396, MW397

^aBeta activity has an MCL; the exceedances of the MCL were subjected to a comparison against the statistically derived historical background.

^b In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

Table 4. C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Var(S)4	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
	MW369	Sodium	8	0.05	0.138	10.00	0.000	1.567	0.357	No Trend
		рН	8	0.05	0.138	10.00	0.000	0.031	0.357	No Trend
	MW370	Sulfate	8	0.05	0.353	-4.000	63.33	-0.047	-0.148	No Trend
		Technetium-99	8	0.05	0.089	12.00	0.000	6.550	0.429	No Trend
		Calcium	8	0.05	0.138	10.00	0.000	0.521	0.357	No Trend
	MW372	Magnesium	8	0.05	0.360	4.000	0.000	0.230	0.143	No Trend
		Sulfate	8	0.05	0.054	-14.00	0.000	-6.792	-0.500	No Trend
		Calcium	8	0.05	0.003	-26.00	0.000	-1.430	-0.722	Decreasing
		Conductivity	8	0.05	0.003	-22.00	0.000	-27.33	-0.786	Decreasing
	MW373	Dissolved Solids	8	0.05	0.054	-14.00	0.000	-13.00	-0.500	No Trend
C-746-S and T	WI W 3 / 3	Magnesium	8	0.05	0.031	-16.00	0.000	-0.363	-0.571	Decreasing
Landfills Downgradient		рН	8	0.05	0.031	16.00	0.000	0.083	0.571	Increasing
Wells		Sulfate	8	0.05	0.001	-24.00	0.000	-11.95	-0.857	Decreasing
	MW387	Beta Activity	8	0.05	0.199	8.000	0.000	2.250	0.286	No Trend
	WI W 367	Technetium-99	8	0.05	0.274	6.000	0.00	5.417	0.214	No Trend
		Beta Activity	8	0.05	0.054	14.00	0.000	7.917	0.500	No Trend
	MW388	Sulfate	8	0.05	0.089	-12.00	0.000	-0.250	-0.429	No Trend
		Technetium-99	8	0.05	0.040	15.00	64.33	10.50	0.546	Increasing
		Aluminum	8	0.05	0.057	12.00	48.67	0.004	0.535	No Trend
	MW391	Calcium	8	0.05	0.007	20.00	0.000	0.675	0.714	Increasing
	WIW 391	Magnesium	8	0.05	0.031	16.00	0.000	0.442	0.571	Increasing
		Sulfate	8	0.05	0.031	16.00	0.000	6.096	0.571	Increasing
	MW392	Oxidation-Reduction Potential	8	0.05	0.274	6.000	0.000	27.60	0.214	No Trend

Footnotes:

Note: Statistics generated using XLSTAT Version 2016

¹An alpha of 0.05 represents a 95% confidence interval.

²The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

⁴VAR(S) represents the varience of S in the sample set and takes into account statistical ties.

⁵The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all $(x_i - x_k)/(j - k)$, where x is a data point and j and k are values of time.

⁶Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is postive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend.

⁷The Mann-Kendall decision operates on two hypothesis, the H₀ and H_a. H₀ assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend. Two different tests were ran to test for positive or negative trends. This table reports the test with the lowest p-value.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as upgradient, to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

Those constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and preliminarily are considered to be a Type 2 exceedance per the approved Groundwater Monitoring Plan. To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All but five of these preliminary Type 2 exceedances in downgradient wells did not have an increasing trend and are considered to be Type 1 exceedances (not attributable to the landfill).

The Mann-Kendall statistical test indicates that there is an increasing trend of pH in MW373 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, this is considered a Type 2 exceedance (source unknown). The source of the trend is believed to be unrelated to the C-746-S&T Landfills because the shallower, collocated (URGA) well, MW372, and the adjacent LRGA well, MW392, did not exceed the historical UTL for pH. Additionally, the adjacent LRGA well, MW 370, does not show the increasing Mann-Kendall trend (refer to Table 4).

The Mann-Kendall statistical test indicates that there is an increasing trend of technetium-99 in MW388 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, this is considered a Type 2 exceedance (source unknown). The source of the trend is believed to be unrelated to the C-746-S&T Landfills for the following reasons:

- There is a known upgradient regional source of technetium-99 associated with the technetium-99 Northwest Plume (refer to Figure 10 in the Groundwater Monitoring Plan that shows portions of the 2009 technetium-99 Plume map);
- Although the deeper (LRGA) MW388 shows an increasing trend, the shallower, collocated (URGA) well, MW387, does not show the increasing Mann-Kendall trend (refer to Table 4);
- The recent technetium-99 in MW388 is within the range of historical levels of technetium-99 since 2002.

The Mann-Kendall statistical test indicates that there is an increasing trend of calcium, magnesium, and sulfate in MW391 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, this is considered a Type 2 exceedance (source unknown). The source of the trend is believed to be unrelated to the C-746-S&T Landfills because the adjacent URGA well, MW372, does not show the increasing Mann-Kendall trends (refer to Table 4).

In accordance with Permit Condition GSTR0003, Variance 2, of the Solid Waste Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the Permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

The statistical evaluation of current UCRS downgradient wells against the current UCRS background UTL identified a UCRS well with a technetium-99 value that exceeds both the historical and current backgrounds. Because this well is not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T sources and is considered to be a Type 1 exceedance (Table 5).

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells

UCRS
MW390: Technetium-99

All MCL and UTL exceedances, except for five parameters, reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills. The five parameters will continue to be evaluated in the context of these observations. The increasing trends for these parameters do not appear to be landfill-related.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the second quarter 2016 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the respective Kentucky solid waste facility MCL found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance.

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389***	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396**	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	, 10
	MW387	
	MW391	
	MW394 (upgradient)	

^{*}A map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the UCRS. During the second quarter, oxidation-reduction potential, radium-226, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Technetium-99 exceeded the current background UTL and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 33 parameters, including those with MCLs, required statistical analysis in the URGA. During the second quarter, aluminum, beta activity, calcium, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Aluminum, beta activity, calcium, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

^{**}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^{***}MW389 had insufficient water to permit a water sample for laboratory analysis.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the LRGA. During the second quarter, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, pH, radium-226, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, pH, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices, and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples—such as matrix spikes, matrix spike duplicates, and method blanks—are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills

Second Quarter Calendar Year 2016 (April-June)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FPDP-RPT-0026/V2)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

OROGENIA PO 1994 PG 1194 PG 11

Kenneth R Davis

PG1194

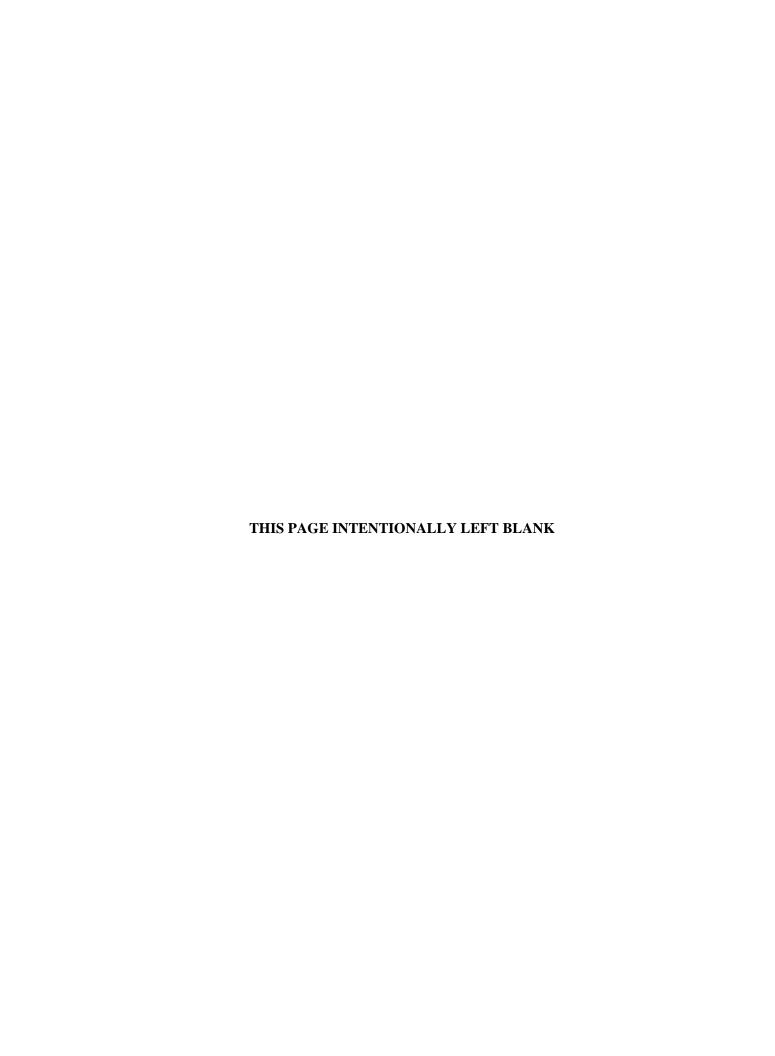
august 24, 2016

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and KY-073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM


GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DO	E-Pac	ducah Gase	ous Diffusion Plant	Activity:	C-746-S&T Landfills	
	(As o	fficially	shown on DV	VM Permit Face)			
Permit No:	SW07300014, SW07300015, SW07300045			Finds/Unit No:	Quarter & Year	r 2nd Qtr. CY 2016	
Please check the	following as	s appli	icable:				
Characte	rization _	X	Quarterly	Semiannual	Annual	Assessment	
Please check app	olicable subn	nittal(!	s): <u>X</u>	Groundwater	X	Surface Water	
			-	Leachate	X	Methane Monitoring	
hours of making to the lab report is No pages. I certify under pen accordance with a serious Based on my inquire best of my knowled.	he determina OT considere alty of law the system design by of the person ge and belief,	hat the ed to a n or pe true, ac	sing statistic fication. Instance document assure that quersons directly courate, and	and all attachments were ualified personnel proper y responsible for gatherin	parison, or other simi he form are attached. It he prepared under my of ly gather and evaluate g information, the infor there are significant pe	tion within forty-eight (48 lar techniques. Submitting to not submit the instruction direction or supervision in the information submitted. It is the information submitted in the enalties for submitting false	
Myrna E. Redfie Environmental M Fluor Federal Se	Managemen	t		,	8	Zalvo Date	
Jennifer Woodar		Site I	Lead		_8/	29/16 Date	

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date: Facility Name:	Groundwater: April 2016 Surface Water: May 2016 Methane: June 2016 U.S. DOE—Paducah Gaseo	ous Diffusion Plant		McCracken	_ Permit Nos.	SW07300014, SW07300015, SW07300045
	•	·	•			
Site Address:	5501 Hobbs Road Street	Ke	vil, Kentucky City/State			42053 Zip
			•			•
Phone No:	(270) 441-6800 L	atitude:	N 37° 07' 37.	70"	Longitude:	W 88° 47' 55.41"
		OWNER INFO	ORMATION			
Facility Owner:	U.S. DOE, Robert E. Edwa	rds III, Manager			Phone No:	(859) 227-5020
Contact Person:	Myrna E. Redfield				Phone No:	(270) 441-5113
Contact Person Ti	tle: Director, Environme	— ntal Management, Fl	uor Federal Se	rvices, Inc.	·	
Mailing Address:	5511 Hobbs Road	K	evil, Kentucky			42053
C	Street		City/State			Zip
Company:	(IF OT	SAMPLING P HER THAN LANDI		ORATORY)		
Contact Person:	Sam Martin				Phone No:	(270) 441-6755
Mailing Address:	199 Kentucky Avenue	Ke	evil, Kentucky		- -	42053
	Street		City/State			Zip
		LABORATORY	RECORD #1	1		
Laboratory:	GEL Laboratories, LLC		La	ab ID No: K	Y90129	
Contact Person:	Valerie Davis				Phone No:	(843) 769-7391
Mailing Address:	2040 Savage Road	Charles	ton, South Car	olina	- -	29407
	Street		City/State			Zip
		LABORATORY	RECORD #2	2		
Laboratory:	N/A			Lab ID No:	N/A	
Contact Person:	N/A				Phone No:	N/A
Mailing Address:	N/A					
	Street		City/State			Zip
		LABORATORY	RECORD #3	3		
Laboratory:	N/A			Lab ID No:	N/A	
Contact Person:	N/A				Phone No:	N/A
Mailing Address:	N/A				-	
<u> </u>	Street		City/State			Zip

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-52	202	8000-52	242	8000-524	43
Facility's Loc	cal Well or Spring Number (e.g., N	1W-1	, MW-2, etc	:.)	220		221		222		223	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)∈	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/12/2016 13	3:24	4/13/2016	09:10	4/13/2016	13:07	4/13/2016 1	0:26
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	acility Sample ID Number (if applicable)					3-16	MW221S0	G3-16	MW222S0	G3-16	MW223SG	3-16
Laboratory San	aboratory Sample ID Number (if applicable)				39511600	3	395234	001	395234	005	3952340	07
Date of Analys	te of Analysis (Month/Day/Year) For Volat			ysis	4/18/2016	6	4/18/20	16	4/18/20	16	4/18/201	6
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	UP		SIDE	Ē	SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.187	J	0.399		0.421		0.427	
16887-00-6	Chloride(s)	Т	mg/L	9056	18.1		30.7		33.6		30.9	
16984-48-8	Fluoride	т	mg/L	9056	0.174		0.164		0.217		0.176	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.03		1.07		1		0.988	
14808-79-8	Sulfate	т	mg/L	9056	21.8		16.1		12.1		19.4	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.31		30.22		30.23		30.23	
s0145	Specific Conductance	т	μ MH 0/cm	Field	422		411		374		403	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242)	8000-5243	
Facility's Loca	al Well or Spring Number (e.g., MW-	-1, 1	W-2, BLANK-F	r, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	328.28		328.45		328.42		328.42	
N238	Dissolved Oxygen	Т	mg/L	Field	4.79		4.41		4.41		3.48	
s0266	Total Dissolved Solids	T	mg/L	160.1	273		223		197		230	
s0296	На	T	Units	Field	6.47		6.54		6.75		6.61	
NS215	Eh	T	mV	Field	438		485		375		457	
s0907	Temperature	T	°C	Field	15.94		13.83		17.17		15.5	
7429-90-5	Aluminum	T	mg/L	6020	<0.05		<0.05		0.0601		<0.05	
7440-36-0	Antimony	T	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	T	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	T	mg/L	6020	0.223		0.227		0.312		0.246	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	T	mg/L	6020	0.00642	BJ	0.0143	J	0.0114	J	0.0076	J
7440-43-9	Cadmium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	25.7		23.3		20		22.6	
7440-47-3	Chromium	T	mg/L	6020	0.00452	J	0.00714	J	0.00297	J	0.0415	
7440-48-4	Cobalt	Т	mg/L	6020	0.000105	٦	0.000352	J	0.000783	J	0.000198	J
7440-50-8	Copper	T	mg/L	6020	0.000889	J	0.00117		0.000612	J	0.000396	J
7439-89-6	Iron	T	mg/L	6020	<0.1		0.118		0.234		0.113	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	T	mg/L	6020	10.5		9.65		8.79		9.34	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.00191	J	0.0226		0.00206	J
7439-97-6	Mercury	T	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8000-520	01	8000-52	02	8000-524	42	8000-52	43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.00139		0.00766	В	0.000287	BJ	0.00661	В
7440-02-0	Nickel	Т	mg/L	6020	0.039		0.0408		0.0759		0.329	
7440-09-7	Potassium	Т	mg/L	6020	5.25		1.31		0.496		1.63	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	T	mg/L	6020	49.2		44.1		45.5		45	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	0.000493	J	<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520)2	8000-52	242	8000-52	243
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	0.00065	J	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00287		0.00033	J	<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520 ⁻	1	8000-5202	2	8000-524	42	8000-52	43
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	:c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000202		<0.00002		<0.0000198		<0.0000199	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5201		8000-5202)	8000-524	2	8000-524	 43
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	1.39	*	2.05	*	1.34	*	4.19	*
12587-47-2	Gross Beta	т	pCi/L	9310	14.2	*	20.9	*	7.86	*	18.9	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.657	*	0.0434	*	0.0093	*	-0.0363	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1	*	1.99	*	-1.08	*	-1.61	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	13	*	22.4	*	3.42	*	8.97	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.0887	*	-0.0277	*	0.00921	*	0.326	*
10028-17-8	Tritium	Т	pCi/L	906.0	-140	*	-37	*	-146	*	-129	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	15.8	J	10.8	J	<20		13.3	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.993	J	1.09	J	1	J	1.07	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00736	*J	0.0059	*J	0.0052	*J	0.00496	*J
		\perp										
												<u> </u>
		\perp										

Division of Waste Management Solid Waste Branch

Frankfort, KY 40601 (502)564-6716

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	318	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g., N	w−1	, MW-2, etc	:.)	224		369		370		372	-
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/14/2016 13	3:18	4/7/2016	08:02	4/7/2016 (08:56	4/7/2016 09	9:21
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	cility Sample ID Number (if applicable)					-16	MW369U0	G3-16	MW370U0	G3-16	MW372UG	3-16
Laboratory San	aboratory Sample ID Number (if applicable)					3	394905	013	394905	015	3949050	19
Date of Analy	te of Analysis (Month/Day/Year) For Volati			ysis.	4/20/2016	5	4/12/20	16	4/12/20	16	4/12/201	6
Gradient with	respect to Monitored Unit (UP, DC	, NWC	side, UNKN	IOWN)	SIDE		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.479		0.437		0.46		0.613	
16887-00-6	Chloride(s)	Т	mg/L	9056	36.4		37.9		36.6		48.5	
16984-48-8	Fluoride	Т	mg/L	9056	0.228		0.188		0.147		0.171	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.01		0.0409	J	1.17		<0.5	
14808-79-8	Sulfate	т	mg/L	9056	15.1		5.99		19.7		113	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.13		29.8		29.8		29.8	
s0145	Specific Conductance	Т	μ MH 0/cm	Field	440	_	425		441		636	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	}	8004-4808	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-E	, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	328.51		328.33		328.41		328.35	
N238	Dissolved Oxygen	Т	mg/L	Field	3.31		2.87		5.97		4.05	
S0266	Total Dissolved Solids	Т	mg/L	160.1	246		217		206		380	
s0296	рн	Т	Units	Field	6.18		6.6		6.78		6.4	
NS215	Eh	Т	mV	Field	605		302		318		259	
s0907	Temperature	Т	°C	Field	17.61		14.78		15.67		16.28	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.0277	J	<0.05		0.0496	J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		0.00175	J	0.00202	J	0.00235	J
7440-39-3	Barium	Т	mg/L	6020	0.241		0.494		0.203		0.0502	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005	*	<0.0005	*	<0.0005	*
7440-42-8	Boron	Т	mg/L	6020	0.0206		0.0121	J	0.0283		1.28	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	23.5		21.7		31.2		62.9	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.000143	J	0.107		0.000366	J	0.000393	J
7440-50-8	Copper	Т	mg/L	6020	0.000387	J	0.00137		0.00189		0.00227	
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.897		<0.1		0.846	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	10.2		8.13		12.4		22.2	
7439-96-5	Manganese	Т	mg/L	6020	0.0058		1.75		0.003	J	0.0175	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	08
Facility's	Local Well or Spring Number (e.g.	MW-	1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	0.000537	В	0.000266	BJ	<0.0005		0.000477	BJ
7440-02-0	Nickel	т	mg/L	6020	0.00336		0.0157		0.000937	J	0.000679	J
7440-09-7	Potassium	т	mg/L	6020	0.872		0.511		2.23		2.47	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	54.4		66.8		47.6		57.9	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	0.000527	J	<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		0.00553	J	<0.01		0.00488	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244	4	8004-482	20	8004-48	318	8004-48	308
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		0.00047	J	0.00069	J	0.0076	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-4820)	8004-48′	18	8004-48	08
Facility's Loc	cal Well or Spring Number (e.g., M	1W -1	l, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.00002		<0.0000203		<0.0000202		<0.0000201	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*	0.0838	J	<0.0952		0.0656	J
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0952		<0.0952		<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0952		<0.0952		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0952		<0.0952		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082		*	0.0838	J	<0.0952		0.0656	J
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.0952		<0.0952		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244	ļ	8004-4820		8004-481	8	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	:c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.0952		<0.0952		<0.0952	
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.0952		<0.0952		<0.0952	
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.0952		<0.0952		<0.0952	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.28	*	0.38	*	-0.791	*	-1.86	*
12587-47-2	Gross Beta	Т	pCi/L	9310	2.33	*	11.3	*	48.6	*	4.15	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.707	*	0.863	*	0.711	*	0.861	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	5.17	*	0.988	*	-2.06	*	-0.164	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-2.81	*	13.4	*	92	*	3.34	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.205	*	0.243	*	0.0953	*	0.365	*
10028-17-8	Tritium	Т	pCi/L	906.0	-44.7	*	35.1	*	11	*	21.3	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	13.3	J	<20		<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	T	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.14	J	2.4		1.12	J	1.69	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00558	J	0.0427		0.00554	J	0.0107	

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792	2	8004-48	309	8004-48	310	8004-480	04
Facility's Lo	cal Well or Spring Number (e.g., N	w−1	., MW-2, etc	:.)	373		384		385		386	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/7/2016 10	:15	4/12/2016	09:32	4/12/2016	10:13	4/12/2016 1	12:41
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	rility Sample ID Number (if applicable)					-16	MW384S	G3-16	MW385S0	G3-16	MW386SG	3-16
Laboratory San	mple ID Number (if applicable)			39490502	1	395116	005	3951160	007	3951160	09	
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	ganics Anal	ysis	4/12/2016	5	4/18/20	16	4/18/20	16	4/18/201	6	
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	IOWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
24959-67-9	Bromide	т	mg/L	9056	0.621		0.326		0.246		0.142	J
16887-00-6	Chloride(s)	т	mg/L	9056	48.6		34.2		33.7		14.1	
16984-48-8	Fluoride	т	mg/L	9056	0.163		0.216		0.111		0.554	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.1		1.22		1.15		<0.5	
14808-79-8	Sulfate	т	mg/L	9056	118		20.1		21.8		42.4	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.8		30.29		30.3		30.31	
s0145	Specific Conductance	т	μ M H0/cm	Field	638		470		397		597	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	ocal Well or Spring Number (e.g., MV	I-1,	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	328.34		327.96		327.81		346.69	
N238	Dissolved Oxygen	т	mg/L	Field	6.26		4.07		4.42		3.42	
s0266	Total Dissolved Solids	т	mg/L	160.1	373		273		253		410	
S0296	рн	T	Units	Field	6.8		6.35		6.19		7.07	
NS215	Eh	Т	mV	Field	278		534		513		428	
s0907	Temperature	т	°C	Field	16		13.67		13.22		15.5	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		0.00194	J	<0.005		0.00221	J
7440-39-3	Barium	Т	mg/L	6020	0.0247		0.12		0.203		0.145	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005	*	<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	1.47		0.00866	BJ	0.00991	BJ	<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	64.5		26.3		22.8		21.8	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		0.00385	J	<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		<0.001		0.000867	J
7440-50-8	Copper	т	mg/L	6020	0.00222		0.000684	J	0.000436	J	0.00113	
7439-89-6	Iron	т	mg/L	6020	<0.1		0.0661	J	<0.1		0.384	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	22.7		10.2		8.37		9.12	
7439-96-5	Manganese	Т	mg/L	6020	0.00222	J	0.00379	J	<0.005		0.0911	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005		<0.0005		0.000662	
7440-02-0	Nickel	Т	mg/L	6020	0.00074	J	<0.002		0.000816	J	0.00148	J
7440-09-7	Potassium	т	mg/L	6020	2.52		0.992		1.55		0.289	J
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.00168	J	<0.005		<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	54.6		51.6		48.6		103	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		0.000103	J
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-480	09	8004-48	310	8004-48	304
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00797		<0.001		0.00055	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809	9	8004-48′	10	8004-48	04
Facility's Loc	cal Well or Spring Number (e.g., M	1W -1	1, MW-2, et	:c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000201		<0.0000202	*	<0.0000197	*	<0.0000198	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0952			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0952			*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0952			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-4809)	8004-481	0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	:c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952			*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0952			*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0952			*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.78	*	0.14	*	4.67	*	0.553	*
12587-47-2	Gross Beta	Т	pCi/L	9310	29.2	*	96.9	*	147	*	3.08	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.297	*	0.231	*	0.187	*	-0.151	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.0316	*	0.216	*	2.99	*	-0.604	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	31.2	*	160	*	231	*	0.649	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.242	*	0.554	*	0.238	*	0.306	*
10028-17-8	Tritium	Т	pCi/L	906.0	-40.3	*	-131	*	-90.2	*	-81.8	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		<20		13.9	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.24	J	1.1	J	0.921	J	5.19	
s0586	Total Organic Halides	Т	mg/L	9020	0.0138		0.0132	*	0.005	*J	0.145	*
		Ш										

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	5	8004-48	316	8004-481	2	8004-481	1
Facility's Loc	al Well or Spring Number (e.g., 1	∕IW−1	, MW-2, etc	.)	387		388		389		390	
Sample Sequenc	e #				1		1		1		1	
If sample is a B	clank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		4/12/2016 07	7:52	4/12/2016	08:49	NA		4/14/2016 10	0:43
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW387SG3	-16	MW388S0	G3-16	NA		MW390SG3	3-16
Laboratory Sam	poratory Sample ID Number (if applicable)						395116	011	NA		39536700	5
Date of Analys	is (Month/Day/Year) For Volatile	ysis	4/18/2016	5	4/18/20	16	NA		4/20/2016	6		
Gradient with	respect to Monitored Unit (UP, Do	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	N	SIDE		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.473		0.25			*	0.656	
16887-00-6	Chloride(s)	Т	mg/L	9056	41		28			*	70.8	
16984-48-8	Fluoride	Т	mg/L	9056	0.44		0.216			*	0.276	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.27		1.26			*	2.93	
14808-79-8	Sulfate	Т	mg/L	9056	19.9		21.2			*	37.4	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.24		30.29			*	30.15	
s0145	Specific Conductance	т	μ M H0/cm	Field	506		386			*	707	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	328.06		328			*	328.18	
N238	Dissolved Oxygen	т	mg/L	Field	4.6		4.93			*	5.44	
s0266	Total Dissolved Solids	т	mg/L	160.1	316		233			*	401	
s0296	Нд	т	Units	Field	6.21		6.31			*	6.43	
NS215	Eh	Т	mV	Field	760		569			*	607	
s0907	Temperature	т	°C	Field	11.94		13.44			*	16.78	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.025	J		*	0.0664	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00248	J	<0.005			*	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.147		0.158			*	0.258	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0249	В	0.0114	BJ		*	0.00865	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	32.3		22.5			*	32.4	
7440-47-3	Chromium	т	mg/L	6020	0.00236	J	<0.01			*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001			*	0.000181	J
7440-50-8	Copper	т	mg/L	6020	0.000542	J	0.000815	J		*	0.000595	J
7439-89-6	Iron	т	mg/L	6020	0.0472	J	0.117			*	0.0834	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	12.6		9.18			*	13.2	
7439-96-5	Manganese	т	mg/L	6020	0.00851		0.0015	J		*	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-48	15	8004-48	16	8004-48	12	8004-481	1
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	0.000189	J	0.000169	J		*	0.000573	В
7440-02-0	Nickel	Т	mg/L	6020	0.000658	J	0.00107	J		*	0.00131	J
7440-09-7	Potassium	Т	mg/L	6020	1.25		1.51			*	0.369	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	Т	mg/L	6020	0.00182	J	<0.005			*	<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	Т	mg/L	6020	54.8		45.1			*	98.6	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	0.00014	J
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-66-6	Zinc	T	mg/L	6020	<0.01		<0.01			*	<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-48	16	8004-48	312	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00061	J	0.00038	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-4816	6	8004-48	12	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g., M	IW -1	l, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.00002		<0.0000201	*		*	<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815		8004-4816		8004-4812		8004-4811	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	:c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.83	*	5.55	*		*	0.763	*
12587-47-2	Gross Beta	Т	pCi/L	9310	167	*	118	*		*	43	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	1.15	*	0.353	*		*	0.696	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.44	*	-0.657	*		*	-2.8	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	256	*	189	*		*	62.5	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.164	*	0.188	*		*	0.155	*
10028-17-8	Tritium	Т	pCi/L	906.0	-146	*	14.6	*		*	150	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		30.8			*	20.8	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.29	J	0.96	J		*	3.3	
s0586	Total Organic Halides	Т	mg/L	9020	0.0109		0.0069	*J		*	0.0215	

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number						8004-4806		8004-4807		8004-480)2
Facility's Loc	cal Well or Spring Number (e.g., N	MW−1	., MW-2, etc	:.)	391		392		393		394	
Sample Sequenc	ce #				1	1		1			1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA	NA			NA	
Sample Date ar	Sample Date and Time (Month/Day/Year hour: minutes)					9:58	4/14/2016	08:42	4/14/2016	09:18	4/18/2016 1	2:58
Duplicate ("Y'	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or	Split ("Y" or "N") ³						N		N		N	
Facility Sampl	le ID Number (if applicable)				MW391SG3	-16	MW392S0	G3-16	MW393S0	G3-16	MW394SG	3-16
Laboratory Sam	mple ID Number (if applicable)				39536700	1	395367	007	3953670	009	3955540	03
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	4/20/2016		4/20/2016		4/20/2016		4/21/201	6
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IDE, UNKNOWN)		DOWN		DOWN		V	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.451		0.59		0.192	J	0.61	
16887-00-6	Chloride(s)	Т	mg/L	9056	34.6		47		13.9		49	
16984-48-8	Fluoride	Т	mg/L	9056	0.152		0.199		0.149		0.115	
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.699		0.407	J	0.201	J	1.63	
14808-79-8	Sulfate	Т	mg/L	9056	121		5.9		15.2		9.84	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.14		30.14		30.14		30.31	
s0145	Specific Conductance	т	μ MH 0/cm	Field	588		411		407		406	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807		8004-4802	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-1	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	328.06		328.02		340.15		327.85	
N238	Dissolved Oxygen	Т	mg/L	Field	2.9		0.84		0.9		4.81	
s0266	Total Dissolved Solids	Т	mg/L	160.1	370		226		246		199	
s0296	PH	Т	Units	Field	6.22		6.31		6.32		6.16	
NS215	Eh	Т	mV	Field	576		776		573		484	
s0907	Temperature	Т	°C	Field	15.72		15.44		15.83		18.17	
7429-90-5	Aluminum	Т	mg/L	6020	0.706		0.0226	J	0.0323	J	0.0168	J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	0.00275	BJ	<0.005		0.00504	В	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.199		0.215		0.107		0.285	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.496		0.0271		0.0192		0.0223	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	44.1		28.1		11.4		29.5	
7440-47-3	Chromium	Т	mg/L	6020	0.00493	J	<0.01		<0.01		0.0037	J
7440-48-4	Cobalt	Т	mg/L	6020	0.00171		0.000193	J	<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00252		0.00035	J	0.000363	J	0.000498	J
7439-89-6	Iron	Т	mg/L	6020	5.51		0.165		1.63		0.291	
7439-92-1	Lead	Т	mg/L	6020	0.000819	J	<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	18.8		10.1		3.46		11.9	
7439-96-5	Manganese	Т	mg/L	6020	0.0732		0.0972		0.0419		0.0024	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-480	05	8004-48	06	8004-4807		8004-48)2
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	0.000535	В	0.000351	BJ	0.000281	BJ	0.000436	J
7440-02-0	Nickel	т	mg/L	6020	0.00275		0.00118	J	<0.002		0.0031	
7440-09-7	Potassium	т	mg/L	6020	1.85		1.82		0.389		1.61	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	50.8		42.5		78.7		31.8	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	0.000103	J	<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	0.00669	J	<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-480	5	8004-4806		8004-4807		8004-4802	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	l, MW-2, et	:c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	0.0004	J	0.00079	J	<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	0.00037	J	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00778		0.0183		<0.001		0.0043	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	6	8004-480)7	8004-48	02
Facility's Loc	cal Well or Spring Number (e.g., M	1W-1	l, MW-2, et	:c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000201		<0.0000198		<0.0000198		<0.0000195	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4805	5	8004-4806	6	8004-480	7	8004-4802	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	:c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.116	*	-1.4	*	-0.251	*	0.459	*
12587-47-2	Gross Beta	Т	pCi/L	9310	6.8	*	1.04	*	0.956	*	7.54	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.63	*	0.504	*	-0.0392	*	0.757	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-3.13	*	-0.642	*	-2.15	*	2.09	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-7.72	*	-6.38	*	0.56	*	15	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.261	*	-0.0208	*	0.134	*	0.147	*
10028-17-8	Tritium	Т	pCi/L	906.0	30.8	*	-30.7	*	-0.718	*	-4.03	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	18.3	J	35.8		<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.05	J	1.29	J	3.01		1.02	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00938	J	0.0294		0.0171		<0.01	

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-48	303	8004-48	17	0000-0000	
Facility's Loc	al Well or Spring Number (e.g., N	ſW−1	L, MW-2, etc	·)	395		396		397		E. BLAN	K
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)∈	ethod, or (E)	quipment	NA		NA		NA		Е	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		4/18/2016 11	1:28	4/18/2016	12:19	4/14/2016	12:28	4/13/2016 0	8:15
Duplicate ("Y"	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or	Split ("Y" or "N") ³						N		N		N	
Facility Sampl	Facility Sample ID Number (if applicable)						MW396S0	G3-16	MW397S0	G3-16	RI1SG3-1	16
Laboratory Sam	Laboratory Sample ID Number (if applicable)					1	395554	005	3953670	011	39523401	10
Date of Analys	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	4/21/2016 4/21/2016		16	4/20/2016		4/18/201	6	
Gradient with	respect to Monitored Unit (UP, DO	, NW	, SIDE, UNKN	OWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.628		1.27		0.436			*
16887-00-6	Chloride(s)	т	mg/L	9056	48.3		82.4		35.3			*
16984-48-8	Fluoride	т	mg/L	9056	0.101		0.469		0.133			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.57		<0.5		1.24			*
14808-79-8	Sulfate	т	mg/L	9056	9.73		22.1		9.61			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.31		30.31		30.13			*
s0145	Specific Conductance	т	μ MHO/cm	Field	399		775		323			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved ⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817		0000-0000	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-E	, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	328.26		373.67		327.98			*
N238	Dissolved Oxygen	Т	mg/L	Field	3.74		1.98		5.18			*
s0266	Total Dissolved Solids	Т	mg/L	160.1	224		423		167			*
s0296	рн	Т	Units	Field	6.47		6.52		6.29			*
NS215	Eh	Т	mV	Field	325		384		586			*
s0907	Temperature	т	°C	Field	16.94		18.83		16.78			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.0641		0.021	J	<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.276		0.401		0.165		<0.002	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0235		0.00562	J	0.00646	J	<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	27.6		35.7		18.1		<0.2	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.000819	J	<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000352	J	0.00247		<0.001		<0.001	
7439-89-6	Iron	Т	mg/L	6020	0.17		0.734		0.0465	J	<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	11.5		15.6		7.72		<0.03	
7439-96-5	Manganese	Т	mg/L	6020	0.00123	J	0.109		0.0013	J	<0.005	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	395		396		397		E. BLAN	1K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	0.000356	J	0.000515		<0.0005		<0.0005	
7440-02-0	Nickel	Т	mg/L	6020	0.0027		0.00234		0.000714	J	<0.002	
7440-09-7	Potassium	Т	mg/L	6020	1.68		0.885		1.53		<0.3	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	30.7		104		37.9		<0.25	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005	*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.000153	7	<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		0.00771	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480 ⁻	1	8004-480	03	8004-48	317	0000-00	000
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	l, MW-2, et	.c.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00423		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., M	1 W−1	1, MW-2, et	:c.)	395		396		397		E. BLAN	IK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000195		<0.0000196		<0.0000201		<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4801		8004-4803	3	8004-481	7	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	, MW-1	L, MW-2, et	:c.)	395		396		397		E. BLAN	K
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	0.784	*	-0.00936	*	-0.783	*	1.12	*
12587-47-2	Gross Beta	т	pCi/L	9310	6.43	*	2.89	*	10.2	*	2.22	*
10043-66-0	Todine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.13	*	0.239	*	-0.0439	*	0.234	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.32	*	3.53	*	0.287	*	-3.14	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	8.36	*	-7.52	*	7.44	*	0.09	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.0374	*	0.233	*	0.676	*	0.311	*
10028-17-8	Tritium	Т	pCi/L	906.0	-34.1	*	-42.3	*	-43.1	*	-86.1	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	30.8		28.3		<20			*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		0.0022	J	<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		0.521		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.02	J	6		0.931	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.00906	J	0.0808		0.00612	J		*

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management

Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			0000-000	00	0000-00	00	0000-000	00	0000-000)0	
Facility's Loc	cal Well or Spring Number (e.g., I	/IW-1	, MW-2, etc	:.)	F. BLAN	K	T. BLANI	< 1	T. BLAN	(2	T. BLANK	(3
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	F		Т		Т		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/13/2016 0	9:13	4/12/2016 (06:50	4/13/2016 0	8:10	4/14/2016 0	8:15
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				FB1SG3-	16	TB1SG3	-16	TB2SG3-	16	TB3SG3-	16
Laboratory Sam	mple ID Number (if applicable)		39523400	09	3951160	13	3952340	11	39536701	13		
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ysis	4/18/201	6	4/18/20	16	4/18/201	6	4/20/201	6		
Gradient with	respect to Monitored Unit (UP, Do	, NWC	SIDE, UNKN	OWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	Т	μMH0/cm	Field	_	*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved ⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		0000-000	0	0000-000	0	0000-0000)	0000-0000			
Facility's Lo	ocal Well or Spring Number (e.g., MW	/-1, i	MW-2, BLANK-	F, etc.)	F. BLAN	<	T. BLANK	1	T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рн	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	т	mg/L	6020	<0.002			*		*		*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	т	mg/L	6020	<0.001			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	Т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	Т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	Т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	0000-00	000	0000-00	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.	, MW-	·1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	IK 1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	Т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	Т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	Т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	Т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	Т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	Т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	Т	mg/L	6020	<0.01			*		*		*
7440-66-6	Zinc	Т	mg/L	6020	<0.01			*		*		*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000	0	0000-000	00	0000-00	000	0000-00	000
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	F. BLAN	(T. BLAN	< 1	T. BLAN	IK 2	T. BLAN	1K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	cal Well or Spring Number (e.g., M	IW-1	L, MW-2, et	:c.)	F. BLAN	(T. BLANK	1	T. BLAN	< 2	T. BLANI	К 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000199		<0.000199	*	<0.0000199		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-0000		0000-0000)	0000-000	0
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	F. BLANK	(T. BLANK 1		T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.86	*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	2.82	*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.323	*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-3.61	*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-2	*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.0453	*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0	-146	*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5			*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	8000-520	2	N			/
Facility's Loca	al Well or Spring Number (e.g., N	ſW−1	, MW-2, etc	:.)	T. BLANK	(4	221					
Sample Sequence	e #				1		2					$\overline{}$
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	Т		NA					/
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		4/18/2016 1	1:00	4/13/2016 0	9:10			/	
Duplicate ("Y"	or "N") ²				N		Υ					
Split ("Y" or	"N") ³				N		N		\	\		
Facility Sample	e ID Number (if applicable)				TB4SG3-	16	MW221DSG	3-16				
Laboratory Samp	poratory Sample ID Number (if applicable)						39523400	03				
Date of Analys:	e of Analysis (Month/Day/Year) For Volatile Organics Analysis						4/18/201	6				
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	NA		SIDE				X	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*	0.387		/			
16887-00-6	Chloride(s)	т	mg/L	9056		*	30.8		/			
16984-48-8						*	0.166					
s0595	Nitrate & Nitrite	Т	mg/L	9056		*	1.07					
14808-79-8	Sulfate	т	mg/L	9056		*	16.1		7			
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*	30.22					
s0145	Specific Conductance	т	μ MH0/cm	Field		*	411		/			

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

	01 (2)::::::::::::::::::::::::::::::::::::				1 00110						-	
AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	8000-520	2	\setminus			$\overline{}$
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1,	MW-2, BLANK-	F, etc.)	T. BLANK	4	221					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*	328.45				/	
N238	Dissolved Oxygen	т	mg/L	Field		*	4.41					
s0266	Total Dissolved Solids	т	mg/L	160.1		*	241				/	
s0296	рн	т	Units	Field		*	6.54					
NS215	Eh	т	mV	Field		*	485		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\		
s0907	Temperature	т	°C	Field		*	13.83					
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05			egthankowskip		
7440-36-0	Antimony	т	mg/L	6020		*	<0.003				/	
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005				X	
7440-39-3	Barium	т	mg/L	6020		*	0.227					
7440-41-7	Beryllium	Т	mg/L	6020		*	<0.0005			7		
7440-42-8	Boron	т	mg/L	6020		*	0.015			7		
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		/			
7440-70-2	Calcium	т	mg/L	6020		*	23.5					
7440-47-3	Chromium	Т	mg/L	6020		*	0.00524	J				
7440-48-4	Cobalt	т	mg/L	6020		*	0.000361	J				
7440-50-8	Copper	т	mg/L	6020		*	0.000831	J				
7439-89-6	Iron	т	mg/L	6020		*	0.121					\
7439-92-1	Lead	Т	mg/L	6020		*	<0.002					
7439-95-4	Magnesium	Т	mg/L	6020		*	9.77					
7439-96-5	Manganese	Т	mg/L	6020		*	0.00196	J				
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002					
	•	-										

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	GWA NUMBER ¹ , Facility Well/Spring Number						8000-52	.02	\			/
Facility's L	cility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)				T. BLANI	K 4	221					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	Т	mg/L	6020		*	0.0052	В				
7440-02-0	Nickel	Т	mg/L	6020		*	0.0378					
7440-09-7	Potassium	Т	mg/L	6020		*	1.3					
7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005		\			
7782-49-2	Selenium	Т	mg/L	6020		*	<0.005		\	\		
7440-22-4	Silver	Т	mg/L	6020		*	<0.001					
7440-23-5	Sodium	т	mg/L	6020		*	44.8					
7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005				/	
7440-28-0	Thallium	Т	mg/L	6020		*	0.000567	J				
7440-61-1	Uranium	Т	mg/L	6020		*	<0.0002					
7440-62-2	Vanadium	Т	mg/L	6020		*	<0.01					
7440-66-6	Zinc	Т	mg/L	6020		*	<0.01					
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		/			
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005					
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005					
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005					
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001					
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001					
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003					
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001					
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001					
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-0000)	8000-520	02	\			$\overline{}$		
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	.c.)	T. BLANK	4	221					$\overline{\mathcal{L}}$
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001				/	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001				/	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001				/	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		V			
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005					
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005					
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001					
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001				/	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001				X	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001					
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001					
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001					
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		,			
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		/			
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001					
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001					
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001					
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001					
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001					\
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001					$\sqrt{}$
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001					$\sqrt{}$
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		0.00045	J	/			

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number						8000-5202	2	Λ			
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						221					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR HQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001					
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005					
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005					
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001					
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001			\setminus		
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005					
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005					
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000202					
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001				X	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001					
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001					
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001					
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001					
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		/	1		
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001					
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001					
1336-36-3	PCB,Total	Т	ug/L	8082		*		*				
12674-11-2	PCB-1016	Т	ug/L	8082		*		*			V	\
11104-28-2	PCB-1221	Т	ug/L	8082		*		*				
11141-16-5	PCB-1232	Т	ug/L	8082		*		*	/			
53469-21-9	PCB-1242	Т	ug/L	8082		*		*				
12672-29-6	PCB-1248	т	ug/L	8082		*		*	/			

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				0000-000	0	8000-5202		\setminus			
Facility's Lo	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						221					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR POL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*				
11096-82-5	PCB-1260	Т	ug/L	8082		*		*				
11100-14-4	PCB-1268	Т	ug/L	8082		*		*				
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	1.38	*				
12587-47-2	Gross Beta	Т	pCi/L	9310		*	21.6	*				
10043-66-0	Iodine-131	Т	pCi/L			*		*				
13982-63-3	Radium-226	Т	pCi/L	HASL 300		*	0.443	*				
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	1.37	*		'		
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	43.8	*		/		
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	-0.0822	*				
10028-17-8	Tritium	Т	pCi/L	906.0		*	-81.7	*				
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*	<20					
57-12-5	Cyanide	Т	mg/L	9012		*	<0.2					
20461-54-5	Iodide	Т	mg/L	300.0		*	<0.5					
s0268	Total Organic Carbon	Т	mg/L	9060		*	1.09	J				
s0586	Total Organic Halides	Т	mg/L	9020		*	0.00698	*J				
											/	$\overline{}$
									/			

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5201 MW22	20 MW220SG3-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.68. Rad error is 2.67.
		Gross beta		TPU is 4.33. Rad error is 3.61.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.515. Rad error is 0.514.
		Strontium-90		TPU is 2.84. Rad error is 2.84.
		Technetium-99		TPU is 10.1. Rad error is 10.
		Thorium-230		TPU is 0.303. Rad error is 0.301.
		Tritium		TPU is 107. Rad error is 107.
		Total Organic Halides	Н	Analysis performed outside holding time requirement
8000-5202 MW22	21 MW221SG3-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.82. Rad error is 2.8.
		Gross beta		TPU is 5.24. Rad error is 3.88.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.28. Rad error is 0.28.
		Strontium-90		TPU is 2.79. Rad error is 2.77.
		Technetium-99		TPU is 12.1. Rad error is 11.8.
		Thorium-230		TPU is 0.278. Rad error is 0.277.
		Tritium		TPU is 89. Rad error is 89.
		Total Organic Halides	Н	Analysis performed outside holding time requirement

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5242 MW22	22 MW222SG3-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.63. Rad error is 2.62.
		Gross beta		TPU is 3.25. Rad error is 2.98.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.331. Rad error is 0.331.
		Strontium-90		TPU is 1.24. Rad error is 1.24.
		Technetium-99		TPU is 8.86. Rad error is 8.85.
		Thorium-230		TPU is 0.439. Rad error is 0.438.
		Tritium		TPU is 108. Rad error is 108.
		Total Organic Halides	Н	Analysis performed outside holding time requirement
8000-5243 MW2	23 MW223SG3-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 3.53. Rad error is 3.47.
		Gross beta		TPU is 5.13. Rad error is 4.11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.251. Rad error is 0.251.
		Strontium-90		TPU is 2.21. Rad error is 2.21.
		Technetium-99		TPU is 9.6. Rad error is 9.55.
		Thorium-230		TPU is 0.542. Rad error is 0.535.
		Tritium		TPU is 118. Rad error is 118.
		Total Organic Halides	Н	Analysis performed outside holding time requirement

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

	Facility Sample ID	Constituent	Flag	Description
8000-5244 MW224 MV	V224SG3-16	Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 1.69. Rad error is 1.69.
		Gross beta		TPU is 2.44. Rad error is 2.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.558. Rad error is 0.558.
		Strontium-90		TPU is 4.42. Rad error is 4.35.
		Technetium-99		TPU is 7.97. Rad error is 7.97.
		Thorium-230		TPU is 0.373. Rad error is 0.368.
		Tritium		TPU is 123. Rad error is 123.
3004-4820 MW369 MV	V369UG3-16	Beryllium	N	Sample spike recovery not within control limits.
		Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.21. Rad error is 2.21.
		Gross beta		TPU is 3.88. Rad error is 3.41.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.603. Rad error is 0.602.
		Strontium-90		TPU is 3.73. Rad error is 3.72.
		Technetium-99		TPU is 8.96. Rad error is 8.84.
		Thorium-230		TPU is 0.431. Rad error is 0.425.
		Tritium		TPU is 134. Rad error is 134.
3004-4818 MW370 MV	V370UG3-16	Beryllium	N	Sample spike recovery not within control limits.
		Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.24. Rad error is 2.24.
		Gross beta		TPU is 9.37. Rad error is 4.88.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.504. Rad error is 0.503.
		Strontium-90		TPU is 2.06. Rad error is 2.06.
		Technetium-99		TPU is 15.4. Rad error is 11.5.
		Thorium-230		TPU is 0.393. Rad error is 0.39.
		Tritium		TPU is 129. Rad error is 129.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4808 MW372	MW372UG3-16	Beryllium	N	Sample spike recovery not within control limits.
		Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 1.66. Rad error is 1.66.
		Gross beta		TPU is 2.35. Rad error is 2.25.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.577. Rad error is 0.576.
		Strontium-90		TPU is 3.24. Rad error is 3.24.
		Technetium-99		TPU is 10.8. Rad error is 10.8.
		Thorium-230		TPU is 0.579. Rad error is 0.572.
		Tritium		TPU is 131. Rad error is 131.
3004-4792 MW373	MW373UG3-16	Beryllium	N	Sample spike recovery not within control limits.
		Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 3.73. Rad error is 3.61.
		Gross beta		TPU is 6.43. Rad error is 4.29.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.351. Rad error is 0.35.
		Strontium-90		TPU is 2.09. Rad error is 2.09.
		Technetium-99		TPU is 11.6. Rad error is 11.1.
		Thorium-230		TPU is 0.418. Rad error is 0.413.
		Tritium		TPU is 123. Rad error is 123.
004-4809 MW384	MW384SG3-16	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		TPU is 2.35. Rad error is 2.35.
		Gross beta		TPU is 17.4. Rad error is 7.61.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.41. Rad error is 0.41.
		Strontium-90		TPU is 3.53. Rad error is 3.53.
		Technetium-99		TPU is 22.8. Rad error is 14.2.
		Thorium-230		TPU is 0.508. Rad error is 0.496.
		Tritium		TPU is 109. Rad error is 109.
		Total Organic Halides	Н	Analysis performed outside holding time requirement

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4810 MW38	35 MW385SG3-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 3.6. Rad error is 3.48.
		Gross beta		TPU is 25.5. Rad error is 9.34.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.331. Rad error is 0.331.
		Strontium-90		TPU is 2.55. Rad error is 2.51.
		Technetium-99		TPU is 30.1. Rad error is 15.7.
		Thorium-230		TPU is 0.402. Rad error is 0.397.
		Tritium		TPU is 114. Rad error is 114.
		Total Organic Halides	Н	Analysis performed outside holding time requirement
8004-4804 MW38	36 MW386SG3-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.42. Rad error is 2.41.
		Gross beta		TPU is 2.82. Rad error is 2.77.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.19. Rad error is 0.19.
		Strontium-90		TPU is 1.59. Rad error is 1.59.
		Technetium-99		TPU is 10.4. Rad error is 10.4.
		Thorium-230		TPU is 0.525. Rad error is 0.518.
		Tritium		TPU is 116. Rad error is 116.
		Total Organic Halides	Н	Analysis performed outside holding time requirement

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4815 MW387	7 MW387SG3-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.95. Rad error is 2.92.
		Gross beta		TPU is 29.1. Rad error is 11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.628. Rad error is 0.627.
		Strontium-90		TPU is 2.76. Rad error is 2.76.
		Technetium-99		TPU is 32.6. Rad error is 16.
		Thorium-230		TPU is 0.316. Rad error is 0.316.
		Tritium		TPU is 109. Rad error is 109.
3004-4816 MW388	8 MW388SG3-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 3.79. Rad error is 3.65.
		Gross beta		TPU is 21. Rad error is 8.47.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.371. Rad error is 0.37.
		Strontium-90		TPU is 2.26. Rad error is 2.26.
		Technetium-99		TPU is 25.8. Rad error is 15.
		Thorium-230		TPU is 0.392. Rad error is 0.387.
		Tritium		TPU is 91.2. Rad error is 91.2.
		Total Organic Halides	Н	Analysis performed outside holding time requirement

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well was dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well was dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample wa collected.
		pH		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample was collected.
		Temperature		During sampling, the well was dry; therefore, no sample was collected.
		Aluminum		During sampling, the well was dry; therefore, no sample was collected.
		Antimony		During sampling, the well was dry; therefore, no sample was collected.
		Arsenic		During sampling, the well was dry; therefore, no sample w collected.
		Barium		During sampling, the well was dry; therefore, no sample w collected.
		Beryllium		During sampling, the well was dry; therefore, no sample w collected.
		Boron		During sampling, the well was dry; therefore, no sample was collected.
		Cadmium		During sampling, the well was dry; therefore, no sample was collected.
		Calcium		During sampling, the well was dry; therefore, no sample was collected.
		Chromium		During sampling, the well was dry; therefore, no sample was collected.
		Cobalt		During sampling, the well was dry; therefore, no sample was collected.
		Copper		During sampling, the well was dry; therefore, no sample was collected.
		Iron		During sampling, the well was dry; therefore, no sample was collected.
		Lead		During sampling, the well was dry; therefore, no sample was collected.
		Magnesium		During sampling, the well was dry; therefore, no sample was collected.
		Manganese		During sampling, the well was dry; therefore, no sample was collected.
		Mercury		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample wa collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample wa collected.
		Selenium		During sampling, the well was dry; therefore, no sample was collected.
		Silver		During sampling, the well was dry; therefore, no sample was collected.
		Sodium		During sampling, the well was dry; therefore, no sample was collected.
		Tantalum		During sampling, the well was dry; therefore, no sample was collected.
		Thallium		During sampling, the well was dry; therefore, no sample wa collected.
		Uranium		During sampling, the well was dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well was dry; therefore, no sample was collected.
		Zinc		During sampling, the well was dry; therefore, no sample w collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample was collected.
		Gross beta		During sampling, the well was dry; therefore, no sample was collected.
		lodine-131		During sampling, the well was dry; therefore, no sample was collected.
		Radium-226		During sampling, the well was dry; therefore, no sample w collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample w collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample was collected.
		Tritium		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample was collected.
		Cyanide		During sampling, the well was dry; therefore, no sample was collected.
		lodide		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample was collected.
3004-4811 MW39	00 MW390SG3-16	Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.64. Rad error is 2.63.
		Gross beta		TPU is 9.04. Rad error is 5.74.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.512. Rad error is 0.511.
		Strontium-90		TPU is 2.16. Rad error is 2.16.
		Technetium-99		TPU is 14.7. Rad error is 12.9.
		Thorium-230		TPU is 0.481. Rad error is 0.478.
		Tritium		TPU is 156. Rad error is 153.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4805 MW391	MW391SG3-16	Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.01. Rad error is 2.01.
		Gross beta		TPU is 3.08. Rad error is 2.88.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.466. Rad error is 0.465.
		Strontium-90		TPU is 2.74. Rad error is 2.74.
		Technetium-99		TPU is 9.77. Rad error is 9.77.
		Thorium-230		TPU is 0.43. Rad error is 0.424.
		Tritium		TPU is 135. Rad error is 135.
3004-4806 MW392	MW392SG3-16	Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 1.54. Rad error is 1.54.
		Gross beta		TPU is 1.97. Rad error is 1.96.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.481. Rad error is 0.481.
		Strontium-90		TPU is 3.1. Rad error is 3.1.
		Technetium-99		TPU is 8.33. Rad error is 8.33.
		Thorium-230		TPU is 0.34. Rad error is 0.339.
		Tritium		TPU is 127. Rad error is 127.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitorir Point	ng Facility Sample ID	Constituent	Flag	Description
8004-4807	MW393 MW393SG3-16	Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.16. Rad error is 2.16.
		Gross beta		TPU is 1.86. Rad error is 1.85.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.173. Rad error is 0.173.
		Strontium-90		TPU is 1.84. Rad error is 1.84.
		Technetium-99		TPU is 9.14. Rad error is 9.14.
		Thorium-230		TPU is 0.386. Rad error is 0.382.
		Tritium		TPU is 130. Rad error is 130.
8004-4802	MW394 MW394SG3-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 0.825. Rad error is 0.821.
		Gross beta		TPU is 1.78. Rad error is 1.28.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.507. Rad error is 0.507.
		Strontium-90		TPU is 3.33. Rad error is 3.32.
		Technetium-99		TPU is 10.5. Rad error is 10.3.
		Thorium-230		TPU is 0.362. Rad error is 0.358.
		Tritium		TPU is 127. Rad error is 127.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

•	Facility Sample ID	Constituent	Flag	Description
004-4801 MW395 MV	N395SG3-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.37. Rad error is 2.37.
		Gross beta		TPU is 3.28. Rad error is 3.11.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.342. Rad error is 0.342.
		Strontium-90		TPU is 3.41. Rad error is 3.39.
		Technetium-99		TPU is 9.46. Rad error is 9.41.
		Thorium-230		TPU is 0.279. Rad error is 0.278.
		Tritium		TPU is 123. Rad error is 123.
004-4803 MW396 MV	W396SG3-16	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		TPU is 1.14. Rad error is 1.14.
		Gross beta		TPU is 1.02. Rad error is 0.891.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.445. Rad error is 0.444.
		Strontium-90		TPU is 4.73. Rad error is 4.69.
		Technetium-99		TPU is 9.86. Rad error is 9.86.
		Thorium-230		TPU is 0.357. Rad error is 0.352.
		Tritium		TPU is 127. Rad error is 127.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4817 MW39	97 MW397SG3-16	Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.15. Rad error is 2.15.
		Gross beta		TPU is 4.64. Rad error is 4.32.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.381. Rad error is 0.381.
		Strontium-90		TPU is 2.68. Rad error is 2.68.
		Technetium-99		TPU is 9.11. Rad error is 9.07.
		Thorium-230		TPU is 0.65. Rad error is 0.635.
		Tritium		TPU is 126. Rad error is 126.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG3-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.17. Rad error is 2.16.
		Gross beta		TPU is 2.95. Rad error is 2.92.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.347. Rad error is 0.347.
		Strontium-90		TPU is 2.35. Rad error is 2.35.
		Technetium-99		TPU is 10.9. Rad error is 10.9.
		Thorium-230		TPU is 0.46. Rad error is 0.453.
		Tritium		TPU is 119. Rad error is 119.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG3-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.35. Rad error is 2.3.
		Gross beta		TPU is 2.72. Rad error is 2.68.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.381. Rad error is 0.38.
		Strontium-90		TPU is 2.5. Rad error is 2.5.
		Technetium-99		TPU is 8.96. Rad error is 8.96.
		Thorium-230		TPU is 0.297. Rad error is 0.296.
		Tritium		TPU is 109. Rad error is 109.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG3-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed	
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG3-16	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG3-16	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG3-16	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG3-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.	
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG3-16	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4SG3-16	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4SG3-16	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5202 MW221	MW221DSG3-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.5. Rad error is 2.49.
		Gross beta		TPU is 5.52. Rad error is 4.26.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.385. Rad error is 0.385.
		Strontium-90		TPU is 2.89. Rad error is 2.88.
		Technetium-99		TPU is 12.8. Rad error is 11.8.
		Thorium-230		TPU is 0.359. Rad error is 0.359.
		Tritium		TPU is 116. Rad error is 116.
		Total Organic Halides	Н	Analysis performed outside holding time requirement

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/INERT—QUARTERLY, 2nd CY 2016

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-980-008-982/1</u>

Lab ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the second quarter 2016 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The second quarter 2016 data used to conduct the statistical analyses were collected in April 2016. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that exceeded the historical background using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the

current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be lognormally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

lower $TL = X - (K \times S)$

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, second quarter 2016. The observations are representative of the current quarter data. Background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Groundwater
		Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
$MW390^1$	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

¹NOTE: The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters Aluminum Beta Activity Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride cis-1,2-Dichloroethene Cobalt Conductivity Copper Cyanide Dissolved Oxygen **Dissolved Solids** Iodide Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium

Sodium Sulfate

Radium-226

Technetium-99

Tetrachloroethene

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

Trichloroethene

Uranium

Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	1	3	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Boron	4	1	3	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	1	3	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	1	3	Yes
Conductivity	4	0	4	Yes
Copper	4	0	4	Yes
Cyanide	4	3	1	Yes
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No
Iodide	4	3	1	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	1	3	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	2	2	Yes
Nickel	4	1	3	Yes
Oxidation-Reduction Potential	4	0	4	Yes
pН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	3	1	Yes
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Uranium	4	1	3	Yes
Vanadium	4	4	0	No
Vinyl Acetate	4	4	0	No
Zinc	4	4	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	6	5	Yes
Antimony	11	11	0	No
Aroclor-1268	2	2	0	No
Beryllium	11	11	0	No
Beta Activity	11	1	10	Yes
Boron	11	3	8	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	6	5	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	9	2	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	3	8	Yes
Conductivity	11	0	11	Yes
Copper	11	0	11	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Solids	11	0	11	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Ethylbenzene	11	11	0	No
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	2	9	Yes
Magnesium	11	0	11	Yes
Manganese	11	1	10	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	6	5	Yes
Nickel	11	1	10	Yes
Oxidation-Reduction Potential	11	0	11	Yes
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	3	8	Yes
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	8	3	Yes
Tetrachloroethene	11	10	1	Yes
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	1	10	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	4	7	Yes
Trichlorofluoromethane	11	11	0	No
Uranium	11	10	1	Yes
Vanadium	11	11	0	No
Vinyl Acetate	11	11	0	No
Zinc	11	8	3	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	4	3	Yes
Antimony	7	7	0	No
Aroclor-1268	2	2	0	No
Beryllium	7	7	0	No
Beta Activity	7	1	6	Yes
Boron	7	2	5	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	4	3	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
	7	6		Yes
cis-1,2-Dichloroethene	7	7	1	
cis-1,3-Dichloropropene	7	5	0 2	No
Cobalt				Yes
Connectivity	7 7	0	7	Yes
Copper	7	7	6	Yes No
Cyanide	7	7	0	
Dibromochloromethane Dibromochloromethane	7	7		No
Dibromomethane Dimethallograms Tatal			0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iron	7	3	4	Yes
Magnesium	7	0	7	Yes
Manganese	7	1	6	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	5	2	Yes
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	6	1	Yes
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	3	4	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	0	7	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	1	6	Yes
Trichlorofluoromethane	7	7	0	No
Uranium	7	7	0	No
Vanadium	7	7	0	No
Vinyl Acetate	7	7	0	No
Zinc	7	7	0	No

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 28, 33, and 28 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background UTL for oxidation-reduction potential, radium-226, and technetium-99.

<u>URGA</u>

This quarter's results identified exceedances of historical background UTL for aluminum, beta activity, calcium, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, pH, radium-226, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: Oxidation-reduction potential, radium-226, sulfate	MW370: Oxidation-reduction potential, pH, radium-226, sulfate, technetium-99
MW390: Oxidation-reduction potential, radium-226, technetium-99	MW221: Oxidation-reduction potential, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, pH, sulfate
MW393: Oxidation-reduction potential	MW223: Oxidation-reduction potential, sulfate	MW385: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW224: Oxidation-reduction potential, radium-226	MW388: Beta activity, oxidation-reduction potential, sulfate, technetium-99
	MW369: Radium-226, sodium	MW392: Oxidation-reduction potential
	MW372: Calcium, dissolved solids, magnesium, radium-226, sulfate	MW395: Oxidation-reduction potential
	MW384: Beta activity, oxidation-reduction potential, sulfate, technetium-99	MW397: Oxidation-reduction potential
	MW387: Beta activity, dissolved solids, oxidation-reduction potential, radium-226, sulfate, technetium-99	
	MW391: Aluminum, calcium, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate	
	MW394: Oxidation-reduction potential, radium-226	

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Cyanide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	1.78	Current results exceed statistically derived historical background concentration in MW390.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentration in MW391.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentration in MW384 and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentration in MW372 and MW391.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372, MW387, and MW391.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW391.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220, MW221, MW223, MW224, MW384, MW387, MW391, and MW394.
pH	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.6	Current results exceed statistically derived historical background concentration in MW220, MW224, MW369, MW372, MW387, MW391, and MW394.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW369.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW220, MW223, MW372, MW384, MW387, and MW391.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW221, MW384, and MW387.
Tetrachloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.44	No exceedance of statistically derived historical background concentration.
Zinc CV: coefficient of variation	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

¹ Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW385 and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.52	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.52	Current results exceed statistically derived historical background concentration in MW373.
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation

^{*}If CV > 1.0, used log-transformed data.

Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW385, MW388, MW392, MW395, and MW397.
рН	Tolerance Interval	0.04	Current results exceed statistically derived historical background concentration in MW370 and MW373
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.7	Current results exceed statistically derived historical background concentration in MW370.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.81	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2 and the statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 10, and 10 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10, presented by well number.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW369: Sodium	MW370: pH, sulfate, technetium-99
MW372: Calcium, magnesium, sulfate	MW373: Calcium, conductivity, dissolved solids, magnesium, pH, sulfate
MW387: Beta activity, technetium-99	MW388: Beta activity, sulfate, technetium-99
MW391: Aluminum, calcium, magnesium, sulfate	MW392: Oxidation-reduction potential

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted, however, that the technetium-99 concentration in one UCRS well (i.e., MW390) was higher than the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for aluminum, beta activity, calcium, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, pH, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.44	No exceedance of statistically derived current background concentration.
Radium-226	Tolerance Interval	0.57	No exceedance of statistically derived current background concentration.
Technetium-99	Tolerance Interval	4.06	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill. However, technetium-99 concentrations exceeded the TL calculated using current background data in MW390.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.89	Current results exceed statistically derived current background concentration in MW391.
Beta Activity	Tolerance Interval	0.53	Current results exceed statistically derived current background concentration in MW384 and MW387.
Calcium	Tolerance Interval	0.15	Current results exceed statistically derived current background concentration in MW372 and MW391.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived current background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived current background concentration in MW372 and MW391.
Oxidation-Reduction Potential	Tolerance Interval	0.26	No exceedance of statistically derived current background concentration.
Radium-226	Tolerance Interval	1.05	No exceedance of statistically derived current background concentration.
Sodium	Tolerance Interval	0.14	Current results exceed statistically derived current background concentration in MW369.
Sulfate	Tolerance Interval	0.27	Current results exceed statistically derived current background concentration in MW372 and MW391.
Technetium-99	Tolerance Interval	0.69	Current results exceed statistically derived current background concentration in MW221, MW384, and MW387.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.73	Current results exceed statistically derived current background concentration in MW385 and MW388.
Calcium	um Tolerance Interval		Current results exceed statistically derived current background concentration in MW373.
Conductivity	Tolerance Interval	0.08	Current results exceed statistically derived current background concentration in MW373.
Dissolved Solids	Tolerance Interval	0.14	Current results exceed statistically derived current background concentration in MW373.
Magnesium	Tolerance Interval	0.19	Current results exceed statistically derived current background concentration in MW373.
Oxidation-Reduction Potential	Tolerance Interval	0.22	Current results exceed statistically derived current background concentration in MW392.
pH	Tolerance Interval	0.02	Current results exceed statistically derived current background concentration in MW370 and MW373.
Radium-226	Tolerance Interval	0.82	No exceedance of statistically derived current background concentration.
Sulfate	Tolerance Interval	0.08	Current results exceed statistically derived current background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.35	Current results exceed statistically derived current background concentration in MW370, MW385, and MW388.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.320

CV(1) = 0.567

K factor=** 3.188

TL(1)= 0.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.259 S = 0.503

CV(2) = -0.400

K factor**= 3.188

TL(2) = 0.345

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.393 -0.934 9/16/2002 0.2 -1.60910/16/2002 0.2 -1.6091/13/2003 0.501 -0.691-1.609 4/8/2003 0.2 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/14/2004 0.668 -0.403

Dry/Partially Dry Wells

Well No. Gradient

S = 0.182

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A
MW390	Downgradien	t Yes	0.0664	NO	-2.712	N/A
MW393	Downgradien	t Yes	0.0323	NO	-3.433	N/A
MW396	Upgradient	Yes	0.0641	NO	-2.747	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

 $S= 0.833 \quad CV(1)=1.282$

K factor**= 3.188

TL(1)= 3.306

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.066

CV(2) = -1.031

K factor=** 3.188

TL(2) = 2.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396		
Date Collected	Result	LN(Result)	
8/13/2002	2	0.693	
9/16/2002	2	0.693	
10/16/2002	0.2	-1.609	
1/13/2003	0.2	-1.609	
4/8/2003	0.2	-1.609	
7/16/2003	0.2	-1.609	
10/14/2003	0.2	-1.609	
1/14/2004	0.2	-1.609	

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.015	N/A	-4.200	N/A	
MW390	Downgradien	t Yes	0.00865	N/A	-4.750	NO	
MW393	Downgradien	t Yes	0.0192	N/A	-3.953	NO	
MW396	Upgradient	Yes	0.00562	N/A	-5.181	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.388

CV(1)=0.236

K factor=** 3.188

TL(1) = 2.430

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.301

S = 0.252

S = 0.327

CV(2) = 0.838

K factor**= 3.188

TL(2) = 1.105

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.405 1.5 9/16/2002 1.6 0.470 1.6 10/16/2002 0.470 1/13/2003 1 0.000 1 0.000 4/8/2003 7/16/2003 1 0.000 10/14/2003 1.7 0.531 1/14/2004 1.7 0.531

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

MW396 Upgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

0.239

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.142	NO	-1.952	N/A		
MW390	Downgradien	t Yes	0.656	NO	-0.422	N/A		
MW393	Downgradien	t Yes	0.192	NO	-1.650	N/A		

NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

1.27

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.825 S = 8.445 CV(1) = 0.202

K factor=** 3.188

TL(1) = 68.748

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.711 S = 0.241

CV(2) = 0.065

K factor=** 3.188

TL(2) = 4.479

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396				
Date Collected	Result	LN(Result)			
8/13/2002	38.4	3.648			
9/16/2002	42.9	3.759			
10/16/2002	40.2	3.694			
1/13/2003	46.7	3.844			
4/8/2003	49.8	3.908			
7/16/2003	43.3	3.768			
10/14/2003	49.7	3.906			
1/14/2004	23.6	3.161			

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	21.8	NO	3.082	N/A		
MW390	Downgradien	t Yes	32.4	NO	3.478	N/A		
MW393	Downgradien	t Yes	11.4	NO	2.434	N/A		
MW396	Upgradient	Yes	35.7	NO	3.575	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.375 S = 0.744

CV(1)=0.021

K factor=** 3.188

TL(1) = 37.747

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.566

S = 0.021

CV(2) = 0.006

K factor**= 3.188

TL(2) = 3.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:		MW396				
Date Collected		Result	LN(Result)			
	8/13/2002	36	3.584			
	9/16/2002	35	3.555			
	10/16/2002	37	3.611			
	1/13/2003	35	3.555			
	4/8/2003	35	3.555			
	7/16/2003	35	3.555			
	10/14/2003	35	3.555			
	1/14/2004	35	3.555			

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	13.9	NO	2.632	N/A	
MW390	Downgradien	t Yes	20.8	NO	3.035	N/A	
MW393	Downgradien	t No	20	N/A	2.996	N/A	
MW396	Upgradient	Yes	28.3	NO	3.343	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Chloride

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 101.725 S = 5.245

CV(1)=0.052

K factor=** 3.188

TL(1)= 118.447 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.621S = 0.053

CV(2) = 0.011

K factor**= 3.188

TL(2) = 4.789

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 91.6 4.517 9/16/2002 98.3 4.588 10/16/2002 101.4 4.619 1/13/2003 108.3 4.685 100.5 4/8/2003 4.610 7/16/2003 102.5 4.630 10/14/2003 106.8 4.671 1/14/2004 104.4 4.648

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	14.1	NO	2.646	N/A		
MW390	Downgradien	t Yes	70.8	NO	4.260	N/A		
MW393	Downgradien	t Yes	13.9	NO	2.632	N/A		
MW396	Ungradient	Yes	82.4	NO	4 412	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-8

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.008

S= 0.011 **CV(1)**=1.340

K factor**= 3.188

TL(1) = 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.645 S = 1.339

CV(2) = -0.237

K factor**= 3.188

TL(2) = -1.377

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW386	Sidegradient	Yes	0.00086	7 N/A	-7.050	NO				
MW390	Downgradien	t Yes	0.00018	1 N/A	-8.617	NO				
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A				
MW396	Upgradient	Yes	0.00081	9 N/A	-7.107	NO				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 922.500 S = 107.616 CV(1) = 0.117

K factor=** 3.188

TL(1)= 1265.579 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.822 S = 0.111 CV(2) = 0.016

K factor=** 3.188

TL(2) = 7.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 784 6.664 9/30/2002 871 6.770 10/16/2002 868 6.766 1/13/2003 912 6.816 4/8/2003 942 6.848 7/16/2003 910 6.813 10/14/2003 935 6.841 7.054 1/14/2004 1158

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data											
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)					
MW386	Sidegradient	Yes	597	NO	6.392	N/A					
MW390	Downgradien	t Yes	707	NO	6.561	N/A					
MW393	Downgradien	t Yes	407	NO	6.009	N/A					
MW396	Upgradient	Yes	775	NO	6.653	N/A					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

S= 0.014 **CV(1)**=0.481

K factor**= 3.188

TL(1) = 0.072

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.650 S = 0.414

CV(2) = -0.113

K factor=** 3.188

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.99610/16/2002 0.026 -3.6501/13/2003 0.02 -3.912 0.02 -3.912 4/8/2003 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 1/14/2004 0.02 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	C	urre	nt	Qu	arte	r D	ata
•				~	٠		

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00113	NO	-6.786	N/A
MW390	Downgradien	t Yes	0.00059	5 NO	-7.427	N/A
MW393	Downgradien	t Yes	0.00036	3 NO	-7.921	N/A
MW396	Upgradient	Yes	0.00247	NO	-6.004	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Cyanide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.020

 $S= 0.000 \quad CV(1)=0.000$

K factor=** 3.188

TL(1)= 0.020

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.912 S = 0.000

CV(2) = 0.000

K factor**= 3.188

TL(2) = -3.912

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.02 -3.912 9/16/2002 0.02 -3.912-3.912 10/16/2002 0.02 1/13/2003 0.02 -3.912 0.02 -3.912 4/8/2003 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/14/2004 0.02

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW386	Sidegradient	No	0.2	N/A	-1.609	N/A				
MW390	Downgradien	t No	0.2	N/A	-1.609	N/A				
MW393	Downgradien	t No	0.2	N/A	-1.609	N/A				
MW396	Upgradient	Yes	0.0022	NO	-6.119	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 1.395

CV(1) = 1.202

K factor**= 3.188

TL(1) = 6.743

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.043 S = 0.814

S = 1.677

.814 **CV(2)**=-18.867

K factor=** 3.188

TL(2) = 2.553

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 1.696 5.45 9/16/2002 0.4 -0.91610/16/2002 0.54 -0.6161/13/2003 0.72 -0.3294/8/2003 0.69 -0.3717/16/2003 1.1 0.095 10/14/2003 0.71 -0.3421/14/2004 1.55 0.438

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW386	Sidegradient	Yes	3.42	N/A	1.230	NO				
MW390	Downgradien	t Yes	5.44	N/A	1.694	NO				
MW393	Downgradien	t Yes	0.9	N/A	-0.105	NO				
MW396	Upgradient	Yes	1.98	N/A	0.683	NO				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

K factor**= 3.188 **TL(1)**

TL(1)= 882.980 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.298 S = 0.162 CV(2)

CV(2) = 0.026

K factor**= 3.188

TL(2) = 6.815

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data											
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)					
MW386	Sidegradient	Yes	410	NO	6.016	N/A					
MW390	Downgradien	t Yes	401	NO	5.994	N/A					
MW393	Downgradien	t Yes	246	NO	5.505	N/A					
MW396	Upgradient	Yes	423	NO	6.047	N/A					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.150

CV(1)=0.132

K factor**= 3.188

TL(1)= 3.052

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.759

S = 0.283S = 0.123

CV(2) = 0.162

K factor**= 3.188

TL(2)=1.150

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.693 9/16/2002 2 0.693 2 10/16/2002 0.693 1/13/2003 2 0.693 2 4/8/2003 0.693 7/16/2003 2.7 0.993 10/14/2003 2.5 0.916 1/14/2004 2 0.693

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A				
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A				
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A				
MW396	Upgradient	Yes	0.521	NO	-0.652	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.796

CV(1)=0.478

K factor=** 3.188

TL(1)= 19.666

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.880

S = 0.723 CV(2) = 0.384

K factor=** 3.188

TL(2) = 4.184

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 1.8 0.588 9/16/2002 9.53 2.254 10/16/2002 7.43 2.006 1/13/2003 9.93 2.296 4/8/2003 10.2 2.322 7/16/2003 9.16 2.215 10/14/2003 11.9 2.477 1/14/2004 2.42 0.884

Dry/Partially Dry Wells

Well No. Gradient

S = 3.723

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL
MW386	Sidegradient	Yes	0.384	NO	-0.957	N/A
MW390	Downgradien	t Yes	0.0834	NO	-2.484	N/A
MW393	Downgradien	t Yes	1.63	NO	0.489	N/A
MW396	Upgradient	Yes	0.734	NO	-0.309	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 16.876 S = 3.313

CV(1)=0.196

K factor=** 3.188

TL(1)= 27.438

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.804

S = 0.240

CV(2) = 0.086

K factor**= 3.188

TL(2)= 3.569

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 15.5 2.741 9/16/2002 17.3 2.851 10/16/2002 17.8 2.879 1/13/2003 19.2 2.955 4/8/2003 17.8 2.879 7/16/2003 17.8 2.879 10/14/2003 20.2 3.006 1/14/2004 9.41 2.242

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW386	Sidegradient	Yes	9.12	NO	2.210	N/A				
MW390	Downgradien	t Yes	13.2	NO	2.580	N/A				
MW393	Downgradien	t Yes	3.46	NO	1.241	N/A				
MW396	Upgradient	Yes	15.6	NO	2.747	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.774

CV(1)=0.456

K factor**= 3.188

TL(1)= 1.900

LL(1)=N/A

Statistics-Transformed Background Data

X= -0.566 **S**= 1.192

S = 0.353

CV(2) = -2.105

K factor**= 3.188

TL(2) = 3.235

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.57 -0.5629/16/2002 0.647 -0.43510/16/2002 0.88 -0.1281/13/2003 1.132 0.124 -0.036 4/8/2003 0.965 7/16/2003 0.983 -0.01710/14/2003 0.984 -0.016 1/14/2004 0.0314 -3.461

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

MW396 Upgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

-2.216

N/A

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW386	Sidegradient	Yes	0.0911	NO	-2.396	N/A				
MW390	Downgradien	t No	0.005	N/A	-5.298	N/A				
MW393	Downgradien	t Yes	0.0419	NO	-3.172	N/A				

NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

0.109

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

 $S= 0.011 \quad CV(1)=1.507$

K factor=** 3.188

TL(1) = 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.928 S = 1.420

CV(2) = -0.240

K factor**= 3.188

TL(2) = -1.400

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.68910/16/2002 0.001 -6.9081/13/2003 0.00128 -6.661 0.00271 -5.911 4/8/2003 7/16/2003 0.00117 -6.75110/14/2003 0.001 -6.908 1/14/2004 0.001 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data	
Wall No	Gradiant		Doto

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00066	62 N/A	-7.320	NO
MW390	Downgradien	t No	0.00057	3 N/A	-7.465	N/A
MW393	Downgradien	t No	0.00028	1 N/A	-8.177	N/A
MW396	Upgradient	Yes	0.00051	5 N/A	-7.571	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Nickel**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

S = 0.021CV(1) = 1.272 **K factor**=** 3.188

TL(1) = 0.083

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.706 S = 1.057

CV(2) = -0.225

K factor**= 3.188

TL(2) = -1.338

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW386	Sidegradient	Yes	0.00148	N/A	-6.516	NO				
MW390	Downgradien	t Yes	0.00131	N/A	-6.638	NO				
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A				
MW396	Upgradient	Yes	0.00234	N/A	-6.058	NO				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-20

C-746-S/T Second Quarter 2016 Statistical Analysis **Historical Background Comparison UCRS Oxidation-Reduction Potential UNITS:** mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.000 S = 61.952 CV(1) = 4.766

K factor=** 3.188

TL(1)= 210.502 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.364

S = 0.333

CV(2) = 0.076

K factor**= 3.188

TL(2) = 4.736

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW386	Sidegradient	Yes	428	N/A	6.059	YES				
MW390	Downgradien	t Yes	607	N/A	6.409	YES				
MW393	Downgradien	t Yes	573	N/A	6.351	YES				
MW396	Upgradient	Yes	384	N/A	5.951	YES				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390 MW393

MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-21

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison pН **UNITS: Std Unit**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.460

CV(1)=0.054

K factor=** 3.736

TL(1) = 7.766

LL(1)=5.1541

Statistics-Transformed Background Data

X = 1.864S = 0.054

S = 0.350

CV(2) = 0.029

K factor=** 3.736

TL(2) = 2.067

LL(2)=1.6621

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 6.17 1.820 9/16/2002 6.4 1.856 5.9 10/16/2002 1.775 1/13/2003 6.4 1.856 4/8/2003 6.65 1.895 7/16/2003 6.4 1.856 10/14/2003 1.904 6.71 1/14/2004 7.05 1.953

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>` ,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	` ,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	7.07	NO	1.956	N/A
MW390	Downgradien	t Yes	6.43	NO	1.861	N/A
MW393	Downgradien	t Yes	6.32	NO	1.844	N/A
MW396	Upgradient	Yes	6.52	NO	1.875	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-22

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.411

CV(1)=0.282

K factor**= 3.188

TL(1)= 2.682

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.311

S = 0.271

S = 0.399

CV(2) = 0.870

K factor**= 3.188

TL(2) = 1.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.693 2. 9/16/2002 2 0.693 -0.022 10/16/2002 0.978 1/13/2003 1.08 0.077 4/8/2003 1.12 0.113 7/16/2003 1.38 0.322 10/14/2003 0.215 1.24 0.399 1/14/2004 1.49

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.289	NO	-1.241	N/A
MW390	Downgradien	t Yes	0.369	NO	-0.997	N/A
MW393	Downgradien	t Yes	0.389	NO	-0.944	N/A
MW396	Upgradient	Yes	0.885	NO	-0.122	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.157

S = 0.280

CV(1) = 1.782

K factor=** 3.188

TL(1)= 1.050

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.836 S = 1.229

CV(2) = -0.669

K factor**= 3.188

TL(2) = -0.371

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
10/16/2002	0.69	-0.371
1/13/2003	-0.00693	#Func!
10/14/2003	-0.0514	#Func!
1/14/2004	0.494	-0.705
4/12/2004	-0.082	#Func!
7/20/2004	0.0879	-2.432
10/12/2004	0.0408	-3.199
1/18/2005	0.0844	-2.472

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	No	-0.151	N/A	#Error	N/A			
MW390	Downgradien	t Yes	0.696	N/A	-0.362	YES			
MW393	Downgradien	t No	-0.0392	N/A	#Error	N/A			
MW396	Upgradient	No	0.239	N/A	-1.431	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

K factor=** 3.188

TL(1)= 208.973 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.595 S = 0.492

CV(2) = 0.107

K factor**= 3.188

TL(2) = 6.163

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 115 4.745 9/16/2002 116 4.754 10/16/2002 117 4.762 1/13/2003 122 4.804 4/8/2003 106 4.663 7/16/2003 117 4.762 10/14/2003 132 4.883 1/14/2004 29.6 3.388

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW386	Sidegradient	Yes	103	NO	4.635	N/A				
MW390	Downgradien	t Yes	98.6	NO	4.591	N/A				
MW393	Downgradien	t Yes	78.7	NO	4.366	N/A				
MW396	Upgradient	Yes	104	NO	4.644	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.463 **S**= 8.876

CV(1)=0.395

K factor**= 3.188

TL(1) = 50.759

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.054

S = 0.351

CV(2) = 0.115

K factor**= 3.188

TL(2) = 4.173

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 41.9 3.735 9/16/2002 26.3 3.270 10/16/2002 20.6 3.025 1/13/2003 16.6 2.809 23.9 4/8/2003 3.174 7/16/2003 18.8 2.934 10/14/2003 12.9 2.557 1/14/2004 18.7 2.929

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	42.4	NO	3.747	N/A			
MW390	Downgradien	t Yes	37.4	NO	3.622	N/A			
MW393	Downgradien	t Yes	15.2	NO	2.721	N/A			
MW396	Upgradient	Yes	22.1	NO	3.096	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.624

CV(1)=0.860

K factor**= 3.188

TL(1)= 28.531

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.498

S = 1.321

S = 6.558

CV(2) = 0.882

K factor**= 3.188

TL(2) = 5.710

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 16.7 2.815 9/16/2002 6.39 1.855 10/16/2002 4.55 1.515 1/13/2003 16.5 2.803 4/8/2003 3.04 1.112 7/16/2003 0.354 -1.03810/14/2003 11.9 2.477 1/14/2004 1.56 0.445

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW386	Sidegradient	No	0.649	N/A	-0.432	N/A
MW390	Downgradien	t Yes	62.5	YES	4.135	N/A
MW393	Downgradien	t No	0.56	N/A	-0.580	N/A
MW396	Upgradient	No	-7.52	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.988

S= 4.696 **CV(1)**=0.470

K factor=** 3.188

TL(1)= 24.959

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.210

S = 0.454

CV(2) = 0.205

K factor**= 3.188

TL(2) = 3.657

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 19 2.944 9/16/2002 14.6 2.681 10.4 10/16/2002 2.342 1/13/2003 4.4 1.482 7 4/8/2003 1.946 7/16/2003 7.3 1.988 10/14/2003 9.1 2.208 1/14/2004 8.1 2.092

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW386	Sidegradient	Yes	5.19	NO	1.647	N/A				
MW390	Downgradien	t Yes	3.3	NO	1.194	N/A				
MW393	Downgradien	t Yes	3.01	NO	1.102	N/A				
MW396	Upgradient	Yes	6	NO	1.792	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 142.650 S = 53.533 CV(1) = 0.375

K factor=** 3.188

TL(1) = 313.314 LL(1) = N/A

Statistics-Transformed Background Data

X = 4.896 S = 0.390

CV(2) = 0.080

K factor=** 3.188

TL(2) = 6.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 193 5.263 9/16/2002 190 5.247 10/16/2002 221 5.398 1/13/2003 106 4.663 4.354 4/8/2003 77.8 7/16/2003 122 4.804 10/14/2003 86.4 4.459 1/14/2004 145 4.977

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	145	NO	4.977	N/A			
MW390	Downgradien	t Yes	21.5	NO	3.068	N/A			
MW393	Downgradien	t Yes	17.1	NO	2.839	N/A			
MW396	Upgradient	Yes	80.8	NO	4.392	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.001

 $S= 0.000 \quad CV(1)=0.314$

K factor**= 3.188

TL(1) = 0.002

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.821

S = 0.245

CV(2) = -0.036

K factor**= 3.188

TL(2) = -6.040

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.002 -6.2159/16/2002 0.001 -6.90810/16/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/8/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/14/2004 0.001 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data	l				
Well No.	Gradient	Detected?	Result	Result >	TL(1)?	LN
MW206	Cidaamadiant	Vac	0.00010)2 NO		Λ

N(Result) LN(Result) > TL(2)-9.181 N/A MW386 Sidegradient 0.000103 MW390 Downgradient Yes 0.00014 NO -8.874 N/A -8.517 MW393 Downgradient No 0.0002 N/A N/A MW396 Upgradient 0.000153 NO -8.785 N/A Yes

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.221 S = 0.061 CV(1) = 0.277 K factor**= 2.523
 TL(1) = 0.376 LL(1) = N/A

 Statistics-Transformed
 X = -1.534 S = 0.212 CV(2) = -0.138 K factor**= 2.523
 TL(2) = -0.999 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 0.2 1/15/2003 0.2 -1.6094/10/2003 0.2 -1.6097/14/2003 0.2 -1.6090.427 -0.85110/13/2003 1/13/2004 0.309 -1.1744/13/2004 0.2 -1.609 7/21/2004 0.202 -1.599Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.2 -1.6099/16/2002 0.2 -1.609 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	No	0.05	N/A	-2.996	N/A		
MW221	Sidegradient	No	0.05	N/A	-2.996	N/A		
MW222	Sidegradient	Yes	0.0601	NO	-2.812	N/A		
MW223	Sidegradient	No	0.05	N/A	-2.996	N/A		
MW224	Sidegradient	No	0.05	N/A	-2.996	N/A		
MW369	Downgradien	t Yes	0.0277	NO	-3.586	N/A		
MW372	Downgradien	t Yes	0.0496	NO	-3.004	N/A		
MW384	Sidegradient	No	0.05	N/A	-2.996	N/A		
MW387	Downgradien	t No	0.05	N/A	-2.996	N/A		
MW391	Downgradien	t Yes	0.706	YES	-0.348	N/A		
MW394	Upgradient	Yes	0.0168	NO	-4.086	N/A		
N/A - Resu	lts identified as N	Ion-Detects	luring lah	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Ouarter Data

Statistics-Background Data

X= 14.273 **S**= 13.883 **CV(1)**=0.973

K factor**= 2.523

TL(1)= 49.300

LL(1)=N/A

Statistics-Transformed Background Data

1/13/2004

X= 2.213 **S**= 1.033

CV(2) = 0.467

K factor=** 2.523

TL(2)= 4.819

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 15.2 2.721 1/15/2003 42.5 3.750 4/10/2003 45.4 3.816 7/14/2003 8.53 2.144 10/13/2003 11.7 2.460 1/13/2004 13.5 2.603 4/13/2004 33.5 3.512 7/21/2004 13.7 2.617 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 5.03 1.615 9/16/2002 5.57 1.717 10/16/2002 12.8 2.549 1/13/2003 4.3 1.459 4/10/2003 9.52 2.253 7/16/2003 3.92 1.366 10/14/2003 0.058 1.06

2.14

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Duta					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
,	MW220	Upgradient	Yes	14.2	N/A	2.653	N/A
	MW221	Sidegradient	Yes	21.6	N/A	3.073	N/A
	MW222	Sidegradient	Yes	7.86	N/A	2.062	N/A
	MW223	Sidegradient	Yes	18.9	N/A	2.939	N/A
	MW224	Sidegradient	No	2.33	N/A	0.846	N/A
	MW369	Downgradien	t Yes	11.3	N/A	2.425	N/A
	MW372	Downgradien	t Yes	4.15	N/A	1.423	N/A
	MW384	Sidegradient	Yes	96.9	YES	4.574	N/A
	MW387	Downgradien	t Yes	167	YES	5.118	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

N/A

6.8

7.54

Conclusion of Statistical Analysis on Historical Data

0.761

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW391

MW394

Downgradient Yes

Upgradient

Wells with Exceedances

N/A

N/A

MW384 MW387

1.917

2.020

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.425 S = 0.615 CV(1) = 1.447 K factor** = 2.523
 TL(1) = 1.976 LL(1) = N/A

 Statistics-Transformed
 X = -1.322 S = 0.786 CV(2) = -0.595 K factor** = 2.523
 TL(2) = 0.663 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.2 -1.6097/14/2003 0.2 -1.609-1.609 10/13/2003 0.2 1/13/2004 0.2 -1.6094/13/2004 0.2 -1.609 7/21/2004 0.2 -1.609Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	No	0.00642	N/A	-5.048	N/A			
MW221	Sidegradient	Yes	0.015	N/A	-4.200	NO			
MW222	Sidegradient	Yes	0.0114	N/A	-4.474	NO			
MW223	Sidegradient	Yes	0.0076	N/A	-4.880	NO			
MW224	Sidegradient	Yes	0.0206	N/A	-3.882	NO			
MW369	Downgradien	t Yes	0.0121	N/A	-4.415	NO			
MW372	Downgradien	t Yes	1.28	N/A	0.247	NO			
MW384	Sidegradient	No	0.00866	N/A	-4.749	N/A			
MW387	Downgradien	t No	0.0249	N/A	-3.693	N/A			
MW391	Downgradien	t Yes	0.496	N/A	-0.701	NO			
MW394	Upgradient	Yes	0.0223	N/A	-3.803	NO			
N/A - Resu	lts identified as N	Ion-Detects	during labo	oratory analysis or	data validation	and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.000 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 1.000 LL(1) = N/A

 Statistics-Transformed
 X = 0.000 S = 0.000 CV(2) = #Num! K factor** = 2.523
 TL(2) = 0.000 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1 0.000 0.000 4/10/2003 7/14/2003 1 0.000 1 0.000 10/13/2003 1/13/2004 1 0.000 4/13/2004 1 0.000 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/16/2002 1 0.000 1/13/2003 0.000 4/10/2003 0.000 7/16/2003 1 0.000 10/14/2003 0.000 1 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.187	NO	-1.677	N/A		
MW221	Sidegradient	Yes	0.399	NO	-0.919	N/A		
MW222	Sidegradient	Yes	0.421	NO	-0.865	N/A		
MW223	Sidegradient	Yes	0.427	NO	-0.851	N/A		
MW224	Sidegradient	Yes	0.479	NO	-0.736	N/A		
MW369	Downgradien	t Yes	0.437	NO	-0.828	N/A		
MW372	Downgradien	t Yes	0.613	NO	-0.489	N/A		
MW384	Sidegradient	Yes	0.326	NO	-1.121	N/A		
MW387	Downgradien	t Yes	0.473	NO	-0.749	N/A		
MW391	Downgradien	t Yes	0.451	NO	-0.796	N/A		
MW394	Upgradient	Yes	0.61	NO	-0.494	N/A		
NT/A D	1, 11 1 N	T			1 . 11 1 .1	1 .		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 27.638 S = 4.743 CV(1) = 0.172 K factor**= 2.523
 TL(1) = 39.604 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 3.304 X = 0.183 X = 0.183

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 23.6 3.161 1/15/2003 25.9 3.254 4/10/2003 30.4 3.414 7/14/2003 33.9 3.523 10/13/2003 21.3 3.059 1/13/2004 20.3 3.011 4/13/2004 23.8 3.170 7/21/2004 19 2.944 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 29.5 3.384 9/16/2002 29.9 3.398 10/16/2002 31.2 3.440 1/13/2003 30.7 3.424 4/10/2003 34.4 3.538 29.6 7/16/2003 3.388 10/14/2003 30.3 3.411 1/13/2004 28.4 3.346

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	25.7	NO	3.246	N/A		
MW221	Sidegradient	Yes	23.5	NO	3.157	N/A		
MW222	Sidegradient	Yes	20	NO	2.996	N/A		
MW223	Sidegradient	Yes	22.6	NO	3.118	N/A		
MW224	Sidegradient	Yes	23.5	NO	3.157	N/A		
MW369	Downgradien	t Yes	21.7	NO	3.077	N/A		
MW372	Downgradien	t Yes	62.9	YES	4.142	N/A		
MW384	Sidegradient	Yes	26.3	NO	3.270	N/A		
MW387	Downgradien	t Yes	32.3	NO	3.475	N/A		
MW391	Downgradien	t Yes	44.1	YES	3.786	N/A		
MW394	Upgradient	Yes	29.5	NO	3.384	N/A		
N/A - Resu	lts identified as N	Ion-Detects	luring lab	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 35.000 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 35.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 3.555 S = 0.000 CV(2) = 0.000 CV(2) = 0.000 K factor** = 2.523
 TL(2) = 3.555 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35 3.555 1/15/2003 35 3.555 4/10/2003 35 3.555 7/14/2003 35 3.555 10/13/2003 35 3.555 1/13/2004 35 3.555 4/13/2004 35 3.555 7/21/2004 35 3.555 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 4/10/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555

35

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	15.8	NO	2.760	N/A			
MW221	Sidegradient	Yes	10.8	NO	2.380	N/A			
MW222	Sidegradient	No	20	N/A	2.996	N/A			
MW223	Sidegradient	Yes	13.3	NO	2.588	N/A			
MW224	Sidegradient	Yes	13.3	NO	2.588	N/A			
MW369	Downgradien	t No	20	N/A	2.996	N/A			
MW372	Downgradien	t No	20	N/A	2.996	N/A			
MW384	Sidegradient	No	20	N/A	2.996	N/A			
MW387	Downgradien	t No	20	N/A	2.996	N/A			
MW391	Downgradien	t Yes	18.3	NO	2.907	N/A			
MW394	Upgradient	No	20	N/A	2.996	N/A			
M/A Dogu	lte identified as N	Ion Detects	luring lab	oratory analysis or	data validation	and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 49.044 S = 11.278 CV(1) = 0.230 K factor**= 2.523
 TL(1) = 77.499 LL(1) = N/A

 Statistics-Transformed
 X = 3.866 X = 0.244 X =

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.798 44.6 1/15/2003 43.2 3.766 4/10/2003 31.5 3.450 7/14/2003 30.8 3.428 40.9 10/13/2003 3.711 1/13/2004 40.8 3.709 4/13/2004 37.5 3.624 7/21/2004 40.8 3.709 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 60.4 4.101 9/16/2002 60.3 4.099 10/16/2002 58 4.060 1/13/2003 60.7 4.106 4/10/2003 62.9 4.142 7/16/2003 58.1 4.062 10/14/2003 58.2 4.064 4.025 1/13/2004 56

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	18.1	NO	2.896	N/A	
MW221	Sidegradient	Yes	30.8	NO	3.428	N/A	
MW222	Sidegradient	Yes	33.6	NO	3.515	N/A	
MW223	Sidegradient	Yes	30.9	NO	3.431	N/A	
MW224	Sidegradient	Yes	36.4	NO	3.595	N/A	
MW369	Downgradien	t Yes	37.9	NO	3.635	N/A	
MW372	Downgradien	t Yes	48.5	NO	3.882	N/A	
MW384	Sidegradient	Yes	34.2	NO	3.532	N/A	
MW387	Downgradien	t Yes	41	NO	3.714	N/A	
MW391	Downgradien	t Yes	34.6	NO	3.544	N/A	
MW394	Upgradient	Yes	49	NO	3.892	N/A	
N/A - Resu	lts identified as N	Ion-Detects o	luring lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 CV(2) = 0.000 K factor** = 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

 Well Number:
 MW220

 Date Collected
 Result
 LN(Result)

 10/14/2002
 5
 1.609

 1/15/2003
 5
 1.609

 4/10/2003
 5
 1.609

 4/10/2003
 5
 1.609

 7/14/2003
 5
 1.609

 10/13/2003
 5
 1.609

 1/13/2004
 5
 1.609

 4/13/2004
 5
 1.609

5

5

5

7/21/2004

7/16/2003

10/14/2003

1/13/2004

Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.65	NO	-0.431	N/A	
MW221	Sidegradient	No	1	N/A	0.000	N/A	
MW222	Sidegradient	No	1	N/A	0.000	N/A	
MW223	Sidegradient	No	1	N/A	0.000	N/A	
MW224	Sidegradient	No	1	N/A	0.000	N/A	
MW369	Downgradien	t No	1	N/A	0.000	N/A	
MW372	Downgradien	t No	1	N/A	0.000	N/A	
MW384	Sidegradient	No	1	N/A	0.000	N/A	
MW387	Downgradien	t No	1	N/A	0.000	N/A	
MW391	Downgradien	t Yes	0.4	NO	-0.916	N/A	
MW394	Upgradient	No	1	N/A	0.000	N/A	
M/A Dogu	Its identified as N	Ion Datasta	during lob	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.609

1.609

1.609

1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.016 S = 0.040 CV(1) = 2.440 K factor** = 2.523
 TL(1) = 0.116 LL(1) = N/A

 Statistics-Transformed
 X = -5.582 S = 1.573 CV(2) = -0.282 K factor** = 2.523
 TL(2) = -1.613 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0041 -5.497 1/15/2003 0.00496 -5.3060.00289 4/10/2003 -5.8467/14/2003 0.161 -1.8260.0226 -3.79010/13/2003 1/13/2004 0.00464 -5.3734/13/2004 0.001 -6.908 7/21/2004 0.00264 -5.937Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/16/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/10/2003 0.001 -6.908 7/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00010	5 N/A	-9.162	NO	
MW221	Sidegradient	Yes	0.00036	1 N/A	-7.927	NO	
MW222	Sidegradient	Yes	0.00078	3 N/A	-7.152	NO	
MW223	Sidegradient	Yes	0.00019	8 N/A	-8.527	NO	
MW224	Sidegradient	Yes	0.00014	3 N/A	-8.853	NO	
MW369	Downgradien	t Yes	0.107	N/A	-2.235	NO	
MW372	Downgradien	t Yes	0.00039	3 N/A	-7.842	NO	
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW391	Downgradien	t Yes	0.00171	N/A	-6.371	NO	
MW394	Upgradient	No	0.001	N/A	-6.908	N/A	
N/A - Recu	Its identified as N	Jon-Detects	during labo	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison **Conductivity UNITS:** umho/cm **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 382.132 S = 107.134 CV(1) = 0.280

K factor=** 2.523

TL(1)= 652.432 **LL(1)**=N/A

Statistics-Transformed Background Data

10/14/2003

1/13/2004

X = 5.716 S = 1.164 CV(2) = 0.204

K factor=** 2.523

TL(2) = 8.652

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 5.908 368 1/15/2003 433.2 6.071 489 4/10/2003 6.192 7/14/2003 430 6.064 10/13/2003 346 5.846 1/13/2004 365 5.900 4/13/2004 416 6.031 7/21/2004 353 5.866 Well Number: MW394 Date Collected LN(Result) Result 406 8/13/2002 6.006 9/16/2002 418 6.035 10/16/2002 411 6.019 1/13/2003 422 6.045 4/10/2003 420 6.040 7/16/2003 438 6.082

3.91

395

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	422	NO	6.045	N/A	
MW221	Sidegradient	Yes	411	NO	6.019	N/A	
MW222	Sidegradient	Yes	374	NO	5.924	N/A	
MW223	Sidegradient	Yes	403	NO	5.999	N/A	
MW224	Sidegradient	Yes	440	NO	6.087	N/A	
MW369	Downgradien	t Yes	425	NO	6.052	N/A	
MW372	Downgradien	t Yes	636	NO	6.455	N/A	
MW384	Sidegradient	Yes	470	NO	6.153	N/A	
MW387	Downgradien	t Yes	506	NO	6.227	N/A	
MW391	Downgradien	t Yes	588	NO	6.377	N/A	
MW394	Upgradient	Yes	406	NO	6.006	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.364

5.979

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-40

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.010 CV(1) = 0.429 K factor**= 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed
 X = -3.794 S = 0.312 CV(2) = -0.082 K factor**= 2.523
 TL(2) = -3.007 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0211 -3.8581/15/2003 0.02 -3.9120.02 -3.912 4/10/2003 7/14/2003 0.02 -3.912 0.02 -3.912 10/13/2003 1/13/2004 0.02 -3.912 4/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.99610/16/2002 0.02 -3.9121/13/2003 0.02 -3.912 -3.912 4/10/2003 0.02 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00088	9 NO	-7.025	N/A	
MW221	Sidegradient	Yes	0.00117	NO	-6.751	N/A	
MW222	Sidegradient	Yes	0.00061	2 NO	-7.399	N/A	
MW223	Sidegradient	Yes	0.00039	6 NO	-7.834	N/A	
MW224	Sidegradient	Yes	0.00038	7 NO	-7.857	N/A	
MW369	Downgradien	t Yes	0.00137	NO	-6.593	N/A	
MW372	Downgradien	t Yes	0.00227	NO	-6.088	N/A	
MW384	Sidegradient	Yes	0.00068	4 NO	-7.288	N/A	
MW387	Downgradien	t Yes	0.00054	2 NO	-7.520	N/A	
MW391	Downgradien	t Yes	0.00252	NO	-5.983	N/A	
MW394	Upgradient	Yes	0.00049	8 NO	-7.605	N/A	
N/A - Recu	Its identified as N	Jon-Detects	during labo	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 3.784 S = 1.887 CV(1) = 0.499 K factor**= 2.523
 TL(1) = 8.545 LL(1) = N/A

 Statistics-Transformed
 X = 1.182 S = 0.612 CV(2) = 0.518 K factor**= 2.523
 TL(2) = 2.727 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.915 6.79 1/15/2003 7.25 1.981 1.281 4/10/2003 3.6 7/14/2003 0.94 -0.0620.501 10/13/2003 1.65 1/13/2004 3.48 1.247 4/13/2004 1.05 0.049 7/21/2004 4.46 1.495 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 6.09 1.807 9/16/2002 3.85 1.348 10/16/2002 5.11 1.631 1/13/2003 3.83 1.343 4/10/2003 4.15 1.423 7/16/2003 0.604 1.83 10/14/2003 3.33 1.203 1/13/2004 3.14 1.144

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	4.79	NO	1.567	N/A	
MW221	Sidegradient	Yes	4.41	NO	1.484	N/A	
MW222	Sidegradient	Yes	4.41	NO	1.484	N/A	
MW223	Sidegradient	Yes	3.48	NO	1.247	N/A	
MW224	Sidegradient	Yes	3.31	NO	1.197	N/A	
MW369	Downgradien	t Yes	2.87	NO	1.054	N/A	
MW372	Downgradien	t Yes	4.05	NO	1.399	N/A	
MW384	Sidegradient	Yes	4.07	NO	1.404	N/A	
MW387	Downgradien	t Yes	4.6	NO	1.526	N/A	
MW391	Downgradien	t Yes	2.9	NO	1.065	N/A	
MW394	Upgradient	Yes	4.81	NO	1.571	N/A	
N/A - Resu	lts identified as N	Ion-Detects (luring lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 232.688 S = 27.490 CV(1) = 0.118

K factor=** 2.523

TL(1)= 302.045 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.443 S = 0.118 CV(2) = 0.022

K factor=** 2.523

TL(2) = 5.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	273	NO	5.609	N/A	
MW221	Sidegradient	Yes	241	NO	5.485	N/A	
MW222	Sidegradient	Yes	197	NO	5.283	N/A	
MW223	Sidegradient	Yes	230	NO	5.438	N/A	
MW224	Sidegradient	Yes	246	NO	5.505	N/A	
MW369	Downgradien	t Yes	217	NO	5.380	N/A	
MW372	Downgradien	t Yes	380	YES	5.940	N/A	
MW384	Sidegradient	Yes	273	NO	5.609	N/A	
MW387	Downgradien	t Yes	316	YES	5.756	N/A	
MW391	Downgradien	t Yes	370	YES	5.914	N/A	
MW394	Upgradient	Yes	199	NO	5.293	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-43

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.897 S = 1.050 CV(1) = 1.170 K factor** = 2.523
 TL(1) = 3.545 LL(1) = N/A

 Statistics-Transformed
 X = -0.565 S = 0.951 CV(2) = -1.683 K factor** = 2.523
 TL(2) = 1.834 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 0.2 1/15/2003 0.2 -1.6094/10/2003 0.429 -0.8467/14/2003 4.33 1.466 0.593 10/13/2003 1.81 1/13/2004 0.793 -0.2324/13/2004 0.13 -2.040 7/21/2004 0.382 -0.962Well Number: MW394 Result Date Collected LN(Result) 8/13/2002 1.34 0.293 9/16/2002 0.328 -1.115 0.322 10/16/2002 1.38 1/13/2003 1.3 0.262 4/10/2003 0.494 -0.7057/16/2003 0.62 -0.47810/14/2003 0.37 -0.9941/13/2004 0.251 -1.382

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.1	N/A	-2.303	N/A
MW221	Sidegradient	Yes	0.121	N/A	-2.112	NO
MW222	Sidegradient	Yes	0.234	N/A	-1.452	NO
MW223	Sidegradient	Yes	0.113	N/A	-2.180	NO
MW224	Sidegradient	No	0.1	N/A	-2.303	N/A
MW369	Downgradien	t Yes	0.897	N/A	-0.109	NO
MW372	Downgradien	t Yes	0.846	N/A	-0.167	NO
MW384	Sidegradient	Yes	0.0661	N/A	-2.717	NO
MW387	Downgradien	t Yes	0.0472	N/A	-3.053	NO
MW391	Downgradien	t Yes	5.51	N/A	1.707	NO
MW394	Upgradient	Yes	0.291	N/A	-1.234	NO
NI/A Dane	14- : 14:C: - 1 N	T D-44-	1		3-41:3-4:	4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Magnesium URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 10.796 S = 1.703CV(1)=0.158**K factor**=** 2.523 **TL(1)=** 15.092 LL(1)=N/A **Statistics-Transformed** X = 2.368S = 0.158CV(2) = 0.067**K factor**=** 2.523 TL(2) = 2.766LL(2)=N/A**Background Data**

Historical Background Data from

Upgradient Wells with Transformed Result

1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	9.16	2.215
1/15/2003	10	2.303
4/10/2003	10.8	2.380
7/14/2003	14.7	2.688
10/13/2003	9.03	2.201
1/13/2004	8.49	2.139
4/13/2004	9.7	2.272
7/21/2004	8.06	2.087
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.468
Date Collected	Result	
Date Collected 8/13/2002	Result 11.8	2.468
Date Collected 8/13/2002 9/16/2002	Result 11.8 12.1	2.468 2.493
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.8 12.1 11.3	2.468 2.493 2.425
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.8 12.1 11.3 10.3	2.468 2.493 2.425 2.332
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.8 12.1 11.3 10.3 11.7	2.468 2.493 2.425 2.332 2.460

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	10.5	NO	2.351	N/A	
MW221	Sidegradient	Yes	9.77	NO	2.279	N/A	
MW222	Sidegradient	Yes	8.79	NO	2.174	N/A	
MW223	Sidegradient	Yes	9.34	NO	2.234	N/A	
MW224	Sidegradient	Yes	10.2	NO	2.322	N/A	
MW369	Downgradien	t Yes	8.13	NO	2.096	N/A	
MW372	Downgradien	t Yes	22.2	YES	3.100	N/A	
MW384	Sidegradient	Yes	10.2	NO	2.322	N/A	
MW387	Downgradien	t Yes	12.6	NO	2.534	N/A	
MW391	Downgradien	t Yes	18.8	YES	2.934	N/A	
MW394	Upgradient	Yes	11.9	NO	2.477	N/A	
N/A - Resu	Its identified as N	Ion-Detects	luring lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW391

Because CV(1) is less than or equal to

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-45

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.287 S = 0.619 CV(1) = 2.156 K factor** = 2.523
 TL(1) = 1.848 LL(1) = N/A

 Statistics-Transformed
 X = -2.455 S = 1.619 CV(2) = -0.659 K factor** = 2.523
 TL(2) = 1.630 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0306 -3.4871/15/2003 0.0291 -3.5370.0137 -4.290 4/10/2003 7/14/2003 2.54 0.932 -0.97310/13/2003 0.378 1/13/2004 0.159 -1.8394/13/2004 0.00707 -4.952 7/21/2004 0.0841 -2.476Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.542 -0.6129/16/2002 0.155 -1.864 10/16/2002 0.103 -2.2731/13/2003 0.128 -2.056 4/10/2003 0.005 -5.2987/16/2003 0.272 -1.302 10/14/2003 0.0795 -2.532 1/13/2004 0.0658 -2.721

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.005	N/A	-5.298	N/A	
MW221	Sidegradient	Yes	0.00196	N/A	-6.235	NO	
MW222	Sidegradient	Yes	0.0226	N/A	-3.790	NO	
MW223	Sidegradient	Yes	0.00206	N/A	-6.185	NO	
MW224	Sidegradient	Yes	0.0058	N/A	-5.150	NO	
MW369	Downgradien	t Yes	1.75	N/A	0.560	NO	
MW372	Downgradien	t Yes	0.0175	N/A	-4.046	NO	
MW384	Sidegradient	Yes	0.00379	N/A	-5.575	NO	
MW387	Downgradien	t Yes	0.00851	N/A	-4.767	NO	
MW391	Downgradien	t Yes	0.0732	N/A	-2.615	NO	
MW394	Upgradient	Yes	0.0024	N/A	-6.032	NO	
N/A - Resu	lts identified as N	Ion-Detects o	luring labo	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.006 S = 0.008 CV(1) = 1.261 K factor** = 2.523
 TL(1) = 0.026 LL(1) = N/A

 Statistics-Transformed
 X = -5.747 S = 1.205 CV(2) = -0.210 K factor** = 2.523
 TL(2) = -2.708 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.00558 -5.1891/15/2003 0.00983 -4.6220.0109 -4.519 4/10/2003 7/14/2003 0.00245 -6.012 0.00566 -5.174 10/13/2003 1/13/2004 0.00572 -5.1644/13/2004 0.001 -6.908 7/21/2004 0.00392 -5.542Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/16/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/10/2003 0.001 -6.908 7/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00139	N/A	-6.578	NO	
MW221	Sidegradient	Yes	0.00766	N/A	-4.872	NO	
MW222	Sidegradient	No	0.00028	7 N/A	-8.156	N/A	
MW223	Sidegradient	Yes	0.00661	N/A	-5.019	NO	
MW224	Sidegradient	No	0.00053	7 N/A	-7.530	N/A	
MW369	Downgradien	t No	0.00026	6 N/A	-8.232	N/A	
MW372	Downgradien	t No	0.00047	7 N/A	-7.648	N/A	
MW384	Sidegradient	No	0.0005	N/A	-7.601	N/A	
MW387	Downgradien	t Yes	0.00018	9 N/A	-8.574	NO	
MW391	Downgradien	t No	0.00053	5 N/A	-7.533	N/A	
MW394	Upgradient	Yes	0.00043	6 N/A	-7.738	NO	
N/A - Resu	lts identified as N	Ion-Detects	during labo	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.127 S = 0.228 CV(1) = 1.790 K factor** = 2.523
 TL(1) = 0.701 LL(1) = N/A

 Statistics-Transformed
 X = -3.617 S = 1.837 CV(2) = -0.508 K factor** = 2.523
 TL(2) = 1.019 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.418 -0.8721/15/2003 0.738 -0.304-0.609 4/10/2003 0.544 7/14/2003 0.106-2.244-2.93910/13/2003 0.0529 1/13/2004 0.0209 -3.8684/13/2004 0.005 -5.298 7/21/2004 0.0192 -3.953Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.996 10/16/2002 0.005 -5.2981/13/2003 0.005 -5.298 4/10/2003 0.005 -5.2987/16/2003 0.005 -5.29810/14/2003 0.005 -5.298 1/13/2004 0.005 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.039	N/A	-3.244	NO	
MW221	Sidegradient	Yes	0.0408	N/A	-3.199	NO	
MW222	Sidegradient	Yes	0.0759	N/A	-2.578	NO	
MW223	Sidegradient	Yes	0.329	N/A	-1.112	NO	
MW224	Sidegradient	Yes	0.00336	N/A	-5.696	NO	
MW369	Downgradien	t Yes	0.0157	N/A	-4.154	NO	
MW372	Downgradien	t Yes	0.000679	9 N/A	-7.295	NO	
MW384	Sidegradient	No	0.002	N/A	-6.215	N/A	
MW387	Downgradien	t Yes	0.00065	8 N/A	-7.326	NO	
MW391	Downgradien	t Yes	0.00275	N/A	-5.896	NO	
MW394	Upgradient	Yes	0.0031	N/A	-5.776	NO	
N/A - Resu	lts identified as N	Ion-Detects of	luring labo	ratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 179.872 S = 86.318 CV(1) = 0.480

K factor=** 2.523

TL(1)= 397.652 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.861S = 1.252 CV(2) = 0.258

K factor=** 2.523

TL(2) = 8.021

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	205	5.323
1/15/2003	1.95	0.668
4/10/2003	203	5.313
7/14/2003	30	3.401
10/13/2003	107	4.673
1/13/2004	295	5.687
4/13/2004	190	5.247
7/21/2004	319	5.765
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	` ,
Date Collected 8/13/2002	Result 90	4.500
Date Collected 8/13/2002 9/16/2002	Result 90 240	4.500 5.481
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 90 240 185	4.500 5.481 5.220
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 90 240 185 220	4.500 5.481 5.220 5.394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 90 240 185 220 196	4.500 5.481 5.220 5.394 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	438	YES	6.082	N/A	
MW221	Sidegradient	Yes	485	YES	6.184	N/A	
MW222	Sidegradient	Yes	375	NO	5.927	N/A	
MW223	Sidegradient	Yes	457	YES	6.125	N/A	
MW224	Sidegradient	Yes	605	YES	6.405	N/A	
MW369	Downgradien	t Yes	302	NO	5.710	N/A	
MW372	Downgradien	t Yes	259	NO	5.557	N/A	
MW384	Sidegradient	Yes	534	YES	6.280	N/A	
MW387	Downgradien	t Yes	760	YES	6.633	N/A	
MW391	Downgradien	t Yes	576	YES	6.356	N/A	
MW394	Upgradient	Yes	484	YES	6.182	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW220	
MW221	
MW223	
MW224	
MW384	
MW387	
MW391	
MW394	

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-49

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.138 S = 0.282 CV(1) = 0.046 K factor**= 2.904
 TL(1) = 6.957 LL(1) = 5.3179

 Statistics-Transformed
 X = 1.813 X = 0.047 X = 0.026 X =

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.798 6.04 1/15/2003 6.31 1.842 4/10/2003 6.5 1.872 7/14/2003 6.3 1.841 10/13/2003 6.34 1.847 1/13/2004 6.33 1.845 4/13/2004 6.3 1.841 7/21/2004 5.9 1.775 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 5.8 1.758 9/30/2002 5.93 1.780 10/16/2002 5.42 1.690 1/13/2003 1.792 6 4/10/2003 6.04 1.798 7/16/2003 6.2 1.825 10/14/2003 1.856 6.4 1/13/2004 6.39 1.855

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	6.47	NO	1.867	N/A
MW221	Sidegradient	Yes	6.54	NO	1.878	N/A
MW222	Sidegradient	Yes	6.75	NO	1.910	N/A
MW223	Sidegradient	Yes	6.61	NO	1.889	N/A
MW224	Sidegradient	Yes	6.18	NO	1.821	N/A
MW369	Downgradien	t Yes	6.6	NO	1.887	N/A
MW372	Downgradien	t Yes	6.4	NO	1.856	N/A
MW384	Sidegradient	Yes	6.35	NO	1.848	N/A
MW387	Downgradien	t Yes	6.21	NO	1.826	N/A
MW391	Downgradien	t Yes	6.22	NO	1.828	N/A
MW394	Upgradient	Yes	6.16	NO	1.818	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.654 S = 9.310 CV(1) = 1.399 K factor** = 2.523
 TL(1) = 30.144 LL(1) = N/A

 Statistics-Transformed
 X = 1.130 S = 1.208 CV(2) = 1.069 K factor** = 2.523
 TL(2) = 4.178 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.902 6.7 1/15/2003 29.7 3.391 4/10/2003 24.9 3.215 7/14/2003 1.13 0.122 10/13/2003 3.43 1.233 1/13/2004 6.71 1.904 4/13/2004 19.3 2.960 7/21/2004 3.97 1.379 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 0.030 10/16/2002 1.03 1/13/2003 0.095 1.1 4/10/2003 1.24 0.215 7/16/2003 1.14 0.131 10/14/2003 1.05 0.049 1/13/2004 1.07 0.068

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	5.25	N/A	1.658	NO	
MW221	Sidegradient	Yes	1.31	N/A	0.270	NO	
MW222	Sidegradient	Yes	0.496	N/A	-0.701	NO	
MW223	Sidegradient	Yes	1.63	N/A	0.489	NO	
MW224	Sidegradient	Yes	0.872	N/A	-0.137	NO	
MW369	Downgradien	t Yes	0.511	N/A	-0.671	NO	
MW372	Downgradien	t Yes	2.47	N/A	0.904	NO	
MW384	Sidegradient	Yes	0.992	N/A	-0.008	NO	
MW387	Downgradien	t Yes	1.25	N/A	0.223	NO	
MW391	Downgradien	t Yes	1.85	N/A	0.615	NO	
MW394	Upgradient	Yes	1.61	N/A	0.476	NO	
N/A - Resu	lts identified as N	Ion-Detects o	luring lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.036 S = 0.382 CV(1) = 10.588 K factor** = 2.523
 TL(1) = 1.001 LL(1) = N/A

 Statistics-Transformed Background Data
 X = -1.873 S = 1.110 CV(2) = -0.592 CV(2) = -0.592 CV(2) = -0.538 CV(2) = -0.538 CV(2) = -0.538

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -0.804 #Func! 1/15/2003 #Func! -0.94410/13/2003 0.389 1/13/2004 -0.12#Func! -1.8394/13/2004 0.159 7/21/2004 0.382 -0.96210/11/2004 0.211 -1.556 1/20/2005 0.229 -1.474Well Number: MW394 Date Collected LN(Result) Result 10/16/2002 0.584 -0.538 1/13/2003 -0.839#Func! -3.42710/14/2003 0.0325 -0.00402 #Func! 1/13/2004 4/12/2004 -0.000337 #Func! 7/20/2004 0.29 -1.23810/12/2004 0.0366 -3.308 0.0319 1/18/2005 -3.445

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.657	N/A	-0.420	YES	
MW221	Sidegradient	Yes	0.443	N/A	-0.814	NO	
MW222	Sidegradient	No	0.0093	N/A	-4.678	N/A	
MW223	Sidegradient	No	-0.0363	N/A	#Error	N/A	
MW224	Sidegradient	Yes	0.707	N/A	-0.347	YES	
MW369	Downgradien	t Yes	0.863	N/A	-0.147	YES	
MW372	Downgradien	t Yes	0.861	N/A	-0.150	YES	
MW384	Sidegradient	No	0.231	N/A	-1.465	N/A	
MW387	Downgradien	t Yes	1.15	N/A	0.140	YES	
MW391	Downgradien	t Yes	0.63	N/A	-0.462	YES	
MW394	Upgradient	Yes	0.757	N/A	-0.278	YES	
N/A - Resul	lts identified as N	Ion-Detects o	luring lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW220
MW224
MW369
MW372
MW387
MW391
MW394

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 36.363 S = 8.666 CV(1) = 0.238 K factor**= 2.523
 TL(1) = 58.227 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 3.570 S = 0.222 CV(2) = 0.062 CV(2) = 0.062

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35.4 3.567 1/15/2003 40.6 3.704 4/10/2003 51 3.932 7/14/2003 58.2 4.064 10/13/2003 38.1 3.640 1/13/2004 37 3.611 4/13/2004 43.2 3.766 7/21/2004 33.8 3.520 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 32.9 3.493 9/16/2002 29.9 3.398 10/16/2002 29 3.367 1/13/2003 27.1 3.300 4/10/2003 24.8 3.211 7/16/2003 3.572 35.6 10/14/2003 3.523 33.9

31.3

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	49.2	NO	3.896	N/A		
MW221	Sidegradient	Yes	44.8	NO	3.802	N/A		
MW222	Sidegradient	Yes	45.5	NO	3.818	N/A		
MW223	Sidegradient	Yes	45	NO	3.807	N/A		
MW224	Sidegradient	Yes	54.4	NO	3.996	N/A		
MW369	Downgradien	t Yes	66.8	YES	4.202	N/A		
MW372	Downgradien	t Yes	57.9	NO	4.059	N/A		
MW384	Sidegradient	Yes	51.6	NO	3.944	N/A		
MW387	Downgradien	t Yes	54.8	NO	4.004	N/A		
MW391	Downgradien	t Yes	50.8	NO	3.928	N/A		
MW394	Upgradient	Yes	31.8	NO	3.459	N/A		
NI/A D	14- : 14:£: - 1 N	T D-44-	1	1!	4-41:4-4:			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.444

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 10.481 S = 2.648 CV(1) = 0.253 K factor**= 2.523
 TL(1) = 17.161 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 2.322 S = 0.239 CV(2) = 0.103 K factor**= 2.523
 TL(2) = 2.925 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 10.4 2.342 1/15/2003 9.8 2.282 4/10/2003 15.4 2.734 7/14/2003 14.9 2.701 10/13/2003 13.5 2.603 1/13/2004 10.3 2.332 4/13/2004 14.3 2.660 7/21/2004 10.5 2.351 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 11.2 2.416 9/16/2002 8.3 2.116 2.079 10/16/2002 8 1/13/2003 8.5 2.140 4/10/2003 7.9 2.067 7/16/2003 2.128 8.4 10/14/2003 2.104 8.2 1/13/2004 8.1 2.092

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	21.8	YES	3.082	N/A		
MW221	Sidegradient	Yes	16.1	NO	2.779	N/A		
MW222	Sidegradient	Yes	12.1	NO	2.493	N/A		
MW223	Sidegradient	Yes	19.4	YES	2.965	N/A		
MW224	Sidegradient	Yes	15.1	NO	2.715	N/A		
MW369	Downgradien	t Yes	5.99	NO	1.790	N/A		
MW372	Downgradien	t Yes	113	YES	4.727	N/A		
MW384	Sidegradient	Yes	20.1	YES	3.001	N/A		
MW387	Downgradien	t Yes	19.9	YES	2.991	N/A		
MW391	Downgradien	t Yes	121	YES	4.796	N/A		
MW394	Upgradient	Yes	9.84	NO	2.286	N/A		
N/A - Resu	lts identified as N	Ion-Detects	luring lab	oratory analysis or	data validation	and were not		

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a

well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW220
MW223
MW372
MW384
MW387
MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 9.354 S = 9.280 CV(1) = 0.992 K factor**= 2.523
 TL(1) = 32.768 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 2.270 S = 0.849 CV(2) = 0.374 K factor**= 2.523
 TL(2) = 3.262 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 2.981 19.7 1/15/2003 26.1 3.262 3.56 1.270 4/10/2003 7/14/2003 0 #Func! 3.045 10/13/2003 2.1 1/13/2004 6.32 1.844 4/13/2004 3 1.099 7/21/2004 14.6 2.681 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 14 2.639 9/16/2002 5.45 1.696 0.912 10/16/2002 2.49 1/13/2003 18.3 2.907 4/10/2003 -1.45#Func! 7/16/2003 -1.71#Func! 10/14/2003 18.3 2.907 1/13/2004 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	No	13	N/A	2.565	N/A		
MW221	Sidegradient	Yes	43.8	YES	3.780	N/A		
MW222	Sidegradient	No	3.42	N/A	1.230	N/A		
MW223	Sidegradient	No	8.97	N/A	2.194	N/A		
MW224	Sidegradient	No	-2.81	N/A	#Error	N/A		
MW369	Downgradien	t No	13.4	N/A	2.595	N/A		
MW372	Downgradien	t No	3.34	N/A	1.206	N/A		
MW384	Sidegradient	Yes	160	YES	5.075	N/A		
MW387	Downgradien	t Yes	256	YES	5.545	N/A		
MW391	Downgradien	t No	-7.72	N/A	#Error	N/A		
MW394	Upgradient	No	15	N/A	2.708	N/A		
N/A - Resu	lts identified as N	Ion-Detects o	luring lah	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW221 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Tetrachloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.609 X = 0.000 X = 0.000

Historical Background Data from Upgradient Wells with Transformed Result Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	5	1.609
1/15/2003	5	1.609
4/10/2003	5	1.609
7/14/2003	5	1.609
10/13/2003	5	1.609
1/13/2004	5	1.609
4/13/2004	5	1.609
7/21/2004	5	1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	•
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	No	1	N/A	0.000	N/A		
MW221	Sidegradient	No	1	N/A	0.000	N/A		
MW222	Sidegradient	No	1	N/A	0.000	N/A		
MW223	Sidegradient	No	1	N/A	0.000	N/A		
MW224	Sidegradient	No	1	N/A	0.000	N/A		
MW369	Downgradien	t No	1	N/A	0.000	N/A		
MW372	Downgradien	t No	1	N/A	0.000	N/A		
MW384	Sidegradient	No	1	N/A	0.000	N/A		
MW387	Downgradien	t No	1	N/A	0.000	N/A		
MW391	Downgradien	t Yes	0.37	NO	-0.994	N/A		
MW394	Upgradient	No	1	N/A	0.000	N/A		
N/A - Resu	lts identified as N	Ion-Detects	luring lab	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.494 S = 0.737 CV(1) = 0.493 K factor** = 2.523
 TL(1) = 3.353 LL(1) = N/A

 Statistics-Transformed
 X = 0.315 S = 0.402 CV(2) = 1.279 K factor** = 2.523
 TL(2) = 1.330 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1.1 0.095 1 0.000 4/10/2003 7/14/2003 3.3 1.194 10/13/2003 1.8 0.588 1/13/2004 1 0.000 4/13/2004 2 0.693 7/21/2004 3.1 1.131 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.3 0.262 9/16/2002 1 0.000 0.000 10/16/2002 1 1/13/2003 0.470 1.6 4/10/2003 1 0.000 7/16/2003 1.4 0.336 10/14/2003 1.3 0.262 0.000 1/13/2004 1

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.993	NO	-0.007	N/A		
MW221	Sidegradient	Yes	1.09	NO	0.086	N/A		
MW222	Sidegradient	Yes	1	NO	0.000	N/A		
MW223	Sidegradient	Yes	1.07	NO	0.068	N/A		
MW224	Sidegradient	Yes	1.14	NO	0.131	N/A		
MW369	Downgradien	t Yes	2.4	NO	0.875	N/A		
MW372	Downgradien	t Yes	1.69	NO	0.525	N/A		
MW384	Sidegradient	Yes	1.1	NO	0.095	N/A		
MW387	Downgradien	t Yes	1.29	NO	0.255	N/A		
MW391	Downgradien	t Yes	1.05	NO	0.049	N/A		
MW394	Upgradient	Yes	1.02	NO	0.020	N/A		
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validatior	and were not		

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a

well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 63.475 S = 163.135 CV(1) = 2.570

K factor=** 2.523

TL(1)= 475.063 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.103 S = 1.145 CV(2) = 0.369

K factor=** 2.523

TL(2) = 5.992

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.912 50 1/15/2003 10 2.303 10 4/10/2003 2.303 7/14/2003 10 2.303 10 10/13/2003 2.303 1/13/2004 10 2.303 4/13/2004 10 2.303 7/21/2004 10 2.303 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 50 3.912 9/16/2002 672 6.510 10/16/2002 50 3.912 1/13/2003 36.1 3.586 4/10/2003 10 2.303 7/16/2003 42.7 3.754 10/14/2003 22 3.091 1/13/2004 12.8 2.549

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	7.36	N/A	1.996	NO	
MW221	Sidegradient	Yes	6.98	N/A	1.943	NO	
MW222	Sidegradient	Yes	5.2	N/A	1.649	NO	
MW223	Sidegradient	Yes	4.96	N/A	1.601	NO	
MW224	Sidegradient	Yes	5.58	N/A	1.719	NO	
MW369	Downgradien	t Yes	42.7	N/A	3.754	NO	
MW372	Downgradien	t Yes	10.7	N/A	2.370	NO	
MW384	Sidegradient	Yes	13.2	N/A	2.580	NO	
MW387	Downgradien	t Yes	10.9	N/A	2.389	NO	
MW391	Downgradien	t Yes	9.38	N/A	2.239	NO	
MW394	Upgradient	No	10	N/A	2.303	N/A	
NI/A D	1, 11 1 N	T D		. 1 .	1 / 11 /	1 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 8.813 S = 8.376 CV(1) = 0.951 K factor** = 2.523
 TL(1) = 29.946 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.395 S = 1.449 CV(2) = 1.039 K factor** = 2.523
 TL(2) = 5.052 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1 0.000 0.000 4/10/2003 7/14/2003 1 0.000 1 0.000 10/13/2003 1/13/2004 1 0.000 4/13/2004 1 0.000 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 16 2.773 9/30/2002 20 2.996 10/16/2002 17 2.833 1/13/2003 15 2.708 4/10/2003 10 2.303 7/16/2003 19 2.944 10/14/2003 20 2.996

16

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	2.87	N/A	1.054	N/A	
MW221	Sidegradient	Yes	0.45	N/A	-0.799	N/A	
MW222	Sidegradient	No	1	N/A	0.000	N/A	
MW223	Sidegradient	No	1	N/A	0.000	N/A	
MW224	Sidegradient	No	1	N/A	0.000	N/A	
MW369	Downgradien	t Yes	0.47	N/A	-0.755	N/A	
MW372	Downgradien	t Yes	7.6	NO	2.028	N/A	
MW384	Sidegradient	No	1	N/A	0.000	N/A	
MW387	Downgradien	t Yes	0.61	N/A	-0.494	N/A	
MW391	Downgradien	t Yes	7.78	NO	2.052	N/A	
MW394	Upgradient	Yes	4.3	N/A	1.459	N/A	
N/A - Resu	lts identified as N	Ion-Detects o	luring lab	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.773

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.001 S = 0.000 CV(1) = 0.440 K factor** = 2.523
 TL(1) = 0.002 LL(1) = N/A

 Statistics-Transformed
 X = -6.840 S = 0.273 CV(2) = -0.040 K factor** = 2.523
 TL(2) = -6.151 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.001 -6.9081/15/2003 0.001 -6.9084/10/2003 0.001 -6.9087/14/2003 0.001 -6.908 0.001 10/13/2003 -6.9081/13/2004 0.00298 -5.8164/13/2004 0.001 -6.908 7/21/2004 0.001 -6.908Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.001 -6.908 9/16/2002 0.001 -6.908 10/16/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/10/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	No	0.0002	N/A	-8.517	N/A		
MW221	Sidegradient	No	0.0002	N/A	-8.517	N/A		
MW222	Sidegradient	No	0.0002	N/A	-8.517	N/A		
MW223	Sidegradient	No	0.0002	N/A	-8.517	N/A		
MW224	Sidegradient	No	0.0002	N/A	-8.517	N/A		
MW369	Downgradien	t No	0.0002	N/A	-8.517	N/A		
MW372	Downgradien	t No	0.0002	N/A	-8.517	N/A		
MW384	Sidegradient	No	0.0002	N/A	-8.517	N/A		
MW387	Downgradien	t No	0.0002	N/A	-8.517	N/A		
MW391	Downgradien	t Yes	0.00010	3 NO	-9.181	N/A		
MW394	Upgradient	No	0.0002	N/A	-8.517	N/A		
N/A - Resu	lts identified as N	Ion-Detects	luring labo	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.036 S = 0.026 CV(1) = 0.722 K factor** = 2.523
 TL(1) = 0.101 LL(1) = N/A

 Statistics-Transformed Background Data
 X = -3.485 S = 0.525 CV(2) = -0.151 K factor** = 2.523
 TL(2) = -2.162 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.025 -3.6891/15/2003 0.035 -3.3524/10/2003 0.035 -3.3527/14/2003 0.0389 -3.2470.026 10/13/2003 -3.6501/13/2004 0.02 -3.9124/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.1 -2.303 9/16/2002 0.1 -2.30310/16/2002 0.025 -3.6891/13/2003 0.035 -3.352 4/10/2003 0.035 -3.352 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	No	0.01	N/A	-4.605	N/A		
MW221	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW222	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW223	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW224	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW369	Downgradien	t Yes	0.00553	NO	-5.198	N/A		
MW372	Downgradien	t Yes	0.00488	NO	-5.323	N/A		
MW384	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW387	Downgradien	t No	0.01	N/A	-4.605	N/A		
MW391	Downgradien	t Yes	0.00669	NO	-5.007	N/A		
MW394	Upgradient	No	0.01	N/A	-4.605	N/A		
N/A - Resu	lts identified as N	Ion-Detects o	luring labo	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.258 S = 0.221 CV(1) = 0.856 K factor** = 2.523
 TL(1) = 0.815 LL(1) = N/A

 Statistics-Transformed
 X = -2.266 S = 2.485 CV(2) = -1.097 K factor** = 2.523
 TL(2) = 4.003 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.2 -1.6099/16/2002 0.2 -1.6090.0002 10/16/2002 -8.517 1/13/2003 0.737 -0.305-1.609 4/10/2003 0.2 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 0.824 -0.194 9/16/2002 0.2 -1.609 0.0002 10/17/2002 -8.517 1/13/2003 0.363 -1.013 4/8/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
•	MW370	Downgradient	. No	0.05	N/A	-2.996	N/A
	MW373	Downgradient	No	0.05	N/A	-2.996	N/A
	MW385	Sidegradient	No	0.05	N/A	-2.996	N/A
	MW388	Downgradient	Yes	0.025	NO	-3.689	N/A
	MW392	Downgradient	Yes	0.0226	NO	-3.790	N/A
	MW395	Upgradient	No	0.05	N/A	-2.996	N/A
	MW397	Upgradient	Yes	0.021	NO	-3.863	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 7.183 S = 2.612 CV(1) = 0.364 K factor**= 2.523
 TL(1) = 13.773 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.870 S = 0.552 CV(2) = 0.295 K factor**= 2.523
 TL(2) = 3.261 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.086 1.09 9/16/2002 5.79 1.756 1.920 10/16/2002 6.82 1/13/2003 5.01 1.611 1.808 4/10/2003 6.1 7/16/2003 8.51 2.141 10/14/2003 4.99 1.607 1/13/2004 6.58 1.884 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 9.57 2.259 9/16/2002 11 2.398 10/17/2002 9.3 2.230 1/13/2003 8.63 2.155 4/8/2003 10 2.303 7/16/2003 1.930 6.89 10/14/2003 2.313 10.1 1/13/2004 4.55 1.515

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	48.6	N/A	3.884	N/A
MW373	Downgradient	Yes	29.2	N/A	3.374	N/A
MW385	Sidegradient	Yes	147	YES	4.990	N/A
MW388	Downgradient	Yes	118	YES	4.771	N/A
MW392	Downgradient	No	1.04	N/A	0.039	N/A
MW395	Upgradient	Yes	6.43	N/A	1.861	N/A
MW397	Upgradient	Yes	10.2	N/A	2.322	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.650 S = 0.805 CV(1) = 1.238 K factor** = 2.523
 TL(1) = 2.681 LL(1) = N/A

 Statistics-Transformed
 X = 1.034 X = 1.030 X = 1

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 2. 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.6090.2 -1.609 4/10/2003 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/17/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/8/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	0.0283	N/A	-3.565	NO
MW373	Downgradient	Yes	1.47	N/A	0.385	NO
MW385	Sidegradient	No	0.00991	N/A	-4.614	N/A
MW388	Downgradient	No	0.0114	N/A	-4.474	N/A
MW392	Downgradient	Yes	0.0271	N/A	-3.608	NO
MW395	Upgradient	Yes	0.0235	N/A	-3.751	NO
MW397	Upgradient	Yes	0.00646	N/A	-5.042	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.000 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 1.000 LL(1) = N/A

 Statistics-Transformed
 X = 0.000 X = 0

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.000 9/16/2002 1 0.000 0.000 10/16/2002 1 1/13/2003 1 0.000 1 0.000 4/10/2003 7/16/2003 1 0.000 10/14/2003 1 0.000 1/13/2004 1 0.000 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/17/2002 1 0.000 1/13/2003 0.000 4/8/2003 0.000 7/16/2003 1 0.000 10/14/2003 0.000 1 0.000 1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	t Yes	0.46	NO	-0.777	N/A
MW373	Downgradient	t Yes	0.621	NO	-0.476	N/A
MW385	Sidegradient	Yes	0.246	NO	-1.402	N/A
MW388	Downgradient	t Yes	0.25	NO	-1.386	N/A
MW392	Downgradient	t Yes	0.59	NO	-0.528	N/A
MW395	Upgradient	Yes	0.628	NO	-0.465	N/A
MW397	Upgradient	Yes	0.436	NO	-0.830	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Calcium LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 23.103 S = 11.538 CV(1) = 0.499

K factor=** 2.523

TL(1) = 52.213

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.357S = 2.411 CV(2) = 1.023

K factor=** 2.523

TL(2) = 8.439

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 32.2 3.472 9/16/2002 33 3.497 0.0295 10/16/2002 -3.5231/13/2003 32.1 3.469 40.2 4/10/2003 3.694 7/16/2003 32.4 3.478 10/14/2003 33.9 3.523 1/13/2004 31.2 3.440 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 19.4 2.965 9/16/2002 19 2.944 0.0179 10/17/2002 -4.0231/13/2003 17.8 2.879 4/8/2003 20.3 3.011 7/16/2003 19.4 2.965 10/14/2003 19.9 2.991 1/13/2004 18.8 2.934

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	31.2	NO	3.440	N/A
MW373	Downgradient	Yes	64.5	YES	4.167	N/A
MW385	Sidegradient	Yes	22.8	NO	3.127	N/A
MW388	Downgradient	Yes	22.5	NO	3.114	N/A
MW392	Downgradient	Yes	28.1	NO	3.336	N/A
MW395	Upgradient	Yes	27.6	NO	3.318	N/A
MW397	Upgradient	Yes	18.1	NO	2.896	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-66

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 35.313 S = 1.250 CV(1) = 0.035 K factor** = 2.523
 TL(1) = 38.466 LL(1) = N/A

 Statistics-Transformed
 X = 3.564 S = 0.033 CV(2) = 0.009 K factor** = 2.523
 TL(2) = 3.648 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	3.555
4/10/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/13/2004	35	3.555
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.689
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 40	3.689
Date Collected 8/13/2002 9/16/2002	Result 40 35	3.689 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 40 35 35	3.689 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 40 35 35 35	3.689 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 40 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	t No	20	N/A	2.996	N/A
MW373	Downgradient	No	20	N/A	2.996	N/A
MW385	Sidegradient	No	20	N/A	2.996	N/A
MW388	Downgradient	Yes	30.8	NO	3.428	N/A
MW392	Downgradient	Yes	35.8	NO	3.578	N/A
MW395	Upgradient	Yes	30.8	NO	3.428	N/A
MW397	Upgradient	No	20	N/A	2.996	N/A
3.T/A D	1. 11 1 3.7				1 . 11 1	1

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.844 S = 11.652 CV(1) = 0.225

K factor**= 2.523

TL(1)= 81.242

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.924 **S**= 0.229

CV(2)=0.058

K factor**= 2.523

TL(2) = 4.501

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 62.2 4.130 9/16/2002 64.7 4.170 4.130 10/16/2002 62.2 1/13/2003 63.5 4.151 64.1 4.160 4/10/2003 7/16/2003 64 4.159 10/14/2003 63.2 4.146 1/13/2004 60.6 4.104 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 38.9 3.661 3.684 9/16/2002 39.8 10/17/2002 39.3 3.671 1/13/2003 40.5 3.701 4/8/2003 42.1 3.740 7/16/2003 42 3.738 10/14/2003 40.8 3.709 1/13/2004 41.6 3.728

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	36.6	NO	3.600	N/A
MW373	Downgradient	Yes	48.6	NO	3.884	N/A
MW385	Sidegradient	Yes	33.7	NO	3.517	N/A
MW388	Downgradient	Yes	28	NO	3.332	N/A
MW392	Downgradient	Yes	47	NO	3.850	N/A
MW395	Upgradient	Yes	48.3	NO	3.877	N/A
MW397	Upgradient	Yes	35.3	NO	3.564	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor** = 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.609 5 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 5 1/13/2004 1.609 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 5 1.609 1/13/2003 5 1.609 5 4/8/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	No	1	N/A	0.000	N/A
MW373	Downgradient	No	1	N/A	0.000	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradient	No	1	N/A	0.000	N/A
MW392	Downgradient	Yes	0.79	NO	-0.236	N/A
MW395	Upgradient	No	1	N/A	0.000	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

 $S= 0.011 \quad CV(1)=1.515$

K factor**= 2.523

TL(1)= 0.034

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.053 S = 1.416

CV(2) = -0.234

K factor=** 2.523

TL(2) = -2.480

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	0.000366	6 N/A	-7.913	NO
MW373	Downgradient	No	0.001	N/A	-6.908	N/A
MW385	Sidegradient	No	0.001	N/A	-6.908	N/A
MW388	Downgradient	No	0.001	N/A	-6.908	N/A
MW392	Downgradient	Yes	0.000193	3 N/A	-8.553	NO
MW395	Upgradient	No	0.001	N/A	-6.908	N/A
MW397	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis **Historical Background Comparison Conductivity UNITS:** umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

K factor=** 2.523

TL(1)= 509.326 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.926 S = 0.136

CV(2) = 0.023

K factor=** 2.523

TL(2) = 6.270

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.775
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradien	t Yes	441	NO	6.089	N/A
MW373	Downgradien	t Yes	638	YES	6.458	N/A
MW385	Sidegradient	Yes	397	NO	5.984	N/A
MW388	Downgradien	t Yes	386	NO	5.956	N/A
MW392	Downgradien	t Yes	411	NO	6.019	N/A
MW395	Upgradient	Yes	399	NO	5.989	N/A
MW397	Upgradient	Yes	323	NO	5.778	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-71

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.028 S = 0.013 CV(1) = 0.474 K factor**= 2.523
 TL(1) = 0.061 LL(1) = N/A

 Statistics-Transformed
 X = -3.662 S = 0.406 CV(2) = -0.111 K factor**= 2.523
 TL(2) = -2.638 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.9960.0281 -3.572 10/16/2002 1/13/2003 0.02 -3.912 0.02 -3.912 4/10/2003 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 1/13/2004 0.02 -3.912Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.996 10/17/2002 0.02 -3.9121/13/2003 0.02 -3.912 -3.912 4/8/2003 0.02 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Current Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
,	MW370	Downgradien	t Yes	0.00189	NO	-6.271	N/A
	MW373	Downgradien	t Yes	0.00222	NO	-6.110	N/A
	MW385	Sidegradient	Yes	0.00043	6 NO	-7.738	N/A
	MW388	Downgradien	t Yes	0.00081	5 NO	-7.112	N/A
	MW392	Downgradien	t Yes	0.00035	NO	-7.958	N/A
	MW395	Upgradient	Yes	0.00035	2 NO	-7.952	N/A
	MW397	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 4.678 S = 2.431 CV(1) = 0.520 K factor**= 2.523
 TL(1) = 10.812 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.414 S = 0.550 CV(2) = 0.389 K factor**= 2.523
 TL(2) = 2.802 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 7.29 1.987 9/30/2002 4.03 1.394 10/16/2002 3.85 1.348 1/13/2003 2.36 0.8594/10/2003 1.14 0.131 7/16/2003 1.76 0.565 10/14/2003 4.05 1.399 1/13/2004 4.26 1.449 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 11.56 2.448 9/16/2002 5.86 1.768 10/17/2002 5.94 1.782 1/13/2003 1.539 4.66 4/8/2003 3.77 1.327 7/16/2003 3.47 1.244 10/14/2003 5.34 1.675 1/13/2004 5.51 1.707

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradien	t Yes	5.97	NO	1.787	N/A
MW373	Downgradien	t Yes	6.26	NO	1.834	N/A
MW385	Sidegradient	Yes	4.42	NO	1.486	N/A
MW388	Downgradien	t Yes	4.93	NO	1.595	N/A
MW392	Downgradien	t Yes	0.84	NO	-0.174	N/A
MW395	Upgradient	Yes	3.74	NO	1.319	N/A
MW397	Upgradient	Yes	5.18	NO	1.645	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

K factor=** 2.523

TL(1) = 305.301 LL(1) = N/A

Statistics-Transformed Background Data

X = 5.379 S = 0.152

CV(2)=0.028

K factor=** 2.523

TL(2) = 5.762

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 249 5.517 9/16/2002 272 5.606 10/16/2002 255 5.541 1/13/2003 211 5.352 4/10/2003 289 5.666 7/16/2003 236 5.464 10/14/2003 224 5.412 1/13/2004 235 5.460 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 187 5.231 9/16/2002 197 5.283 10/17/2002 183 5.209 1/13/2003 182 5.204 4/8/2003 217 5.380 7/16/2003 196 5.278 10/14/2003 198 5.288 1/13/2004 177 5.176

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	206	NO	5.328	N/A
MW373	Downgradient	Yes	373	YES	5.922	N/A
MW385	Sidegradient	Yes	253	NO	5.533	N/A
MW388	Downgradient	Yes	233	NO	5.451	N/A
MW392	Downgradient	Yes	226	NO	5.421	N/A
MW395	Upgradient	Yes	224	NO	5.412	N/A
MW397	Upgradient	Yes	167	NO	5.118	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.400 S = 0.514 CV(1) = 1.286 K factor** = 2.523
 TL(1) = 1.698 LL(1) = N/A

 Statistics-Transformed
 X = -2.197 S = 2.634 CV(2) = -1.199 K factor** = 2.523
 TL(2) = 4.449 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.294 -1.2249/16/2002 0.2 -1.6090.0002 -8.517 10/16/2002 1/13/2003 1.33 0.285 0.270 4/10/2003 1.31 7/16/2003 0.2 -1.60910/14/2003 0.1 -2.303 1/13/2004 0.1 -2.303Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1.58 0.457 9/16/2002 0.232 -1.461 0.0002 10/17/2002 -8.517 1/13/2003 0.453 -0.792 4/8/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.1 -2.303-2.303 1/13/2004 0.1

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	. No	0.1	N/A	-2.303	N/A
MW373	Downgradient	No	0.1	N/A	-2.303	N/A
MW385	Sidegradient	No	0.1	N/A	-2.303	N/A
MW388	Downgradient	Yes	0.117	N/A	-2.146	NO
MW392	Downgradient	Yes	0.165	N/A	-1.802	NO
MW395	Upgradient	Yes	0.17	N/A	-1.772	NO
MW397	Upgradient	Yes	0.0465	N/A	-3.068	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 9.102 S = 4.685 CV(1) = 0.515 K factor**= 2.523
 TL(1) = 20.922 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.423 S = 2.408 CV(2) = 1.692 K factor**= 2.523
 TL(2) = 7.500 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 12.5 2.526 9/16/2002 13 2.565 0.0127 10/16/2002 -4.3661/13/2003 11.2 2.416 4/10/2003 17.5 2.862 7/16/2003 12.9 2.557 10/14/2003 13.4 2.595 1/13/2004 12.4 2.518 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 7.83 2.058 9/16/2002 7.64 2.033 10/17/2002 0.00658 -5.0241/13/2003 6.69 1.901 4/8/2003 7.28 1.985 7/16/2003 7.82 2.057 10/14/2003 7.94 2.072 1/13/2004 7.51 2.016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	12.4	NO	2.518	N/A	
MW373	Downgradient	Yes	22.7	YES	3.122	N/A	
MW385	Sidegradient	Yes	8.37	NO	2.125	N/A	
MW388	Downgradient	Yes	9.18	NO	2.217	N/A	
MW392	Downgradient	Yes	10.1	NO	2.313	N/A	
MW395	Upgradient	Yes	11.5	NO	2.442	N/A	
MW397	Upgradient	Yes	7.72	NO	2.044	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.131 S = 0.195 CV(1) = 1.487 K factor**= 2.523
 TL(1) = 0.624 LL(1) = N/A

 Statistics-Transformed
 X = -3.104 S = 1.529 CV(2) = -0.493 K factor**= 2.523
 TL(2) = 0.755 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 -1.019 0.361 9/16/2002 0.028 -3.57610/16/2002 0.026 -3.6501/13/2003 0.0713 -2.641-0.464 4/10/2003 0.629 7/16/2003 0.297 -1.21410/14/2003 0.0198 -3.9221/13/2004 0.0126 -4.374Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.466 -0.764 9/16/2002 0.077 -2.56410/17/2002 0.028 -3.5761/13/2003 0.0164 -4.110 4/8/2003 0.0407 -3.202 0.0167 -4.092 7/16/2003 10/14/2003 0.00555 -5.1940.005 -5.298 1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	t Yes	0.003	N/A	-5.809	NO
MW373	Downgradient	t Yes	0.00222	N/A	-6.110	NO
MW385	Sidegradient	No	0.005	N/A	-5.298	N/A
MW388	Downgradient	t Yes	0.0015	N/A	-6.502	NO
MW392	Downgradient	t Yes	0.0972	N/A	-2.331	NO
MW395	Upgradient	Yes	0.00123	N/A	-6.701	NO
MW397	Upgradient	Yes	0.0013	N/A	-6.645	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.007 S = 0.011 CV(1) = 1.451 K factor**= 2.523
 TL(1) = 0.034 LL(1) = N/A

 Statistics-Transformed
 X = -5.990 S = 1.443 CV(2) = -0.241 K factor**= 2.523
 TL(2) = -2.349 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.6890.001 10/16/2002 -6.9081/13/2003 0.00609 -5.101 -6.908 0.001 4/10/2003 7/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/17/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/8/2003 0.001 -6.908 7/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	t No	0.0005	N/A	-7.601	N/A
MW373	Downgradient	t No	0.0005	N/A	-7.601	N/A
MW385	Sidegradient	No	0.0005	N/A	-7.601	N/A
MW388	Downgradient	t Yes	0.00016	9 N/A	-8.686	NO
MW392	Downgradient	t No	0.00035	1 N/A	-7.955	N/A
MW395	Upgradient	Yes	0.00035	6 N/A	-7.941	NO
MW397	Upgradient	No	0.0005	N/A	-7.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.018 S = 0.020 CV(1) = 1.089 K factor** = 2.523
 TL(1) = 0.068 LL(1) = N/A

 Statistics-Transformed
 X = -4.540 S = 1.020 CV(2) = -0.225 CV(2) = -0.225

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.996-4.959 10/16/2002 0.00702 1/13/2003 0.029 -3.5400.0091 -4.699 4/10/2003 7/16/2003 0.00627 -5.07210/14/2003 0.005 -5.298 1/13/2004 0.005 -5.298Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.99610/17/2002 0.005 -5.2981/13/2003 0.00502 -5.294 4/8/2003 0.005 -5.2987/16/2003 0.005 -5.29810/14/2003 0.005 -5.2981/13/2004 0.005 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradien	t Yes	0.00093	7 N/A	-6.973	NO
MW373	Downgradien	t Yes	0.00074	N/A	-7.209	NO
MW385	Sidegradient	Yes	0.00081	6 N/A	-7.111	NO
MW388	Downgradien	t Yes	0.00107	N/A	-6.840	NO
MW392	Downgradien	t Yes	0.00118	N/A	-6.742	NO
MW395	Upgradient	Yes	0.0027	N/A	-5.915	NO
MW397	Upgradient	Yes	0.00071	4 N/A	-7.245	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison **UNITS: mV Oxidation-Reduction Potential LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 157.250 S = 52.376 CV(1) = 0.333

K factor=** 2.523

TL(1)= 289.395 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.003S = 0.348

CV(2)=0.069

K factor=** 2.523

TL(2) = 5.880

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 80 4.382 9/16/2002 145 4.977 10/16/2002 125 4.828 1/13/2003 85 4.443 5.069 4/10/2003 159 7/16/2003 98 4.585 10/14/2003 138 4.927 1/13/2004 233 5.451 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 115 4.745 9/30/2002 140 4.942 10/17/2002 185 5.220 1/13/2003 230 5.438 4/8/2003 155 5.043 7/16/2003 5.236 188 10/14/2003 5.231 187 1/13/2004 253 5.533

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradien	t Yes	318	YES	5.762	N/A	
MW373	Downgradien	t Yes	278	NO	5.628	N/A	
MW385	Sidegradient	Yes	513	YES	6.240	N/A	
MW388	Downgradien	t Yes	569	YES	6.344	N/A	
MW392	Downgradien	t Yes	776	YES	6.654	N/A	
MW395	Upgradient	Yes	325	YES	5.784	N/A	
MW397	Upgradient	Yes	586	YES	6.373	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells	with	Exceedances

MW370 MW385

MW388 MW392

MW395

MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-80

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.048 S = 0.248 CV(1) = 0.041 K factor** = 2.904
 TL(1) = 6.767 LL(1) = 5.3289

 Statistics-Transformed
 X = 1.799 X = 0.042 X

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 5.8 1.758 9/16/2002 1.792 5.47 1.699 10/16/2002 1/13/2003 6 1.792 4/10/2003 6.18 1.821 7/16/2003 6 1.792 10/14/2003 6.31 1.842 1/13/2004 6.24 1.831 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 5.84 1.765 9/30/2002 1.792 6 10/17/2002 5.75 1.749 1/13/2003 1.792 6 4/8/2003 6.3 1.841 7/16/2003 6.2 1.825 10/14/2003 6.36 1.850 1/13/2004 6.32 1.844

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	V mmi coi	

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW370	Downgradien	t Yes	6.78	YES	1.914	N/A
MW373	Downgradien	t Yes	6.8	YES	1.917	N/A
MW385	Sidegradient	Yes	6.19	NO	1.823	N/A
MW388	Downgradien	t Yes	6.31	NO	1.842	N/A
MW392	Downgradien	t Yes	6.31	NO	1.842	N/A
MW395	Upgradient	Yes	6.47	NO	1.867	N/A
MW397	Upgradient	Yes	6.29	NO	1.839	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.590 S = 0.642 CV(1) = 0.404 K factor**= 2.523
 TL(1) = 3.208 LL(1) = N/A

 Statistics-Transformed
 X = -0.306 S = 2.457 CV(2) = -8.028 K factor**= 2.523
 TL(2) = 5.892 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 2. 9/16/2002 2 0.693 0.00129 10/16/2002 -6.653 1/13/2003 1.51 0.412 0.513 4/10/2003 1.67 7/16/2003 1.73 0.548 10/14/2003 1.7 0.531 1/13/2004 1.58 0.457 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2.03 0.708 9/16/2002 0.693 2 0.00145 10/17/2002 -6.5361/13/2003 1.69 0.525 4/8/2003 1.73 0.548 7/16/2003 2 0.693 10/14/2003 1.92 0.652 1/13/2004 1.87 0.626

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data									
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
,	MW370	Downgradien	t Yes	2.23	NO	0.802	N/A			
	MW373	Downgradien	t Yes	2.52	NO	0.924	N/A			
	MW385	Sidegradient	Yes	1.55	NO	0.438	N/A			
	MW388	Downgradien	t Yes	1.51	NO	0.412	N/A			
	MW392	Downgradien	t Yes	1.82	NO	0.599	N/A			
	MW395	Upgradient	Yes	1.68	NO	0.519	N/A			
	MW397	Upgradient	Yes	1.53	NO	0.425	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.039 S = 0.419 CV(1) = 10.740 K factor** = 2.523
 TL(1) = 1.096 LL(1) = N/A

 Statistics-Transformed
 X = -1.695 S = 1.043 CV(2) = -0.615 K factor** = 2.523
 TL(2) = -0.414 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/16/2002	0.661	-0.414
1/13/2003	-0.839	#Func!
10/14/2003	0.0266	-3.627
1/13/2004	-0.0777	#Func!
4/12/2004	-0.115	#Func!
7/20/2004	0.105	-2.254
10/12/2004	0.408	-0.896
1/18/2005	0.0564	-2.875
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.552
Date Collected	Result	,
Date Collected 10/17/2002	Result 0.576	-0.552
Date Collected 10/17/2002 1/13/2003	Result 0.576 -0.841	-0.552 #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003	Result 0.576 -0.841 -0.179	-0.552 #Func! #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003 1/13/2004	Result 0.576 -0.841 -0.179 -0.0564	-0.552 #Func! #Func! #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003 1/13/2004 4/12/2004	Result 0.576 -0.841 -0.179 -0.0564 0.174	-0.552 #Func! #Func! #Func! -1.749
Date Collected 10/17/2002 1/13/2003 10/14/2003 1/13/2004 4/12/2004 7/21/2004	Result 0.576 -0.841 -0.179 -0.0564 0.174 0.227	-0.552 #Func! #Func! #Func! -1.749 -1.483

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	0.711	N/A	-0.341	YES		
MW373	Downgradient	No	0.297	N/A	-1.214	N/A		
MW385	Sidegradient	No	0.187	N/A	-1.677	N/A		
MW388	Downgradient	No	0.353	N/A	-1.041	N/A		
MW392	Downgradient	No	0.504	N/A	-0.685	N/A		
MW395	Upgradient	No	0.13	N/A	-2.040	N/A		
MW397	Upgradient	No	-0.0439	N/A	#Error	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Sodium LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 29.560 S = 13.894 CV(1) = 0.470

K factor=** 2.523

TL(1)= 64.616

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.615

S = 2.411

CV(2) = 0.922

K factor=** 2.523

TL(2)= 8.699

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 27 3.296 9/16/2002 27.2 3.303 0.0253 10/16/2002 -3.6771/13/2003 22.6 3.118 53.9 3.987 4/10/2003 7/16/2003 30 3.401 10/14/2003 29.1 3.371 1/13/2004 26.4 3.273 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 35.2 3.561 9/16/2002 34.3 3.535 10/17/2002 0.0336 -3.3931/13/2003 31.3 3.444 4/8/2003 46.1 3.831 7/16/2003 38.4 3.648 10/14/2003 37.1 3.614 1/13/2004 34.3 3.535

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW370	Downgradient	Yes	47.6	NO	3.863	N/A			
MW373	Downgradient	Yes	54.6	NO	4.000	N/A			
MW385	Sidegradient	Yes	48.6	NO	3.884	N/A			
MW388	Downgradient	Yes	45.1	NO	3.809	N/A			
MW392	Downgradient	Yes	42.5	NO	3.750	N/A			
MW395	Upgradient	Yes	30.7	NO	3.424	N/A			
MW397	Upgradient	Yes	37.9	NO	3.635	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-84

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 10.756 S = 2.147 CV(1) = 0.200 K factor**= 2.523
 TL(1) = 16.173 LL(1) = N/A

 Statistics-Transformed
 X = 2.356 X = 0.203 X =

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 10.3 2.332 9/16/2002 9.1 2.208 10/16/2002 8.8 2.175 1/13/2003 9 2.197 4/10/2003 8.3 2.116 7/16/2003 8.2 2.104 10/14/2003 8.3 2.116 1/13/2004 8.2 2.104 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 14 2.639 9/16/2002 12.8 2.549 10/17/2002 12.3 2.510 1/13/2003 12.7 2.542 4/8/2003 12.8 2.549 7/16/2003 13.1 2.573 10/14/2003 2.493 12.1 1/13/2004 12.1 2.493

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	19.7	YES	2.981	N/A		
MW373	Downgradient	Yes	118	YES	4.771	N/A		
MW385	Sidegradient	Yes	21.8	YES	3.082	N/A		
MW388	Downgradient	Yes	21.2	YES	3.054	N/A		
MW392	Downgradient	Yes	5.9	NO	1.775	N/A		
MW395	Upgradient	Yes	9.73	NO	2.275	N/A		
MW397	Upgradient	Yes	9.61	NO	2.263	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 11.359 S = 9.138 CV(1) = 0.805 K factor** = 2.523
 TL(1) = 34.414 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 2.398 S = 0.859 CV(2) = 0.358 K factor** = 2.523
 TL(2) = 3.246 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 3.035 20.8 9/16/2002 16.2 2.785 8.28 2.114 10/16/2002 1/13/2003 13 2.565 -9.37 4/10/2003 #Func! 0.826 7/16/2003 -0.19110/14/2003 14.1 2.646 0 1/13/2004 #Func! Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 6.06 1.802 9/16/2002 17.3 2.851 10/17/2002 25.7 3.246 1/13/2003 20.9 3.040 4/8/2003 20.1 3.001 7/16/2003 9.2 2.219 10/14/2003 10.1 2.313 1/13/2004 8.54 2.145

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	92	YES	4.522	N/A		
MW373	Downgradient	Yes	31.2	NO	3.440	N/A		
MW385	Sidegradient	Yes	231	YES	5.442	N/A		
MW388	Downgradient	Yes	189	YES	5.242	N/A		
MW392	Downgradient	No	-6.38	N/A	#Error	N/A		
MW395	Upgradient	No	8.36	N/A	2.123	N/A		
MW397	Upgradient	No	7.44	N/A	2.007	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.544 S = 0.856 CV(1) = 0.554 K factor** = 2.523
 TL(1) = 3.702 LL(1) = N/A

 Statistics-Transformed
 X = 0.325 S = 0.452 CV(2) = 1.393 K factor** = 2.523
 TL(2) = 1.465 LL(2) = N/A

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.470 1.6 9/16/2002 1.1 0.095 1 0.000 10/16/2002 1/13/2003 2 0.6934/10/2003 3.4 1.224 7/16/2003 2 0.693 10/14/2003 0.000 1 1/13/2004 1 0.000 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/17/2002 1 0.000 1/13/2003 1.281 4/8/2003 1.9 0.642 7/16/2003 1.1 0.095 10/14/2003 0.000 1 0.000 1/13/2004 1

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW370	Downgradient	Yes	1.12	NO	0.113	N/A			
MW373	Downgradient	Yes	1.24	NO	0.215	N/A			
MW385	Sidegradient	Yes	0.921	NO	-0.082	N/A			
MW388	Downgradient	Yes	0.96	NO	-0.041	N/A			
MW392	Downgradient	Yes	1.29	NO	0.255	N/A			
MW395	Upgradient	Yes	1.02	NO	0.020	N/A			
MW397	Upgradient	Yes	0.931	NO	-0.071	N/A			
37/4 D					1 . 11 1	1			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 31.513 S = 18.609 CV(1) = 0.591

=0.591 **K factor****= 2.523

TL(1)= 78.462

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.240 S = 0.707

CV(2) = 0.218

K factor=** 2.523

TL(2) = 5.024

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 50 3.912 9/16/2002 50 3.912 3.912 10/16/2002 50 1/13/2003 18.3 2.907 51.2 4/10/2003 3.936 7/16/2003 42.6 3.752 10/14/2003 12.3 2.510 1/13/2004 10 2.303 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 50 3.912 9/16/2002 50 3.912 10/17/2002 50 3.912 1/13/2003 12 2.485 4/8/2003 19.9 2.991 7/16/2003 17.9 2.885 10/14/2003 10 2.303 1/13/2004 10 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradien	t Yes	5.54	NO	1.712	N/A		
MW373	Downgradien	t Yes	13.8	NO	2.625	N/A		
MW385	Sidegradient	Yes	5	NO	1.609	N/A		
MW388	Downgradien	t Yes	6.9	NO	1.932	N/A		
MW392	Downgradien	t Yes	29.4	NO	3.381	N/A		
MW395	Upgradient	Yes	9.06	NO	2.204	N/A		
MW397	Upgradient	Yes	6.12	NO	1.812	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 7.313 S = 5.701 CV(1) = 0.780 K factor**= 2.523
 TL(1) = 21.695 LL(1) = N/A

 Statistics-Transformed
 X = 1.467 X = 1.213 X = 1

Background Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 11 2.398 9/30/2002 14 2.639 10/16/2002 12 2.485 1/13/2003 14 2.639 14 4/10/2003 2.639 7/16/2003 13 2.565 10/14/2003 12 2.485 1/13/2004 11 2.398 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 1 0.000 1/13/2003 0.000 4/8/2003 0.000 7/16/2003 1 0.000 10/14/2003 0.000 1 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	t Yes	0.69	N/A	-0.371	N/A		
MW373	Downgradient	t Yes	7.97	NO	2.076	N/A		
MW385	Sidegradient	Yes	0.55	N/A	-0.598	N/A		
MW388	Downgradient	t Yes	0.38	N/A	-0.968	N/A		
MW392	Downgradient	t Yes	18.3	NO	2.907	N/A		
MW395	Upgradient	Yes	4.23	N/A	1.442	N/A		
MW397	Upgradient	No	1	N/A	0.000	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-S/T Second Quarter 2016 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 275.875 S = 122.299 CV(1) = 0.443

K factor**= 3.188

TL(1)= 665.763 **LL(1)**=N/A

Statistics-Transformed Background

X = 5.534

S = 0.443 CV(2) = 0.080

K factor=** 3.188

TL(2) = 6.947

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
4/9/2014	427	6.057
7/17/2014	265	5.580
10/27/2014	141	4.949
1/8/2015	193	5.263
4/22/2015	469	6.151
7/16/2015	330	5.799
10/22/2015	159	5.069
1/5/2016	223	5.407

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	428	NO	6.059	N/A
MW390	Downgradient	t Yes	607	NO	6.409	N/A
MW393	Downgradient	t Yes	573	NO	6.351	N/A
MW396	Upgradient	Yes	384	NO	5.951	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Current Background Comparison Radium-226 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.959

S= 0.550 **CV(1)**=0.573

K factor**= 3.188

TL(1) = 2.713

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.138 S = 0.426

CV(2) = -3.079

K factor=** 3.188

TL(2) = 1.218

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 4/9/2014 2.28 0.824 7/17/2014 0.709 -0.34410/27/2014 -0.457 0.6331/8/2015 0.585 -0.5364/22/2015 0.786 -0.2417/16/2015 0.785 -0.24210/22/2015 0.988 -0.0120.907 -0.098 1/5/2016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW300	Downgradient	t Voc	0.696	NO	-0.362	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 1.476	S = 6.000	CV(1) =4.064	K factor**= 3.188	TL(1)= 20.604	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.790	S = 1.487	CV(2)= 1.882	K factor**= 3.188	TL(2)= 2.416	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 4/9/2014 -5.67#Func! 7/17/2014 1.03 0.030 10/27/2014 3.28 1.188 2.416 1/8/2015 11.2 4/22/2015 2.84 1.044 7/16/2015 0.171 -1.766 10/22/2015 -7.28#Func! 1.831 1/5/2016 6.24

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW390	Downgradien	t Yes	62.5	N/A	4.135	YES

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis **Current Background Comparison** Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.060

S = 0.053

CV(1)=0.885

K factor**= 2.523

TL(1)= 0.193

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.113 S = 0.771

CV(2) = -0.248

K factor=** 2.523

TL(2) = -1.168

URGA

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 4/7/2014 0.05 -2.9967/17/2014 0.05 -2.99610/21/2014 0.0283 -3.5651/5/2015 0.207 -1.5754/14/2015 0.0162 -4.123 7/15/2015 0.05 -2.996 10/15/2015 0.0151 -4.1931/5/2016 0.05 -2 996

1/3/2010	0.03	-2.770		
Well Number:	MW394			
Date Collected	Result	LN(Result)		
4/9/2014	0.05	-2.996		
7/17/2014	0.05	-2.996		
10/27/2014	0.0202	-3.902		
1/8/2015	0.133	-2.017		
4/22/2015	0.132	-2.025		
7/17/2015	0.05	-2.996		
10/22/2015	0.0162	-4.123		
1/5/2016	0.0363	-3.316		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW391	Downgradien	t Ves	0.706	YES	-0.348	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2016 Statistical Analysis Current Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.681 **S**= 5.643

CV(1)=0.528

K factor**= 2.523

TL(1)= 24.919

LL(1)=N/A

Statistics-Transformed Background

X = 2.244

S = 0.514 CV

CV(2) = 0.229

K factor=** 2.523

TL(2) = 3.540

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/7/2014 7.94 2.072 7/17/2014 3.011 20.3 10/21/2014 9.99 2.302 1/5/2015 3.082 21.8 4/14/2015 11.4 2.434 7/15/2015 9.31 2.231 10/15/2015 17 2.833 1/5/2016 18.1 2.896

1,0,2010	10.1	2.070	
Well Number:	MW394		
Date Collected	Result	LN(Result)	
4/9/2014	6.27	1.836	
7/17/2014	6.9	1.932	
10/27/2014	3.99	1.384	
1/8/2015	5.07	1.623	
4/22/2015	9.13	2.212	
7/17/2015	5.97	1.787	
10/22/2015	11.6	2.451	
1/5/2016	6.13	1.813	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW384	Sidegradient	Yes	96.9	YES	4.574	N/A
MW387	Downgradient	t Yes	167	YES	5.118	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2016 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 23.963 **S**= 3.490

CV(1)=0.146

K factor=** 2.523

TL(1) = 32.768

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.166

S = 0.153 C

CV(2) = 0.048

K factor=** 2.523

TL(2) = 3.551

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/7/2014	25.6	3.243
7/17/2014	21.6	3.073
10/21/2014	18.4	2.912
1/5/2015	20	2.996
4/14/2015	23	3.135
7/15/2015	21.8	3.082
10/15/2015	18.5	2.918
1/5/2016	19.3	2.960

1,0,2010	17.0	2.,, 00
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/9/2014	27.3	3.307
7/17/2014	26.3	3.270
10/27/2014	26.5	3.277
1/8/2015	27.2	3.303
4/22/2015	26.5	3.277
7/17/2015	26.8	3.288
10/22/2015	26.9	3.292
1/5/2016	27.7	3.321

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	62.9	YES	4.142	N/A
MW391	Downgradien	t Yes	44.1	YES	3.786	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2016 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

MW391 Downgradient Yes

Statistics-Background Data

X = 220.500 S = 93.312 CV(1) = 0.423

K factor=** 2.523

TL(1) = 455.925

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.344

S = 0.297 CV(2) = 0.056

K factor=** 2.523

TL(2) = 6.093

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/7/2014	226	5.421
7/17/2014	556	6.321
10/21/2014	159	5.069
1/5/2015	140	4.942
4/14/2015	197	5.283
7/15/2015	224	5.412
10/15/2015	236	5.464
1/5/2016	209	5.342
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/9/2014	214	5.366
7/17/2014	196	5.278
10/27/2014	187	5.231
1/8/2015	166	5.112

181

201

210

226

4/22/2015

7/17/2015

1/5/2016

10/22/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

5.914

N/A

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW372	Downgradient	t Yes	380	NO	5.940	N/A		
MW387	Downgradient	t Yes	316	NO	5.756	N/A		

NO

370

Conclusion of Statistical Analysis on Current Data

5.198

5.303

5.347

5.421

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Current l Magnesium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.123 **S**= 1.573

K factor=** 2.523

TL(1) = 14.092 LI

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.303 **S**= 0.163

CV(2) = 0.071

CV(1)=0.155

K factor=** 2.523

TL(2) = 2.714

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/7/2014	10.5	2.351
7/17/2014	8.95	2.192
10/21/2014	7.41	2.003
1/5/2015	8.05	2.086
4/14/2015	10.2	2.322
7/15/2015	9.16	2.215
10/15/2015	7.86	2.062
1/5/2016	8.44	2.133

MW394	
Result	LN(Result)
11	2.398
11.1	2.407
11	2.398
11.3	2.425
11.1	2.407
11.9	2.477
12.1	2.493
11.9	2.477
	Result 11 11.1 11 11.3 11.1 11.9 12.1

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	22.2	YES	3.100	N/A
MW391	Downgradien	t Yes	18.8	YES	2.934	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2016 Statistical Analysis **Oxidation-Reduction Potential UNITS: mV**

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 492.188 S = 125.743 CV(1) = 0.255

K factor=** 2.523

TL(1)= 809.436 LL(1)=N/A

Statistics-Transformed Background

X = 6.171

S = 0.239CV(2) = 0.039 **K factor**=** 2.523

TL(2) = 6.773

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 4/7/2014 400 5.991 7/17/2014 395 5.979 10/21/2014 401 5.994 1/5/2015 733 6.597 4/14/2015 488 6.190 9/3/2015 672 6.510 10/15/2015 728 6.590 1/5/2016 6.107 449 Well Number: MW394 Date Collected Result LN(Result) 4/9/2014 516 6.246 7/17/2014 356 5.875 10/27/2014 453 6.116 1/8/2015 453 6.116 4/22/2015 461 6.133

608

411

351

7/17/2015

1/5/2016

10/22/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Qua	rter Data
-------------	-----------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW220	Upgradient	Yes	438	NO	6.082	N/A
MW221	Sidegradient	Yes	485	NO	6.184	N/A
MW223	Sidegradient	Yes	457	NO	6.125	N/A
MW224	Sidegradient	Yes	605	NO	6.405	N/A
MW384	Sidegradient	Yes	534	NO	6.280	N/A
MW387	Downgradien	t Yes	760	NO	6.633	N/A
MW391	Downgradien	t Yes	576	NO	6.356	N/A
MW394	Upgradient	Yes	484	NO	6.182	N/A

Conclusion of Statistical Analysis on Current Data

6.410 6.019

5.861

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-11

C-746-S/T Second Quarter 2016 Statistical Analysis Current Background Comparison Radium-226 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.897	S = 0.943	CV(1)= 1.050	K factor**= 2.523	TL(1) = 3.275	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.371	S = 0.662	CV(2)= -1.786	K factor**= 2.523	TL(2)= 1.300	LL(2)= N/A

Current Dealeground Date from Unavedien

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
4/7/2014	1.3	0.262
7/17/2014	0.583	-0.540
10/21/2014	0.858	-0.153
1/5/2015	0.484	-0.726
4/14/2015	0.409	-0.894
7/15/2015	0.709	-0.344
10/15/2015	0.636	-0.453
1/5/2016	0.745	-0.294
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.449
Date Collected	Result	
Date Collected 4/9/2014	Result 4.26	1.449
Date Collected 4/9/2014 7/17/2014	Result 4.26 0.232	1.449 -1.461
Date Collected 4/9/2014 7/17/2014 10/27/2014	Result 4.26 0.232 0.706	1.449 -1.461 -0.348
Date Collected 4/9/2014 7/17/2014 10/27/2014 1/8/2015	Result 4.26 0.232 0.706 0.332	1.449 -1.461 -0.348 -1.103
Date Collected 4/9/2014 7/17/2014 10/27/2014 1/8/2015 4/22/2015	Result 4.26 0.232 0.706 0.332 0.557	1.449 -1.461 -0.348 -1.103 -0.585

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.657	N/A	-0.420	NO
MW224	Sidegradient	Yes	0.707	N/A	-0.347	NO
MW369	Downgradient	Yes	0.863	N/A	-0.147	NO
MW372	Downgradient	Yes	0.861	N/A	-0.150	NO
MW387	Downgradient	Yes	1.15	N/A	0.140	NO
MW391	Downgradient	Yes	0.63	N/A	-0.462	NO
MW394	Upgradient	Yes	0.757	N/A	-0.278	NO

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Second Quarter 2016 Statistical Analysis Sodium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.500 S = 4.796

CV(1)=0.135

K factor=** 2.523

TL(1) = 47.601

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.561

S = 0.132

CV(2) = 0.037

K factor=** 2.523

TL(2) = 3.894

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected LN(Result) Result 4/7/2014 43.9 3.782 7/17/2014 39.1 3.666 10/21/2014 36 3.584 1/5/2015 38.1 3.640 4/14/2015 44.9 3.804 7/15/2015 38.3 3.645 10/15/2015 33.5 3.512

1/5/2016	40.1	3.691
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/9/2014	29.9	3.398
7/17/2014	29.6	3.388
10/27/2014	33.9	3.523
1/8/2015	33.8	3.520
4/22/2015	30.3	3.411
7/17/2015	31.2	3.440
10/22/2015	33.1	3.500
1/5/2016	32.3	3.475

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradien	t Yes	66.8	YES	4 202	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW369

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2016 Statistical Analysis Sulfate UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 13.556 **S**= 3.619

CV(1)=0.267

K factor=** 2.523

TL(1)= 22.687

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.575

S = 0.259 CV(2) = 0.101

K factor=** 2.523

TL(2)= 3.229

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

 Well Number:
 MW220

 Date Collected
 Result
 LN(Result)

 4/7/2014
 18.9
 2.939

 7/17/2014
 19.4
 2.965

 10/21/2014
 13.5
 2.602

 10/21/2014
 13.5
 2.603

 1/5/2015
 14
 2.639

 4/14/2015
 17.9
 2.885

 7/15/2015
 18.6
 2.923

 10/15/2015
 14.7
 2.688

 1/5/2016
 16.5
 2.803

 Well Number:
 MW394

 Date Collected
 Result
 LN(Result)

 4/9/2014
 10
 2.303

 7/17/2014
 10.3
 2.332

 10/27/2014
 11.1
 2.407

 1/8/2015
 10.5
 2.351

 1/8/2015
 10.5
 2.351

 4/22/2015
 10.3
 2.332

 7/17/2015
 10.4
 2.342

 10/22/2015
 10.7
 2.370

 1/5/2016
 10.1
 2.313

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	21.8	NO	3.082	N/A
MW223	Sidegradient	Yes	19.4	NO	2.965	N/A
MW372	Downgradien	t Yes	113	YES	4.727	N/A
MW384	Sidegradient	Yes	20.1	NO	3.001	N/A
MW387	Downgradien	t Yes	19.9	NO	2.991	N/A
MW391	Downgradien	t Yes	121	YES	4.796	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2016 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 14.353 **S**= 9.863

CV(1)=0.687

K factor=** 2.523

TL(1) = 39.236

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.340

 $S = 0.988 \quad CV(2) = 0.422$

K factor=** 2.523

TL(2) = 4.832

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected LN(Result) Result 4/7/2014 24.8 3.211 7/17/2014 12.1 2.493 10/21/2014 35 3.555 1/5/2015 32.5 3.481 4/14/2015 12.2 2.501 7/15/2015 14.8 2.695 10/15/2015 2.451 11.6 1/5/2016 18 4 2 912

1/3/2010	16.4	2.912
Well Number:	MW394	
Date Collected	Result	LN(Result)
4/9/2014	4.32	1.463
7/17/2014	10.1	2.313
10/27/2014	17.2	2.845
1/8/2015	17.2	2.845
4/22/2015	11.5	2.442
7/17/2015	3.11	1.135
10/22/2015	0.742	-0.298
1/5/2016	4.07	1.404

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW221	Sidegradient	Yes	43.8	YES	3.780	N/A
MW384	Sidegradient	Yes	160	YES	5.075	N/A
MW387	Downgradien	t Yes	256	YES	5.545	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW221 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2016 Statistical Analysis **Current Background Comparison LRGA Beta activity** UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 8.634	S = 6.304	CV(1) =0.730	K factor**= 2.523	TL(1)= 24.539	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.962	S = 0.845	CV(2)= 0.431	K factor**= 2.523	TL(2)= 2.950	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/9/2014	2.09	0.737
7/17/2014	11.5	2.442
10/27/2014	19.1	2.950
1/6/2015	5.98	1.788
4/22/2015	1.03	0.030
7/17/2015	3.79	1.332
10/22/2015	10.7	2.370
1/5/2016	17.2	2.845
1/5/2016 Well Number:	17.2 MW397	2.845
		2.845 LN(Result)
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
Well Number: Date Collected 4/8/2014	MW397 Result 4.03	LN(Result)
Well Number: Date Collected 4/8/2014 7/16/2014	MW397 Result 4.03 5.18	LN(Result) 1.394 1.645
Well Number: Date Collected 4/8/2014 7/16/2014 10/21/2014	MW397 Result 4.03 5.18 10.4	LN(Result) 1.394 1.645 2.342

-1.02

9.49

1/5/2016

10/22/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW385	Sidegradient	Yes	147	YES	4.990	N/A
MW388	Downgradien	t Yes	118	YES	4.771	N/A

Conclusion of Statistical Analysis on Current Data

#Func!

2.250

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-16

C-746-S/T Second Quarter 2016 Statistical Analysis Calcium UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.769 **S**= 4.151

S = 0.185

CV(1)=0.182

K factor=** 2.523

TL(1) = 33.243

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.109

CV(2) = 0.059

K factor=** 2.523

TL(2) = 3.576

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/9/2014 27.7 3.321 7/17/2014 26.5 3.277 10/27/2014 26.6 3.281 1/6/2015 25.8 3.250 4/22/2015 26.4 3.273 7/17/2015 26.5 3.277 10/22/2015 27 3.296

1/5/2016	27.4	3.311
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/8/2014	19.4	2.965
7/16/2014	17.8	2.879
10/21/2014	19.8	2.986
1/7/2015	18.6	2.923
4/22/2015	18.7	2.929
7/15/2015	17.7	2.874
10/22/2015	19.2	2.955

19.2

1/5/2016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW373	Downgradien	t Ves	64.5	YES	4 167	N/A

Conclusion of Statistical Analysis on Current Data

2.955

Wells with Exceedances
MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2016 Statistical Analysis **Current Background Comparison Conductivity LRGA UNITS:** umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 360.250 S = 30.271 CV(1) = 0.084

K factor=** 2.523

TL(1)= 436.624

LL(1)=N/A

Statistics-Transformed Background

X = 5.884

S = 0.083

CV(2) = 0.014

K factor=** 2.523

TL(2) = 6.094

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/9/2014	402	5.996
7/17/2014	401	5.994
10/27/2014	387	5.958
1/6/2015	376	5.930
4/22/2015	338	5.823
7/17/2015	390	5.966
10/22/2015	372	5.919
1/5/2016	408	6.011

1/3/2010	400	0.011
Well Number:	MW397	
Date Collected	Result	LN(Result)
4/8/2014	328	5.793
7/16/2014	336	5.817
10/21/2014	337	5.820
1/7/2015	354	5.869
4/22/2015	325	5.784
7/15/2015	334	5.811
10/22/2015	323	5.778
1/5/2016	353	5.866

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	638	YES	6.458	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-18

C-746-S/T Second Quarter 2016 Statistical Analysis Current Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 179.500 **S**= 24.768 **CV(1)**=0.138

K factor=** 2.523

TL(1)= 241.990 LL(1

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.181 S = 0.136 CV(2) = 0.026

K factor=** 2.523

TL(2) = 5.524

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/9/2014 217 5.380 7/17/2014 166 5.112 10/27/2014 5.198 181 4.990 1/6/2015 147 4/22/2015 179 5.187 7/17/2015 203 5.313 10/22/2015 194 5.268 5.434 1/5/2016 229

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Onarter	Data
Current	Qual tel	Dutt

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	Yes	373	YES	5.922	N/A

Well Number:	MW397	
Date Collected	Result	LN(Result)
4/8/2014	171	5.142
7/16/2014	167	5.118
10/21/2014	161	5.081
1/7/2015	159	5.069
4/22/2015	144	4.970
7/15/2015	190	5.247
10/22/2015	160	5.075
1/5/2016	204	5.318

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances
MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2016 Statistical Analysis Current Ba Magnesium UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.730

S= 1.878 **CV(1)**=0.193

K factor=** 2.523

TL(1)= 14.469

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.258

 $S = 0.194 \quad CV(2) = 0.086$

K factor=** 2.523

TL(2) = 2.747

1, assume normal distribution and

continue with statistical analysis

utilizing TL(1).

Because CV(1) is less than or equal to

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/9/2014 12.2 2.501 7/17/2014 11 2.398 10/27/2014 11.3 2.425 1/6/2015 9.96 2.299 4/22/2015 11.3 2.425 7/17/2015 11.8 2.468 10/22/2015 12.3 2.510 2.468 1/5/2016 11.8

	Current	Quarter	Data
•		·	

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	Yes	22.7	YES	3.122	N/A

Well Number:	MW397	
Date Collected	Result	LN(Result)
4/8/2014	8.36	2.123
7/16/2014	7.49	2.014
10/21/2014	8.07	2.088
1/7/2015	7.64	2.033
4/22/2015	8.09	2.091
7/15/2015	7.55	2.022
10/22/2015	8.64	2.156
1/5/2016	8.18	2.102

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2016 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

1/5/2016

X = 456.375 S = 100.830 CV(1) = 0.221

K factor=** 2.523

TL(1)= 710.770 **LL(1)**=N/A

Statistics-Transformed Background

X = 6.101S = 0.214CV(2) = 0.035 **K factor**=** 2.523

TL(2) = 6.642

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected Result LN(Result) 4/9/2014 537 6.286

7/17/2014 381 5.943 10/27/2014 307 5.727 1/6/2015 6.373 586 4/22/2015 474 6.161 7/17/2015 468 6.148 10/22/2015 378 5.935

Well Number:	MW397	
Date Collected	Result	LN(Result)
4/8/2014	363	5.894
7/16/2014	382	5.945
10/21/2014	380	5.940
1/7/2015	675	6.515
4/22/2015	471	6.155
7/15/2015	599	6.395
10/22/2015	448	6.105
1/5/2016	473	6.159

380

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	318	NO	5.762	N/A
MW385	Sidegradient	Yes	513	NO	6.240	N/A
MW388	Downgradient	Yes	569	NO	6.344	N/A
MW392	Downgradient	Yes	776	YES	6.654	N/A
MW395	Upgradient	Yes	325	NO	5.784	N/A
MW397	Upgradient	Yes	586	NO	6.373	N/A

Conclusion of Statistical Analysis on Current Data

5.940

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW392

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2016 Statistical Analysis **Current Background Comparison LRGA** pH **UNITS: Std Unit**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.023**LL(1)=**5.6242 X = 6.027S = 0.139K factor**= 2.904 **TL(1)=** 6.430 **Statistics-Background Data** X = 1.796

Statistics-Transformed Background Data

S = 0.023CV(2) = 0.013 K factor**= 2.904

TL(2) = 1.863

LL(2)=1.7290

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
4/9/2014	6.07	1.803
7/17/2014	6.07	1.803
10/27/2014	6.06	1.802
1/6/2015	5.99	1.790
4/22/2015	5.75	1.749
7/17/2015	5.96	1.785
10/22/2015	5.97	1.787
1/5/2016	6.24	1.831
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.805
Date Collected	Result	
Date Collected 4/8/2014	Result 6.08	1.805
Date Collected 4/8/2014 7/16/2014	Result 6.08 6.07	1.805 1.803
Date Collected 4/8/2014 7/16/2014 10/21/2014	Result 6.08 6.07 5.92	1.805 1.803 1.778
Date Collected 4/8/2014 7/16/2014 10/21/2014 1/7/2015	Result 6.08 6.07 5.92 5.92	1.805 1.803 1.778 1.778
Date Collected 4/8/2014 7/16/2014 10/21/2014 1/7/2015 4/22/2015	Result 6.08 6.07 5.92 5.92 5.82	1.805 1.803 1.778 1.778 1.761

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2) LN(Result) <ll(2)< th=""></ll(2)<>		
MW370	Downgradien	t Yes	6.78	YES	1.914	N/A		
MW373	Downgradien	t Yes	6.8	YES	1.917	N/A		

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-22

C-746-S/T Second Quarter 2016 Statistical Analysis **Current Background Comparison** Radium-226 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.194

S = 0.981

CV(1)=0.822

K factor**= 2.523

TL(1)= 3.670

LRGA

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.086 S = 0.715

CV(2) = -8.336

K factor=** 2.523

TL(2) = 1.719

1, assume normal distribution and

continue with statistical analysis

utilizing TL(1).

Because CV(1) is less than or equal to

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected Result LN(Result) 4/9/2014 2.13 0.756 7/17/2014 2.32 0.842 10/27/2014 0.537 -0.6221/6/2015 0.566 -0.5694/22/2015 0.892 -0.114 7/17/2015 1.2 0.182 10/22/2015 1.01 0.010 0.707 -0.3471/5/2016

Current Quarter Data

Well No. Gradient Detected? Result >TL(1)? LN(Result) LN(Result) >TL(2) MW370 Downgradient Yes 0.711 NO -0.341N/A

Well Number:	MW397	
Date Collected	Result	LN(Result)
4/8/2014	3.11	1.135
7/16/2014	3.38	1.218
10/21/2014	0.492	-0.709
1/7/2015	0.45	-0.799
4/22/2015	0.69	-0.371
7/15/2015	0.516	-0.662
10/22/2015	0.356	-1.033
1/5/2016	0.748	-0.290

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-23

C-746-S/T Second Quarter 2016 Statistical Analysis Cu Sulfate UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X=10.844 S= 0.868 CV(1)=0.080 K factor**

K factor**= 2.523 TI

TL(1)= 13.034 **I**

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.381 **S**= 0.079

CV(2) = 0.033

K factor=** 2.523

TL(2) = 2.581

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/9/2014 9.77 2.279 7/17/2014 10.1 2.313 10/27/2014 10.6 2.361 1/6/2015 10.1 2.313 4/22/2015 10.1 2.313 7/17/2015 10.2 2.322 10/22/2015 10 2.303 1/5/2016 9.84 2.286 Well Number: MW397 Date Collected Result LN(Result) 4/8/2014 11.7 2.460 7/16/2014 11.7 2.460 10/21/2014 12.6 2.534

11.7

10.9

11.4

11.6

11.2

1/7/2015

4/22/2015

7/15/2015

1/5/2016

10/22/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) > TL(2)
MW370	Downgradien	t Yes	19.7	YES	2.981	N/A
MW373	Downgradien	t Yes	118	YES	4.771	N/A
MW385	Sidegradient	Yes	21.8	YES	3.082	N/A
MW388	Downgradien	t Yes	21.2	YES	3.054	N/A

Conclusion of Statistical Analysis on Current Data

2.460

2.389

2.434

2.451

2.416

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T Second Quarter 2016 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 11.488 S = 4.052

CV(1)=0.353

K factor**= 2.523

TL(1) = 21.713

LL(1)=N/A

Statistics-Transformed Background

X = 2.374

S= 0.397 **CV(2)**=0.167

K factor=** 2.523

TL(2) = 3.376

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 4/9/2014 11.2 2.416 7/17/2014 8.05 2.086 10/27/2014 14.4 2.667 1/6/2015 17 2.833 4/22/2015 7.25 1.981 7/17/2015 14.7 2.688 10/22/2015 9.39 2.240 1/5/2016 5.69 1.739 Well Number: MW397 Date Collected Result LN(Result) 4/8/2014 2.803 16.5 7/16/2014 10.6 2.361 10/21/2014 14.7 2.688

4.58

9.32

13.2

9.83

17.4

1/7/2015

4/22/2015

7/15/2015

1/5/2016

10/22/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Qual ttl	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	92	YES	4.522	N/A
MW385	Sidegradient	Yes	231	YES	5.442	N/A
MW388	Downgradient	t Yes	189	YES	5.242	N/A

Conclusion of Statistical Analysis on Current Data

1.522

2.232

2.580

2.285

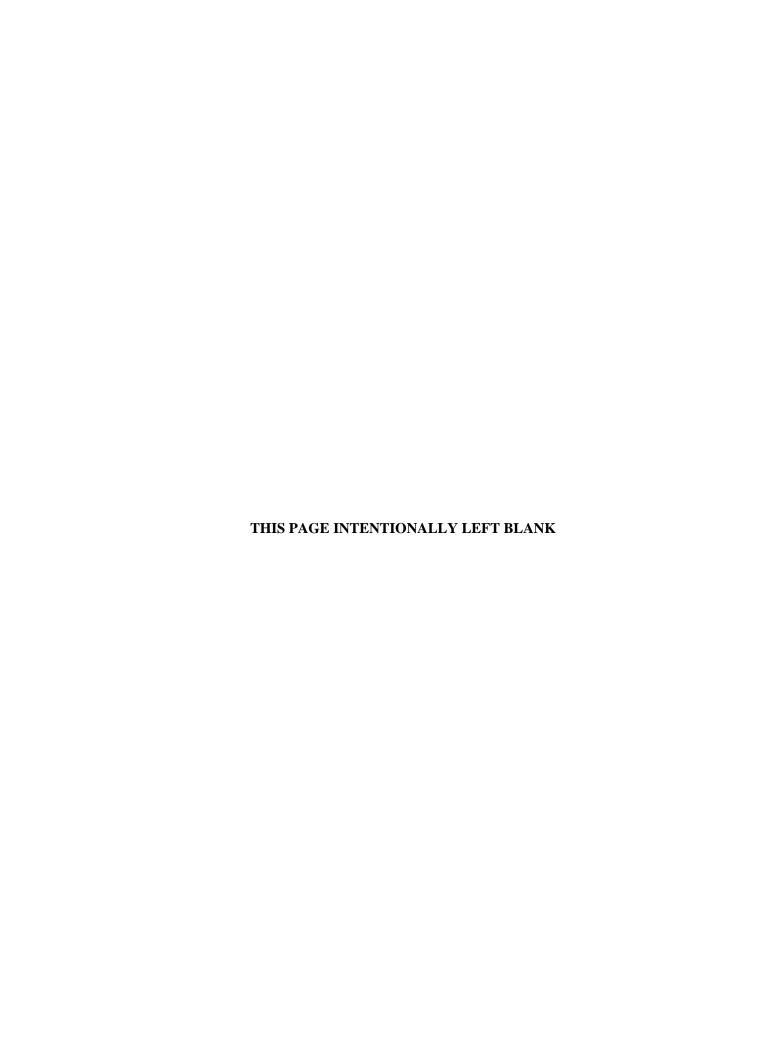
2.856

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW385

MW388


NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

July 27, 2016

Mr. John Morgan Fluor Federal Services, Inc. 5511 Hobbs Road Kevil, KY 42053

Dear Mr. Morgan:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in biology, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Fluor Federal Services, Inc.

For this project, the statistical analyses conducted on the second quarter 2016 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Jennifer R. Blewett

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/INERT—QUARTERLY, 2nd CY 2016

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None
For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the second quarter 2016 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on April 28, 2016. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill is 1.80×10^{-4} ft/ft. Additional water level measurements in April (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 2.89×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for April 2016, the groundwater flow direction in the immediate area of the landfill was oriented northeastward.

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

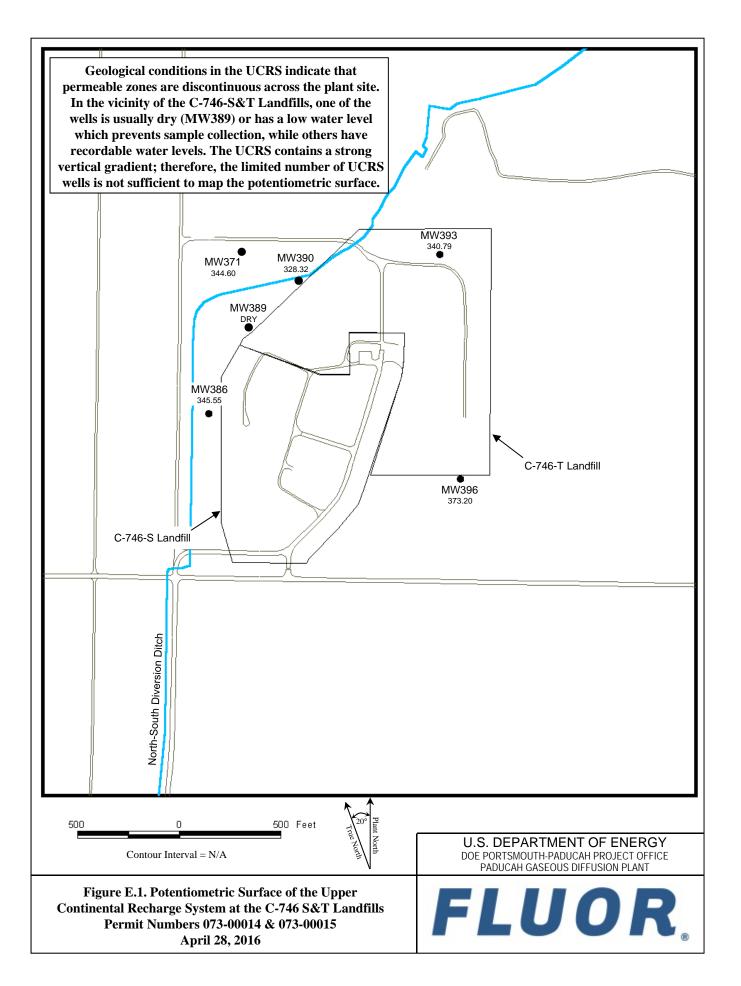


Table E.1. C-746-S&T Landfills Second Quarter 2016 (April) Water Levels

			C-746-S	S&T Landfills (April 2016)	Water Lev	els			
							Ra	w Data	*Corre	ected Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
4/28/2016	9:41	MW220	URGA	381.44	29.85	-0.02	53.03	328.41	53.01	328.43
4/28/2016	9:53	MW221	URGA	390.83	29.85	-0.02	62.50	328.33	62.48	328.35
4/28/2016	9:48	MW222	URGA	394.87	29.85	-0.02	66.59	328.28	66.57	328.30
4/28/2016	9:51	MW223	URGA	394.03	29.85	-0.02	65.71	328.32	65.69	328.34
4/28/2016	9:46	MW224	URGA	395.41	29.85	-0.02	67.10	328.31	67.08	328.33
4/28/2016	9:43	MW225	URGA	385.55	29.85	-0.02	57.23	328.32	57.21	328.34
4/28/2016	9:59	MW353	LRGA	374.86	29.85	-0.02	46.53	328.33	46.51	328.35
4/28/2016	13:05	MW384	URGA	365.06	29.89	-0.07	36.76	328.30	36.69	328.37
4/28/2016	13:02	MW385	LRGA	365.54	29.89	-0.07	37.24	328.30	37.17	328.37
4/28/2016	9:37	MW386	UCRS	365.21	29.85	-0.02	19.68	345.53	19.66	345.55
4/28/2016	9:34	MW387	URGA	363.27	29.85	-0.02	34.92	328.35	34.90	328.37
4/28/2016	9:32	MW388	LRGA	363.25	29.85	-0.02	34.89	328.36	34.87	328.38
4/28/2016	NA	MW389	UCRS	363.82			DRY		DRY	
4/28/2016	9:25	MW390	UCRS	360.36	29.85	-0.02	32.06	328.30	32.04	328.32
4/28/2016	8:45	MW391	URGA	366.54	29.83	0.00	38.33	328.21	38.33	328.21
4/28/2016	8:48	MW392	LRGA	365.67	29.83	0.00	37.47	328.20	37.47	328.20
4/28/2016	8:46	MW393	UCRS	366.59	29.83	0.00	25.80	340.79	25.80	340.79
4/28/2016	8:51	MW394	URGA	378.32	29.83	0.00	50.05	328.27	50.05	328.27
4/28/2016	8:53	MW395	LRGA	379.01	29.85	-0.02	50.69	328.32	50.67	328.34
4/28/2016	8:52	MW396	UCRS	378.64	29.83	0.00	5.44	373.20	5.44	373.20
4/28/2016	13:10	MW397	LRGA	386.90	29.89	-0.07	58.66	328.24	58.59	328.31
4/28/2016	13:17	MW418	URGA	366.78	29.89	-0.07	38.57	328.21	38.50	328.28
4/28/2016	13:19	MW419	LRGA	366.68	29.89	-0.07	38.52	328.16	38.45	328.23

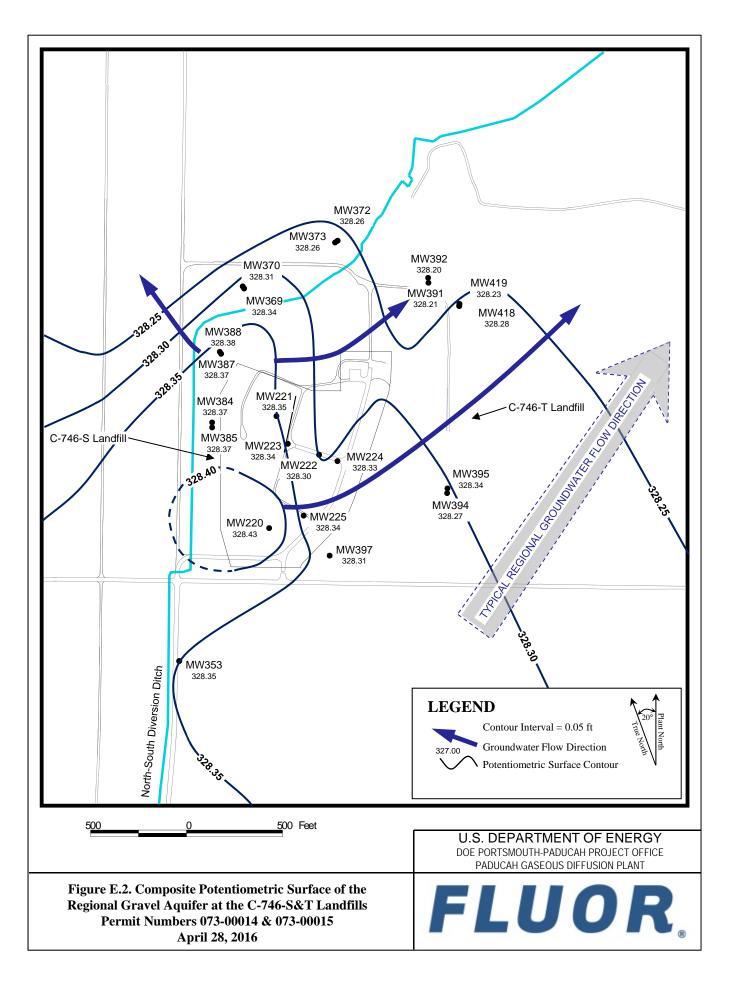
Initial Barometric Pressure

29.83

Elev = elevation

amsl = above mean sea level

BP = barometric pressure


DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

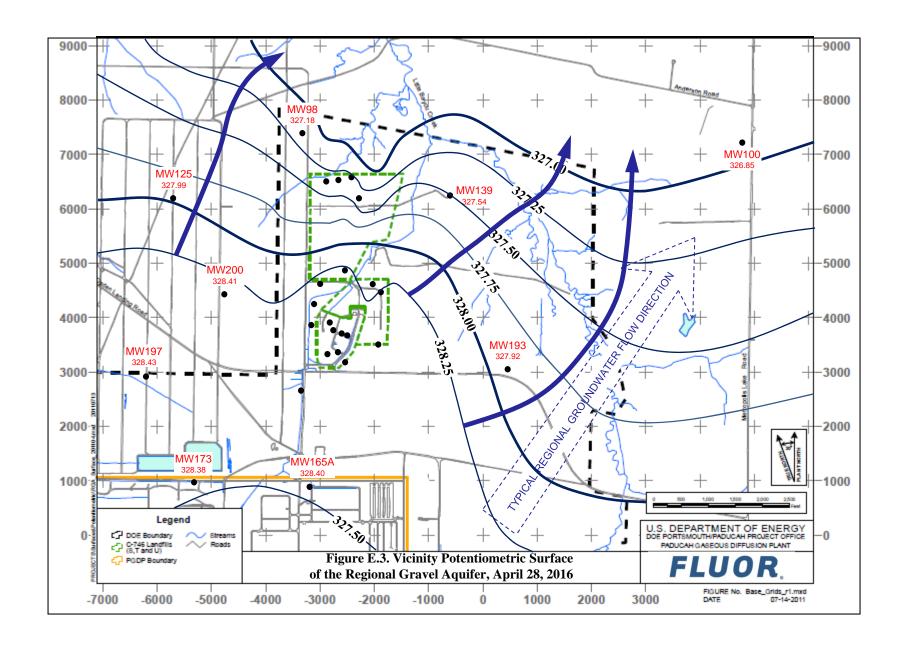


Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	1.80×10^{-4}
Vicinity	2.89×10^{-4}

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific l	Discharge (q)	Average	e Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Beneath Landfill	Mound				
725	0.256	0.13	4.61×10^{-5}	0.52	1.84×10^{-4}
425	0.150	0.08	2.70×10^{-5}	0.31	1.08×10^{-4}
<u>Vicinity</u>					
725	0.256	0.21	7.39×10^{-5}	0.84	2.96×10^{-4}
425	0.150	0.12	4.33×10^{-5}	0.49	1.73×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the second quarter 2016 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).*

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW369 MW221, MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW370, MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

5/23/2016

Fluor Federal Services PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S and -T LANDFILLS PERMIT NUMBERS 073-00014 and 073-00015 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4808	MW372	Trichloroethene	8260B	7.6	ug/L	5
8004-4792	MW373	Trichloroethene	8260B	7.97	ug/L	5
8004-4809	MW384	Beta activity	9310	96.9	pCi/L	50
8004-4810	MW385	Beta activity	9310	147	pCi/L	50
8004-4815	MW387	Beta activity	9310	167	pCi/L	50
8004-4816	MW388	Beta activity	9310	118	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	7.78	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	18.3	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills

Groundwater Flow System			UCRS	S						Ţ	URGA	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391		394	385	370		388	392	395	
ACETONE																							
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
ALPHA ACTIVITY																							
Quarter 4, 2002																							
Quarter 4, 2008	1																						
Quarter 4, 2010																							
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003	1		*				*						*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003							*	*			*			*									
Quarter 1, 2004			*				*	*			*												
Quarter 2, 2004	1						*							*									
Quarter 3, 2004	1						*							*									
Quarter 4, 2004	l		*																				1
Quarter 1, 2005	1		*					1	1				1		1								
Quarter 2, 2005	1		*				*									H							
Quarter 3, 2005	1		*				*			*											*		
Quarter 4, 2005			*				*				*										-		
Quarter 1, 2006	1		-4"				*				-4"		*										-
Quarter 2, 2006			*				*						***										
	1		Ψ.				*																-
Quarter 3, 2006	1		*				*																-
Quarter 4, 2006	<u> </u>		不				*										*						
Quarter 1, 2007																							<u> </u>
Quarter 2, 2007							*										*						
Quarter 3, 2007	ļ						*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												
Quarter 1, 2010			*				*				*												
Quarter 2, 2010			*								*												
Quarter 3, 2010			*								*			*			*			*			
Quarter 1, 2011	1						*				*												
Quarter 2, 2011	1		*								*												
Quarter 2, 2012	1		*																				
Quarter 3, 2012	1						*																
Quarter 1, 2013	1						*				*												
Quarter 3, 2013	1		*					1	1				1		1								
Quarter 1, 2014	1						*																_
Quarter 2, 2014	1		-				<u> </u>	-	-		*		-		-								
Quarter 4, 2014	1	-	*				-	-	-		<u> </u>		-		-								
Quarter 1, 2016	1						*																_
Quarter 2, 2016	1		-				·*	-	-				-	*	-								_
BARIUM														**									
Quarter 3, 2003																							
Quarter 4, 2003	1	-	-				=		-		-		-		-								
Quarter +, 2003		ı	ı				_	_	ı	ı	1	ı	ı	ľ	1				l	1	ı	ľ	1

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCR	S						1	URGA	A]	LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							М
Quarter 3, 2006																							\Box
Quarter 4, 2006														t									
Quarter 1, 2007																							\Box
Quarter 2, 2007																							\Box
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Ouarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																							
Quarter 2, 2014			┢									H		1									\vdash
Quarter 3, 2014												1		1									\vdash
Quarter 4, 2014				 			 	 			 			1							 	 	$\vdash \vdash$
Quarter 1, 2015				 			 	 			 			1							 	 	$\vdash \vdash$
Quarter 2, 2015	1					-				=		_		\vdash									$\vdash \vdash$
Quarter 3, 2015	1					 				=				\vdash									$\vdash \vdash$
Quarter 4, 2015	1		-	-			-	-		=	-			1	-						-	-	$\vdash \vdash$
Quarter 1, 2016										i		-					Ħ						$\vdash \vdash$
Quarter 2, 2016	1		+-	-			-	-		i	-	-		1	-		H				-	-	
Quarter 2, 2010	_				_	_			_	_		_	_				بت		_	_			

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						Ţ	JRGA	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BROMIDE																							
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM			-																				
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003			*									*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				-
Quarter 1, 2004 Quarter 2, 2004			*									*		*					*				-
			*									*							*				-
Quarter 3, 2004			*			 						*					-		*		-	-	_
Quarter 4, 2004		<u> </u>	*			-							<u> </u>		<u> </u>					-			
Quarter 1, 2005												*				Ш			*	<u> </u>			
Quarter 2, 2005		<u> </u>										*	<u> </u>		<u> </u>	Ш			*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006		L										*	L		L				*	L	L	L	L
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008																							
Quarter 4, 2008												*							*				<u> </u>
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011		1										*	1		1				*				
Quarter 2, 2011		-										*	*		-				*	-			
Quarter 3, 2011		-										*	-		-	\vdash			*		-	-	<u> </u>
Quarter 4, 2011		-				-						*	-		-	\vdash			*	-			
Quarter 4, 2011 Quarter 1, 2012		-				-						*	-		-				*	<u> </u>	-	-	
		-				-						*	-		-	\vdash			*	<u> </u>	-	-	
Quarter 2, 2012		<u> </u>				-							<u> </u>		<u> </u>	Щ				-			
Quarter 3, 2012		<u> </u>	<u> </u>									*	<u> </u>		<u> </u>		<u> </u>		*		<u> </u>	<u> </u>	<u> </u>
Quarter 4, 2012		ļ										*	ļ		ļ				*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				L
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
Quarter 2, 2014		1										*	1		1				*				
Quarter 3, 2014		1										*	1		1			*	*				
Quarter 4, 2014						 						*						Ė	*				\vdash
Zummer 7, 2017			_													\vdash	—					!	├
Quarter 1, 2015												*	*						*				

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	3						1	URG	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CALCIUM																							
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
CARBON DISULFIDE																							
Ouarter 4, 2010											*												
Quarter 1, 2011												*									*		
CHEMICAL OXYGEN DEMAN	D																						
Quarter 1, 2003	l			*																			
Quarter 2, 2003				*																			$\vdash \vdash$
Quarter 3, 2003				*			*			*													\vdash
Quarter 4, 2003				*																			\vdash
Quarter 1, 2004	*			*																			\vdash
Quarter 4, 2004	*																						\vdash
Quarter 1, 2005	*							1							1								\vdash
Quarter 2, 2005	*							-							-								\vdash
Quarter 3, 2005	*									*		*									*		\vdash
Quarter 4, 2005	*									*													\vdash
Quarter 1, 2006	*									-													
Quarter 2, 2006	*																						₩.
Quarter 3, 2006	*																						-
Quarter 4, 2006	~																*						
,	*									*							*						<u> </u>
Quarter 1, 2007										*													
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						Ш
Quarter 4, 2007	*																						Ш
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						\vdash
Quarter 3, 2011	*																						\vdash
Quarter 4, 2011	*							1							1								
Quarter 1, 2012	*							1							1								\vdash
Quarter 1, 2013	*																						\vdash
Quarter 3, 2013	*																						\vdash
Quarter 3, 2014	*								*				*					*					
Quarter 4, 2014	<u> </u>						*		-				-					<u> </u>					\vdash
Quarter 2, 2015																*							\vdash
Quarter 3, 2015						-					-		-		*	·*							\vdash
Quarter 3, 2013	_																_						

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Standard	Groundwater Flow System			UCRS	S						1	JRGA	4]	LRGA	1		
SELORIDE	Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Dearter 1, 2003	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Date of 2, 2003	CHLORIDE																							
Source 3, 2003	Quarter 1, 2003			*																				
Damer 1, 2003	Quarter 2, 2003			*																				
Dounter 1, 2004	Quarter 3, 2003			*																				
Daurier 2, 2004 *	Quarter 4, 2003			*																				
Dameter 3, 2004	Quarter 1, 2004			*																				
Damer 4, 2004	Quarter 2, 2004			*																				
Quarter 1, 2005	Quarter 3, 2004			*																				
Quarter 2, 2005	Quarter 4, 2004			*																				
Dunter 3, 2005	Quarter 1, 2005			*																				
Duarter 4, 2005	Quarter 2, 2005			*																				
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 7, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2009 Quarter 4, 2003 Quarter 3, 2009 Quarter 3, 200	Quarter 3, 2005			*																				
Duarter 1, 2006 Duarter 2, 2006 Duarter 3, 2006 Duarter 3, 2007 Duarter 3, 2007 Duarter 4, 2007 Duarter 4, 2007 Duarter 4, 2007 Duarter 2, 2008 Duarter 1, 2008 Duarter 2, 2008 Duarter 3, 2008 Duarter 3, 2008 Duarter 3, 2009 Duarter 3, 2009 Duarter 3, 2009 Duarter 4, 2009 Duarter 4, 2009 Duarter 3, 2009 Duarter 3, 2009 Duarter 3, 2009 Duarter 3, 2009 Duarter 4, 2000 Duarter 4, 2001 Duarter 4, 2010 Duarter 4, 2010 Duarter 4, 2010 Duarter 4, 2010 Duarter 4, 2011 Duarter 3, 2012 Duarter 4, 2011 Duarter 4, 2011 Duarter 4, 2013 Duarter 4, 2013 Duarter 4, 2013 Duarter 4, 2002 Duarter 7, 2003 Duarter 7, 2003 Duarter 7, 2003 Duarter 2, 2003 Duarter 3, 2009	Quarter 4, 2005			*																				
Quarter 3, 2006	Quarter 1, 2006																		*					
Quarter 4, 2006 *	Ouarter 2, 2006			*																				
Quarter 4, 2006 *				*																				
Quarter 1, 2007 Quarter 2, 2007 ** Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 ** Quarter 1, 2008 ** Quarter 2, 2008 ** Quarter 3, 2008 ** Quarter 3, 2008 ** Quarter 1, 2008 ** Quarter 1, 2008 ** Quarter 1, 2009 ** Quarter 2, 2009 ** Quarter 2, 2009 ** Quarter 3, 2009 ** Quarter 3, 2009 ** Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2009 ** Quarter 4, 2002 Quarter 1, 2009 ** Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2010 Quarter 3, 2013 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 ** Quarter 4, 2010 Quarter 5, 2011 Quarter 6, 2013 Quarter 6, 2013 Quarter 6, 2013 Quarter 6, 2000 Quarter 6, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 1, 2000 Quarter 2, 2009 Quarter 1, 2000 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2000 Quarter 2, 2009 Quarter 1, 2000 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2000 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2009 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 200				*																				-
Quarter 2, 2007																								
Quarter 2,007																								-
Quarter 4, 2007	•																							-
Quarter 1, 2008																								
Quarter 3, 2008	•																							ļ
Quarter 3, 2008																								
Quarter 1, 2008																								
Quarter 1, 2009	•																							
Quarter 2, 2009																								
Quarter 3, 2009	•																							
Quarter 4, 2009																								
Duarter 1, 2010	•																							
Quarter 2, 2010 *	•																							
Quarter 3, 2010	Quarter 1, 2010																							
Duarter 4, 2010	Quarter 2, 2010																							
*	Quarter 3, 2010			*																				
Duarter 3, 2011	Quarter 4, 2010			*																				
*	Quarter 2, 2011			*																				
A	Quarter 3, 2011			*																				
*	Quarter 4, 2011			*																				
*	Quarter 3, 2012			*																				
Puarter 4, 2013	Quarter 3, 2013			*																				
The state of the	Quarter 4, 2013			*																				
CHROMIUM Quarter 4, 2002 Image: Chromosom of the control of the contr	Quarter 4, 2014			*																				
Quarter 4, 2002 Image: Company of the company of th	CHROMIUM																							
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2009 COBALT	Quarter 4, 2002																							
Quarter 2, 2003	Quarter 1, 2003																							
Quarter 3, 2009 COBALT	Quarter 2, 2003																							
COBALT	Quarter 3, 2009																							
Quarter 3, 2003 *	COBALT																							
	Quarter 3, 2003							*																

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	JRG	A								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																							
Quarter 4, 2002			Π				Π	Π		*		Π	1					Π	*	Π	Π	Π	
Quarter 1, 2003	t		*							*									*				
Quarter 2, 2003	ł		*							*									*				
Quarter 3, 2003	H		*					*		*									*				<u> </u>
Quarter 4, 2003	1		*					т.		*									*				—
	-		Ψ.							Ψ.									*				-
Quarter 1, 2004	ļ									44													
Quarter 2, 2004	<u> </u>									*			<u> </u>						*				<u> </u>
Quarter 3, 2004										*									*				
Quarter 4, 2004			*							*									*				
Quarter 1, 2005										*		*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005																			*				
Quarter 4, 2005										*		*							*				
Quarter 1, 2006	1											*							*				
Quarter 2, 2006	t											*							*				
Quarter 3, 2006	t											*							*				
Quarter 4, 2006	t		1				1	1		1		1	1				*	1	*	1	1	1	
Quarter 1, 2007	\vdash		 				 	 		 		*	1				-	 	*	 	 	 	
Quarter 2, 2007	1		-				-	-		-		- T	1				*	-	*	-	-	-	
	├		<u> </u>			-	-	<u> </u>		-		-	-				*	<u> </u>	*	 	<u> </u>	<u> </u>	
Quarter 3, 2007	┡											4											<u> </u>
Quarter 4, 2007												*					*		*				<u> </u>
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010	l											*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010	1											*							*				
Quarter 1, 2011	H									*		*							*				<u> </u>
Quarter 2, 2011	1											*							*				—
												*							*				
Quarter 3, 2011	┡											*							*				<u> </u>
Quarter 4, 2011	ļ										46												
Quarter 1, 2012	<u> </u>										*	*	<u> </u>						*				<u> </u>
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014	1											*							*				
Quarter 2, 2014	1											*							*				
Quarter 3, 2014	t											*							*				
Quarter 4, 2014	t											*							*				
Quarter 1, 2015	t		 				 	 		 		*	1					 	*	 	 	 	
	1		-				-	-		-		*	1					-	*	-	-	-	
Quarter 2, 2015	\vdash		<u> </u>			-	<u> </u>	<u> </u>	-	<u> </u>		*	 	<u> </u>			-	<u> </u>	*		<u> </u>	<u> </u>	<u> </u>
Quarter 3, 2015	<u> </u>		<u> </u>				<u> </u>	<u> </u>		<u> </u>			<u> </u>					<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quarter 4, 2015	1		<u> </u>				<u> </u>	<u> </u>		<u> </u>		*						<u> </u>	*	<u> </u>	<u> </u>	<u> </u>	
Quarter 1, 2016	<u> </u>											*	<u> </u>						*				
Quarter 2, 2016	<u> </u>		<u></u>			L	<u></u>	<u></u>		<u></u>		<u></u>						<u></u>	*	<u></u>	<u></u>	<u></u>	

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCR	5						1	URGA	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004			*									*							*				
Quarter 2, 2004										*		*							*				
Quarter 3, 2004										*		*							*				
Quarter 4, 2004										*		*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005	t																*	*	*	*	*		
Quarter 4, 2005	1																*	*	*	*	*		
Quarter 1, 2006	1	-	-	-	-		-			-			-		-		*	*	*	*	*		
Quarter 1, 2006 Quarter 2, 2006	\vdash														-		*	*	*	*	*		
<u> </u>	 	-	<u> </u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>			<u> </u>	<u> </u>	-		*	*	*	*	*		
Quarter 3, 2006										.		4						不		不	不		
Quarter 4, 2006	!									*		*					*		*				Щ
Quarter 1, 2007	<u> </u>									ļ.,		ş.,			<u> </u>				*				<u> </u>
Quarter 2, 2007										*		*							*				<u> </u>
Quarter 3, 2007										*		*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008										*		*							*				
Quarter 1, 2009	t											*							*				
Quarter 2, 2009	1											*	*						*				
Quarter 3, 2009	1											*	*						*				
Quarter 4, 2009	1											*	*						*				-
Quarter 1, 2010	1											*	*						*				-
Quarter 2, 2010	1									*		*	*						*				-
Quarter 3, 2010										*		*	-4-						*				-
Quarter 4, 2010	1									*		*							*				-
Quarter 1, 2011	1									*		*							*				_
Quarter 2, 2011	1									-		*	*						*				-
Quarter 3, 2011	 											*	-						*				
	 											*							*				
Quarter 4, 2011	-										*	*	*						*				-
Quarter 1, 2012	 										Α	*	~						*				
Quarter 2, 2012	 	-	<u> </u>	<u> </u>	<u> </u>		<u> </u>			*		*	*	<u> </u>	-				*	<u> </u>	<u> </u>		
Quarter 3, 2012	 	-	<u> </u>	<u> </u>	<u> </u>		<u> </u>			*		*	*	<u> </u>	-				*	<u> </u>	<u> </u>		
Quarter 4, 2012	 	-	<u> </u>	<u> </u>	<u> </u>		<u> </u>			*		*	*	<u> </u>	-				*	<u> </u>	<u> </u>		
Quarter 1, 2013	 	-	<u> </u>	<u> </u>	<u> </u>		<u> </u>			*		*	<u> </u>	<u> </u>	-				*	<u> </u>	<u> </u>		
Quarter 2, 2013	1—	-										*					-		*				
Quarter 3, 2013	├	-															—		*				<u> </u>
Quarter 4, 2013	├	-										*	*				—		*				<u> </u>
Quarter 1, 2014	<u> </u>		-	-	-		-			-			木	-	<u> </u>					-	-		\vdash
Quarter 2, 2014	<u> </u>		-	-	-		-		طو	-		*	مدر	-	<u> </u>				*	-	-		\vdash
Quarter 3, 2014	<u> </u>		-	-	-		-		*	-		*	*	-	<u> </u>				*	-	-		\vdash
Quarter 4, 2014	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>		*	*						*	<u> </u>	<u> </u>		<u> </u>
Quarter 1, 2015	1		<u> </u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>	L	*	<u> </u>	<u> </u>	<u> </u>				*	<u> </u>	<u> </u>		Щ
Quarter 2, 2015	<u> </u>											*			<u> </u>				*				<u> </u>
Quarter 3, 2015	<u> </u>											*			<u> </u>				*				<u> </u>
Quarter 4, 2015	<u> </u>								*			*						*	*				<u> </u>
Quarter 1, 2016												*							*				<u> </u>
Quarter 2, 2016		İ	l	l	l		l			l	1	*	*	*	l				*	1	1	1	1

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCR	S						1	URG	A								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393	396	221	222	223	224	384	369	372		391	220	394	385	370	373	388	392	395	397
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	
Quarter 3, 2003													*										
Quarter 1, 2004				*																			
Quarter 3, 2010																					*		
Quarter 2, 2013										*													
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005	Ĭ										*	*											
Quarter 1, 2006							*																
Quarter 2, 2006	1											*											
Quarter 3, 2006	T										*												
Quarter 1, 2007											*	*											
Quarter 2, 2007	1										*												
Quarter 2, 2008												*											
Quarter 3, 2008												*											
MAGNESIUM												_											
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003	1		*				*					*							-				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004	1		*									*		*					*				
Quarter 2, 2004	1		*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004	1		*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005	1											*							*				
Quarter 4, 2005	1											*							*				
Quarter 1, 2006	1											*							*				
Quarter 2, 2006	1											*							*				
Quarter 3, 2006	-											*							*				
Quarter 4, 2006	-											*							*				
Quarter 4, 2006 Ouarter 1, 2007	1		_	_		_					_	*	_	_					*	_			
Quarter 1, 2007 Quarter 2, 2007	├											*							*				
	├											*							*				
Quarter 3, 2007	1—																						
Quarter 4, 2007	1—											*							*				
Quarter 1, 2008	1—											*							*				
Quarter 2, 2008	1											*							*	<u> </u>			
Quarter 3, 2008	1											*							*				
Quarter 4, 2008	1											*							*				
Quarter 1, 2009	1											*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009	L											*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*	*						*				
	-	_										_	_			_			_				_

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						Ī	URGA	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well		389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
MAGNESIUM																							
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				<u> </u>
Quarter 2, 2012												*							*				<u> </u>
Quarter 3, 2012												*	*						*				
Quarter 4, 2012												*	*						*				-
Quarter 1, 2013												*	-						*				-
Quarter 2, 2013												*							*				-
Quarter 3, 2013												*							*				
												*							*				
Quarter 4, 2013												不						N/L					
Quarter 1, 2014												طو	طو					*	*				Ь—
Quarter 2, 2014												*	*						*				<u> </u>
Quarter 3, 2014	<u> </u>											*							*				
Quarter 4, 2014												*	*						*				
Quarter 1, 2015												*	*						*				<u> </u>
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
MANGANESE																							
Quarter 4, 2002																					*		
Quarter 3, 2003							*	*															
Quarter 4, 2003							*	*															
Quarter 1, 2004							*																
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															
Quarter 1, 2005							*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
OXIDATION-REDUCTION POT	ENT	IAL																					
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006			*															*					
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*				*																
Quarter 3, 2007			*				*																
Quarter 4, 2007			*																				
Quarter 1, 2008			*			*			*														
Quarter 2, 2008	*		*	*		*							*				*		*	*			
Quarter 3, 2008			*	*		*							*				*		*	*			
Quarter 4, 2008			*	*		*	*	*	*				*				*	*		*			
		_		_				_	_	_	_	_	_	_	_				_				

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCR.	S						ı	URGA	A								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
OXIDATION-REDUCTION POT													-			-	-	-	-				
Quarter 1, 2009		T	*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*											*	*	*	*			
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*											*	*	*	*			
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*		*		*		*				*	*	*	*			
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		
Quarter 3, 2014	*		*	*		*											*	*	*	*			
Quarter 4, 2014	*		*	*							*		*				*	*	*	*	*		
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*		*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*		*	*	*	*	*	*	*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 2, 2016	*		*	*	*	*		*	*	*			*	*	*	*	*	*		*	*	*	*
PCB, 1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004		_		-			-				*							_		_			
												_											_
Quarter 3, 2005							*				*												
Quarter 1, 2006							*				*												
Quarter 1, 2006 Quarter 2, 2006							*				* *												
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006							*				* * * *												
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007							*				* *	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007							*				* * * *	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007							*				* * * *	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008							*				* * * * *												
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2008							*				* * * * * *	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008							*				* * * * * *	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009							*				* * * * * * *	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009							*				* * * * * * * *	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009							*				* * * * * * * *	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009							*				* * * * * * * * * * * * * * * * * * * *	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009							*				*****	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009							*				****	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010							*				*****	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010							*				****	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010							*				****	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010							*				****	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 PCB-1232							*				****	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 PCB-1232 Quarter 1, 2011							*				****	*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 PCB-1232 Quarter 1, 2011 PCB-1248							*				****	*											

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Gradeliert S. D. D. D. U. U. S. D.	Groundwater Flow System			UCRS	3						Ţ	JRGA	4								LRG	4		
PCB-1269 DI OURIEY 2, 2006 DI OURIEY 2, 2006 DI OURIEY 2, 2007 OURIEY 2, 2007 OURIEY 2, 2008 OURIEY 2, 2008 OURIEY 2, 2008 OURIEY 2, 2008 OURIEY 2, 2004 OURIEY 2, 2005 OURIEY 2, 2006 OURIEY 2, 2007 OUR	Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Ounter 2, 2006 pH Ounter 3, 2003 Ounter 2, 2003 Ounter 3, 2003 Ounter 3, 2004 Ounter 4, 2005 Ounter 4, 2006 Oun	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Control 2,000 Control	_																							
### Control # 2,000	Quarter 2, 2006																		*					
Ounter 2, 2003 Ounter 2, 2003 Ounter 2, 2003 Ounter 2, 2003 Ounter 2, 2004 Ounter 2, 2005 Ounter 2, 2006 Ounter 2, 2007 Ounter 4, 2008 Ounter 2, 2001 Ounter 2, 2008 Ounter 2, 2001 Ounter 2, 2006 Ounter 2, 2001 Ounter 2, 2006 Ounter 3, 2006 Ounter 3, 2006 Ounter																								
Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2007 Quarter 4, 2008 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2001 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 200																		*						
Ounter 1, 2004 Ounter 2, 2004 Ounter 3, 2004 Ounter 4, 2004 Ounter 4, 2004 Ounter 4, 2004 Ounter 2, 2004 Ounter 3, 2004 Ounter 2, 2004 Ounter 3, 2004 Ounter 3, 2005 Ounter 3, 2005 Ounter 4, 2005 Ounter 3, 2007 Ounter 4, 2008 Ounter 4, 2008 Ounter 5, 2001 Ounter 6, 2007 Ounter 6, 2007 Ounter 7, 2006 Ounter 7, 2006 Ounter 7, 2006 Ounter 7, 2006 Ounter 9, 2007 Ounter 1, 2007 Ounter 1, 2009 Ounter 1, 2009 Ounter 1, 2009 Ounter 1, 2001 Ounter 2, 2001 Ounter 3, 2001 Ounter 3, 2001 Ounter 4, 2008 Ounter 3, 2001 Ounter 4, 2008 Ounter 2, 2006 Ounter 3, 2001 Ounter 4, 2006 Ounter 2, 2006 Ounter 3, 2001 Ounter 4, 2006 Ounter 2, 2006 Ounter 3, 2001 Ounter 4, 2006 Ounter 2, 2006 Ounter 3, 2001 Ounter 4, 2006 Ounter 2, 2006 Ounter 3, 2001 Ounter 4, 2006 Ounter 5, 2001 Ounter 6, 2001 Ounter 7, 2005 Ounter	-																							-
Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 200																								
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2001 Quarter 4, 2001 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2001 Quarter 3, 2006 Quarter 5, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 5, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 8, 2006 Quarter 8, 2006 Quarter 8, 200								- JE															<u> </u>	-
Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2007 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 4, 2008 Quarter 2, 2016 POTASSIUM Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 5, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 6, 2006 Quarter 7, 2006 Quarter 6, 2006 Quarter 7, 2006 Quar	-																						<u> </u>	ļ
Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2001 Quarter 4, 2008 Quarter 1, 2009 Quarter 4, 2001 Quarter 3, 2005 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2005 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 5, 2001 Quarter 5, 2001 Quarter 6, 200	-							未															<u> </u>	
Quarter 4, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 4, 2004 Quarter 1, 2016 POTASSIUM Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2011 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2012 Quarter 2, 2006 Quarter 3, 2012 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2012 Quarter 2, 2006 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2005 Quarter 3, 2015 Quarter 2, 2005 Quarter 3, 2015 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quar																							<u> </u>	
Marter 3, 2005																								
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2014 Quarter 2, 2016 POTASSIUM Quarter 2, 2016 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2008 Quarter 3, 2004 Quarter 4, 2008 Quarter 2, 2006 Quarter 4, 2008 Quarter 2, 2006 Quarter 4, 2008 Quarter 2, 2006 Quarter 2, 2006 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2012 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 2, 2006 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quar	Quarter 4, 2004																	*						
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2016 Quarter 3, 2007 Quarter 4, 2006 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2013 Quarter 2, 2016 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2001 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 200	Quarter 3, 2005										*							*				*		
Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2019 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2015 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2010 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2010 Quarter 4, 2000 Quarter 2, 2015 Quarter 2, 2010 Quarter 3, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2015 Quarter 2, 2000 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2000	Quarter 4, 2005										*							*						
Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2012 Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2016 POYASSIUM Quarter 2, 2016 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2010 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2001 Quarter 2, 2000 Quarter 3, 2001 Quarter 2, 2000 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2001 Quarter 4, 2000 Quarter 3, 2001 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2000 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 5, 2001 Quarter 5, 2001 Quarter 6, 2001 Quarter 6, 2001 Quarter 7, 2001 Quarter 8, 2001 Quarter 8, 2001 Quarter 9, 2001 Quar	Quarter 1, 2006																	*						
Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2011 Quarter 1, 2012 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 3, 2014 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2015 Quarter 2, 2005 Quarter 3, 2015 Quarter 3, 2005 Quarter 3, 2015 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005	-																	*						
Quarter 4, 2007 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2001 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2001 Quarter 4, 2006 Quarter 5, 2001 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2014 ** ** ** ** ** ** ** ** **																		*						
Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 1, 2012 Quarter 3, 2011 Quarter 2, 2013 Quarter 4, 2014 Quarter 2, 2016 Quarter 4, 2002 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2006 Quarter 4, 2008 Quarter 2, 2006 Quarter 4, 2008 Quarter 2, 2006 Quarter 4, 2008 Quarter 3, 2012 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2008 Quarter 3, 2018 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2005 Quarter 3, 2015 Quarter 3, 2005 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2005						 							 	 	 	 			 	 			\vdash	
Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2016 POTASSUM Quarter 2, 2000 Quarter 3, 2004 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2014 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2006 Quarter 3, 2012 Quarter 1, 2013 Quarter 3, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2005 Quarter 3, 2015 Quarter 3, 2005			1	1		-		1					-	-	-	-			-	-			\vdash	1
Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2013 Quarter 4, 2016 POTASSIUM Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 4, 2006 Quarter 5, 2015 Quarter 6, 2015 Quarter 7, 2015 Quarter 8, 2015 Quarter 9, 2015 Quarter 9, 2015 Quarter 1, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2015 Quarter 1, 2015 Quarter 3, 2016 Quarter 4, 2006 Quarter 3, 2015 Quarter 1, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 2, 2005 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2005 Quarter 3, 2005						 							 	 	 	 			 	 	-	-	₩	
Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 3, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2015 Quarter 3, 2010 Quarter 4, 2008 Quarter 3, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 4, 2005 Quarter 4, 2008 Quarter 3, 2012 Quarter 4, 2008 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2005 Quarter 3, 2015 Quarter 3, 2005 Quarter 4, 2005			-			<u> </u>		-						<u> </u>	<u> </u>				<u> </u>	<u> </u>	-	-	Ь—	₩
Quarter 2, 2011	-					<u> </u>							<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>			₩	₩
Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2014 Quarter 2, 2016 Quarter 3, 2004 Quarter 4, 2002 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2013 Quarter 4, 2009 Quarter 3, 2013 Quarter 4, 2009 Quarter 4, 2000 Quarter 3, 2015 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2011 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 5, 2013 Quarter 6, 2013 Quarter 7, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2016 R* * * * * * * * * * * * * * * * * * *												L						*					<u> </u>	<u> </u>
Quarter 1, 2012	-																						Ш.	
Quarter 1, 2013	Quarter 3, 2011											*												
Quarter 2, 2014	Quarter 1, 2012														*									
Quarter 2, 2016 POTASSIUM Quarter 4, 2002 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 3, 2012 Quarter 4, 2008 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2014 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2003 Quarter 3, 2010 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2015 Quarter 3, 2014 Quarter 4, 2005 Quarter 3, 2015 Quarter 3, 2016 ** ** ** ** ** ** ** ** **	Quarter 1, 2013										*			*				*						
POTASSIUM Quarter 4, 2002 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2012 Quarter 3, 2014 Quarter 4, 2002 ** ** ** ** ** ** ** ** **	Quarter 4, 2014																					*		
POTASSIUM Quarter 4, 2002 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2004 Quarter 3, 2012 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 1, 2009 Quarter 4, 2014 Quarter 2, 2015 Quarter 4, 2015 Quarter 2, 2016 RADIUM-228 Quarter 2, 2016 RADIUM-228 Quarter 2, 2005 Quarter 4, 2015 Quarter 2, 2005 Quarter 4, 2015 Quarter 2, 2005 Quarter 4, 2015 Quarter 2, 2005 Quarter 4, 2016 RADIUM-228 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2016 RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005	Quarter 2, 2016																		*	*				
Quarter 4, 2002 Quarter 3, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2012 Quarter 3, 2012 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2005 Quarter 4, 2009 Quarter 3, 2010 Quarter 4, 2000 Quarter 3, 2010 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 RADIUM-228 Quarter 2, 2005 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 RADIUM-228 Quarter 2, 2005 Quarter 2, 2016 REPUBLIES AND																								
Quarter 3, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2004 Quarter 4, 2002 Quarter 4, 2002 Quarter 2, 2005 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2009 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2016 ** ** ** ** ** ** ** ** **																			*	*				
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 RADIUM-226 Quarter 4, 2002 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2014 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2016 RADIUM-228 Quarter 2, 2005 Quarter 3, 2015 Quarter 4, 2015 RADIUM-228 Quarter 2, 2006 Quarter 4, 2015 RADIUM-228 Quarter 2, 2006 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005																			-				₩	
Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2012 Quarter 3, 2015 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2016 RADIUM-228 Quarter 2, 2005 Quarter 2, 2016 RADIUM-228 Quarter 2, 2005 Quarter 2, 2016 RADIUM-228 Quarter 2, 2005 Quarter 3, 2015 Quarter 2, 2016 RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2016 RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005																							 	-
Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2012 Quarter 4, 2009 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2013 Quarter 2, 2001 Quarter 4, 2000 Quarter 3, 2010 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 1, 2009 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2016 ** ** ** ** ** ** ** ** **	-																						<u> </u>	-
Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 2, 2016 ** ** ** ** ** ** ** ** **																							<u> </u>	ļ
Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Raptum-226 Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 2, 2015 Raptum-226 Quarter 3, 2015 Raptum-226 Raptum-227 Raptum-228 R																							<u> </u>	
Quarter 4, 2006																							<u> </u>	
Quarter 4, 2008 Quarter 3, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 RADIUM-226 Quarter 4, 2002 * Quarter 2, 2004 Quarter 2, 2005 Quarter 1, 2009 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 * * * * * * * * * * * * * * * * * * *																								
Quarter 3, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2002 Quarter 4, 2002 Quarter 2, 2004 Quarter 2, 2005 Quarter 1, 2009 Quarter 1, 2009 Quarter 4, 2014 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 RADIUM-228 Quarter 3, 2005 Quarter 3, 2016 RADIUM-228 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005	Quarter 4, 2006																			*				
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 RADIUM-226 Quarter 2, 2004 Quarter 2, 2005 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2005 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005	Quarter 4, 2008																			*				
Quarter 2, 2013	Quarter 3, 2012																			*				
Quarter 3, 2013 *	-																			*				
Quarter 3, 2013 *	Quarter 2, 2013																			*				
RADIUM-226 Quarter 4, 2002																							\vdash	
Quarter 4, 2002 * * * * * Quarter 2, 2004 *																								
Quarter 2, 2004				*										*	*							*		
Quarter 2, 2005 Quarter 1, 2009 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 ** ** ** ** ** ** ** ** **				-70	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>		-T	- T				<u> </u>	**	-	T	\vdash	├
Quarter 1, 2009 * * * * <			-		-	<u> </u>	-	-	-	**	-	-	<u> </u>	<u> </u>	-	<u> </u>		-	<u> </u>	┢┸	 	-	₩	
Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2016 * * * * * * * * * * * * *	-									*		JL.									-	-	₩	₩
Quarter 4, 2014	-					<u> </u>				,,,		*	L	<u> </u>	<u> </u>				<u> </u>	<u> </u>	ļ		₩	₩
Quarter 1, 2015 *										*			*						<u> </u>				Щ	Ь—
Quarter 2, 2015 *												*											<u> </u>	
Quarter 3, 2015 *	-				<u> </u>				<u> </u>	<u> </u>		<u> </u>			<u></u>					<u></u>			<u> </u>	<u> </u>
Quarter 4, 2015 * * * * * * * * * * Quarter 2, 2016 * * * * * * * * * * * * * * * * * * * * * RADIUM-228	Quarter 2, 2015	L	\Box	*	L	L		*	L	L	*	L	*	L	L	L			*	L	\Box	\Box	L	L
Quarter 2, 2016	Quarter 3, 2015			*																				
Quarter 2, 2016 * <td>Quarter 4, 2015</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td>	Quarter 4, 2015					*	*									*		*				*	*	
RADIUM-228 ■ <td< td=""><td>-</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td>*</td><td>*</td><td>*</td><td>*</td><td>*</td><td>*</td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td></td<>	-			*						*		*	*	*	*	*	*		*					
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005	-																							
Quarter 3, 2005																								
Quarter 4, 2005						 		Η-				Ε-	 	 	 	 			 	 			\vdash	
Q	-			_		 							 	 	 	 			 	 	-	-	₩	1
NUMBTIET I /UUD	-		-			_				_			<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	-	-	Ь—	₩
Vanitor 1, 2000	Quarter 1, 2006			Ц_			Щ						Ц_	Ц_		Ц_	Щ	Щ	Ц_				Щ	Щ

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCR:	S						1	URGA	4]	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SELENIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
SODIUM																							
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*												<u> </u>
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*		*													
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004	<u> </u>	<u> </u>							*	*													
Quarter 1, 2005										*									*				<u> </u>
Quarter 2, 2005	1									*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*				L									L
Quarter 1, 2006									*	*													
Quarter 2, 2006									*														
Quarter 3, 2006									*	*		*							*				
Quarter 4, 2006	1								*	*							*						
Quarter 1, 2007	1								*			*											
Quarter 2, 2007	1								*	*													
Quarter 3, 2007	t								*														
Quarter 4, 2007	1								*														
Quarter 1, 2008	1								*														
Quarter 3, 2008	1											*											
Quarter 4, 2008	1								*	*													
Quarter 1, 2009	1								*			*							*				1
Quarter 3, 2009	+								-			*							-				
Quarter 4, 2009	1								*			*											-
Quarter 1, 2010	+								т			*											-
Quarter 2, 2010	+									*		*											-
,	-									*		Ψ.											-
Quarter 3, 2010	1								*	*													<u> </u>
Quarter 4, 2010	₩	<u> </u>	-						ボ	*	<u> </u>			<u> </u>									₩
Quarter 1, 2011	1	<u> </u>							JI.	*													Щ
Quarter 2, 2011	<u> </u>	<u> </u>							*					<u> </u>					ş1.				<u> </u>
Quarter 4, 2011	1	<u> </u>									-10	<u> </u>			<u> </u>				*				<u> </u>
Quarter 1, 2012	1	ļ									*	<u> </u>											<u> </u>
Quarter 3, 2012	<u> </u>	<u> </u>										*							*				
Quarter 4, 2012	1											*											
Quarter 1, 2013	1	<u> </u>								*		*							*				
Quarter 2, 2013	1											*											
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
Quarter 2, 2014	1								*		*	*							*				
Quarter 3, 2014	Ī											*							*				
Quarter 4, 2014	1								*	*		*	*										
Quarter 1, 2015	1												*										
Quarter 2, 2015	1											*											
Quarter 3, 2015	1									*		*											
Quarter 4, 2015	1								*	*		*											
Quarter 2, 2016	t										*												
	_	_				_		_		_						_	_			_		_	

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
STRONTIUM-90																							
Quarter 2, 2003																							
Quarter 1, 2004																							
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				1
Quarter 2, 2005										*		*	*					*	*				
Quarter 3, 2005										*		*	*				*	*	*				1
Quarter 4, 2005										*		*	*					*	*	*			
Quarter 1, 2006	-							-		*	-	*	*				*	*	*	*	-		\vdash
-	-								*	*	-	*	*				*	*	*	*	-		\vdash
Quarter 2, 2006	_							-										不					₩
Quarter 3, 2006	4								*	*		*	*				*		*	*	ļ		<u> </u>
Quarter 4, 2006									*	*		*	*				*		*				—
Quarter 1, 2007									*	*		*	*				*		*	*			<u> </u>
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			t
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				1
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
-									*	*		*	*				*	*	*	*			₩
Quarter 3, 2009	*								*	*		*	*				*	*	*	*			₩
Quarter 4, 2009																		木					<u> </u>
Quarter 1, 2010	*								*	*		*	*				*		*	L.			<u> </u>
Quarter 2, 2010									*	*		*	*				*	*	*	*			<u> </u>
Quarter 3, 2010										*		*	*				*	*	*	*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			1
Quarter 4, 2011	*									*		*	*				*	*	*	*	1		
Quarter 1, 2012	*									*		*	*				*	*	*	*	1		\vdash
Quarter 2, 2012	*							-		*		*	*				*	*	*	*			\vdash
Quarter 3, 2012	*									*		*	*				*	*	*	*	-		₩
-	+-									*		*	*				*	*	*	*	-		₩
Quarter 4, 2012	_	-					-	-				*		-			*				<u> </u>		<u> </u>
Quarter 1, 2013	_									*	<u> </u>		*	طو				*	*	*	<u> </u>		₩
Quarter 2, 2013			<u> </u>							*		*	*	*			*	*	*	*	<u> </u>		\vdash
Quarter 3, 2013										*		*	*	*			*	*	*	*	<u> </u>		<u> </u>
Quarter 4, 2013										*		*	*				*	*	*	*			$ldsymbol{f eta}$
Quarter 1, 2014								*		*		*	*				*	*	*	*			L
Quarter 2, 2014										*		*	*	*			*	*	*	*			L
Quarter 3, 2014										*		*	*	*			*	*	*	*			
Quarter 4, 2014										*		*	*				*	*	*	*			
Quarter 1, 2015										*		*	*				*	*	*	*			
Quarter 2, 2015	1									*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2015	1							*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2015	1									*		*	*	*			*		*	*	1		
Quarter 1, 2016	1							*		*		*	*	*			*	*	*	*			
Quarter 2, 2016	1							*		*		*	*	*	*		*	*	*	*			t
		1					1	1	i i		ı	i	1	1					i	i	ı		1

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						Ţ	JRGA	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003			*										*				*			*			
Quarter 4, 2003			*							*		*	*				*		*	*			
Quarter 1, 2004			*									*	*				*		*				
Quarter 2, 2004			*									*	*				*		*	*			
Quarter 3, 2004			*									*					*		*				
Quarter 4, 2004			*							*		*	*				*	*	*				
Quarter 1, 2005			*							*		*	*				*			*			
Quarter 2, 2005			*							*			*				*	*	*	*			
Quarter 3, 2005			*							*			*				*	*	*	*			
Quarter 4, 2005			*							*		*	*				*		*	*			
Quarter 1, 2006										*		*	*						*	*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006			*							*			*				*	*	*	*			
Quarter 4, 2006	*									*		*	*						*	*			
Quarter 1, 2007			*							*			*				*		*	*			
Quarter 2, 2007			*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			-
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*		***	-11			-
Quarter 2, 2009			*							*		*	*				*	*		*			-
-			*							*	*	*	*				*	т-		*			-
Quarter 3, 2009			*							*	•	*	*				*			~			
Quarter 4, 2009			*							*		*	*				*						
Quarter 1, 2010												不						.		4			
Quarter 2, 2010			*							*	46	46	*				*	*		*			<u> </u>
Quarter 3, 2010			*							*	*	*	*				*						
Quarter 4, 2010			*							*		*	*				*						
Quarter 1, 2011										*			*				*						
Quarter 2, 2011			*							*			*				*			*			
Quarter 3, 2011			*							*			*				*			*			
Quarter 4, 2011			*							*	*	*	*				*						
Quarter 1, 2012			*							*			*				*			*			
Quarter 2, 2012			*							*			*				*		*	*			
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012										*		*	*				*		*	*			
Quarter 1, 2013										*			*				*		*	*			
Quarter 2, 2013										*		*	*				*		*	*			
Quarter 3, 2013			*							*		*	*				*		*	*			
Quarter 4, 2013			*							*		*	*				*		*	*			
Quarter 1, 2014			*							*	*		*				*		*	*			
Quarter 2, 2014			*							*	*		*	*			*		*	*			
Quarter 3, 2014			*							*			*				*			*			
Quarter 4, 2014			*							*	*	*	*				*		*	*			
Quarter 1, 2015			*							*	*	*	*				*			*			
Quarter 2, 2015			*							*	*		*				*			*			
Quarter 3, 2015	1		*					 	 	*	*	*	*				*	*	*	*			
Quarter 4, 2015			*							*	*	*	*				*	*		*			
Quarter 1, 2016	-		*					-	-	*	*	-	*				*	-1"	*	*			-
Quarter 2, 2016	-		*			*		-	-	*	-	-	*				*	*	-	*			-
THORIUM-230			-T-			_				-			·T					**		·*			
Quarter 1, 2012	*								*					*									
Quarter 4, 2014	*		*						٠,٣					-17									
	. ~	i								L.			L.,		L.,		\vdash						₩
Quarter 3, 2015	*								*	*			*		*								

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

		UCRS	S						1	URGA	A								LRGA	A		
S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
					*			*					*									
								*														
									*	*		*										
																				*		
			*						*	*							*	*		*		
									*	*		*								*		
						*	*	*	*	*	*											
						*		*	*													
									*													
									*	*												
									*													
									*													
									*													
		1							*			1		1						*		\vdash
									*		*									*		\vdash
	 	 							*	 		 		 					 	*		-
																						
											*											
																*						-
3 Ł									- NE							•						-
						- JE	JL.	JL.				- JL	JL.			JE.						<u> </u>
*					*	木	*	*	*	.		木	*			*						
										木												<u> </u>
*																						
																	NJ.	140		SI.		
			44															*				—
																	*					—
			*																			—
																				*		<u> </u>
																						—
																						—
																						<u> </u>
																						—
															Щ							<u> </u>
	<u> </u>	<u> </u>			<u> </u>				<u> </u>	<u> </u>		<u> </u>		<u> </u>					<u> </u>			├
																						Щ
*															Щ	12						<u> </u>
ų.															Щ	*						<u> </u>
	<u> </u>	<u> </u>			<u> </u>				<u> </u>	<u> </u>		<u> </u>		<u> </u>					<u> </u>			₩
															Щ							<u> </u>
															Щ					120		<u> </u>
																				*		<u> </u>
																						<u> </u>
																						<u> </u>
		ļ										ļ		ļ	Щ							<u> </u>
	<u> </u>	<u> </u>			<u> </u>				<u> </u>	<u> </u>		<u> </u>		<u> </u>					<u> </u>	JI.		₩
																				*		<u> </u>
	ļ	<u> </u>							ļ	ļ		<u> </u>		<u> </u>					ļ			<u> </u>
		<u> </u>										<u> </u>		<u> </u>								<u> </u>
																						<u> </u>
*																						<u> </u>
*																						
		S	S D D 386 389 390	386 389 390 393 4 4 4 4 4 4 4 4 5 4 4 4 6 4 4 4 7 4 4 4 8 4 4 4 8 4 4 4 8 4 4 4 8 4 4 4 8 4 4 4 8 4 4 4 8 4 4 4 8 4 4 4 8 4 4 4 8 4 4 4 8 4 4 4 8 4 4 4 8 4 4 4 8 4 4 4 8 4 4 4 8 4 4 4 8 4 4 4 9	S D D U 386 389 390 393 396 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 6 4 <td< td=""><td>S D D U S 386 389 390 393 396 221 4 <</td><td>S D D U S S 389 390 393 396 221 222 4 <</td><td>S D D U S S S 386 389 390 393 396 221 222 223 4</td><td>S D D U S S S S 386 389 390 393 396 221 222 223 224 4</td><td>S D D U S</td><td> S</td></td<>	S D D U S 386 389 390 393 396 221 4 <	S D D U S S 389 390 393 396 221 222 4 <	S D D U S S S 386 389 390 393 396 221 222 223 4	S D D U S S S S 386 389 390 393 396 221 222 223 224 4	S D D U S	S	S	S	S	S	S	S	S	S	S	S	S

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

			UCRS	•						1	URGA	A]	LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TOTAL ORGANIC HALIDES																							
Quarter 4, 2010	*																						
Quarter 1, 2011	*																						Î
Quarter 3, 2013																					*		
TRICHLOROETHENE																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005	1																						1
Quarter 2, 2005	1																						1
Quarter 3, 2005	1																						1
Quarter 4, 2005	1																						
Quarter 1, 2006	1																						
Quarter 2, 2006	1																						
Quarter 2, 2007	1																						
Quarter 3, 2007	1																						
Quarter 4, 2007	1																						
Quarter 1, 2008	1																						
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008	1																						
Quarter 1, 2009	1																						_
Quarter 2, 2009	1																						-
Quarter 3, 2009	1																						_
Quarter 4, 2009	1																						_
Quarter 1, 2010												-											
Quarter 2, 2010	1											=											
Quarter 3, 2010	1													Ħ					H				
Quarter 4, 2010	1											=		Ħ					H				
Quarter 1, 2011												=									i	i	
Quarter 2, 2011																					i	-	
														i							i		
Quarter 4, 2011	 	-	-						-			=						-					
Quarter 4, 2011 Quarter 1, 2012	 	-	-						-			-						-					
	 	-	-						-							-		-				-	
Quarter 2, 2012	 	-	-						-									-					
Quarter 3, 2012	 														-								├
Quarter 4, 2012	 											=			-								├
Quarter 1, 2013	 														-	-							├
Quarter 2, 2013	1					<u> </u>	<u> </u>	<u> </u>		<u> </u>										<u> </u>			₩
Quarter 3, 2013	!											-						ļ			•		<u> </u>
Quarter 4, 2013	!	ļ	ļ						ļ			_						ļ			•		<u> </u>
Quarter 1, 2014	!	ļ	ļ						ļ									ļ			•		<u> </u>
Quarter 2, 2014	<u> </u>	<u> </u>	<u> </u>						<u> </u>			_						<u> </u>	<u> </u>		_		Ь—
Quarter 3, 2014	<u> </u>	<u> </u>	<u> </u>						<u> </u>							L_		<u> </u>			_		Ь—
Quarter 4, 2014	<u> </u>	<u> </u>	<u> </u>						<u> </u>							_		<u> </u>					Ь—
Quarter 1, 2015	<u> </u>																						<u> </u>
Quarter 2, 2015	<u> </u>																						<u> </u>
Quarter 3, 2015																							<u> </u>
Quarter 4, 2015																							<u> </u>
Quarter 1, 2016	<u> </u>																						Ш
Quarter 2, 2016																							

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URG	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003	1											*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														

* Statistical test results indicate an elevated concentration (i.e., a statistically significant increase)

■ MCL Exceedance

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

LRGA Lower Regional Gravel Aquifer

S Sidegradient; D Downgradient; U Upgradient

APPENDIX H METHANE MONITORING DATA

C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	6/07/20)16					Т	ime:	13	3:40					Mon	itor:	-	Tan	nm	y Smith
Weather Co Sunny at 81			ds o	ut o	f the	NE					-,									
Monitoring RAE System	Equipm	ent:																		
					N	loni	torin	g Lo	ocati	ion						***************************************				Reading (% LEL)
Ogden Landi Road Entran		Che	ecked	d at g	round	d leve	el													0
North Landfi		Che	ecked	d at g	rounc	d leve	el										· ·	**********		0
West Side of Landfill: North 37° West 88°	07.652	Che	ecked	datg	round	d leve	əl													0
East Side of Landfill: North 37° West 88°	07.628			d at g														,	-	0
Cell 1 Gas Vo	ent (17)	1	2	3	4 0	5 0	6	7	8	9	10 0	11 0	12 0	13 0	14 0	15 0	16 0	1	17 0	0
Cell 2 Gas V	ent (3)	1	2 0	3 0			-			•								_		0
Cell 3 Gas V	ent (7)	1	2 0	3 0	4 0	5 0	6	7												0
	II Office	Che	ecked	d at fl	oor le	evel														186-7-16
Suspect or P	Problem Areas	No	areas	s note	ed												-			B 6-7-16
Remarks:																				
ALL VENTS	S CHEC	CKE	D 1"	FRO	I MC	MOL	JTH	OF	THE	E VE	NT									
														1						
Performed I	by:			ь.	1			S	2 -	#								- (6/0	7/2016
	-				Lin Si	<i>ymy</i> gnad	ture	SW.	iul											Date

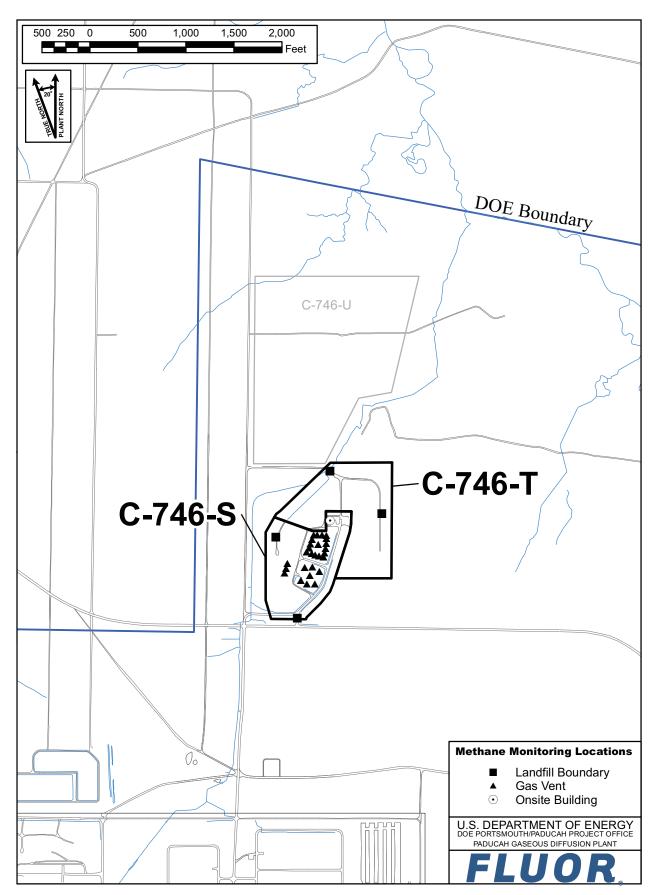


Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

For Official Use Only

LAB ID: None

Frankfort, KY 40601 (502)564-6716

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L135 UPSTRE	AM	L154 DOWNSTF	REAM	L136 AT SI	TE		
Sample Sequer	ıce	#				1		1		1			
If sample is	a Bl	lank, specify Type: (F)ield, (T)r:	ip,(M)ethod	, or (E)quipment	NA		NA		NA			
Sample Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		5/12/2016 14:	17	5/12/2016 14	:01	5/12/2016 14	1:31		$\overline{}$
Duplicate (")	?" c	or "N") ¹				N		N		N			7
Split ('Y' or	. "1	" ") ²				N		N		N			Π
Facility Samp	le	ID Number (if applicable)				L135SS3-16	6	L154US3-1	6	L136SS3-1	16	\ /	
Laboratory Sa	mp]	Le ID Number (if applicable)				397388001		397384002		39738800	2		
Date of Analy	rsis	s (Month/Day/Year)				6/6/2016		6/6/2016		6/6/2016		\ /	
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G s ⁷	DETECTED VALUE OR PQL	F L A G
A200-00-0	0	Flow	Т	MGD	Field	3.06		2.6		0.12			
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	1.42		1.59		1.33			
14808-79-8	0	Sulfate	Т	MG/L	300.0	2.42		2.57		3.77			
7439-89-6	0	Iron	т	MG/L	200.8	2.09	*	1.7		0.558	*		
7440-23-5	0	Sodium	т	MG/L	200.8	2.21		2.37		1.08			
s0268	0	Organic Carbon ⁶	Т	MG/L	9060	16.5		19.1		23.5			
s0097	0	\mathtt{BOD}^6	Т	MG/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	Т	MG/L	410.4	52.6		61.7		74.4			Ì

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Point (KPDES Discharge Number, or "UPSTREAM" or "DOWNSTREAM")			L135 UPSTREAM		L154 DOWNSTREAM		L136 AT SITE		\				
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	
s0145	1	Specific Conductance	Т	µнмѕ/см	Field	90		105		192			Γ
s0270	0	Total Suspended Solids	Т	MG/L	160.2	35.2		35.8	*	18.8			
s0266	0	Total Dissolved Solids	Т	MG/L	160.1	75.7		103		160			
s0269	0	Total Solids	Т	MG/L	SM-2540 B	114		123		164			
s0296	0	рН	Т	Units	Field	7.12		7.26		7.22			
7440-61-1		Uranium	Т	MG/L	200.8	0.0012		0.0012		0.000668			
12587-46-1		Gross Alpha (α)	Т	pCi/L	9310	1.62	*	4.81	*	0.503	*	\/	
12587-47-2		Gross Beta (β)	Т	pCi/L	9310	11.5	*	9.64	*	10.8	*	X	
													퇶
													Ļ
													L
													ackslash
													\downarrow
													\perp
			_										Ļ
													\downarrow
													Ļ
												/	

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 & 073-00015

Finds/Unit:	KY8-890-008-982 /	1					
LAB ID:	None	_					
For Official Use Only							

SURFACE WATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
L135	L135SS3-16	Iron	N	Sample spike recovery not within control limits.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 5.19. Rad error is 5.18.
		Beta activity		TPU is 8.29. Rad error is 8.07.
L154	L154US3-16	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 5.03. Rad error is 4.97.
		Beta activity		TPU is 7.17. Rad error is 6.99.
L136	L136SS3-16	Iron	N	Sample spike recovery not within control limits.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 2.77. Rad error is 2.77.
		Beta activity		TPU is 8.07. Rad error is 7.87.

