

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

MAY 2 0 2016

PPPO-02-3560853-16

Ms. Robin Green Division of Waste Management Kentucky Department for Environmental Protection 200 Fair Oaks Lane, 2nd Floor Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 200 Fair Oaks Lane, 2nd Floor Frankfort, Kentucky 40601

Mr. Allan Shingleton Division of Waste Management Kentucky Department for Environmental Protection 625 Hospital Drive Madisonville, Kentucky 42431

Dear Ms. Green, Mr. Hendricks, and Mr. Shingleton:

C-746-S&T LANDFILLS FIRST QUARTER CALENDAR YEAR 2016 (JANUARY–MARCH) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FPDP-RPT-0026/V1, PERMIT NUMBER SW07300014, SW07300015, SW07300045

Enclosed is the subject report for first quarter calendar year 2016. This report is required in accordance with Condition ACTV0006, Special Condition Number 3, of the C-746-S&T Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The report includes groundwater and surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

The statistical analyses on the first quarter 2016 monitoring well data collected from the C-746-S&T Landfills were performed in accordance with Condition GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report also serves as the statistical increase notification for the first quarter calendar year 2016, in accordance with Condition GSTR0003, Standard Requirement 8, of the C-746-S&T Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

nnife Woodard

Jenhifer Woodard Paducah Site Lead ortsmouth/Paducah Project Office

Enclosure:

C-746-S&T Landfills 1st Qtr CY 2016 (January-March) Compliance Monitoring Report

e-copy w/enclosure:

april.webb@ky.gov, KDEP/Frankfort brian.begley@ky.gov, KDEP/Frankfort dave.dollins@lex.doe.gov, PPPO/PAD ffscorrespondence@ffspaducah.com, FFS/Kevil gary.hines@ffspaducah.com, FFS/Kevil gaye.brewer@ky.gov, KDEP/PAD jennifer.watson@ffspaducah.com, FFS/Kevil jennifer.woodard@lex.doe.gov, PPPO/PAD joseph.towarnicky@ffspaducah.com, FFS/Kevil ken.davis@ffspaducah.com, FFS/Kevil leo.williamson@ky.gov, KDEP/Frankfort lisa.crabtree@ffspaducah.com, FFS/Kevil mark.duff@ffspaducah.com, FFS/Kevil mike.guffey@ky.gov, KDEP/Frankfort myrna.redfield@ffspaducah.com, FFS/Kevil pad.rmc@swiftstaley.com, SSI/Kevil reinhard.knerr@lex.doe.gov, PPPO/PAD stephaniec.brock@ky.gov, KYRHB/Frankfort

C-746-S&T Landfills First Quarter Calendar Year 2016 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

FLUOR.

This document is approved for public release per review by:

FFS, Ind., Classification Support

5/17/14 Date

FPDP-RPT-0026/V1

C-746-S&T Landfills First Quarter Calendar Year 2016 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—May 2016

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FLUOR FEDERAL SERVICES, INC., Paducah Deactivation Project managing the Deactivation Project at the Paducah Gaseous Diffusion Plant under Task Order DE-DT0007774

CLEARED FOR PUBLIC RELEASE

FIC	GURES			v
TA	BLES			v
AC	CRONYM	1S		vii
1.			ΓΙΟΝ	
			GROUND ΓORING PERIOD ACTIVITIES	
		2.1	Groundwater Monitoring	
		.2.2	Methane Monitoring	
		2.3	Surface Water Monitoring	
	1.3 K	EY R	ESULTS	
2.			LUATION/STATISTICAL SYNOPSIS	
	2.1 ST	TATI	STICAL ANALYSIS OF GROUNDWATER DATA	
	2.	1.1	Upper Continental Recharge System	
	2.	1.2	Upper Regional Gravel Aquifer	
		.1.3	Lower Regional Gravel Aquifer	
	2.2 D	ATA	VERIFICATION AND VALIDATION	
3.	PROFE	SSIO	NAL GEOLOGIST AUTHORIZATION	
4.	REFER	ENCI	ES	
AP	PENDIX	ΧA:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
AP	PENDIX	K B:	FACILITY INFORMATION SHEET	B-1
AP	PENDIX	C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
AP	PENDIX	CD:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
AP	PENDIX	KE:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
AP	PENDIX	K F:	NOTIFICATIONS	F-1
AP	PENDIX	(G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
AP	PENDIX	KH:	METHANE MONITORING DATA	H-1
AP	PENDIX	I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1

CONTENTS

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	. 2
2.	C-746-S&T Landfill Surface Water Monitoring Locations	.4

TABLES

1.	Summary of MCL Exceedances	5
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells	6
4.	C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Exceedances of Current Background UTL in UCRS Wells	9
6.	Monitoring Wells Included in Statistical Analysis	12

ACRONYMS

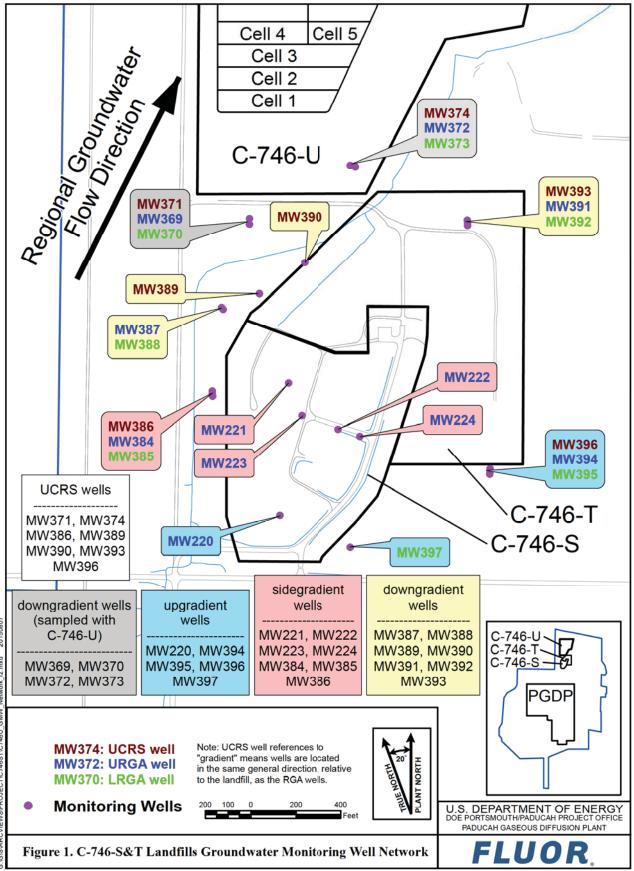
CFR CY KAR	Code of Federal Regulations calendar year Kentucky Administrative Regulations
KDWM	Kentucky Division of Waste Management
KRS	Kentucky Revised Statutes
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
MCL	maximum contaminant level
MW	monitoring well
PGDP	Paducah Gaseous Diffusion Plant
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer
UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills First Quarter Calendar Year 2016 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 for the C-746-S Residential Landfill and for the C-746-T Inert Landfill.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 *KAR* 47:030 § 6 and for all permit required parameters listed in 40 *CFR* § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-S&T Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090 § 4. Surface water results are provided in Appendix I.

1.1 BACKGROUND


The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Gaseous Diffusion Plant (PGDP) and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for PGDP. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from PGDP. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for the UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the RGA wells located in the same direction (relative to the landfill) as nearby UCRS wells. Results from UCRS wells are identified using the RGA wells located in the same direction (relative to the landfill) as nearby UCRS wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the first quarter 2016 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using Fluor Federal Services, Inc., procedure CP4-ES-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled. Polychlorinated biphenyls, which are evaluated annually as required by Special Condition 1, also were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water measurements were collected on January 26, 2016, in MWs of the C-746-S&T Landfills (see Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is northeastward, toward the Ohio River. During January, RGA groundwater flow in the area of the landfill was oriented to the east. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in January was 2.22×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 1.88×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.32 to 0.64 ft/day (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 4 and the approved Explosive Gas Monitoring Program (KEEC 2011), Technical Application, Attachment 12, of the Solid Waste Landfill Permit. Landfill operations staff monitored for the occurrence of methane in 1 on-site building location, 4 locations along the landfill boundary, and 27 gas-passive vents located in Cells 1, 2, and 3 of the C-746-S Landfill on February 29, 2016. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the approved C-746-S&T Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and KY-073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), Technical Application Attachment 24, of the Solid Waste Landfill Permit. Sampling was performed at the three locations (see Figure 2) that are

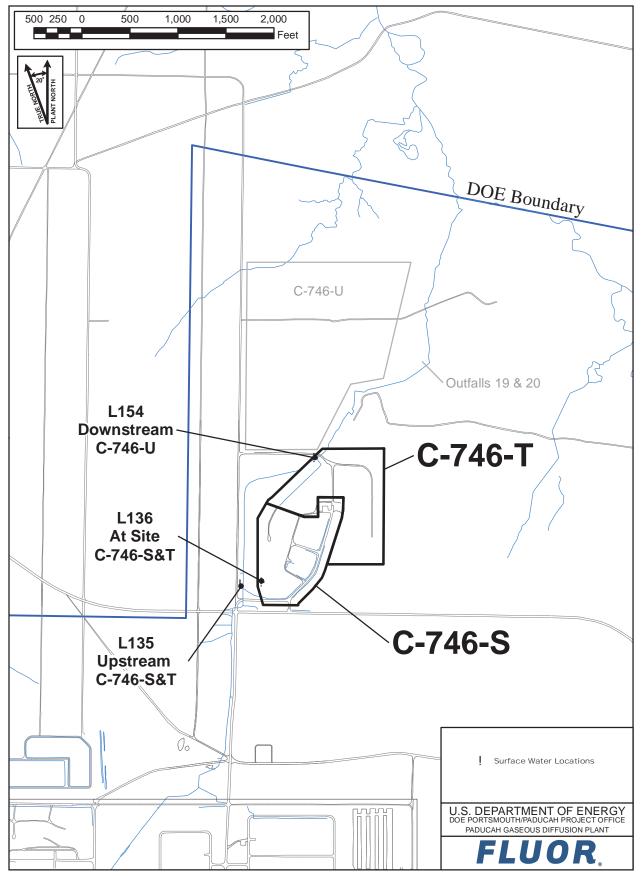


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

monitored for the C-746-S&T Landfills. The landfills have an upstream location, L135; a downstream location, L154; and a location capturing runoff from the landfill surface, L136. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled for report only format, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky,* (LATA Kentucky 2014), Technical Application, Attachment 25, of the Solid Waste Landfill permit. Parameters that had concentrations that exceeded the respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL (beta activity) were further evaluated against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL during the first quarter 2016, as well as parameters that exceeded their MCL (beta activity and trichloroethene) and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

UCRS	URGA	LRGA
MW390: Beta activity	MW372: Trichloroethene	MW373:Trichloroethene
	MW384: Beta activity	MW385: Beta activity
	MW387: Beta activity	MW388: Beta activity
	MW391: Trichloroethene	MW392: Trichloroethene
	MW394: Trichloroethene	

Table 1. Summary of MCL Exceedances

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW372, MW373, MW391, and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfill.

The MCL exceedances for beta activity in MW387 and MW388 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances because the source(s) of these exceedances is not determined. To evaluate these preliminary Type 2 exceedances further, these parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. MW387 had no increasing trend and is considered to be a Type 1 exceedance (not attributable to the landfill). MW388 had an increasing trend that is discussed in detail later in this section.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 8, and 401 *KAR* 48:300 § 7.

UCRS*	URGA	LRGA	
MW386: Oxidation-reduction	MW220: Oxidation-reduction	MW370: Oxidation-reduction	
potential	potential	potential, sulfate	
MW390: Beta activity, ^a oxidation-	MW221: Oxidation-reduction	MW373: Calcium, conductivity,	
reduction potential, technetium-99	potential	dissolved solids, magnesium,	
		sulfate, technetium-99	
MW393: Oxidation-reduction	MW222: Aluminum, oxidation-	MW385: Beta activity, ^a	
potential	reduction potential	oxidation-reduction potential,	
		sulfate, technetium-99	
MW396: Oxidation-reduction	MW223: Oxidation-reduction	MW388: Beta activity, ^a	
potential	potential, sulfate	oxidation-reduction potential,	
		sulfate, technetium-99	
	MW224: Oxidation-reduction	MW392: Oxidation-reduction	
	potential	potential	
	MW369: Oxidation-reduction	MW395: Oxidation-reduction	
	potential, technetium-99	potential	
	MW372: Calcium, conductivity,	MW397: Oxidation-reduction	
	dissolved solids, magnesium, sulfate	potential	
	MW384: Beta activity, ^a oxidation-		
	reduction potential, sulfate,		
	technetium-99		
	MW387: Beta activity, ^a oxidation-		
	reduction potential, sulfate,		
	technetium-99		
	MW391: Sulfate		

*Gradients in the UCRS are downward. UCRS gradient designations refer to locations of wells in the same direction, relative to the landfill as the RGA wells.

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393 Upgradient wells: MW220, MW394, MW395, MW396, ^bMW397

^a Beta activity has an MCL; the exceedances of the MCL were subjected to a comparison against the statistically derived historical background. ^b In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

Table 3. Exceedances of Current Background UTL in **Downgradient Wells**

URGA	LRGA
MW369: Technetium-99	MW370: Sulfate
MW372: Calcium, conductivity,	MW373: Calcium, conductivity,
dissolved solids, magnesium, sulfate	dissolved solids, magnesium, sulfate,
_	technetium-99
MW387: Beta activity, sulfate,	MW388: Beta activity, sulfate,
technetium-99	technetium-99
MW391: Sulfate	

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Var(S) ⁴	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
	MW369	Technetium-99	8	0.05	0.031	16.00	0.000	2.186	0.571	Positive Trend
	MW370	Sulfate	8	0.05	0.265	-6.000	63.33	-0.086	-0.222	No Trend
		Calcium	8	0.05	0.452	-2.000	0.000	-0.775	-0.071	No Trend
		Conductivity	8	0.05	0.016	-18.00	0.000	-16.40	-0.643	Negative Trend
	MW372	Dissolved Solids	8	0.05	0.452	2.000	0.000	12.90	0.071	No Trend
		Magnesium	8	0.05	0.548	0.000	0.000	-0.013	0.000	No Trend
		Sulfate	8	0.05	0.016	-18.00	0.000	-9.750	-0.643	Negative Trend
		Calcium	8	0.05	0.012	-19.00	64.33	-1.273	-0.691	Negative Trend
C-746-S and T		Conductivity	8	0.05	0.007	-20.00	0.000	-13.50	-0.714	Negative Trend
Landfills	MW373	Dissolved Solids	8	0.05	0.054	-14.00	0.000	-12.00	-0.500	No Trend
Downgradient	101 00 575	Magnesium	8	0.05	0.199	-8.000	0.000	-0.125	-0.286	No Trend
Wells		Sulfate	8	0.05	0.001	-24.00	0.000	-11.36	-0.857	Negative Trend
		Technetium-99	8	0.05	0.548	0.000	0.000	0.362	0.000	No Trend
		Beta Activity	8	0.05	0.089	12.00	0.000	5.667	0.429	No Trend
	MW387	Sulfate	8	0.05	0.360	-4.000	0.000	-0.380	-0.143	No Trend
		Technetium-99	8	0.05	0.227	7.000	64.33	5.292	0.255	No Trend
		Beta Activity	8	0.05	0.031	16.00	0.000	8.242	0.571	Positive Trend
	MW388	Sulfate	8	0.05	0.309	-5.000	64.33	-0.238	-0.182	No Trend
		Technetium-99	8	0.05	0.159	9.000	64.33	4.800	0.327	No Trend
	MW391	Sulfate	8	0.05	0.138	10.00	0.000	2.712	0.357	No Trend

Table 4. C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Footnotes:

¹An alpha of 0.05 represents a 95% confidence interval.

²The p-value represents the risk of acceptance the H hypothesis of a trend, in terms of a percentage.

³The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

⁴VAR(S) represents the varience of S in the sample set and takes into account statistical ties.

⁵The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all (x-x_k)/(j-k), where x is a data point and j and k are values of time.

⁶Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is postive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend.

⁷The Mann-Kendall decision operates on two hypothesis, the H₀ and H_a. H₀ assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend. Two different tests were ran to test for positive or negative trends. This table reports the test with the lowest p-value.

Note: Statistics generated using XLSTAT Version 2015.2.01.16684

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as upgradient, to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

Those constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and preliminarily are considered to be a Type 2 exceedance per the approved Groundwater Monitoring Plan. To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All but two of these preliminary Type 2 exceedances in downgradient wells did not have an increasing trend and are considered to be Type 1 exceedances (not attributable to the landfill).

The Mann-Kendall statistical test indicates that there is an increasing trend of beta activity in MW388 and of Tc-99 in MW369 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, these are considered a Type 2 exceedance (source unknown). The source(s) of the trends is believed to be unrelated to the C-746-S&T Landfills for the following reasons:

- There is a known upgradient regional source of beta activity and technetium-99 associated with the technetium-99 Northwest Plume (refer to Figure 10 in the Groundwater Monitoring Plan that shows portions of the 2009 technetium-99 Plume map);
- Although MW388 and MW369 are considered downgradient wells, in January 2016, groundwater flow in the area of the landfill was oriented to the east, making MW388 and MW369 hydraulically upgradient/crossgradient to the C-746-S&T Landfills;
- Although the deeper (LRGA) MW388 shows an increasing trend, the shallower, collocated (URGA) well, MW387, does not show the increasing Mann-Kendall trend (refer to Table 4);
- The recent beta activity in MW388 is within the range of historical levels of beta activity since 2002; and
- Although the technetium-99 concentrations in MW369 show a recent increase, the technetium-99 concentration in MW369 is within the range of historical levels of technetium-99 concentrations since 2002.

Beta activity and technetium-99 results of upcoming quarters' results will provide additional evidence related to these trends and will continue to be evaluated in the context of these observations.

In accordance with Permit Condition GSTR0003, Variance 2, of the Solid Waste Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the Permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified a UCRS well with both a beta activity and technetium-99 value that exceeds both the historical and current backgrounds. Because this well is not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T sources and is considered to be a Type 1 exceedance (Table 5).

Table 5. Exceedances of Current Background UTL in UCRS Wells

UCRS
MW390: Beta activity, technetium-99

All MCL and UTL exceedances, except for two parameters, reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills. Tc-99 in MW369 and beta activity in MW388 will continue to be evaluated in the context of these observations. The increasing trends for Tc-99 in MW369 and beta activity in MW388 do not appear to be landfill-related.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2016 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with the *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).*

For those parameters that exceed the respective Kentucky solid waste facility MCL found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance.

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

UCRS	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389***	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396**	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	
	MW387	
	MW391	
	MW394 (upgradient)	

Table 6. Monitoring Wells Included in Statistical Analysis*

*A map showing the MW locations is shown on Figure 1.

**In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

***MW389 had insufficient water to permit a water sample for laboratory analysis.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the UCRS. During the first quarter, beta activity, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity and technetium-99 exceeded the current background UTL and are included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 32 parameters, including those with MCLs, required statistical analysis in the URGA. During the first quarter, aluminum, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the LRGA. During the first quarter, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices, and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples—such as matrix spikes, matrix spike duplicates, and method blanks—are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills First Quarter Calendar Year 2016 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FPDP-RPT-0026/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

)avis

Kenneth R. Davis

PG1194

<u>May 17, 2016</u> Date

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and KY-073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name: U.S. DOE–Paducah Gaseous Diffusion Plant			Activity:	C-746-S&T Landfills
	(As officially shown			
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	1st Qtr. CY 2016
Please check the	following as applicable:			
Character	rization <u>X</u> Quar	terly Semiannual	Annual	Assessment
Please check app	licable submittal(s):	X Groundwater	S	Surface Water
		Leachate	X	Aethane Monitoring

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Mark. J. Duff, Director, Environmental Management Fluor Federal Services, Inc.

Jennifer Woodard, Paducah Site Lead U.S. Department of Energy

Date

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY	INFORMATION	SHEET
----------	--------------------	-------

Sampling Date: Facility Name:	Groundwater: January 2016 Surface Water: February 2016 Methane: February 2016 U.S. DOE, Paducah Gaseous D	County: McCracken iffusion Plant shown on DWM Permit Face)	Permit Nos.	SW07300014, SW07300015, SW07300045
<u> </u>	•			100.50
Site Address:	5501 Hobbs Road Street	Kevil, Kentucky City/State		42053 Zip
DI N.		·	T	1
Phone No:	(270) 441-6800 Latit	ıde: <u>N 37° 07' 37.70"</u>	Longitude:	W 88° 47' 55.41"
		OWNER INFORMATION		
Facility Owner:	U.S. DOE, Robert E. Edwards	III, Acting Manager	Phone No:	(859) 227-5020
Contact Person:	Mark J. Duff			(270) 441-6127
Contact Person Ti	tle: Director, Environmental	Management, Fluor Federal Services, Inc.		
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053
C	Street	City/State		Zip
Company:	(<i>IF OTHE)</i> GEO Consultants, LLC	SAMPLING PERSONNEL R THAN LANDFILL OR LABORATORY)		
Contact Person:	Sam Martin		Phone No:	(270) 441-6755
Mailing Address:	325 Kentucky Avenue	Kevil, Kentucky		42053
	Street	City/State		Zip
	:	LABORATORY RECORD #1		
Laboratory:	GEL Laboratories, LLC	Lab ID No: _]	KY90129	
Contact Person:	Valerie Davis		Phone No:	(843) 769-7391
Mailing Address:	2040 Savage Road	Charleston, South Carolina		29407
	Street	City/State		Zip
		LABORATORY RECORD #2		
Laboratory:		Lab ID No:		
Contact Person:			Phone No:	
Mailing Address:				
	Street	City/State		Zip
		LABORATORY RECORD #3		
Laboratory:		Lab ID No:		
Contact Person:			Phone No:	
Mailing Address:				
C A	Street	City/State		Zip

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-52	202	8000-52	242	8000-524	43
Facility's Lo	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	.)	220		221		222		223	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/5/2016 07	:42	1/5/2016 08:43		1/5/2016	10:17	1/5/2016 0	9:30
Duplicate ("Y	" or "N") ²				Ν		N		N		Ν	
Split ("Y" or	"N") ³				Ν		Ν		Ν		Ν	
Facility Samp	le ID Number (if applicable)				MW220SG2	2-16	MW221S0	G2-16	MW222SG2-16		MW223SG	2-16
Laboratory Sa	Laboratory Sample ID Number (if applicable))1	388711	003	3887110	1005 3887110		07
Date of Analy	Date of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						1/7/2016		1/7/201	16	1/7/2016	6
Gradient with	respect to Monitored Unit (UP, DC	wn,	SIDE, UNKN	OWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.219		0.448		0.457		0.434	
16887-00-6	Chloride(s)	т	mg/L	9056	21.6	В	34	В	33.8	В	30.4	В
16984-48-8	Fluoride	т	mg/L	9056	0.16		0.165		0.249		0.182	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.16		1.14		1.07		0.9	
14808-79-8	Sulfate	т	mg/L	9056	16.5		14.1		11.9		19.1	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.54		30.54		30.56		30.56	
S0145	Specific Conductance	т	µMH0/cm	Field	439		402		385		426	

G

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AVCWA NUMBER ¹ Facility Well/Spring Number					(00110							
AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520)1	8000-520	2	8000-5242	2	8000-5243	
Facility's Lo	cal Well or Spring Number (e.g., M	V-1, 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.15		324.15		324.1		324.12	
N238	Dissolved Oxygen	т	mg/L	Field	6.95		5.69		5.39		5.86	
S0266	Total Dissolved Solids	т	mg/L	160.1	209		210		237		226	
S0296	pH	т	Units	Field	6.56		6.34		6.4		6.33	
NS215	Eh	т	mV	Field	449		463		468		467	
s0907	Temperature	т	°C	Field	11.78		13.06		14.44		13.56	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		1.01		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00248	J	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.2		0.213		0.32		0.25	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00728	J	0.0121	J	0.00858	J	0.00686	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	19.3		20.7		18.7		22.7	
7440-47-3	Chromium	т	mg/L	6020	0.00503	J	0.0119		0.0451		0.0131	
7440-48-4	Cobalt	т	mg/L	6020	0.000193	J	0.000414	J	0.00454		0.000724	J
7440-50-8	Copper	т	mg/L	6020	0.000416	J	0.000673	J	0.00137		<0.001	
7439-89-6	Iron	т	mg/L	6020	0.036	J	0.0792	J	2.93		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	8.44		9.47		8.67		9.9	
7439-96-5	Manganese	т	mg/L	6020	0.00107	J	0.00224	J	0.259		0.00479	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-520	01	8000-52	02	8000-52	42	8000-52	:43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.000771	В	0.00157	В	0.00143	В	0.00319	В
7440-02-0	Nickel	т	mg/L	6020	0.027		0.0327		0.0568		0.393	
7440-09-7	Potassium	т	mg/L	6020	4.23		1.19		0.574		1.09	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	0.00151	J	<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	40.1		45.3		47.3		48.4	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	0.00104	*J	<0.005	*	0.00133	*J
7440-28-0	Thallium	т	mg/L	6020	<0.002		0.000464	J	<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.000128	J	<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		0.00839	BJ	0.00302	BJ
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01		0.00497	J	<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1,	Facility Well/Spring Number				8000-5201	1	8000-520)2	8000-52	242	8000-52	243
Facility's Lo	cal Well or Spring Number (e.g.,)	MW-1	1, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		0.00034	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-7

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	42	8000-524	43
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000206		<0.0000209		<0.0000205		<0.0000205	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5201		8000-5202	2	8000-524	2	8000-52	43
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.561	*	-1.65	*	-0.248	*	-0.568	*
12587-47-2	Gross Beta	т	pCi/L	9310	18.1	*	8.74	*	4.96	*	7.65	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.745	*	0.806	*	-0.0617	*	0.564	*
10098-97-2	Strontium-90	т	pCi/L	905.0	2.59	*	-0.435	*	-0.283	*	2.82	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	18.4	*	16	*	12.4	*	-1.08	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.00535	*	0.0134	*	0.216	*	-0.228	*
10028-17-8	Tritium	т	pCi/L	906.0	-77.9	*	78.3	*	57.6	*	28.4	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	0.762	J	0.814	J	0.781	J	1	J
s0586	Total Organic Halides	т	mg/L	9020	0.00882	BJ	0.00556	BJ	0.00564	BJ	0.00644	BJ

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	318	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	.)	224		369		370		372	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/5/2016 12	2:03	1/12/2016	12:46	1/12/2016	13:56	1/21/2016 1	0:37
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		Ν		N		N	
Facility Samp	le ID Number (if applicable)				MW224SG2	2-16	MW369U0	G2-16	MW370UG2-16		MW372UG	2-16
Laboratory Sa	Laboratory Sample ID Number (if applicable)						389118	003	389118001		3899260	09
Date of Analy	Date of Analysis (Month/Day/Year) For Volatile Organics Analysis						1/15/20	16	1/15/2016		1/27/201	6
Gradient with	respect to Monitored Unit (UP, DO	wn,	SIDE, UNKN	OWN)	SIDE		DOWN		DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.398		0.392		0.472		0.608	
16887-00-6	Chloride(s)	т	mg/L	9056	28.7	В	33.1		36.6		45.5	
16984-48-8	Fluoride	т	mg/L	9056	0.256		0.163		0.14		0.129	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.718		0.622		1.19		<0.2	
14808-79-8	Sulfate	т	mg/L	9056	13.4		9.98		18.4		102	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.5		30.14		30.17		30.23	
S0145	Specific Conductance	т	µMH0/cm	Field	443		387		427		700	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

00	AKGWA NUMBER ¹ , Facility Well/Spring Number				(00110							
AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., M	1-1 , 1	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.18		324.78		324.76		325.45	
N238	Dissolved Oxygen	т	mg/L	Field	3.56		0.94		3.44		0.53	
S0266	Total Dissolved Solids	т	mg/L	160.1	260		207		240		530	
50296	рн	т	Units	Field	6.43		6.21		6.17		6.31	
NS215	Eh	т	mV	Field	468		398		415		246	
S0907	Temperature	т	°C	Field	15.44		14.94		13.89		15.83	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0742		<0.05		0.0308	*J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		0.00325	J
7440-39-3	Barium	т	mg/L	6020	0.216		0.411		0.197		0.0454	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0131	J	0.0147	J	0.0291		1.16	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	21.7		18.4		27.6		60.9	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.000487	J	0.00435		0.000356	J	0.000676	J
7440-50-8	Copper	т	mg/L	6020	<0.001		0.000705	J	<0.001		<0.001	
7439-89-6	Iron	т	mg/L	6020	<0.1		0.113		<0.1		0.64	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	9.59		7.78		11.8		23.7	
7439-96-5	Manganese	т	mg/L	6020	0.00485	J	0.0235		0.00163	J	0.0134	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	08
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.000641	В	0.000179	BJ	0.00029	BJ	0.000697	В
7440-02-0	Nickel	т	mg/L	6020	0.00417		0.0055		0.000795	J	0.000999	J
7440-09-7	Potassium	т	mg/L	6020	0.772		0.581		2.34		2.25	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	57.8		55.7		41.2		57.7	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		0.000529	J
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	0.00417	BJ	0.00337	J	<0.01		<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01		<0.01		0.00547	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8000-5244	4	8004-482	20	8004-48	318	8004-48	308
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	L, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00108		0.00093	J	0.00987	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	1	8004-4820)	8004-481	18	8004-480	08
Facility's Loc	al Well or Spring Number (e.g., M	4W-1	L, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000206		<0.0000207		<0.0000205		<0.0000204	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.0962		<0.1		0.0552	J
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0962		<0.1		<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0962		<0.1		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0962		<0.1		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0962		<0.1		0.0552	J
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.0962		<0.1		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-14

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	Ļ	8004-4820		8004-481	8	8004-480)8
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0962		<0.1		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0962		<0.1		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0962		<0.1		<0.0952	
12587-46-1	Gross Alpha	т	pCi/L	9310	-2.47	*	0.891	*	0.342	*	-0.909	*
12587-47-2	Gross Beta	т	pCi/L	9310	4.92	*	38.6	*	35.4	*	13.9	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.889	*	0.754	*	0.659	*	0.367	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.41	*	-1.15	*	-0.403	*	-1.61	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	8.18	*	52.7	*	32.1	*	18.3	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.106	*	0.182	*	0.248	*	0.122	*
10028-17-8	Tritium	т	pCi/L	906.0	200	*	-9.22	*	64.2	*	-20.4	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		19.1	J	<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.06	J	1.29	J	0.852	J	1.29	J
S0586	Total Organic Halides	Т	mg/L	9020	0.00536	BJ	0.0254		0.0061	J	0.00886	J

Division of Waste Management **RESIDENTIAL/INERT-OUARTERLY** Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER¹, Facility Well/Spring Number 8004-4792 8004-4809 8004-4810 8004-4804 373 385 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 384 386 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA NA NA 1/21/2016 12:42 1/7/2016 08:18 1/7/2016 09:24 1/5/2016 10:18 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν N Ν Split ("Y" or "N")³ Ν Ν Ν N MW373UG2-16 MW384SG2-16 MW385SG2-16 MW386SG2-16 Facility Sample ID Number (if applicable) 389926013 388881003 388881005 388711011 Laboratory Sample ID Number (if applicable) 1/27/2016 1/11/2016 1/11/2016 1/7/2016 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis DOWN SIDE SIDE SIDE Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN⁴ CONSTITUENT т Unit METHOD DETECTED F DETECTED DETECTED DETECTED F F F D OF VALUE L VALUE L VALUE L VALUE т. 5 MEASURE OR А OR А OR А OR А POL⁶ POL⁶ POL⁶ POL⁶ G G G G S^7 s s s 0.595 0.456 0.277 0.148 J 24959-67-9 Bromide т mg/L 9056 в 48.1 42 31.5 13.6 16887-00-6 Chloride(s) т 9056 mg/L 0.154 0.211 0.114 0.596 16984-48-8 Fluoride т 9056 mq/L 1.05 1.25 1.08 <0.5 s0595- т Nitrate & Nitrite 9056 mq/L 127 20.2 21.3 45.1 14808-79-8 т Sulfate mq/L 9056 30.19 30.12 30.12 30.04 NS1894 Barometric Pressure Reading T Inches/Hg Field 793 501 413 576 s0145- т Specific Conductance Field µMH0/cm

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

					(00110							
AKGWA NUMBER1,	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	cal Well or Spring Number (e.g., Mw	1-1, 1	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
50906	Static Water Level Elevation	т	Ft. MSL	Field	325.51		324.19		324.32		347.88	
N238	Dissolved Oxygen	т	mg/L	Field	2.24		3.93		2.8		2.57	
S0266	Total Dissolved Solids	т	mg/L	160.1	507		257		221		381	
50296	рн	т	Units	Field	6.39		6.36		6.3		6.26	
NS215	Eh	т	mV	Field	193		459		466		160	
50907	Temperature	т	°C	Field	13.83		13.72		13.67		13.89	
7429-90-5	Aluminum	т	mg/L	6020	0.02	*J	<0.05		0.0154	J	0.0315	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		0.00275	J
7440-39-3	Barium	т	mg/L	6020	0.0262		0.13		0.199		0.201	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	1.39		0.013	J	0.0122	J	0.00523	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	64.6		29.1		25.1		21.4	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.0029	J	<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.000922	J	<0.001		<0.001		0.00737	
7440-50-8	Copper	т	mg/L	6020	<0.001		<0.001		<0.001		0.000412	J
7439-89-6	Iron	т	mg/L	6020	0.353		<0.1		<0.1		1.78	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	25.4		11.3		8.82		9.41	
7439-96-5	Manganese	т	mg/L	6020	0.0459		0.00118	J	<0.005		1.22	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	304
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.000321	BJ	0.000224	BJ	0.00075	В
7440-02-0	Nickel	т	mg/L	6020	0.000676	J	0.000906	J	0.000947	J	0.00221	
7440-09-7	Potassium	т	mg/L	6020	2.48		1.13		1.55		0.291	J
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00275	J	<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	58.2		54.1		47		115	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005		0.00217	J	0.00146	*J
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		0.00318	BJ	0.00671	BJ
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-480)9	8004-48	310	8004-4	804
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	373		384		385		386	i
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00989		0.00032	J	0.00047	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809	9	8004-481	10	8004-480)4
Facility's Loo	cal Well or Spring Number (e.g., M	w-1	L, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000208		<0.0000206		<0.0000205		<0.0000206	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0971			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0971			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0971			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0971			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0971			*		*		*
12672-29-6	PCB-1248	т	ug/L	8082	<0.0971			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1,	Facility Well/Spring Number				8004-4792		8004-4809)	8004-481	0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g.	., MW-1	L, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0971			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.0971			*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0971			*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	2.09	*	-1.42	*	-2.48	*	-2.89	*
12587-47-2	Gross Beta	т	pCi/L	9310	23.7	*	153	*	172	*	1.71	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.459	*	1.25	*	0.343	*	0.729	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.874	*	-1.51	*	1.75	*	-2.54	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	46	*	210	*	199	*	6.32	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.115	*	0.316	*	0.0451	*	0.0243	*
10028-17-8	Tritium	т	pCi/L	906.0	-31.3	*	65	*	42.6	*	125	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		16.7	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.11	J	1.16	J	0.998	J	9.39	
S0586	Total Organic Halides	т	mg/L	9020	0.00922	J	0.00442	J	<0.01		0.204	В

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	5	8004-48	316	8004-481	12	8004-481	1
Facility's Loc	al Well or Spring Number (e.g., M	w-1	, MW-2, etc	.)	387		388		389		390	
Sample Sequenc	se #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)q	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		1/5/2016 09	:50	1/5/2016	09:22	NA		1/7/2016 07	:36
Duplicate ("Y"	or "N") ²				N		Ν		Ν		Ν	
Split ("Y" or	"N") ³				N		Ν		Ν		Ν	
Facility Sampl	cility Sample ID Number (if applicable)					-16	MW388S0	G2-16	NA		MW390SG2	-16
Laboratory Sam	mple ID Number (if applicable)		38871101	3	388711	015	NA		38888100	7		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						1/7/20	16	NA		1/11/201	6
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	OWN)	DOWN		DOW	N	SIDE		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.431		0.34			*	0.615	
16887-00-6	Chloride(s)	т	mg/L	9056	36.8		32.1			*	59	
16984-48-8	Fluoride	т	mg/L	9056	0.491		0.261			*	0.243	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.19		1.17			*	2.5	
14808-79-8	Sulfate	т	mg/L	9056	26.7		23.5			*	33.4	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.04		30.04			*	30.12	
s0145	Specific Conductance	т	µMH0/cm	Field	554		473			*	714	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

					(00110							
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g., Mw	1-1, 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
50906	Static Water Level Elevation	т	Ft. MSL	Field	323.84		323.76			*	324.42	
N238	Dissolved Oxygen	т	mg/L	Field	2.76		3.17			*	3.67	
S0266	Total Dissolved Solids	т	mg/L	160.1	297		267			*	400	
50296	рн	т	Units	Field	6.21		6.26			*	6.34	
NS215	Eh	т	mV	Field	413		410			*	447	
s0907	Temperature	т	°C	Field	13.78		13.89			*	13	
7429-90-5	Aluminum	т	mg/L	6020	0.0164	J	0.0615			*	0.123	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00236	J	0.00178	J		*	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.12		0.175			*	0.255	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0303		0.0216			*	0.0108	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	32.4		27.2			*	31.4	
7440-47-3	Chromium	т	mg/L	6020	0.00273	J	0.0023	J		*	0.00377	J
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.000142	J		*	0.000236	J
7440-50-8	Copper	т	mg/L	6020	<0.001		0.000443	J		*	0.000414	J
7439-89-6	Iron	т	mg/L	6020	0.0945	J	0.308			*	0.12	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	14		11.9			*	12.8	
7439-96-5	Manganese	т	mg/L	6020	0.00933		0.00312	J		*	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-481	15	8004-48	16	8004-4812	2	8004-48	11
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.000289	BJ		*	0.000985	В
7440-02-0	Nickel	т	mg/L	6020	<0.002		0.00132	J		*	0.00163	J
7440-09-7	Potassium	т	mg/L	6020	1.69		1.79			*	0.358	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	т	mg/L	6020	0.0019	J	0.00228	J		*	<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	т	mg/L	6020	53.3		47.8			*	94.6	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*		*	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		0.000483	J		*	<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002			*	0.000121	J
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01			*	0.00432	BJ
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01			*	<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815	5	8004-48	16	8004-481	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00103		0.00085	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815		8004-4816		8004-481	2	8004-481	1
Facility's Loo	al Well or Spring Number (e.g., M	4W-1	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000207		<0.000021			*	<0.0000206	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4815		8004-4816	;	8004-481	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	3.31	*	6.42	*		*	2.23	*
12587-47-2	Gross Beta	т	pCi/L	9310	162	*	146	*		*	51.5	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.748	*	1.21	*		*	2.04	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.25	*	-0.35	*		*	-2.89	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	232	*	164	*		*	69.7	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.169	*	0.302	*		*	0.167	*
10028-17-8	Tritium	т	pCi/L	906.0	-69.2	*	6.24	*		*	136	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20			*	<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.13	J	1.1	J		*	2.44	
s0586	Total Organic Halides	т	mg/L	9020	0.0061	J	0.00386	J		*	0.0141	

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER¹, Facility Well/Spring Number 8004-4805 8004-4806 8004-4807 8004-4802 394 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 391 392 393 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA NA NA 1/12/2016 10:28 1/5/2016 08:48 1/12/2016 08:37 1/12/2016 09:24 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν N N Split ("Y" or "N")³ Ν Ν Ν Ν MW391SG2-16 MW392SG2-16 MW393SG2-16 MW394SG2-16 Facility Sample ID Number (if applicable) 389122001 389122003 389122005 388711017 Laboratory Sample ID Number (if applicable) 1/15/2016 1/15/2016 1/15/2016 1/7/2016 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis DOWN DOWN DOWN UP Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN⁴ CONSTITUENT т Unit METHOD DETECTED F DETECTED DETECTED DETECTED F F F D OF VALUE L VALUE L VALUE L VALUE ь 5 MEASURE OR А OR А OR А OR А POL⁶ POL⁶ POL⁶ POL⁶ G G G G S^7 s s s 0.503 0.575 0.177 J 0.622 24959-67-9 Bromide т mg/L 9056 38.4 47.9 13.6 48.4 16887-00-6 Chloride(s) т 9056 mg/L 0.147 0.181 0.127 0.131 16984-48-8 Fluoride т 9056 mq/L 0.92 0.576 <0.5 1.54 s0595- -Nitrate & Nitrite т 9056 mq/L 40.6 6 11.9 10.1 14808-79-8 т Sulfate mq/L 9056 30.02 30.1 30.06 30.04 NS1894 Barometric Pressure Reading T Inches/Hg Field 457 400 407 415 s0145- т Specific Conductance Field µMH0/cm

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807		8004-4802	
Facility's Lo	cal Well or Spring Number (e.g., M	1-1 , 1	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.81		324.85		339.33		323.36	
N238	Dissolved Oxygen	т	mg/L	Field	3.02		0.98		0.97		3.08	
S0266	Total Dissolved Solids	т	mg/L	160.1	267		227		270		226	
S0296	рН	т	Units	Field	6.24		6.32		6.26		6.44	
NS215	Eh	т	mV	Field	293		414		156		351	
S0907	Temperature	т	°C	Field	14.39		11.22		14.06		12.94	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.021	J	0.0155	J	0.0363	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00505		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.263		0.203		0.0977		0.253	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0961		0.0248		0.0169		0.0224	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	29.4		27.2		11.3		27.7	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.000185	J	<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	<0.001		<0.001		<0.001		0.000684	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.203		1.9		0.347	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	12.4		10.1		3.37		11.9	
7439-96-5	Manganese	т	mg/L	6020	<0.005		0.0689		0.041		0.00723	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480)5	8004-48	06	8004-48	07	8004-48	02
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.000321	BJ	0.000308	BJ	<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.000708	J	0.000853	J	<0.002		0.00189	J
7440-09-7	Potassium	т	mg/L	6020	1.56		1.75		0.39		1.27	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	40.9		35.8		78.3		32.3	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		0.00685	J	0.00302	BJ
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	0.00039	J	0.0003	J	<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	06	8004-4807		8004-4802	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	L, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	0.00048	J	0.00068	J	<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00931		0.0163		<0.001		0.00644	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	6	8004-480)7	8004-4802	
Facility's Loc	al Well or Spring Number (e.g., M	IW -1	1, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.000021		<0.0000206		<0.0000208		<0.0000207	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4805		8004-4806	6	8004-480)7	8004-4802	
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	2.15	*	-1.34	*	-1.36	*	-0.92	*
12587-47-2	Gross Beta	т	pCi/L	9310	4.11	*	2.23	*	2.84	*	6.13	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.325	*	0.596	*	0.276	*	1.19	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.145	*	1.15	*	-0.501	*	-2.2	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	0.266	*	-9.7	*	-12.2	*	4.07	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.205	*	0.0351	*	0.214	*	0.182	*
10028-17-8	Tritium	т	pCi/L	906.0	27.1	*	127	*	-46.9	*	-36.8	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		13.8	J	<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.792	J	0.984	J	2.56		0.77	J
s0586	Total Organic Halides	т	mg/L	9020	0.00556	J	0.026		0.0187		0.00682	J

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4801		8004-48	303	8004-48	317	0000-0000	
Facility's Loc	al Well or Spring Number (e.g., M	W-1	, MW-2, etc	••)	395		396		397		E. BLANK	
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip, ((M)e	thod, or (E)	nuipment	NA		NA		NA		E	
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)						1/5/2016	08:15	1/5/2016	12:52	1/7/2016 07:00	
Duplicate ("Y"	N		N		N		Ν					
Split ("Y" or "N") ³							N		N		Ν	
Facility Sampl	e ID Number (if applicable)				MW395SG2	-16	MW396S0	G2-16	MW397S0	G2-16	RI1SG2-	16
Laboratory Sam	ple ID Number (if applicable)				38871101	9	388711	021	388711	023	388881010	
Date of Analysis (Month/Day/Year) For Volatile Organics Analysis					1/7/2016		1/7/20	16	1/7/2016		1/11/201	6
Gradient with	respect to Monitored Unit (UP, DO	wn,	SIDE, UNKN	IOWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.551		1.19		0.497			*
16887-00-6	Chloride(s)	т	mg/L	9056	49.2		76.9		39.7			*
16984-48-8	Fluoride	т	mg/L	9056	0.114		0.512		0.126			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.69		<0.5		1.56			*
14808-79-8	Sulfate	т	mg/L	9056	9.84		21.6		11.2			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.04		30.04		30.5			*
S0145	Specific Conductance	т	µMH0/cm	Field	408		421		353			*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	7	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., M	V-1 , 1	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	324.05		369.41		323.74			*
N238	Dissolved Oxygen	т	mg/L	Field	3.03		2.86		5.58			*
S0266	Total Dissolved Solids	т	mg/L	160.1	229		470		204			*
S0296	рн	т	Units	Field	6.24		6.5		6.28			*
NS215	Eh	т	mV	Field	380		223		473			*
s0907	Temperature	т	°C	Field	12.33		13.78		15.72			*
7429-90-5	Aluminum	т	mg/L	6020	0.0396	J	0.033	J	0.019	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00226	J	<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.257		0.421		0.138		<0.002	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0225		0.00712	J	0.00726	J	<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	27.4		37.9		19.2		<0.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00345		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.000415	J	0.00254		<0.001		<0.001	
7439-89-6	Iron	т	mg/L	6020	0.18		2.66		0.0373	J	<0.1	
7439-92-1	Lead	т	mg/L	6020	0.000605	J	<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.8		16.7		8.18		<0.03	
7439-96-5	Manganese	т	mg/L	6020	0.00266	J	0.56		0.00116	J	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	395		396		397		E. BLAI	١K
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.000244	BJ	0.000531	В	<0.0005		<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.000705	J	0.00163	J	0.000779	J	<0.002	
7440-09-7	Potassium	т	mg/L	6020	1.57		0.806		1.76		<0.3	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	31.2		110		33.5		<0.25	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		0.0035	BJ	<0.01		0.00732	BJ
7440-66-6	Zinc	т	mg/L	6020	<0.01		0.00482	J	<0.01		<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480)3	8004-48	317	0000-00	000
Facility's Loc	al Well or Spring Number (e.g.,)	MW-1	L, MW-2, et	.c.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00461		<0.001		0.0003	J	<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-481	17	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., M	IW -1	L, MW-2, et	.c.)	395		396		397		E. BLAN	IK
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000207		<0.0000209		<0.0000207		<0.0000207	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4801		8004-4803		8004-481	7	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	395		396		397		E. BLAN	K
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-1.76	*	0.528	*	0.488	*	-0.706	*
12587-47-2	Gross Beta	Т	pCi/L	9310	17.2	*	1.53	*	9.49	*	-2.75	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.707	*	0.907	*	0.748	*	0.919	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-2.88	*	1.58	*	-2.77	*	-1.43	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	5.69	*	6.24	*	17.4	*	1.16	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.0208	*	0.188	*	0.109	*	-0.0228	*
10028-17-8	Tritium	Т	pCi/L	906.0	56.9	*	12.7	*	40.4	*	168	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		11.4	J	<20			*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		0.779		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.766	J	6.29		0.773	J		*
s0586	Total Organic Halides	т	mg/L	9020	<0.01		0.0438		0.00344	J		*

Division of Waste Management	RESIDENTIAL/INERT-QUARTERLY
Solid Waste Branch	Facility: US DOE - Paducah Gaseous Diffusion Plant
14 Reilly Road	Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1
Frankfort, KY 40601 (502)564-6	2716 LAB ID: None
	For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				000-000	00	0000-00	00	0000-000	00	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., M	w−1	, MW-2, etc	••)	F. BLAN	К	T. BLAN	< 1	T. BLANK	ζ2	T. BLANK	3
Sample Sequenc	e #				1		1		1		1	
If sample is a P	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	F		Т		Т		Т	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		1/7/2016 08	8:30	1/5/2016 0	6:45	1/5/2016 0	7:00	1/7/2016 06	6:50
Duplicate ("Y"	or "N") ²				Ν		Ν		N		Ν	
Split ("Y" or	"N") ³				Ν		Ν		N		Ν	
Facility Sampl	e ID Number (if applicable)		FB1SG2-	16	TB1SG2-	-16	TB2SG2-	16	TB3SG2-	16		
Laboratory Sam	ple ID Number (if applicable)			38888100	09	3887110	25	38888102	26	38888101	1	
Date of Analys	is (Month/Day/Year) For <u>Volatile</u>	ganics Anal	ysis	1/11/201	6	1/7/2016		1/7/201	6	1/11/201	6	
Gradient with	respect to Monitored Unit (UP, DC	wn,	N, SIDE, UNKNOWN)		NA	NA			NA		NA	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	µMH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

00	GWA NUMBER ¹ , Facility Well/Spring Number					- • /	-					
AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	00	0000-0000)	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., M	v-1 , 1	MW-2, BLANK-	F, etc.)	F. BLAN	K	T. BLANK	(1	T. BLANK	2	T. BLANK (3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
S0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	т	mg/L	6020	<0.002			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	т	mg/L	6020	<0.001			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				000-000	00	0000-00	000	0000-00	00	0000-00	00
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	F. BLAN	IK	T. BLAN	K 1	T. BLAN	K 2	T. BLAN	К 3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	т	mg/L	6020	0.00699	BJ		*		*		*
7440-66-6	Zinc	т	mg/L	6020	<0.01			*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	0	0000-000	00	0000-00	000	0000-00	000
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	F. BLANK	<	T. BLANI	٢1	T. BLAN	IK 2	T. BLAN	IK 3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	F. BLANK	(T. BLANK	1	T. BLANI	Κ2	T. BLAN	К 3
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000205		<0.0000206		<0.0000207		<0.0000204	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				0000-000	0	0000-0000		0000-0000	D	0000-000)0
Facility's Lo	cal Well or Spring Number (e.g.	., MW-1	L, MW-2, et	.c.)	F. BLANK	<	T. BLANK 1		T. BLANK	2	T. BLANK	(3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-1.54	*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310	0.34	*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	1.04	*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	-3.16	*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-0.846	*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.182	*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0	121	*		*		*		*
S0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0	<0.5			*		*		*
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*
												1

 Division of Waste Management
 RESIDENTIAL/INERT-QUARTERLY

 Solid Waste Branch
 Facility: US DOE - Paducah Gaseous Diffusion Plant

 14 Reilly Road
 Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

 Frankfort, KY 40601 (502)564-6716
 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER¹, Facility Well/Spring Number 0000-0000 8004-4809 8004-4792 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) T. BLANK 4 384 373 Sample Sequence # 1 2 2 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA Т NA 1/7/2016 08:18 1/21/2016 12:42 1/12/2016 07:35 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² N Υ Υ Split ("Y" or "N")³ Ν Ν Ν MW373DUG2-16 MW384DSG2-16 TB4SG2-16 Facility Sample ID Number (if applicable) 388881001 389926011 389122007 Laboratory Sample ID Number (if applicable) 1/11/2016 1/27/2016 1/15/2016 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis SIDE DOWN Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) NA CAS RN4 CONSTITUENT т Unit METHOD DETECTED F DETECTED F DETECTED F DETECTI F D OF VALUE L VALUE ь VALUE ь VALU L MEASURE OR А OR А OR А OR А PQL⁶ G PQL⁶ G PQL⁶ G PQL G s^7 s s S 0.395 0.595 т 24959-67-9 Bromide mg/L 9056 37.4 43.7 16887-00-6 т Chloride(s) mg/L 9056 0.202 0.152 т 16984-48-8 Fluoride mg/L 9056 * 1.17 1.02 S0595- -Nitrate & Nitrite т mg/L 9056 20.2 127 14808-79-8 Sulfate т mg/L 9056 * 30.12 30.19 NS1894 Barometric Pressure Reading т Inches/Hg Field 501 793 Specific Conductance т S0145- -Field uMH0/cm

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use ``*," then describe on `Written Comments Page." STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	8004-480	9	8004-4792	2		
Facility's Lo	cal Well or Spring Number (e.g., M	v-1 , 1	MW-2, BLANK-	F, etc.)	T. BLANK	4	384		373		$\langle \rangle$	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*	324.19		325.51			\square
N238	Dissolved Oxygen	т	mg/L	Field		*	3.93		2.24			\square
S0266	Total Dissolved Solids	т	mg/L	160.1		*	251		487			1
s0296	pH	т	Units	Field		*	6.36		6.39			/
NS215	Eh	т	mV	Field		*	459		193			
s0907	Temperature	т	°C	Field		*	13.72		13.83			
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		0.0154	*J		
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005		I V	
7440-39-3	Barium	т	mg/L	6020		*	0.119		0.0269			
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			
7440-42-8	Boron	т	mg/L	6020		*	0.0139	J	1.42			
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			
7440-70-2	Calcium	т	mg/L	6020		*	27		68			
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			\mathbf{N}
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		0.000737	J		\square
7440-50-8	Copper	т	mg/L	6020		*	<0.001		<0.001			
7439-89-6	Iron	т	mg/L	6020		*	<0.1		0.31			
7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			
7439-95-4	Magnesium	т	mg/L	6020		*	10.3		26.4			
7439-96-5	Manganese	т	mg/L	6020		*	0.00104	J	0.0387			
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		0000-000	00	8004-4809		8004-4792		Ι		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	T. BLANK 4		384		373		
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED F VALUE L OR A PQL ⁶ ¢ S
7439-98-7	Molybdenum	т	mg/L	6020		*	0.00031	BJ	<0.0005		
7440-02-0	Nickel	т	mg/L	6020		*	0.000853	J	0.000696	J	
7440-09-7	Potassium	т	mg/L	6020		*	1.11		2.5		
7440-16-6	Rhodium	т	mg/L	6020		*	<0.005		<0.005		
7782-49-2	Selenium	т	mg/L	6020		*	0.00211	J	<0.005		
7440-22-4	Silver	т	mg/L	6020		*	<0.001		<0.001		
7440-23-5	Sodium	т	mg/L	6020		*	50.8		61.7		
7440-25-7	Tantalum	т	mg/L	6020		*	<0.005		<0.005	*	
7440-28-0	Thallium	т	mg/L	6020		*	<0.002		<0.002		X I
7440-61-1	Uranium	т	mg/L	6020		*	<0.0002		<0.0002		
7440-62-2	Vanadium	т	mg/L	6020		*	<0.01		<0.01		
7440-66-6	Zinc	т	mg/L	6020		*	<0.01		<0.01		
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		
108-88-3	Toluene	т	mg/L	8260	0.00056	J	<0.001		<0.001		
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		V \

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-0000)	8004-4809		8004-4792					
Facility's Loc	al Well or Spring Number (e.g.,)	MW-1	L, MW-2, et	.c.)	T. BLANK 4		384		373			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G B
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			17
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			/
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			/
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		V	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		X	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			\mathbf{N}
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			$\left \right\rangle$
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			$\left[\right]$
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00033	J	0.00993		/	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-49

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	8004-4809	9	8004-4792		Ν	
Facility's Loca	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						384		373			
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			/
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000209		<0.0000205		<0.0000207			
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		X	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		$ \rangle$	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			Ι
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
1336-36-3	PCB,Total	т	ug/L	8082		*		*	<0.0943			
12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.0943			
11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.0943			
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.0943			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.0943			
12672-29-6	PCB-1248	т	ug/L	8082		*		*	<0.0943			

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		0000-0000 8004-4809		8004-4809	8004-4792					
Facility's Loc	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	T. BLANK	4	384		373		Λ /
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED F VALUE L OR A PQL ⁶ G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*	<0.0943		
11096-82-5	PCB-1260	т	ug/L	8082		*		*	<0.0943		
11100-14-4	PCB-1268	т	ug/L	8082		*		*	<0.0943		
12587-46-1	Gross Alpha	т	pCi/L	9310		*	-1.5	*	2.55	*	
12587-47-2	Gross Beta	т	pCi/L	9310		*	170	*	25.6	*	
10043-66-0	Iodine-131	т	pCi/L			*		*		*	
13982-63-3	Radium-226	т	pCi/L	HASL 300		*	0.239	*	0.321	*	
10098-97-2	Strontium-90	т	pCi/L	905.0		*	3.08	*	-1.64	*	V
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	185	*	50.3	*	
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*	-0.229	*	0.14	*	
10028-17-8	Tritium	т	pCi/L	906.0		*	79	*	12.3	*	
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*	7	J	<20		
57-12-5	Cyanide	т	mg/L	9012		*	<0.2		<0.2		
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5		<0.5		
S0268	Total Organic Carbon	т	mg/L	9060		*	1.19	J	1.12	J	
s0586	Total Organic Halides	т	mg/L	9020		*	0.0038	J	0.0141		
											/
											V

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5201 MW22	20 MW220SG2-16	Tantalum	Ν	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.42. Rad error is 2.42.
		Gross beta		TPU is 4.87. Rad error is 3.88.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.513. Rad error is 0.513.
		Strontium-90		TPU is 2.8. Rad error is 2.77.
		Technetium-99		TPU is 13.8. Rad error is 13.7.
		Thorium-230		TPU is 0.331. Rad error is 0.329.
		Tritium		TPU is 120. Rad error is 120.
8000-5202 MW22	21 MW221SG2-16	Tantalum	Ν	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 1.98. Rad error is 1.98.
		Gross beta		TPU is 2.87. Rad error is 2.49.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.541. Rad error is 0.54.
		Strontium-90		TPU is 3.57. Rad error is 3.57.
		Technetium-99		TPU is 13.6. Rad error is 13.5.
		Thorium-230		TPU is 0.401. Rad error is 0.399.
		Tritium		TPU is 127. Rad error is 127.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5242 MW222	2 MW222SG2-16	Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.46. Rad error is 2.46.
		Gross beta		TPU is 2.84. Rad error is 2.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.186. Rad error is 0.186.
		Strontium-90		TPU is 2.24. Rad error is 2.23.
		Technetium-99		TPU is 14.5. Rad error is 14.5.
		Thorium-230		TPU is 0.424. Rad error is 0.419.
		Tritium		TPU is 127. Rad error is 127.
8000-5243 MW223	3 MW223SG2-16	Tantalum	Ν	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.38. Rad error is 2.38.
		Gross beta		TPU is 3.83. Rad error is 3.61.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.498. Rad error is 0.497.
		Strontium-90		TPU is 2.66. Rad error is 2.62.
		Technetium-99		TPU is 12.4. Rad error is 12.4.
		Thorium-230		TPU is 0.231. Rad error is 0.231.
		Tritium		TPU is 125. Rad error is 125.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5244 MW22	4 MW224SG2-16	Tantalum	Ν	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 1.85. Rad error is 1.85.
		Gross beta		TPU is 3.11. Rad error is 3.01.
	lodine-131		Analysis of constituent not required and not performed.	
		Radium-226		TPU is 0.661. Rad error is 0.66.
	Strontium-90		TPU is 2.19. Rad error is 2.19.	
	Technetium-99		TPU is 12.3. Rad error is 12.3.	
		Thorium-230		TPU is 0.246. Rad error is 0.245.
		Tritium		TPU is 135. Rad error is 130.
8004-4820 MW36	9 MW369UG2-16	Gross alpha		TPU is 2.63. Rad error is 2.62.
		Gross beta		TPU is 7.65. Rad error is 4.38.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.506. Rad error is 0.505.
		Strontium-90		TPU is 1.47. Rad error is 1.47.
		Technetium-99		TPU is 14.6. Rad error is 13.4.
		Thorium-230		TPU is 0.455. Rad error is 0.451.
		Tritium		TPU is 139. Rad error is 139.
8004-4818 MW37	0 MW370UG2-16	Gross alpha		TPU is 2.36. Rad error is 2.35.
		Gross beta		TPU is 7.47. Rad error is 4.62.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.434. Rad error is 0.434.
		Strontium-90		TPU is 2.31. Rad error is 2.31.
		Technetium-99		TPU is 13.2. Rad error is 12.7.
		Thorium-230		TPU is 0.418. Rad error is 0.412.
		Tritium		TPU is 142. Rad error is 141.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4808 MW37	72 MW372UG2-16	Aluminum	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.24. Rad error is 2.24.
		Gross beta		TPU is 3.71. Rad error is 2.94.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.395. Rad error is 0.395.
		Strontium-90		TPU is 2.19. Rad error is 2.19.
		Technetium-99		TPU is 13.8. Rad error is 13.6.
		Thorium-230		TPU is 0.398. Rad error is 0.394.
		Tritium		TPU is 130. Rad error is 130.
8004-4792 MW37	73 MW373UG2-16	Aluminum	N	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.84. Rad error is 2.82.
		Gross beta		TPU is 5.18. Rad error is 3.46.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.437. Rad error is 0.437.
		Strontium-90		TPU is 2.83. Rad error is 2.83.
		Technetium-99		TPU is 15.6. Rad error is 14.7.
		Thorium-230		TPU is 0.356. Rad error is 0.352.
		Tritium		TPU is 130. Rad error is 130.
8004-4809 MW38	34 MW384SG2-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 1.92. Rad error is 1.92.
		Gross beta		TPU is 26.9. Rad error is 8.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.683. Rad error is 0.681.
		Strontium-90		TPU is 2.78. Rad error is 2.78.
		Technetium-99		TPU is 29.4. Rad error is 17.8.
		Thorium-230		TPU is 0.359. Rad error is 0.352.
		Tritium		TPU is 134. Rad error is 133.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4810 MW385	5 MW385SG2-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 1.91. Rad error is 1.91.
		Gross beta		TPU is 29. Rad error is 8.19.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.392. Rad error is 0.392.
		Strontium-90		TPU is 2.64. Rad error is 2.63.
		Technetium-99		TPU is 27.9. Rad error is 17.1.
		Thorium-230		TPU is 0.354. Rad error is 0.352.
		Tritium		TPU is 140. Rad error is 140.
8004-4804 MW386	6 MW386SG2-16	Tantalum	Ν	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.52. Rad error is 2.52.
		Gross beta		TPU is 2.16. Rad error is 2.14.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.59. Rad error is 0.59.
		Strontium-90		TPU is 2.1. Rad error is 2.1.
		Technetium-99		TPU is 12. Rad error is 12.
		Thorium-230		TPU is 0.423. Rad error is 0.421.
		Tritium		TPU is 130. Rad error is 128.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4815 MW387	7 MW387SG2-16	Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 3.43. Rad error is 3.36.
		Gross beta		TPU is 27.8. Rad error is 9.25.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.546. Rad error is 0.545.
		Strontium-90		TPU is 2.75. Rad error is 2.75.
		Technetium-99		TPU is 32.1. Rad error is 19.2.
		Thorium-230		TPU is 0.384. Rad error is 0.38.
		Tritium		TPU is 120. Rad error is 120.
8004-4816 MW388	8 MW388SG2-16	Tantalum	Ν	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 4.01. Rad error is 3.81.
		Gross beta		TPU is 25. Rad error is 8.28.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.658. Rad error is 0.656.
		Strontium-90		TPU is 2.33. Rad error is 2.33.
		Technetium-99		TPU is 25.2. Rad error is 17.4.
		Thorium-230		TPU is 0.432. Rad error is 0.425.
		Tritium		TPU is 123. Rad error is 123.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample was collected.
		Chloride		During sampling, the well was dry; therefore, no sample was collected.
		Fluoride		During sampling, the well was dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample was collected.
		Sulfate		During sampling, the well was dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample was collected.
		рН		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample was collected.
		Temperature		During sampling, the well was dry; therefore, no sample was collected.
		Aluminum		During sampling, the well was dry; therefore, no sample was collected.
		Antimony		During sampling, the well was dry; therefore, no sample was collected.
		Arsenic		During sampling, the well was dry; therefore, no sample was collected.
		Barium		During sampling, the well was dry; therefore, no sample was collected.
		Beryllium		During sampling, the well was dry; therefore, no sample was collected.
		Boron		During sampling, the well was dry; therefore, no sample was collected.
		Cadmium		During sampling, the well was dry; therefore, no sample was collected.
		Calcium		During sampling, the well was dry; therefore, no sample was collected.
		Chromium		During sampling, the well was dry; therefore, no sample was collected.
		Cobalt		During sampling, the well was dry; therefore, no sample was collected.
		Copper		During sampling, the well was dry; therefore, no sample was collected.
		Iron		During sampling, the well was dry; therefore, no sample was collected.
		Lead		During sampling, the well was dry; therefore, no sample was collected.
		Magnesium		During sampling, the well was dry; therefore, no sample was collected.
		Manganese		During sampling, the well was dry; therefore, no sample was collected.
		Mercury		During sampling, the well was dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample was collected.
		Nickel		During sampling, the well was dry; therefore, no sample was collected.
		Potassium		During sampling, the well was dry; therefore, no sample was collected.
		Rhodium		During sampling, the well was dry; therefore, no sample was collected.
		Selenium		During sampling, the well was dry; therefore, no sample was collected.
		Silver		During sampling, the well was dry; therefore, no sample was collected.
		Sodium		During sampling, the well was dry; therefore, no sample was collected.
		Tantalum		During sampling, the well was dry; therefore, no sample was collected.
		Thallium		During sampling, the well was dry; therefore, no sample was collected.
		Uranium		During sampling, the well was dry; therefore, no sample was collected.
		Vanadium		During sampling, the well was dry; therefore, no sample was collected.
		Zinc		During sampling, the well was dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample was collected.
		Gross beta		During sampling, the well was dry; therefore, no sample was collected.
		lodine-131		During sampling, the well was dry; therefore, no sample was collected.
		Radium-226		During sampling, the well was dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample was collected.
		Tritium		During sampling, the well was dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389)	Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample was collected.
		Cyanide		During sampling, the well was dry; therefore, no sample was collected.
		lodide		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample was collected.
3004-4811 MW390	MW390SG2-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.91. Rad error is 2.89.
		Gross beta		TPU is 9.72. Rad error is 4.56.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.838. Rad error is 0.835.
		Strontium-90		TPU is 3.03. Rad error is 3.03.
		Technetium-99		TPU is 16.1. Rad error is 14.2.
		Thorium-230		TPU is 0.349. Rad error is 0.345.
		Tritium		TPU is 138. Rad error is 135.

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Finds/Unit: KY8-890-008-982 / 1

Permit Numbers: 073-00014 and 073-00015

LAB ID:None For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4805 MW391	I MW391SG2-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.91. Rad error is 2.89.
		Gross beta		TPU is 2.55. Rad error is 2.45.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.318. Rad error is 0.317.
		Strontium-90		TPU is 2.13. Rad error is 2.13.
		Technetium-99		TPU is 11.7. Rad error is 11.7.
		Thorium-230		TPU is 0.587. Rad error is 0.582.
		Tritium		TPU is 140. Rad error is 140.
8004-4806 MW392	2 MW392SG2-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.24. Rad error is 2.24.
		Gross beta		TPU is 2.39. Rad error is 2.35.
	lodine-131		Analysis of constituent not required and not performed.	
		Radium-226		TPU is 0.448. Rad error is 0.447.
		Strontium-90		TPU is 2.46. Rad error is 2.46.
		Technetium-99		TPU is 11.4. Rad error is 11.4.
		Thorium-230		TPU is 0.44. Rad error is 0.438.
		Tritium		TPU is 145. Rad error is 143.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4807 MW39	93 MW393SG2-16	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.07. Rad error is 2.07.
		Gross beta		TPU is 2.21. Rad error is 2.16.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.306. Rad error is 0.306.
		Strontium-90		TPU is 3.76. Rad error is 3.76.
		Technetium-99		TPU is 11.3. Rad error is 11.3.
		Thorium-230		TPU is 0.637. Rad error is 0.632.
		Tritium		TPU is 135. Rad error is 135.
8004-4802 MW39	94 MW394SG2-16	Tantalum	Ν	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.09. Rad error is 2.09.
		Gross beta		TPU is 2.97. Rad error is 2.8.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.662. Rad error is 0.66.
		Strontium-90		TPU is 2.17. Rad error is 2.17.
		Technetium-99		TPU is 12.6. Rad error is 12.6.
		Thorium-230		TPU is 0.379. Rad error is 0.375.
		Tritium		TPU is 122. Rad error is 122.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

8004-4801 MW395 MW395SG2:16 Tantalum N Sample spike recovery not within control limits. PCB, Total Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1222 Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 TPU is 1.96. Rad error is 1.96. Gross alpha TPU is 1.96. Rad error is 0.276. Radium-226 TPU is 0.579. Rad error is 0.276. Radium-226 TPU is 0.579. Rad error is 0.276. Radium-226 TPU is 0.579. Rad error is 0.295. Tronium-300 TPU is 1.38. Rad error is 0.276. Radium-226 TPU is 0.277. Rad error is 0.295. Radium-226 Tantalum N Sample spike recovery not within control limits. PCB-1221 PCB-1242 Analysis of constituent not required and not performed.	Monitoring Point	Facility Sample ID	Constituent	Flag	Description
PCB-1016Analysis of constituent not required and not performed.PCB-1221Analysis of constituent not required and not performed.PCB-1232Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.PCB-1268TPU is 1-98. Rad error is 1.36.Gross betaTPU is 1-98. Rad error is 1.36.Gross betaTPU is 0.579. Rad error is 1.38.Thorium-200TPU is 0.297. Rad error is 0.578.Strontium-90TPU is 1.38. Rad error is 1.38.Thorium-230TPU is 0.297. Rad error is 0.295.TritiumTPU is 1.27. Rad error is 1.26.PCB-1216Analysis of constituent not required and not performed.PCB-1221Analysis of constituent not required and not performed.PCB-1221Analysis of constituent not required and not performed.PCB-1232Analysis of constituent not required and not performed.PCB-1241Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1254Ana	8004-4801 MW3	95 MW395SG2-16	Tantalum	N	Sample spike recovery not within control limits.
PCB-1221Analysis of constituent not required and not performed.PCB-1232Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.Radium-226TPU is 0.79. Rad error is 1.96.Thorium-230TPU is 0.79. Rad error is 1.3.Thorium-230TPU is 0.297. Rad error is 1.2.Thorium-230TPU is 0.297. Rad error is 1.26.PCB-1016Analysis of constituent not required and not performed.PCB-1021Analysis of constituent not required and not performed.PCB-1221Analysis of constituent not required and not performed.PCB-1222Analysis of constituent not required and not performed.PCB-1224Analysis of constituent not required and not performed.PCB-1226Analysis of constituent not			PCB, Total		Analysis of constituent not required and not performed.
PCB-1232Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1261Analysis of constituent not required and not performed.PCB-1262Analysis of constituent not required and not performed.PCB-1263Analysis of constituent not required and not performed.PCB-1264Analysis of constituent not required and not performed.PCB-1265TPU is 1.96. Rad error is 1.96.Gross betaTPU is 0.577. Rad error is 0.578.Radium-226TPU is 0.577. Rad error is 0.578.Strontium-90TPU is 0.577. Rad error is 0.295.TritiumTPU is 0.277. Rad error is 0.295.Tritium-230TPU is 127. Rad error is 0.295.8004-4803 MW396 MW396SG2-16TantalumPCB-1214Analysis of constituent not required and not performed.PCB-1214Analysis of constituent not required and not performed.PCB-1226Analysis of constituent not required and not performed.PCB-1261Analysis of constituent not required and not performed.PCB-1262Analysis of constituent not required and not performed.PCB-1264Analysi			PCB-1016		Analysis of constituent not required and not performed.
PCB-1242 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1266 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Gross alpha TPU is 1.96. Rad error is 1.96. Gross beta TPU is 0.579. Rad error is 0.578. Radium-226 TPU is 0.579. Rad error is 0.578. Strontium-90 TPU is 1.39. Rad error is 0.578. Technetium-99 TPU is 1.39. Rad error is 0.295. Tritium TPU is 0.237. Rad error is 0.295. Tritium TPU is 0.237. Rad error is 0.295. Tritium TPU is 0.237. Rad error is 0.295. PCB.1221 Analysis of constituent not required and not performed. PCB.1221 Analysis of constituent not required and not performed. PCB.1222 Analysis of constituent not required and not performed. PCB.1242 Analysis of constituent not required and not performed. PCB.1242 Analysis of constituent not required and not performed. PCB.1242			PCB-1221		Analysis of constituent not required and not performed.
PCB-1248 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. Gross alpha TPU is 1.96. Rad error is 1.96. Gross beta TPU is 0.579. Rad error is 0.578. Strontium-90 TPU is 1.98. Rad error is 0.578. Strontium-90 TPU is 1.98. Rad error is 0.578. Tritium TPU is 0.297. Rad error is 0.578. Tritium-230 TPU is 0.297. Rad error is 1.26. 8004-4803 MW396 MW396SG2-161 Tantalum N Sample spike recovery not within control limits. PCB, Total Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed.			PCB-1232		Analysis of constituent not required and not performed.
PCB-1254Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.Gross alphaTPU is 1.96. Rad error is 1.96.Gross betaTPU is 0.57. Rad error is 0.578.Radium-226TPU is 0.579. Rad error is 1.89.Technetium-99TPU is 0.297. Rad error is 0.295.TritiumTPU is 0.297. Rad error is 0.295.Tritium-230TPU is 0.297. Rad error is 126.PCB-1221Analysis of constituent not required and not performed.PCB-1232Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1244Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1266Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.PCB-1264Analysis of constituent not required and not performed.PCB-1265Gross alphaTPU is 2.52. Rad error is 2.52.Gross betaTPU is 0.576. Rad error is 0.575.Iodine-131 <td< td=""><td></td><td></td><td>PCB-1242</td><td></td><td>Analysis of constituent not required and not performed.</td></td<>			PCB-1242		Analysis of constituent not required and not performed.
PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.Gross alphaTPU is 1.96. Rad error is 3.24.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.579. Rad error is 0.578.Strontium-90TPU is 1.89. Rad error is 0.297.TrutimTPU is 0.297. Rad error is 0.295.TrutimTPU is 0.297. Rad error is 0.295.PCB-1221Analysis of constituent not required and not performed.PCB-1222Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1261Analysis of constituent not required and not performed.PCB-1262Analysis of constituent not required and not performed.PCB-1264A			PCB-1248		Analysis of constituent not required and not performed.
PCB-1268Analysis of constituent not required and not performed.Gross alphaTPU is 1.96. Rad error is 3.24.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.579. Rad error is 0.578.Strontium-90TPU is 1.99. Rad error is 1.89.Technetium-99TPU is 0.297. Rad error is 0.295.TritiumTPU is 0.297. Rad error is 126.8004-4803 MW396 MW396SG2-16TantalumNSample spike recovery not within control limits.PCB, TotalAnalysis of constituent not required and not performed.PCB-1212Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1246Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.PCB-1268 <td></td> <td></td> <td>PCB-1254</td> <td></td> <td>Analysis of constituent not required and not performed.</td>			PCB-1254		Analysis of constituent not required and not performed.
Gross alpha TPU is 1.96. Rad error is 1.96. Gross beta TPU is 4.29. Rad error is 3.24. Iodine-131 Analysis of constituent not required and not performed. Radium-226 TPU is 0.579. Rad error is 0.578. Strontium-90 TPU is 1.89. Rad error is 1.89. Technetium-99 TPU is 127. Rad error is 0.295. Tritium TPU is 127. Rad error is 126. 8004-4803 MW396 MW396SG2-16 Tantalum N Sample spike recovery not within control limits. PCB, Total Analysis of constituent not required and not performed. PCB-1016 Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1222 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 TPU is 1.55. Rad error is 0.57. Strontium-206 TPU is 2.92. Rad error is 0.575. Strontium-90 TPU is 2.9. Rad error is 0.575.			PCB-1260		Analysis of constituent not required and not performed.
Gross betaTPU is 4.29. Rad error is 3.24.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.579. Rad error is 0.578.Strontium-90TPU is 1.89. Rad error is 1.89.Technetium-99TPU is 1.80. Rad error is 0.295.TritiumTPU is 0.297. Rad error is 0.295.TritiumTPU is 127. Rad error is 0.295.TritiumNSample spike recovery not within control limits.PCB. TotalAnalysis of constituent not required and not performed.PCB-1221Analysis of constituent not required and not performed.PCB-1222Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1261Analysis of constituent not required and not performed.PCB-1264Analysis of constituent not required and not performed.PCB-1264Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.Gross betaTPU is 2.52. Rad error is 2.52.Gross betaTPU is 0.576. Rad error is 1.53.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 0.447. Rad error is 0.443. <td></td> <td></td> <td>PCB-1268</td> <td></td> <td>Analysis of constituent not required and not performed.</td>			PCB-1268		Analysis of constituent not required and not performed.
Iodine-131Analysis of constituent not required and not performed.Radium-226TUU is 0.579. Rad error is 0.578.Strontium-90TPU is 1.89. Rad error is 1.89.Technetium-99TPU is 1.80. Rad error is 0.295.TritiumTPU is 0.297. Rad error is 0.295.TritiumTPU is 127. Rad error is 0.295.TritiumTPU is 127. Rad error is 126.8004-4803 MW396 MW396SG2-16TantalumNSample spike recovery not within control limits.PCB, TotalAnalysis of constituent not required and not performed.PCB-1016Analysis of constituent not required and not performed.PCB-1221Analysis of constituent not required and not performed.PCB-1222Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.Radium-226TPU is 1.55. Rad error is 1.53.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 0.575. <td></td> <td></td> <td>Gross alpha</td> <td></td> <td>TPU is 1.96. Rad error is 1.96.</td>			Gross alpha		TPU is 1.96. Rad error is 1.96.
Radium-226TPU is 0.579. Rad error is 0.578.Strontium-90TPU is 1.89. Rad error is 1.89.Technetium-99TPU is 1.89. Rad error is 0.295.TritiumTPU is 0.297. Rad error is 0.295.TritiumTPU is 127. Rad error is 0.295.TritiumTPU is 127. Rad error is 126.8004-4803 MW396 MW396SG2-16TantalumNSample spike recovery not within control limits.PCB, TotalAnalysis of constituent not required and not performed.PCB-1016Analysis of constituent not required and not performed.PCB-1221Analysis of constituent not required and not performed.PCB-1232Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent no			Gross beta		TPU is 4.29. Rad error is 3.24.
Strontium-90TPU is 1.89. Rad error is 1.89.Technetium-99TPU is 13. Rad error is 1.3.Thorium-230TPU is 0.297. Rad error is 0.295.TritiumTPU is 127. Rad error is 126.8004-4803 MW396 MW396SG2-16TantalumNSample spike recovery not within control limits.PCB, TotalAnalysis of constituent not required and not performed.PCB-1016Analysis of constituent not required and not performed.PCB-1221Analysis of constituent not required and not performed.PCB-1222Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 0.447. Rad error is 0.443.			lodine-131		Analysis of constituent not required and not performed.
Technetium-99TPU is 13. Rad error is 13.Thorium-230TPU is 0.297. Rad error is 0.295.TritiumTPU is 127. Rad error is 126.8004-4803 MW396 MW396SG2-16TantalumNSample spike recovery not within control limits.PCB, TotalAnalysis of constituent not required and not performed.PCB-1016Analysis of constituent not required and not performed.PCB-1221Analysis of constituent not required and not performed.PCB-1232Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 0.576. Rad error is 0.443.Technetium-99TPU is 0.447. Rad error is 0.443.			Radium-226		TPU is 0.579. Rad error is 0.578.
Norium-230TPU is 0.297. Rad error is 0.295.8004-4803 MW396 MW396SG2-16TritiumNSample spike recovery not within control limits.PCB, TotalNAnalysis of constituent not required and not performed.PCB, TotalAnalysis of constituent not required and not performed.PCB-1221Analysis of constituent not required and not performed.PCB-1222Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.PCB-1268PCB-1268Gross alphaTPU is 2.52. Rad error is 2.52.Gross betaTPU is 0.576. Rad error is 0.575.Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 2.9. Rad error is 2.89.Technetium-99TPU is 0.447. Rad error is 0.443.			Strontium-90		TPU is 1.89. Rad error is 1.89.
TritiumTPU is 127. Rad error is 126.8004-4803 MW396 MW396SG2-16TantalumNSample spike recovery not within control limits.PCB, TotalAnalysis of constituent not required and not performed.PCB-1016Analysis of constituent not required and not performed.PCB-1221Analysis of constituent not required and not performed.PCB-1232Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.PCB-1268TPU is 1.55. Rad error is 1.53.Iodine-131Analysis of constituent not required and			Technetium-99		TPU is 13. Rad error is 13.
8004-4803 MW396 MW396SG2-16TantalumNSample spike recovery not within control limits.PCB, TotalAnalysis of constituent not required and not performed.PCB-1016Analysis of constituent not required and not performed.PCB-1221Analysis of constituent not required and not performed.PCB-1232Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.Radium-226TPU is 1.55. Rad error is 1.53.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 2.89.Technetium-99TPU is 1.1. Rad error is 1.3.1.Thorium-230TPU is 0.447. Rad error is 0.443.			Thorium-230		TPU is 0.297. Rad error is 0.295.
PCB, TotalAnalysis of constituent not required and not performed.PCB-1016Analysis of constituent not required and not performed.PCB-1221Analysis of constituent not required and not performed.PCB-1232Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.Rorss alphaTPU is 2.52. Rad error is 2.52.Gross betaTPU is 1.55. Rad error is 1.53.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 2.9. Rad error is 2.89.Technetium-99TPU is 1.31. Rad error is 13.1.Thorium-230TPU is 0.447. Rad error is 0.443.			Tritium		TPU is 127. Rad error is 126.
PCB-1016Analysis of constituent not required and not performed.PCB-1221Analysis of constituent not required and not performed.PCB-1232Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.Gross alphaTPU is 2.52. Rad error is 2.52.Gross betaTPU is 1.55. Rad error is 1.53.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 1.31. Rad error is 1.31.Thorium-230TPU is 0.447. Rad error is 0.443.	8004-4803 MW3	96 MW396SG2-16	Tantalum	Ν	Sample spike recovery not within control limits.
PCB-1221Analysis of constituent not required and not performed.PCB-1232Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.Gross alphaTPU is 2.52. Rad error is 2.52.Gross betaTPU is 1.55. Rad error is 1.53.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 2.9. Rad error is 2.89.Technetium-99TPU is 0.447. Rad error is 0.443.			PCB, Total		Analysis of constituent not required and not performed.
PCB-1232Analysis of constituent not required and not performed.PCB-1242Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.Gross alphaTPU is 2.52. Rad error is 2.52.Gross betaTPU is 1.55. Rad error is 1.53.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 2.9. Rad error is 2.89.Technetium-99TPU is 1.31. Rad error is 0.443.			PCB-1016		Analysis of constituent not required and not performed.
PCB-1242Analysis of constituent not required and not performed.PCB-1248Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.Gross alphaTPU is 2.52. Rad error is 2.52.Gross betaTPU is 1.55. Rad error is 1.53.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 2.9. Rad error is 2.89.Technetium-99TPU is 1.31. Rad error is 1.31.Thorium-230TPU is 0.447. Rad error is 0.443.			PCB-1221		Analysis of constituent not required and not performed.
PCB-1248Analysis of constituent not required and not performed.PCB-1254Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.Gross alphaTPU is 2.52. Rad error is 2.52.Gross betaTPU is 1.55. Rad error is 1.53.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 2.9. Rad error is 2.89.Technetium-99TPU is 13.1. Rad error is 13.1.Thorium-230TPU is 0.447. Rad error is 0.443.			PCB-1232		Analysis of constituent not required and not performed.
PCB-1254Analysis of constituent not required and not performed.PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.Gross alphaTPU is 2.52. Rad error is 2.52.Gross betaTPU is 1.55. Rad error is 1.53.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 2.9. Rad error is 2.89.Technetium-99TPU is 1.31. Rad error is 13.1.Thorium-230TPU is 0.447. Rad error is 0.443.			PCB-1242		Analysis of constituent not required and not performed.
PCB-1260Analysis of constituent not required and not performed.PCB-1268Analysis of constituent not required and not performed.Gross alphaTPU is 2.52. Rad error is 2.52.Gross betaTPU is 1.55. Rad error is 1.53.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 2.9. Rad error is 2.89.Technetium-99TPU is 1.31. Rad error is 1.31.Thorium-230TPU is 0.447. Rad error is 0.443.			PCB-1248		Analysis of constituent not required and not performed.
PCB-1268Analysis of constituent not required and not performed.Gross alphaTPU is 2.52. Rad error is 2.52.Gross betaTPU is 1.55. Rad error is 1.53.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 2.9. Rad error is 2.89.Technetium-99TPU is 13.1. Rad error is 13.1.Thorium-230TPU is 0.447. Rad error is 0.443.			PCB-1254		Analysis of constituent not required and not performed.
Gross alphaTPU is 2.52. Rad error is 2.52.Gross betaTPU is 1.55. Rad error is 1.53.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 2.9. Rad error is 2.89.Technetium-99TPU is 13.1. Rad error is 13.1.Thorium-230TPU is 0.447. Rad error is 0.443.			PCB-1260		Analysis of constituent not required and not performed.
Gross betaTPU is 1.55. Rad error is 1.53.Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 2.9. Rad error is 2.89.Technetium-99TPU is 13.1. Rad error is 13.1.Thorium-230TPU is 0.447. Rad error is 0.443.			PCB-1268		Analysis of constituent not required and not performed.
Iodine-131Analysis of constituent not required and not performed.Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 2.9. Rad error is 2.89.Technetium-99TPU is 13.1. Rad error is 13.1.Thorium-230TPU is 0.447. Rad error is 0.443.			Gross alpha		TPU is 2.52. Rad error is 2.52.
Radium-226TPU is 0.576. Rad error is 0.575.Strontium-90TPU is 2.9. Rad error is 2.89.Technetium-99TPU is 13.1. Rad error is 13.1.Thorium-230TPU is 0.447. Rad error is 0.443.			Gross beta		TPU is 1.55. Rad error is 1.53.
Strontium-90TPU is 2.9. Rad error is 2.89.Technetium-99TPU is 13.1. Rad error is 13.1.Thorium-230TPU is 0.447. Rad error is 0.443.			lodine-131		Analysis of constituent not required and not performed.
Technetium-99TPU is 13.1. Rad error is 13.1.Thorium-230TPU is 0.447. Rad error is 0.443.			Radium-226		TPU is 0.576. Rad error is 0.575.
Thorium-230 TPU is 0.447. Rad error is 0.443.			Strontium-90		TPU is 2.9. Rad error is 2.89.
			Technetium-99		TPU is 13.1. Rad error is 13.1.
Tritium TPU is 123. Rad error is 123.			Thorium-230		TPU is 0.447. Rad error is 0.443.
			Tritium		TPU is 123. Rad error is 123.

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4817 MW39	97 MW397SG2-16	Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.43. Rad error is 2.43.
		Gross beta		TPU is 3.27. Rad error is 2.86.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.672. Rad error is 0.671.
		Strontium-90		TPU is 2.29. Rad error is 2.29.
		Technetium-99		TPU is 12.8. Rad error is 12.6.
		Thorium-230		TPU is 0.37. Rad error is 0.367.
		Tritium		TPU is 124. Rad error is 124.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1SG2-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 1.87. Rad error is 1.87.
		Gross beta		TPU is 3.24. Rad error is 3.24.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.532. Rad error is 0.531.
		Strontium-90		TPU is 2.09. Rad error is 2.09.
		Technetium-99		TPU is 11.7. Rad error is 11.7.
		Thorium-230		TPU is 0.338. Rad error is 0.336.
		Tritium		TPU is 142. Rad error is 139.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG2-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 1.72. Rad error is 1.72.
		Gross beta		TPU is 3.3. Rad error is 3.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.662. Rad error is 0.661.
		Strontium-90		TPU is 3.62. Rad error is 3.62.
		Technetium-99		TPU is 12.6. Rad error is 12.6.
		Thorium-230		TPU is 0.418. Rad error is 0.414.
		Tritium		TPU is 134. Rad error is 132.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG2-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG2-16	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG2-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG2-16	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG2-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG2-16	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG2-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG2-16	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description		
8004-4809 MW38	4 MW384DSG2-16	PCB, Total		Analysis of constituent not required and not performed.		
		PCB-1016		Analysis of constituent not required and not performed.		
		PCB-1221		Analysis of constituent not required and not performed.		
		PCB-1232		Analysis of constituent not required and not performed.		
		PCB-1242		Analysis of constituent not required and not performed.		
		PCB-1248		Analysis of constituent not required and not performed.		
		PCB-1254		Analysis of constituent not required and not performed.		
		PCB-1260		Analysis of constituent not required and not performed.		
		PCB-1268		Analysis of constituent not required and not performed.		
		Gross alpha		TPU is 2.44. Rad error is 2.44.		
		Gross beta		TPU is 28.8. Rad error is 8.56.		
		lodine-131		Analysis of constituent not required and not performed.		
		Radium-226		TPU is 0.354. Rad error is 0.354.		
		Strontium-90		TPU is 3.12. Rad error is 3.08.		
		Technetium-99		TPU is 27. Rad error is 17.5.		
		Thorium-230		TPU is 0.255. Rad error is 0.254.		
		Tritium		TPU is 136. Rad error is 135.		
8004-4792 MW37	3 MW373DUG2-16	Aluminum	Ν	Sample spike recovery not within control limits.		
		Tantalum	Ν	Sample spike recovery not within control limits.		
		Gross alpha		TPU is 2.96. Rad error is 2.93.		
		Gross beta		TPU is 5.35. Rad error is 3.37.		
		lodine-131		Analysis of constituent not required and not performed.		
		Radium-226		TPU is 0.367. Rad error is 0.367.		
		Strontium-90		TPU is 3.07. Rad error is 3.06.		
		Technetium-99		TPU is 15.8. Rad error is 14.8.		
		Thorium-230		TPU is 0.339. Rad error is 0.335.		
		Tritium		TPU is 134. Rad error is 134.		

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT—QUARTERLY, 1st CY 2016 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the first quarter 2016 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The first quarter 2016 data used to conduct the statistical analyses were collected in January 2016. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that exceeded the historical background using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the

current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second onesided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 lists the parameters from the available data set for which a statistically derived historical background concentration was developed using the one-sided tolerance interval and the statistical test performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, first quarter 2016. The observations are representative of the current quarter data. Background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a well is sampled on two different dates, the most current available data are used. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
MW390 ¹	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

¹**NOTE:** The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient. **BG:** upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

Parameters	
Aluminum	
Beta Activity	
Boron	
Bromide	
Calcium	
Chemical Oxygen Demand (COD)	
Chloride	
cis-1,2-Dichloroethene	
Cobalt	
Conductivity	
Copper	
Dissolved Oxygen	
Dissolved Solids	
Iodide	
Iron	
Magnesium	
Manganese	
Molybdenum	
Nickel	
Oxidation-Reduction Potential	
PCB, Total	
PCB-1242	
pH*	
Potassium	
Sodium	
Sulfate	
Tantalum	
Technetium-99	
Total Organic Carbon (TOC)	
Total Organic Halides (TOX)	
Trichloroethene	
Uranium	
Vanadium	
Zinc	

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

•

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	0	4	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Beta Activity	4	3	1	Yes
Boron	4	0	4	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon Disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	1	3	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	4 0	No
Chloroethane		4		
	4	-	0	No
Chloroform Chloromethane	4	4 4	0	No No
<i>cis</i> -1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	1	3	Yes
Conductivity	4	0	4	Yes
Copper	4	1	3	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	4	3	1	Yes
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	1	3	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	4	0	No
Nickel	4	1	3	Yes
Oxidation-Reduction Potential	4	0	4	Yes
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	3	1	Yes
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichloroethene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Uranium	4	3	1	Yes
Vanadium	4	3	1	Yes
Vinyl Acetate	4	4	0	No
Zinc	4	3	1	Yes

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	6	5	Yes
Antimony	11	11	0	No
Aroclor-1268	2	2	0	No
Beryllium	11	11	0	No
Beta Activity	11	0	11	Yes
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	10	1	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	10	1	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	4	7	Yes
Conductivity	11	0	11	Yes
Copper	11	6	5	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Solids	11	0	11	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Ethylbenzene	11	11	0	No
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	4	7	Yes
Magnesium	11	0	11	Yes
Manganese	11	1	10	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	8	3	Yes
Nickel	11	1	10	Yes
Oxidation-Reduction Potential	11	0	11	Yes
PCB, Total	2	1	1	Yes
PCB-1016	2	2	0	No
PCB-1221	2	2	0	No
PCB-1232	2	2	0	No
PCB-1242	2	1	1	Yes
PCB-1248	2	2	0	No
PCB-1254	2	2	0	No
PCB-1260	2	2	0	No
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	9	2	Yes
Technetium-99	11	8	3	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	5	6	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichlorofluoromethane	11	11	0	No
Trichloroethene	11	4	7	Yes
Uranium	11	11	0	No
Vanadium	11	10	1	Yes
Vinyl Acetate	11	11	0	No
Zinc Bold denotes parameters with at least one uncensor	11	9	2	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (C	Continued)
--	------------

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	1	6	Yes
Antimony	7	7	0	No
Aroclor-1268	2	2	0	No
Beryllium	7	7	0	No
Beta Activity	7	1	6	Yes
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	6	1	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	3	4	Yes
Conductivity	7	0	7	Yes
Copper	7	5	2	Yes
Cyanide	7	3 7	0	No
Dibromochloromethane	7	7	0	No
Dibromoentoromethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dimethylbenzene, Total Dissolved Oxygen	7	0	7	Yes
Dissolved Oxygen Dissolved Solids	7	0	7	
	7	0 7	0	Yes
Ethylbenzene				No
Iodide	7	7	0	No
Iodomethane	7	7	0	No

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iron	7	2	5	Yes
Magnesium	7	0	7	Yes
Manganese	7	1	6	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	7	0	No
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	2	2	0	No
PCB-1016	2	2	0	No
PCB-1221	2	2	0	No
PCB-1232	2	2	0	No
PCB-1242	2	2	0	No
PCB-1248	2	2	0	No
PCB-1254	2	2	0	No
PCB-1260	2	2	0	No
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	6	1	Yes
Technetium-99	7	3	4	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	2	5	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	0	7	Yes
Trichlorofluoromethane	7	7	0	No
Uranium	7	7	0	No
Vanadium	7	7	0	No
Vinyl Acetate	7	7	0	No
Zinc	7	7	0	No

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 29, 32, and 27 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

<u>UCRS</u>

This quarter's results identified exceedances of historical background UTL for beta activity, oxidation-reduction potential, and technetium-99.

<u>URGA</u>

This quarter's results identified exceedances of historical background UTL for aluminum, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: Oxidation-reduction potential	MW370: Oxidation-reduction potential, sulfate
MW390: Beta activity, oxidation-reduction potential, technetium-99	MW221: Oxidation-reduction potential	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate, technetium-99
MW393: Oxidation-reduction potential	MW222: Aluminum, oxidation-reduction potential	MW385: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW223: Oxidation-reduction potential, sulfate	MW388: Beta activity, oxidation-reduction potential, sulfate, technetium-99
	MW224: Oxidation-reduction potential	MW392: Oxidation-reduction potential
	MW369: Oxidation-reduction potential, technetium-99	MW395: Oxidation-reduction potential
	MW372: Calcium, conductivity, dissolved solids, magnesium, sulfate	MW397: Oxidation-reduction potential
	MW384: Beta activity, oxidation-reduction potential, sulfate, technetium-99	
	MW387: Beta activity, oxidation-reduction potential, sulfate, technetium-99	
	MW391: Sulfate	

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	1.17	Current results exceed statistically derived historical background concentration in MW390.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background–UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Tantalum	Tolerance Interval	1.68	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentration in MW222.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentration in MW384 and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

CV: coefficient of variation

*If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220, MW221, MW222, MW223, MW224, MW369, MW384, and MW387.
PCB, Total	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW223, MW372, MW384, MW387, and MW391.
Tantalum	Tolerance Interval	2.27	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW384, and MW387.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.08	No exceedance of statistically derived historical background concentration.
Zinc CV: coefficient of variation	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW385 and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW385, MW388, MW392, MW395, and MW397.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Tantalum	Tolerance Interval	1.62	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW373, MW385, and MW388.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichlorothene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2 and the statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 9, and 8 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10, presented by well number.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using
Current Background Concentrations

URGA	LRGA
MW369: Technetium-99	MW370: Sulfate
MW372: Calcium, conductivity, dissolved solids, magnesium, sulfate	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate, technetium-99
MW387: Beta activity, sulfate, technetium-99	MW388: Beta activity, sulfate, technetium-99
MW391: Sulfate	

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted, however, that the beta activity and technetium-99 concentrations in one UCRS well (i.e., MW390) was higher than the current TL this quarter.

<u>URGA</u>

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99.

<u>LRGA</u>

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	-4.88	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill. However, beta activity concentrations exceeded the TL calculated using current background data in MW390.
Oxidation-Reduction Potential	Tolerance Interval	0.48	No exceedance of statistically derived current background concentration.
Technetium-99	Tolerance Interval	3.52	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill. However, technetium-99 concentrations exceeded the TL calculated using current background data in MW390.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.89	Current results exceed statistically derived current background concentration in MW222.
Beta Activity	Tolerance Interval	0.55	Current results exceed statistically derived current background concentration in MW384 and MW387.
Calcium	Tolerance Interval	0.13	Current results exceed statistically derived current background concentration in MW372.
Conductivity	Tolerance Interval	0.09	Current results exceed statistically derived current background concentration in MW372.
Dissolved Solids	Tolerance Interval	0.42	Current results exceed statistically derived current background concentration in MW372.
Magnesium	Tolerance Interval	0.14	Current results exceed statistically derived current background concentration in MW372.
Oxidation-Reduction Potential	Tolerance Interval	0.29	No exceedance of statistically derived current background concentration.
Sulfate	Tolerance Interval	0.27	Current results exceed statistically derived current background concentration in MW372, MW387, and MW391.
Technetium-99	Tolerance Interval	0.64	Current results exceed statistically derived current background concentration MW369, MW384, and MW387.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.72	Current results exceed statistically derived current background concentration in MW385 and MW388.
Calcium	Tolerance Interval	0.18	Current results exceed statistically derived current background concentration in MW373.
Conductivity	Tolerance Interval	0.08	Current results exceed statistically derived current background concentration in MW373.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived current background concentration in MW373.
Magnesium	Tolerance Interval	0.19	Current results exceed statistically derived current background concentration in MW373.
Oxidation-Reduction Potential	Tolerance Interval	0.28	No exceedance of statistically derived current background concentration.
Sulfate	Tolerance Interval	0.08	Current results exceed statistically derived current background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.50	Current results exceed statistically derived current background concentration in MW373, MW385, and MW388.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

CV: coefficient of variation * If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

for pri encecco une riz er is ress unur e	110 22 , 1140 1	, statistically .	-Buille and a statistic			inde went
Statistics-Background Data	X= 0.320	S = 0.182	CV(1)= 0.567	K factor**= 3.188	TL(1)= 0.900	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.259	S = 0.503	CV(2)= -0.400	K factor**= 3.188	TL(2)= 0.345	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.393	-0.934
9/16/2002	0.2	-1.609
10/16/2002	0.2	-1.609
1/13/2003	0.501	-0.691
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.668	-0.403

Dry/Partially Dry Wells			
Well No. Gradient			

	oradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0315	NO	-3.458	N/A
MW390	Downgradien	t Yes	0.123	NO	-2.096	N/A
MW393	Downgradien	t Yes	0.0155	NO	-4.167	N/A
MW396	Upgradient	Yes	0.033	NO	-3.411	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 4.298	S = 5.012	CV(1)= 1.166	K factor**= 3.188	TL(1)= 20.277	LL(1)= N/A
Statistics-Transformed Background	X= 1.294	S = 0.988	CV(2) =0.764	K factor**= 3.188	TL(2)= 2.632	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2.2	0.788
9/16/2002	0.727	-0.319
10/16/2002	7.28	1.985
1/13/2003	6.97	1.942
4/8/2003	13.9	2.632
7/16/2003	2.08	0.732
10/14/2003	-2.42	#Func!
1/14/2004	3.65	1.295

	Dry/Partially Dry Wells
--	-------------------------

Well No.	Gradient
MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	1.71	N/A	0.536	N/A	
MW390	Downgradient	Yes	51.5	N/A	3.942	YES	
MW393	Downgradient	t No	2.84	N/A	1.044	N/A	
MW396	Upgradient	No	1.53	N/A	0.425	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.650	S = 0.833	CV(1)= 1.282	K factor**= 3.188	TL(1)= 3.306	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.034	S = 1.066	CV(2) =-1.031	K factor**= 3.188	TL(2)= 2.364	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

Dry/Partially Dry Wells					
Well No.	Gradient				

MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00523	N/A	-5.253	NO
MW390	Downgradien	t Yes	0.0108	N/A	-4.528	NO
MW393	Downgradien	t Yes	0.0169	N/A	-4.080	NO
MW396	Upgradient	Yes	0.00712	N/A	-4.945	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.388	S = 0.327	CV(1)= 0.236	K factor**= 3.188	TL(1)= 2.430	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.301	S = 0.252	CV(2) =0.838	K factor**= 3.188	TL(2)= 1.105	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531
10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003	1.6 1 1 1 1.7	0.470 0.000 0.000 0.000 0.531

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.148	NO	-1.911	N/A
MW390	Downgradien	t Yes	0.615	NO	-0.486	N/A
MW393	Downgradien	t Yes	0.177	NO	-1.732	N/A
MW396	Upgradient	Yes	1.19	NO	0.174	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 41.825	S = 8.445	CV(1)= 0.202	K factor**= 3.188	TL(1)= 68.748	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.711	S = 0.241	CV(2) =0.065	K factor**= 3.188	TL(2)= 4.479	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Partially Dry Wells					
Well No.	Gradient				

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	21.4	NO	3.063	N/A
MW390	Downgradien	t Yes	31.4	NO	3.447	N/A
MW393	Downgradien	t Yes	11.3	NO	2.425	N/A
MW396	Upgradient	Yes	37.9	NO	3.635	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =35.375 S =			K factor**= 3.188	TL(1)= 37.747	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.566 S =	0.021	CV(2)= 0.006	K factor**= 3.188	TL(2)= 3.632	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Partially Dry Wells						
Well No.	Gradient					

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	16.7	NO	2.815	N/A
MW390	Downgradien	t No	20	N/A	2.996	N/A
MW393	Downgradien	t Yes	13.8	NO	2.625	N/A
MW396	Upgradient	Yes	11.4	NO	2.434	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 101.725 S= 5.245
 CV(1)=0.052
 K factor**= 3.188
 TL(1)= 118.447
 LL(1)=N/A

 Statistics-Transformed Background
 X= 4.621
 S= 0.053
 CV(2)=0.011
 K factor**= 3.188
 TL(2)= 4.789
 LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Partially Dry Wells				
Well No.	Gradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	13.6	NO	2.610	N/A
MW390	Downgradien	t Yes	59	NO	4.078	N/A
MW393	Downgradien	t Yes	13.6	NO	2.610	N/A
MW396	Upgradient	Yes	76.9	NO	4.343	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.008	S = 0.011	CV(1)= 1.340	K factor**= 3.188	TL(1)= 0.042	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.645	S = 1.339	CV(2) =-0.237	K factor**= 3.188	TL(2)= -1.377	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells				
Well No.	Gradient			

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00737	N/A	-4.910	NO
MW390	Downgradien	t Yes	0.00023	6 N/A	-8.352	NO
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
MW396	Upgradient	Yes	0.00345	N/A	-5.669	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 922.500 S= 107.616 CV(1)=0.117
 K factor**= 3.188
 TL(1)= 1265.579 LL(1)=N/A

Statistics-Transformed Background X=6.822 S= 0.111 CV(2)=0.016 Data

Historical Background Data from
Upgradient Wells with Transformed Result
Upgraulent wens with fransformed Kesuit

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	784	6.664
9/30/2002	871	6.770
10/16/2002	868	6.766
1/13/2003	912	6.816
4/8/2003	942	6.848
7/16/2003	910	6.813
10/14/2003	935	6.841
1/14/2004	1158	7.054

Dry/Par	tially Dry Wells
Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 7.175

LL(2)=N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	576	NO	6.356	N/A
MW390	Downgradien	t Yes	714	NO	6.571	N/A
MW393	Downgradien	t Yes	407	NO	6.009	N/A
MW396	Upgradient	Yes	421	NO	6.043	N/A

K factor**= 3.188

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.028	S = 0.014	CV(1)= 0.481	K factor**= 3.188	TL(1)= 0.072	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.650	S = 0.414	CV(2) =-0.113	K factor**= 3.188	TL(2)= -2.331	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00041	2 NO	-7.794	N/A
MW390	Downgradien	t Yes	0.00041	4 NO	-7.790	N/A
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
MW396	Upgradient	Yes	0.00254	NO	-5.976	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 1.202	K factor**= 3.188	TL(1)= 6.743	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.043	S = 0.814	CV(2) =-18.867	K factor**= 3.188	TL(2)= 2.553	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	2.57	N/A	0.944	NO	
MW390	Downgradien	t Yes	3.67	N/A	1.300	NO	
MW393	Downgradien	t Yes	0.97	N/A	-0.030	NO	
MW396	Upgradient	Yes	2.86	N/A	1.051	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 550.375 S= 104.330 CV(1)=0.190
 K factor**= 3.188
 TL(1)= 882.980
 LL(1)=N/A

Statistics-Transformed Background X=6.298 S= 0.162 CV(2)=0.026 Data

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells							
Well No.	Gradient						
MW389	Downgradient						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 6.815

LL(2)=N/A

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	381	NO	5.943	N/A	
MW390	Downgradien	t Yes	400	NO	5.991	N/A	
MW393	Downgradien	t Yes	270	NO	5.598	N/A	
MW396	Upgradient	Yes	470	NO	6.153	N/A	

K factor**= 3.188

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 0.132	K factor**= 3.188	TL(1)= 3.052	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.759	S = 0.123	CV(2)= 0.162	K factor**= 3.188	TL(2)= 1.150	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	2	0.693
1/13/2003	2	0.693
4/8/2003	2	0.693
7/16/2003	2.7	0.993
10/14/2003	2.5	0.916
1/14/2004	2	0.693

Dry/Partially Dry Wells						
Well No.	Gradient					

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A	
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A	
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A	
MW396	Upgradient	Yes	0.779	NO	-0.250	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =7.796	S = 3.723	CV(1)= 0.478	K factor**= 3.188	TL(1)= 19.666	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.880	S = 0.723	CV(2) =0.384	K factor**= 3.188	TL(2)= 4.184	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.8	0.588
9/16/2002	9.53	2.254
10/16/2002	7.43	2.006
1/13/2003	9.93	2.296
4/8/2003	10.2	2.322
7/16/2003	9.16	2.215
10/14/2003	11.9	2.477
1/14/2004	2.42	0.884

Dry/Partially Dry Wells				
Well No	Gradient			

wen no.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.78	NO	0.577	N/A
MW390	Downgradien	t Yes	0.12	NO	-2.120	N/A
MW393	Downgradien	t Yes	1.9	NO	0.642	N/A
MW396	Upgradient	Yes	2.66	NO	0.978	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 16.876	S = 3.313	CV(1)= 0.196	K factor**= 3.188	TL(1)= 27.438	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.804	S= 0.240	CV(2)= 0.086	K factor**= 3.188	TL(2)= 3.569	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Par	tially Dry	Wells
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	9.41	NO	2.242	N/A
MW390	Downgradien	t Yes	12.8	NO	2.549	N/A
MW393	Downgradien	t Yes	3.37	NO	1.215	N/A
MW396	Upgradient	Yes	16.7	NO	2.815	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

F	,	,	8			
Statistics-Background Data	X= 0.774	S = 0.353	CV(1)= 0.456	K factor**= 3.188	TL(1)= 1.900	LL(1)= N/A
Statistics-Transformed Background	X = -0.566	S = 1.192	CV(2) =-2.105	K factor**= 3.188	TL(2)= 3.235	LL(2)= N/A

Upgradient Wells with Transformed Result
--

Data

MW396	
Result	LN(Result)
0.57	-0.562
0.647	-0.435
0.88	-0.128
1.132	0.124
0.965	-0.036
0.983	-0.017
0.984	-0.016
0.0314	-3.461
	Result 0.57 0.647 0.88 1.132 0.965 0.983 0.984

Dry/Partially Dry Wells					
Well No.	Gradient				

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.22	NO	0.199	N/A
MW390	Downgradien	t No	0.005	N/A	-5.298	N/A
MW393	Downgradien	t Yes	0.041	NO	-3.194	N/A
MW396	Upgradient	Yes	0.56	NO	-0.580	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.016	S = 0.021	CV(1)= 1.272	K factor**= 3.188	TL(1)= 0.083	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.706	S = 1.057	CV(2) =-0.225	K factor**= 3.188	TL(2)= -1.338	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells	
Well No Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00221	N/A	-6.115	NO
MW390	Downgradien	t Yes	0.00163	N/A	-6.419	NO
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A
MW396	Upgradient	Yes	0.00163	N/A	-6.419	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

for pri checeda die TE of is less dian e	ne BB, that h	building b	ignificant e viaene		eoneenauton in a	lat well.
Statistics-Background Data	X= 13.000	S= 61.952	CV(1)= 4.766	K factor**= 3.188	TL(1)= 210.502	LL(1)= N/A
Statistics-Transformed Background	X= 4.364	S = 0.333	CV(2) =0.076	K factor**= 3.188	TL(2) = 4.736	LL(2)= N/A

Statistics-Transformed Background X=4.364 S= 0.333 CV(2)=0.076 Data

Historical Bac	kground Data from	
Upgradient W	ells with Transformed Resul	lt
W-11 Marsham	MW20C	

Well Number:	MW 396	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Partially Dry Wells Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	160	N/A	5.075	YES		
MW390	Downgradien	t Yes	447	N/A	6.103	YES		
MW393	Downgradien	t Yes	156	N/A	5.050	YES		
MW396	Upgradient	Yes	223	N/A	5.407	YES		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW386 MW390 MW393 MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.460	S = 0.350	CV(1)= 0.054	K factor**= 3.736	TL(1)= 7.766	LL(1)= 5.1541
Statistics-Transformed Background Data	X= 1.864	S = 0.054	CV(2)= 0.029	K factor**= 3.736	TL(2)= 2.067	LL(2)= 1.6621

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Partially Dry Wells	

Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
MW386	Sidegradient	Yes	6.26	NO	1.834	N/A	
MW390	Downgradien	t Yes	6.34	NO	1.847	N/A	
MW393	Downgradien	t Yes	6.26	NO	1.834	N/A	
MW396	Upgradient	Yes	6.5	NO	1.872	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.411	S = 0.399	CV(1)= 0.282	K factor**= 3.188	TL(1)= 2.682	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.311	S = 0.271	CV(2)= 0.870	K factor**= 3.188	TL(2)= 1.175	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396		
Date Collected	Result	LN(Result)	
8/13/2002	2	0.693	
9/16/2002	2	0.693	
10/16/2002	0.978	-0.022	
1/13/2003	1.08	0.077	
4/8/2003	1.12	0.113	
7/16/2003	1.38	0.322	
10/14/2003	1.24	0.215	
1/14/2004	1.49	0.399	
9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003	2 0.978 1.08 1.12 1.38 1.24	0.693 -0.022 0.077 0.113 0.322 0.215	

Dry/Partially Dry Wells					
Well No.	Gradient				

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.291	NO	-1.234	N/A
MW390	Downgradien	t Yes	0.358	NO	-1.027	N/A
MW393	Downgradien	t Yes	0.39	NO	-0.942	N/A
MW396	Upgradient	Yes	0.806	NO	-0.216	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=106.825 S= 32.041 CV(1)=0.300 **K factor**=** 3.188 Statistics-Background Data TL(1)= 208.973 LL(1)=N/A **Statistics-Transformed Background** TL(2)= 6.163 K factor**= 3.188 LL(2)=N/A

X= 4.595 S = 0.492 CV(2) = 0.107Data

Upgradient Wells with Transformed Result	Historical Background Data from
-18	Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	115	4.745
9/16/2002	116	4.754
10/16/2002	117	4.762
1/13/2003	122	4.804
4/8/2003	106	4.663
7/16/2003	117	4.762
10/14/2003	132	4.883
1/14/2004	29.6	3.388

Dry/Par	tially Dry Wells
Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	115	NO	4.745	N/A
MW390	Downgradien	t Yes	94.6	NO	4.550	N/A
MW393	Downgradien	t Yes	78.3	NO	4.361	N/A
MW396	Upgradient	Yes	110	NO	4.700	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 22.463 S=	8.876	CV(1)= 0.395	K factor**= 3.188	TL(1)= 50.759	LL(1)= N/A
Statistics-Transformed Background	X = 3 054 S =	0 351	CV(2)= 0.115	K factor**= 3 188	TL(2) = 4 173	LL(2)=N/A

Upgradient Wells with Transformed Result
--

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Partially Dry Wells	
Well No. Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	45.1	NO	3.809	N/A
MW390	Downgradien	t Yes	33.4	NO	3.509	N/A
MW393	Downgradien	t Yes	11.9	NO	2.477	N/A
MW396	Upgradient	Yes	21.6	NO	3.073	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Tantalum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.054	S = 0.090	CV(1)= 1.679	K factor**= 3.188	TL(1)= 0.342	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.376	S = 1.708	CV(2) =-0.390	K factor**= 3.188	TL(2)= 1.068	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.005	-5.298
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells			
Well No. Gradient			

MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00146	N/A	-6.529	NO
MW390	Downgradien	t No	0.005	N/A	-5.298	N/A
MW393	Downgradien	t No	0.005	N/A	-5.298	N/A
MW396	Upgradient	No	0.005	N/A	-5.298	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical AnalysisHistorical Background ComparisonTechnetium-99UNITS: pCi/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =7.624	S = 6.558	CV(1)= 0.860	K factor**= 3.188	TL(1)= 28.531	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.498	S = 1.321	CV(2) =0.882	K factor**= 3.188	TL(2)= 5.710	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells			
Well No.	Gradient		

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	6.32	N/A	1.844	N/A
MW390	Downgradien	t Yes	69.7	YES	4.244	N/A
MW393	Downgradien	t No	-12.2	N/A	#Error	N/A
MW396	Upgradient	No	6.24	N/A	1.831	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 0.470	K factor**= 3.188	TL(1)= 24.959	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.210	S = 0.454	CV(2) =0.205	K factor**= 3.188	TL(2)= 3.657	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	19	2.944
9/16/2002	14.6	2.681
10/16/2002	10.4	2.342
1/13/2003	4.4	1.482
4/8/2003	7	1.946
7/16/2003	7.3	1.988
10/14/2003	9.1	2.208
1/14/2004	8.1	2.092

Dry/Partia	ally Dry Wells
Well No. (Gradient

	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	9.39	NO	2.240	N/A	
MW390	Downgradien	t Yes	2.44	NO	0.892	N/A	
MW393	Downgradien	t Yes	2.56	NO	0.940	N/A	
MW396	Upgradient	Yes	6.29	NO	1.839	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 142.650 S= 53.533 CV(1)=0.375
 K factor**= 3.188 TL(1)= 313.314 LL(1)=N/A

 Statistics-Transformed Background
 X= 4.896 S= 0.390 CV(2)=0.080
 K factor**= 3.188 TL(2)= 6.138 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	204	NO	5.318	N/A	
MW390	Downgradien	t Yes	14.1	NO	2.646	N/A	
MW393	Downgradien	t Yes	18.7	NO	2.929	N/A	
MW396	Upgradient	Yes	43.8	NO	3.780	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.001	S = 0.000	CV(1)= 0.314	K factor**= 3.188	TL(1)= 0.002	LL(1)= N/A
Statistics-Transformed Background Data	X= -6.821	S = 0.245	CV(2) =-0.036	K factor**= 3.188	TL(2)= -6.040	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.002	-6.215
9/16/2002	0.001	-6.908
10/16/2002	0.001	-6.908
1/13/2003	0.001	-6.908
4/8/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.0002	N/A	-8.517	N/A
MW390	Downgradien	t Yes	0.00012	1 NO	-9.020	N/A
MW393	Downgradien	t No	0.0002	N/A	-8.517	N/A
MW396	Upgradient	No	0.0002	N/A	-8.517	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.021	S = 0.002	CV(1)= 0.109	K factor**= 3.188	TL(1)= 0.029	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.856	S = 0.103	CV(2) =-0.027	K factor**= 3.188	TL(2)= -3.527	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Par	tially Dry	Wells
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.00671	N/A	-5.004	N/A
MW390	Downgradien	t No	0.00432	N/A	-5.444	N/A
MW393	Downgradien	t Yes	0.00685	NO	-4.984	N/A
MW396	Upgradient	No	0.0035	N/A	-5.655	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.044	S = 0.035	CV(1)= 0.786	K factor**= 3.188	TL(1)= 0.156	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.342	S = 0.682	CV(2) =-0.204	K factor**= 3.188	TL(2)= -1.168	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW396	
Result	LN(Result)
0.1	-2.303
0.1	-2.303
0.025	-3.689
0.035	-3.352
0.035	-3.352
0.02	-3.912
0.02	-3.912
0.02	-3.912
	Result 0.1 0.025 0.035 0.035 0.02 0.02

Dry/Par	tially Dry	Wells
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.01	N/A	-4.605	N/A
MW390	Downgradien	t No	0.01	N/A	-4.605	N/A
MW393	Downgradien	t No	0.01	N/A	-4.605	N/A
MW396	Upgradient	Yes	0.00482	2 NO	-5.335	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.221	S= 0.061	CV(1)= 0.277	K factor**= 2.523	TL(1)= 0.376	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.534	S = 0.212	CV(2)= -0.138	K factor**= 2.523	TL(2)= -0.999	LL(2)= N/A

Historical Background Data from	
Upgradient Wells with Transformed Result	

1 111000

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.427	-0.851
1/13/2004	0.309	-1.174
4/13/2004	0.2	-1.609
7/21/2004	0.202	-1.599
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 0.2	-1.609
Date Collected 8/13/2002 9/16/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609 -1.609 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

					Quarter Data	Current
esult) LN(Result) >TL(2))? LN(Result)	Result >TL(1)?	Result	Detected?	Gradient	Well No.
6 N/A	-2.996	N/A	0.05	No	Upgradient	MW220
6 N/A	-2.996	N/A	0.05	t No	Downgradient	MW221
N/A	0.010	YES	1.01	Yes	Downgradient	MW222
6 N/A	-2.996	N/A	0.05	t No	Downgradient	MW223
6 N/A	-2.996	N/A	0.05	t No	Downgradient	MW224
1 N/A	-2.601	NO	0.0742	Yes	Downgradient	MW369
0 N/A	-3.480	NO	0.0308	Yes	Downgradient	MW372
6 N/A	-2.996	N/A	0.05	No	Sidegradient	MW384
0 N/A	-4.110	NO	0.0164	Yes	Downgradient	MW387
6 N/A	-2.996	N/A	0.05	t No	Downgradient	MW391
6 N/A	-3.316	NO	0.0363	Yes	Upgradient	MW394
0 N/A 6 N/A 0 N/A 6 N/A	-3.480 -2.996 -4.110 -2.996 -3.316	NO N/A NO N/A NO	0.0308 0.05 0.0164 0.05 0.0363	t Yes No t Yes t No Yes	Downgradient Sidegradient Downgradient Downgradient Upgradient	MW372 MW384 MW387 MW391 MW394

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW222

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 14.273	S = 13.883	CV(1)= 0.973	K factor**= 2.523	TL(1)= 49.300	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.213	S= 1.033	CV(2)= 0.467	K factor**= 2.523	TL(2)= 4.819	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	15.2	2.721
1/15/2003	42.5	3.750
4/10/2003	45.4	3.816
7/14/2003	8.53	2.144
10/13/2003	11.7	2.460
1/13/2004	13.5	2.603
4/13/2004	33.5	3.512
7/21/2004	13.7	2.617
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.615
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 5.03	1.615
Date Collected 8/13/2002 9/16/2002	Result 5.03 5.57	1.615 1.717
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 5.03 5.57 12.8	1.615 1.717 2.549
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 5.03 5.57 12.8 4.3	1.615 1.717 2.549 1.459
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.03 5.57 12.8 4.3 9.52	1.615 1.717 2.549 1.459 2.253
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5.03 5.57 12.8 4.3 9.52 3.92	1.615 1.717 2.549 1.459 2.253 1.366

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	18.1	N/A	2.896	N/A
MW221	Downgradien	t Yes	8.74	N/A	2.168	N/A
MW222	Downgradien	t Yes	4.96	N/A	1.601	N/A
MW223	Downgradien	t Yes	7.65	N/A	2.035	N/A
MW224	Downgradien	t Yes	4.92	N/A	1.593	N/A
MW369	Downgradien	t Yes	38.6	N/A	3.653	N/A
MW372	Downgradien	t Yes	13.9	N/A	2.632	N/A
MW384	Sidegradient	Yes	170	YES	5.136	N/A
MW387	Downgradien	t Yes	162	YES	5.088	N/A
MW391	Downgradien	t Yes	4.11	N/A	1.413	N/A
MW394	Upgradient	Yes	6.13	N/A	1.813	N/A
N/A Door	Its identified as N	Ion Dotooto	المستحم المله	onatomy on alvaia on	data validatio	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.425	S = 0.615	CV(1)= 1.447	K factor**= 2.523	TL(1)= 1.976	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.322	S= 0.786	CV(2)= -0.595	K factor**= 2.523	TL(2)= 0.663	LL(2)= N/A

Historical Background Data from	
Upgradient Wells with Transformed Result	

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.2	-1.609
1/13/2004	0.2	-1.609
4/13/2004	0.2	-1.609
7/21/2004	0.2	-1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 2. 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 2 0.2 0.2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00728	N/A	-4.923	NO
MW221	Downgradien	t Yes	0.0121	N/A	-4.415	NO
MW222	Downgradien	t Yes	0.00858	N/A	-4.758	NO
MW223	Downgradien	t Yes	0.00686	N/A	-4.982	NO
MW224	Downgradien	t Yes	0.0131	N/A	-4.335	NO
MW369	Downgradien	t Yes	0.0147	N/A	-4.220	NO
MW372	Downgradien	t Yes	1.16	N/A	0.148	NO
MW384	Sidegradient	Yes	0.0139	N/A	-4.276	NO
MW387	Downgradien	t Yes	0.0303	N/A	-3.497	NO
MW391	Downgradien	t Yes	0.0961	N/A	-2.342	NO
MW394	Upgradient	Yes	0.0224	N/A	-3.799	NO
N/A - Resu	Its identified as N	Ion-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.000	S = 0.000	CV(2) =#Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from	
Upgradient Wells with Transformed Resul	t

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.219	NO	-1.519	N/A
MW221	Downgradien	t Yes	0.448	NO	-0.803	N/A
MW222	Downgradien	t Yes	0.457	NO	-0.783	N/A
MW223	Downgradien	t Yes	0.434	NO	-0.835	N/A
MW224	Downgradien	t Yes	0.398	NO	-0.921	N/A
MW369	Downgradien	t Yes	0.392	NO	-0.936	N/A
MW372	Downgradien	t Yes	0.608	NO	-0.498	N/A
MW384	Sidegradient	Yes	0.456	NO	-0.785	N/A
MW387	Downgradien	t Yes	0.431	NO	-0.842	N/A
MW391	Downgradien	t Yes	0.503	NO	-0.687	N/A
MW394	Upgradient	Yes	0.622	NO	-0.475	N/A
	Its identified as N	Jon Detects	luring lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 27.638	S = 4.743	CV(1)= 0.172	K factor**= 2.523	TL(1)= 39.604	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.304	S = 0.183	CV(2) =0.055	K factor**= 2.523	TL(2)= 3.765	LL(2)= N/A

	kground Data from fells with Transformed Result
Well Number:	MW220

Date Collected	Result	LN(Result)
10/14/2002	23.6	3.161
1/15/2003	25.9	3.254
4/10/2003	30.4	3.414
7/14/2003	33.9	3.523
10/13/2003	21.3	3.059
1/13/2004	20.3	3.011
4/13/2004	23.8	3.170
7/21/2004	19	2.944
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.384
Date Collected	Result	· /
Date Collected 8/13/2002	Result 29.5	3.384
Date Collected 8/13/2002 9/16/2002	Result 29.5 29.9	3.384 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 29.5 29.9 31.2	3.384 3.398 3.440
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 29.5 29.9 31.2 30.7	3.384 3.398 3.440 3.424
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 29.5 29.9 31.2 30.7 34.4	3.384 3.398 3.440 3.424 3.538
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 29.5 29.9 31.2 30.7 34.4 29.6	3.384 3.398 3.440 3.424 3.538 3.388

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	19.3	NO	2.960	N/A
MW221	Downgradien	t Yes	20.7	NO	3.030	N/A
MW222	Downgradien	t Yes	18.7	NO	2.929	N/A
MW223	Downgradien	t Yes	22.7	NO	3.122	N/A
MW224	Downgradien	t Yes	21.7	NO	3.077	N/A
MW369	Downgradien	t Yes	18.4	NO	2.912	N/A
MW372	Downgradien	t Yes	60.9	YES	4.109	N/A
MW384	Sidegradient	Yes	29.1	NO	3.371	N/A
MW387	Downgradien	t Yes	32.4	NO	3.478	N/A
MW391	Downgradien	t Yes	29.4	NO	3.381	N/A
MW394	Upgradient	Yes	27.7	NO	3.321	N/A
N/A Decu	Its identified as N	Jon Detects	luring lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 35.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 35.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.555	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 3.555	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	35	3.555
1/15/2003	35	3.555
4/10/2003	35	3.555
7/14/2003	35	3.555
10/13/2003	35	3.555
1/13/2004	35	3.555
4/13/2004	35	3.555
7/21/2004	35	3.555
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.555
Date Collected	Result	
Date Collected 8/13/2002	Result 35	3.555
Date Collected 8/13/2002 9/16/2002	Result 35 35	3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 35 35 35	3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 35 35 35 35	3.555 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 35 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	No	20	N/A	2.996	N/A
Downgradien	t No	20	N/A	2.996	N/A
Downgradien	t No	20	N/A	2.996	N/A
Downgradien	t No	20	N/A	2.996	N/A
Downgradien	t No	20	N/A	2.996	N/A
Downgradien	t No	20	N/A	2.996	N/A
Downgradien	t No	20	N/A	2.996	N/A
Sidegradient	Yes	7	NO	1.946	N/A
Downgradien	t No	20	N/A	2.996	N/A
Downgradien	t No	20	N/A	2.996	N/A
Upgradient	No	20	N/A	2.996	N/A
	Gradient Upgradient Downgradient Downgradient Downgradient Downgradient Downgradient Sidegradient Downgradient Upgradient	GradientDetected?UpgradientNoDowngradientNoDowngradientNoDowngradientNoDowngradientNoDowngradientNoDowngradientNoSidegradientYesDowngradientNoDowngradientNoSidegradientNoDowngradientNoDowngradientNoDowngradientNoDowngradientNoDowngradientNoUpgradientNo	GradientDetected?ResultUpgradientNo20DowngradientNo20DowngradientNo20DowngradientNo20DowngradientNo20DowngradientNo20DowngradientNo20DowngradientNo20DowngradientNo20DowngradientNo20SidegradientYes7DowngradientNo20DowngradientNo20UpgradientNo20	GradientDetected?ResultResult >TL(1)?UpgradientNo20N/ADowngradientNo20N/ADowngradientNo20N/ADowngradientNo20N/ADowngradientNo20N/ADowngradientNo20N/ADowngradientNo20N/ADowngradientNo20N/ADowngradientNo20N/ADowngradientNo20N/ADowngradientYes7NODowngradientNo20N/ADowngradientNo20N/AUpgradientNo20N/A	GradientDetected?ResultResult >TL(1)?LN(Result)UpgradientNo20N/A2.996DowngradientNo20N/A2.996DowngradientNo20N/A2.996DowngradientNo20N/A2.996DowngradientNo20N/A2.996DowngradientNo20N/A2.996DowngradientNo20N/A2.996DowngradientNo20N/A2.996SidegradientYes7NO1.946DowngradientNo20N/A2.996DowngradientNo20N/A2.996DowngradientNo20N/A2.996

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 49.044	S = 11.278	CV(1)= 0.230	K factor**= 2.523	TL(1)= 77.499	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.866	S = 0.244	CV(2)= 0.063	K factor**= 2.523	TL(2)= 4.482	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MUM

XX7-11 NT-----1-----

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	44.6	3.798
1/15/2003	43.2	3.766
4/10/2003	31.5	3.450
7/14/2003	30.8	3.428
10/13/2003	40.9	3.711
1/13/2004	40.8	3.709
4/13/2004	37.5	3.624
7/21/2004	40.8	3.709
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.101
Date Collected	Result	
Date Collected 8/13/2002	Result 60.4	4.101
Date Collected 8/13/2002 9/16/2002	Result 60.4 60.3	4.101 4.099
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 60.4 60.3 58	4.101 4.099 4.060
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 60.4 60.3 58 60.7	4.101 4.099 4.060 4.106
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 60.4 60.3 58 60.7 62.9	4.101 4.099 4.060 4.106 4.142
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 60.4 60.3 58 60.7 62.9 58.1	4.101 4.099 4.060 4.106 4.142 4.062

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	21.6	NO	3.073	N/A
MW221	Downgradien	t Yes	34	NO	3.526	N/A
MW222	Downgradien	t Yes	33.8	NO	3.520	N/A
MW223	Downgradien	t Yes	30.4	NO	3.414	N/A
MW224	Downgradien	t Yes	28.7	NO	3.357	N/A
MW369	Downgradien	t Yes	33.1	NO	3.500	N/A
MW372	Downgradien	t Yes	45.5	NO	3.818	N/A
MW384	Sidegradient	Yes	42	NO	3.738	N/A
MW387	Downgradien	t Yes	36.8	NO	3.605	N/A
MW391	Downgradien	t Yes	38.4	NO	3.648	N/A
MW394	Upgradient	Yes	48.4	NO	3.879	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.609	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)= N/A

Historical Background Data from	
Upgradient Wells with Transformed Result	,

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	5	1.609
1/15/2003	5	1.609
4/10/2003	5	1.609
7/14/2003	5	1.609
10/13/2003	5	1.609
1/13/2004	5	1.609
4/13/2004	5	1.609
7/21/2004	5	1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Downgradien	t No	1	N/A	0.000	N/A
MW222	Downgradien	t No	1	N/A	0.000	N/A
MW223	Downgradien	t No	1	N/A	0.000	N/A
MW224	Downgradien	t No	1	N/A	0.000	N/A
MW369	Downgradien	t No	1	N/A	0.000	N/A
MW372	Downgradien	t No	1	N/A	0.000	N/A
MW384	Sidegradient	No	1	N/A	0.000	N/A
MW387	Downgradien	t No	1	N/A	0.000	N/A
MW391	Downgradien	t Yes	0.48	NO	-0.734	N/A
MW394	Upgradient	No	1	N/A	0.000	N/A
N/A - Resu	lts identified as N	Jon-Detects (luring lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.016	S = 0.040	CV(1)= 2.440	K factor**= 2.523	TL(1)= 0.116	LL(1)= N/A
Statistics-Transformed Background Data	X = -5.582	S = 1.573	CV(2) =-0.282	K factor**= 2.523	TL(2)= -1.613	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0041	-5.497
1/15/2003	0.00496	-5.306
4/10/2003	0.00289	-5.846
7/14/2003	0.161	-1.826
10/13/2003	0.0226	-3.790
1/13/2004	0.00464	-5.373
4/13/2004	0.001	-6.908
7/21/2004	0.00264	-5.937
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00019	3 N/A	-8.553	NO
MW221	Downgradien	t Yes	0.00041	4 N/A	-7.790	NO
MW222	Downgradien	t Yes	0.00454	N/A	-5.395	NO
MW223	Downgradien	t Yes	0.00072	4 N/A	-7.231	NO
MW224	Downgradien	t Yes	0.00048	7 N/A	-7.627	NO
MW369	Downgradien	t Yes	0.00435	N/A	-5.438	NO
MW372	Downgradien	t Yes	0.00067	6 N/A	-7.299	NO
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A
MW394	Upgradient	No	0.001	N/A	-6.908	N/A
	10			N/A pratory analysis or		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 382.132 S = 107.134 CV(1) =0.280	K factor**= 2.523	TL(1)= 652.432 LL(1)=N/A
Statistics-Transformed Background Data	X = 5.716 S = 1.164 CV(2) = 0.204	K factor**= 2.523	TL(2)= 8.652 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu	lt

MUNDOO

W-11 N-----

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	368	5.908
1/15/2003	433.2	6.071
4/10/2003	489	6.192
7/14/2003	430	6.064
10/13/2003	346	5.846
1/13/2004	365	5.900
4/13/2004	416	6.031
7/21/2004	353	5.866
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 6.006
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 406	6.006
Date Collected 8/13/2002 9/16/2002	Result 406 418	6.006 6.035
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 406 418 411	6.006 6.035 6.019
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 406 418 411 422	6.006 6.035 6.019 6.045
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 406 418 411 422 420	6.006 6.035 6.019 6.045 6.040
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 406 418 411 422 420 438	6.006 6.035 6.019 6.045 6.040 6.082

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	439	NO	6.084	N/A
MW221	Downgradien	t Yes	402	NO	5.996	N/A
MW222	Downgradien	t Yes	385	NO	5.953	N/A
MW223	Downgradien	t Yes	426	NO	6.054	N/A
MW224	Downgradien	t Yes	443	NO	6.094	N/A
MW369	Downgradien	t Yes	387	NO	5.958	N/A
MW372	Downgradien	t Yes	700	YES	6.551	N/A
MW384	Sidegradient	Yes	501	NO	6.217	N/A
MW387	Downgradien	t Yes	554	NO	6.317	N/A
MW391	Downgradien	t Yes	457	NO	6.125	N/A
MW394	Upgradient	Yes	415	NO	6.028	N/A
N/A - Resu	lts identified as N	Jon-Detects	luring lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.024	S = 0.010	CV(1)= 0.429	K factor**= 2.523	TL(1)= 0.050	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.794	S= 0.312	CV(2)= -0.082	K factor**= 2.523	TL(2)= -3.007	LL(2)= N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0211	-3.858
1/15/2003	0.02	-3.912

-3.912

-3.912

-3.912

-3.912

-3.912

-3.912

-2.996

-2.996

-3.912

-3.912

-3.912

-3.912

-3.912

-3.912

LN(Result)

0.02

0.02

0.02

0.02

0.02

0.02

MW394

Result

0.05

0.05

0.02

0.02

0.02

0.02

0.02

0.02

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00041	6 NO	-7.785	N/A
MW221	Downgradien	t Yes	0.00067	3 NO	-7.304	N/A
MW222	Downgradien	t Yes	0.00137	NO	-6.593	N/A
MW223	Downgradien	t No	0.001	N/A	-6.908	N/A
MW224	Downgradien	t No	0.001	N/A	-6.908	N/A
MW369	Downgradien	t Yes	0.00070	5 NO	-7.257	N/A
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A
MW394	Upgradient	Yes	0.00068	4 NO	-7.288	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

▲		ĩ	0			
Statistics-Background Data	X= 3.784	S= 1.887	CV(1)= 0.499	K factor**= 2.523	TL(1)= 8.545	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.182	S = 0.612	CV(2)= 0.518	K factor**= 2.523	TL(2)= 2.727	LL(2)= N/A

	kground Data from ells with Transformed Result
Well Number:	MW220

Date Collected	Result	LN(Result)
10/14/2002	6.79	1.915
1/15/2003	7.25	1.981
4/10/2003	3.6	1.281
7/14/2003	0.94	-0.062
10/13/2003	1.65	0.501
1/13/2004	3.48	1.247
4/13/2004	1.05	0.049
7/21/2004	4.46	1.495
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.807
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 6.09	1.807
Date Collected 8/13/2002 9/16/2002	Result 6.09 3.85	1.807 1.348
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 6.09 3.85 5.11	1.807 1.348 1.631
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 6.09 3.85 5.11 3.83	1.807 1.348 1.631 1.343
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 6.09 3.85 5.11 3.83 4.15	1.807 1.348 1.631 1.343 1.423
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 6.09 3.85 5.11 3.83 4.15 1.83	1.807 1.348 1.631 1.343 1.423 0.604

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Gradient					
	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	6.95	NO	1.939	N/A
Downgradient	Yes	5.69	NO	1.739	N/A
Downgradient	Yes	5.39	NO	1.685	N/A
Downgradient	Yes	5.86	NO	1.768	N/A
Downgradient	Yes	3.56	NO	1.270	N/A
Downgradient	Yes	0.94	NO	-0.062	N/A
Downgradient	Yes	0.53	NO	-0.635	N/A
Sidegradient	Yes	3.93	NO	1.369	N/A
Downgradient	Yes	2.76	NO	1.015	N/A
Downgradient	Yes	3.02	NO	1.105	N/A
Upgradient	Yes	3.08	NO	1.125	N/A
	Jpgradient Downgradient Downgradient Downgradient Downgradient Downgradient Sidegradient Downgradient Downgradient Jpgradient	JpgradientYesJowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYes	JpgradientYes6.95DowngradientYes5.69DowngradientYes5.39DowngradientYes5.86DowngradientYes3.56DowngradientYes0.94DowngradientYes0.53SidegradientYes3.93DowngradientYes3.02JpgradientYes3.08	JpgradientYes6.95NODowngradientYes5.69NODowngradientYes5.39NODowngradientYes5.86NODowngradientYes3.56NODowngradientYes0.94NODowngradientYes0.53NODowngradientYes3.93NODowngradientYes3.02NODowngradientYes3.02NO	JpgradientYes6.95NO1.939DowngradientYes5.69NO1.739DowngradientYes5.39NO1.685DowngradientYes5.86NO1.768DowngradientYes3.56NO1.270DowngradientYes0.94NO-0.062DowngradientYes0.53NO-0.635SidegradientYes3.93NO1.369DowngradientYes2.76NO1.015DowngradientYes3.02NO1.105

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 232.68	8 S = 27.490	CV(1)= 0.118	K factor**= 2.523	TL(1)= 302.045	LL(1)= N/A
Statistics-Transformed Background Data	X= 5.443	S = 0.118	CV(2)= 0.022	K factor**= 2.523	TL(2)= 5.740	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 247 259 201 228 249 240	5.509 5.557 5.303 5.429 5.517 5.481

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	209	NO	5.342	N/A
MW221	Downgradien	t Yes	210	NO	5.347	N/A
MW222	Downgradien	t Yes	237	NO	5.468	N/A
MW223	Downgradien	t Yes	226	NO	5.421	N/A
MW224	Downgradien	t Yes	260	NO	5.561	N/A
MW369	Downgradien	t Yes	207	NO	5.333	N/A
MW372	Downgradien	t Yes	530	YES	6.273	N/A
MW384	Sidegradient	Yes	257	NO	5.549	N/A
MW387	Downgradien	t Yes	297	NO	5.694	N/A
MW391	Downgradien	t Yes	267	NO	5.587	N/A
MW394	Upgradient	Yes	226	NO	5.421	N/A
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.897	S = 1.050	CV(1)= 1.170	K factor**= 2.523	TL(1)= 3.545	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.565	S = 0.951	CV(2)= -1.683	K factor**= 2.523	TL(2)= 1.834	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.429	-0.846
7/14/2003	4.33	1.466
10/13/2003	1.81	0.593
1/13/2004	0.793	-0.232
4/13/2004	0.13	-2.040
7/21/2004	0.382	-0.962
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.293
Date Collected	Result	
Date Collected 8/13/2002	Result 1.34	0.293
Date Collected 8/13/2002 9/16/2002	Result 1.34 0.328	0.293 -1.115
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.34 0.328 1.38	0.293 -1.115 0.322
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.34 0.328 1.38 1.3	0.293 -1.115 0.322 0.262
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.34 0.328 1.38 1.3 0.494	0.293 -1.115 0.322 0.262 -0.705
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.34 0.328 1.38 1.3 0.494 0.62	0.293 -1.115 0.322 0.262 -0.705 -0.478

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.036	N/A	-3.324	NO
MW221	Downgradien	t Yes	0.0792	N/A	-2.536	NO
MW222	Downgradien	t Yes	2.93	N/A	1.075	NO
MW223	Downgradien	t No	0.1	N/A	-2.303	N/A
MW224	Downgradien	t No	0.1	N/A	-2.303	N/A
MW369	Downgradien	t Yes	0.113	N/A	-2.180	NO
MW372	Downgradien	t Yes	0.64	N/A	-0.446	NO
MW384	Sidegradient	No	0.1	N/A	-2.303	N/A
MW387	Downgradien	t Yes	0.0945	N/A	-2.359	NO
MW391	Downgradien	t No	0.1	N/A	-2.303	N/A
MW394	Upgradient	Yes	0.347	N/A	-1.058	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.796 S =	1.703	CV(1)= 0.158	K factor**= 2.523	TL(1)= 15.092	LL(1)=N/A
Statistics-Transformed Background Data	X= 2.368 S=	0.158	CV(2)= 0.067	K factor**= 2.523	TL(2)= 2.766	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW220

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	9.16	2.215
1/15/2003	10	2.303
4/10/2003	10.8	2.380
7/14/2003	14.7	2.688
10/13/2003	9.03	2.201
1/13/2004	8.49	2.139
4/13/2004	9.7	2.272
7/21/2004	8.06	2.087
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.468
Date Collected	Result	
Date Collected 8/13/2002	Result 11.8	2.468
Date Collected 8/13/2002 9/16/2002	Result 11.8 12.1	2.468 2.493
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.8 12.1 11.3	2.468 2.493 2.425
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.8 12.1 11.3 10.3	2.468 2.493 2.425 2.332
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.8 12.1 11.3 10.3 11.7	2.468 2.493 2.425 2.332 2.460
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 11.8 12.1 11.3 10.3 11.7 12	2.468 2.493 2.425 2.332 2.460 2.485

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	8.44	NO	2.133	N/A
MW221	Downgradien	t Yes	9.47	NO	2.248	N/A
MW222	Downgradien	t Yes	8.67	NO	2.160	N/A
MW223	Downgradien	t Yes	9.9	NO	2.293	N/A
MW224	Downgradien	t Yes	9.59	NO	2.261	N/A
MW369	Downgradien	t Yes	7.78	NO	2.052	N/A
MW372	Downgradien	t Yes	23.7	YES	3.165	N/A
MW384	Sidegradient	Yes	11.3	NO	2.425	N/A
MW387	Downgradien	t Yes	14	NO	2.639	N/A
MW391	Downgradien	t Yes	12.4	NO	2.518	N/A
MW394	Upgradient	Yes	11.9	NO	2.477	N/A
N/A Doon	Its identified as N	Ion Detecto	during lab	oratory analysis or	data validatio	n and wara not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.287	S= 0.619	CV(1)= 2.156	K factor**= 2.523	TL(1)= 1.848	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.455	S = 1.619	CV(2) =-0.659	K factor**= 2.523	TL(2)= 1.630	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				

Date Collected	Result	LN(Result)
10/14/2002	0.0306	-3.487
1/15/2003	0.0291	-3.537
4/10/2003	0.0137	-4.290
7/14/2003	2.54	0.932
10/13/2003	0.378	-0.973
1/13/2004	0.159	-1.839
4/13/2004	0.00707	-4.952
7/21/2004	0.0841	-2.476
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -0.612
Date Collected	Result	
Date Collected 8/13/2002	Result 0.542	-0.612
Date Collected 8/13/2002 9/16/2002	Result 0.542 0.155	-0.612 -1.864
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.542 0.155 0.103	-0.612 -1.864 -2.273
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.542 0.155 0.103 0.128	-0.612 -1.864 -2.273 -2.056
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.542 0.155 0.103 0.128 0.005	-0.612 -1.864 -2.273 -2.056 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.542 0.155 0.103 0.128 0.005 0.272	-0.612 -1.864 -2.273 -2.056 -5.298 -1.302

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00107	N/A	-6.840	NO
MW221	Downgradien	t Yes	0.00224	N/A	-6.101	NO
MW222	Downgradien	t Yes	0.259	N/A	-1.351	NO
MW223	Downgradien	t Yes	0.00479	N/A	-5.341	NO
MW224	Downgradien	t Yes	0.00485	N/A	-5.329	NO
MW369	Downgradien	t Yes	0.0235	N/A	-3.751	NO
MW372	Downgradien	t Yes	0.0134	N/A	-4.313	NO
MW384	Sidegradient	Yes	0.00118	N/A	-6.742	NO
MW387	Downgradien	t Yes	0.00933	N/A	-4.675	NO
MW391	Downgradien	t No	0.005	N/A	-5.298	N/A
MW394	Upgradient	Yes	0.00723	N/A	-4.930	NO
N/A - Resu	lts identified as N	Jon-Detects	turing lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.006	S = 0.008	CV(1)= 1.261	K factor**= 2.523	TL(1)= 0.026	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.747	S = 1.205	CV(2)= -0.210	K factor**= 2.523	TL(2)= -2.708	LL(2)= N/A

Historical Bac Upgradient W	kground Da ells with Tr	ata from ansformed Result
Well Number:	MW220	
Data Collected	Desult	I N(Posult)

Date Collected	Result	LN(Result)
10/14/2002	0.00558	-5.189
1/15/2003	0.00983	-4.622
4/10/2003	0.0109	-4.519
7/14/2003	0.00245	-6.012
10/13/2003	0.00566	-5.174
1/13/2004	0.00572	-5.164
4/13/2004	0.001	-6.908
7/21/2004	0.00392	-5.542
Wall Number	MW204	
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.00077	1 N/A	-7.168	N/A
MW221	Downgradien	t Yes	0.00157	N/A	-6.457	NO
MW222	Downgradien	t Yes	0.00143	N/A	-6.550	NO
MW223	Downgradien	t Yes	0.00319	N/A	-5.748	NO
MW224	Downgradien	t No	0.00064	1 N/A	-7.352	N/A
MW369	Downgradien	t No	0.00017	9 N/A	-8.628	N/A
MW372	Downgradien	t No	0.00069	7 N/A	-7.269	N/A
MW384	Sidegradient	No	0.00032	1 N/A	-8.044	N/A
MW387	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW391	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW394	Upgradient	No	0.0005	N/A	-7.601	N/A
N/A - Resu	lts identified as N	on-Detects	during labo	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.127	S = 0.228	CV(1)= 1.790	K factor**= 2.523	TL(1)= 0.701	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.617	S = 1.837	CV(2) =-0.508	K factor**= 2.523	TL(2)= 1.019	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.418	-0.872
1/15/2003	0.738	-0.304
4/10/2003	0.544	-0.609
7/14/2003	0.106	-2.244
10/13/2003	0.0529	-2.939
1/13/2004	0.0209	-3.868
4/13/2004	0.005	-5.298
7/21/2004	0.0192	-3.953
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.05 0.05 0.005 0.005	-2.996 -2.996 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -5.298 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.05 0.05 0.005 0.005 0.005 0.005	-2.996 -2.996 -5.298 -5.298 -5.298 -5.298

Because CV(1) is greater than 1, the
natural logarithm of background and
test well results were calculated
utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.027	N/A	-3.612	NO
MW221	Downgradien	t Yes	0.0327	N/A	-3.420	NO
MW222	Downgradien	t Yes	0.0568	N/A	-2.868	NO
MW223	Downgradien	t Yes	0.393	N/A	-0.934	NO
MW224	Downgradien	t Yes	0.00417	N/A	-5.480	NO
MW369	Downgradien	t Yes	0.0055	N/A	-5.203	NO
MW372	Downgradien	t Yes	0.00099	9 N/A	-6.909	NO
MW384	Sidegradient	Yes	0.00090	6 N/A	-7.006	NO
MW387	Downgradien	t No	0.002	N/A	-6.215	N/A
MW391	Downgradien	t Yes	0.00070	8 N/A	-7.253	NO
MW394	Upgradient	Yes	0.00189	N/A	-6.271	NO
N/A - Resu	lts identified as N	Ion-Detects	during labo	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

		2	0			
Statistics-Background Data	X = 179.872	2 S= 86.318	CV(1)= 0.480	K factor**= 2.523	TL(1)= 397.652	LL(1)=N/A
Statistics-Transformed Background Data	X= 4.861	S = 1.252	CV(2)= 0.258	K factor**= 2.523	TL(2)= 8.021	LL(2)= N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

MUNDOO

XX7-11 NT-----1-----

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	205	5.323
1/15/2003	1.95	0.668
4/10/2003	203	5.313
7/14/2003	30	3.401
10/13/2003	107	4.673
1/13/2004	295	5.687
4/13/2004	190	5.247
7/21/2004	319	5.765
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 90	4.500
Date Collected 8/13/2002 9/16/2002	Result 90 240	4.500 5.481
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 90 240 185	4.500 5.481 5.220
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 90 240 185 220	4.500 5.481 5.220 5.394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 90 240 185 220 196	4.500 5.481 5.220 5.394 5.278
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 90 240 185 220 196 172	4.500 5.481 5.220 5.394 5.278 5.147

Becaus	e CV(1) is less than or equal to
1, assur	ne normal distribution and
continu	e with statistical analysis
utilizin	g TL(1).
utilizili	$g_{1L(1)}$

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	449	YES	6.107	N/A
MW221	Downgradien	t Yes	463	YES	6.138	N/A
MW222	Downgradien	t Yes	468	YES	6.148	N/A
MW223	Downgradien	t Yes	467	YES	6.146	N/A
MW224	Downgradien	t Yes	468	YES	6.148	N/A
MW369	Downgradien	t Yes	398	YES	5.986	N/A
MW372	Downgradien	t Yes	246	NO	5.505	N/A
MW384	Sidegradient	Yes	459	YES	6.129	N/A
MW387	Downgradien	t Yes	413	YES	6.023	N/A
MW391	Downgradien	t Yes	293	NO	5.680	N/A
MW394	Upgradient	Yes	351	NO	5.861	N/A
N/A Dogu	Its identified as N	Ion Detector	during lab	oratory analysis or	data validatio	n and more not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW220
ne test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated ncentration with respect to historical background data.	MW221
	MW222
	MW223
	MW224
	MW369
	MW384
	MW387
	11110507

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical AnalysisHistorical Background ComparisonPCB, TotalUNITS: ug/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.212	S = 0.152	CV(1)= 0.715	K factor**= 2.523	TL(1)= 0.594	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.655	S = 0.376	CV(2)= -0.227	K factor**= 2.523	TL(2)= -0.706	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
7/14/2003	0.78	-0.248			
10/13/2003	0.17	-1.772			
7/21/2004	0.18	-1.715			
7/14/2005	0.18	-1.715			
7/17/2006	0.18	-1.715			
7/18/2007	0.17	-1.772			
10/24/2007	0.17	-1.772			
1/24/2008	0.17	-1.772			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	0.17	-1.772			
9/16/2002	0.17	-1.772			
7/16/2003	0.17	-1.772			
10/14/2003	0.17	-1.772			
7/20/2004	0.18	-1.715			
7/11/2005	0.18	-1.715			
7/17/2006	0.18	-1.715			
7/17/2007	0.17	-1.772			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW369	Downgradien	t No	0.0962	N/A	-2.341	N/A	
MW372	Downgradien	t Yes	0.0552	NO	-2.897	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical AnalysisHistorical Background ComparisonPCB-1242UNITS: ug/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.146	S = 0.170	CV(1)= 1.164	K factor**= 2.523	TL(1)= 0.573	LL(1)= N/A
Statistics-Transformed Background	X= -2.149	S= 0.517	CV(2)= -0.241	K factor**= 2.523	TL(2)= -0.844	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
7/14/2003	0.78	-0.248			
10/13/2003	0.09	-2.408			
7/21/2004	0.1	-2.303			
7/14/2005	0.1	-2.303			
7/17/2006	0.1	-2.303			
7/18/2007	0.1	-2.303			
10/24/2007	0.1	-2.303			
1/24/2008	0.1	-2.303			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	0.11	-2.207			
9/16/2002	0.13	-2.040			

0.13

0.09

0.1

0.1

0.1

0.1

7/16/2003

7/20/2004

7/11/2005

7/17/2006

7/17/2007

10/14/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW369	Downgradien	t No	0.0962	N/A	-2.341	N/A	
MW372	Downgradien	t Yes	0.0552	N/A	-2.897	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.040

-2.408

-2.303

-2.303

-2.303

-2.303

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.138	S = 0.282	CV(1)= 0.046	K factor**= 2.904	TL(1)= 6.957	LL(1)= 5.3179
Statistics-Transformed Background Data	X= 1.813	S = 0.047	CV(2) =0.026	K factor**= 2.904	TL(2)= 1.950	LL(2)= 1.6765

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	6.04	1.798				
1/15/2003	6.31	1.842				
4/10/2003	6.5	1.872				
7/14/2003	6.3	1.841				
10/13/2003	6.34	1.847				
1/13/2004	6.33	1.845				
4/13/2004	6.3	1.841				
7/21/2004	5.9	1.775				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
8/13/2002	5.8	1.758				
9/30/2002	5.93	1.780				
10/16/2002	5.42	1.690				
1/13/2003	6	1.792				
4/10/2003	6.04	1.798				

6.2

6.4

6.39

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th></th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>		LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
MW220	Upgradient	Yes	6.56	NO	1.881	N/A	
MW221	Downgradien	t Yes	6.34	NO	1.847	N/A	
MW222	Downgradien	t Yes	6.4	NO	1.856	N/A	
MW223	Downgradien	t Yes	6.33	NO	1.845	N/A	
MW224	Downgradien	t Yes	6.43	NO	1.861	N/A	
MW369	Downgradien	t Yes	6.21	NO	1.826	N/A	
MW372	Downgradien	t Yes	6.31	NO	1.842	N/A	
MW384	Sidegradient	Yes	6.36	NO	1.850	N/A	
MW387	Downgradien	t Yes	6.21	NO	1.826	N/A	
MW391	Downgradien	t Yes	6.24	NO	1.831	N/A	
MW394	Upgradient	Yes	6.44	NO	1.863	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.825

1.856

1.855

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.654	S = 9.310	CV(1)= 1.399	K factor**= 2.523	TL(1)= 30.144	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.130	S = 1.208	CV(2)= 1.069	K factor**= 2.523	TL(2)= 4.178	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW220

Date Collected	Result	LN(Result)
10/14/2002	6.7	1.902
1/15/2003	29.7	3.391
4/10/2003	24.9	3.215
7/14/2003	1.13	0.122
10/13/2003	3.43	1.233
1/13/2004	6.71	1.904
4/13/2004	19.3	2.960
7/21/2004	3.97	1.379
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 1.03	0.693 0.693 0.030
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 1.03 1.1	0.693 0.693 0.030 0.095
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 1.03 1.1 1.24	0.693 0.693 0.030 0.095 0.215
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 2 2 1.03 1.1 1.24 1.14	0.693 0.693 0.030 0.095 0.215 0.131

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	4.23	N/A	1.442	NO
MW221	Downgradien	t Yes	1.19	N/A	0.174	NO
MW222	Downgradien	t Yes	0.574	N/A	-0.555	NO
MW223	Downgradien	t Yes	1.09	N/A	0.086	NO
MW224	Downgradien	t Yes	0.772	N/A	-0.259	NO
MW369	Downgradien	t Yes	0.581	N/A	-0.543	NO
MW372	Downgradien	t Yes	2.25	N/A	0.811	NO
MW384	Sidegradient	Yes	1.13	N/A	0.122	NO
MW387	Downgradien	t Yes	1.69	N/A	0.525	NO
MW391	Downgradien	t Yes	1.56	N/A	0.445	NO
MW394	Upgradient	Yes	1.27	N/A	0.239	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 36.363	S = 8.666	CV(1)= 0.238	K factor**= 2.523	TL(1)= 58.227	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.570	S= 0.222	CV(2)= 0.062	K factor**= 2.523	TL(2)= 4.129	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW220

Well Number

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	35.4	3.567
1/15/2003	40.6	3.704
4/10/2003	51	3.932
7/14/2003	58.2	4.064
10/13/2003	38.1	3.640
1/13/2004	37	3.611
4/13/2004	43.2	3.766
7/21/2004	33.8	3.520
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.493
Date Collected	Result	
Date Collected 8/13/2002	Result 32.9	3.493
Date Collected 8/13/2002 9/16/2002	Result 32.9 29.9	3.493 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 32.9 29.9 29	3.493 3.398 3.367
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 32.9 29.9 29 27.1	3.493 3.398 3.367 3.300
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 32.9 29.9 29 27.1 24.8	3.493 3.398 3.367 3.300 3.211
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 32.9 29.9 27.1 24.8 35.6	3.493 3.398 3.367 3.300 3.211 3.572

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	40.1	NO	3.691	N/A
MW221	Downgradien	t Yes	45.3	NO	3.813	N/A
MW222	Downgradien	t Yes	47.3	NO	3.857	N/A
MW223	Downgradien	t Yes	48.4	NO	3.879	N/A
MW224	Downgradien	t Yes	57.8	NO	4.057	N/A
MW369	Downgradien	t Yes	55.7	NO	4.020	N/A
MW372	Downgradien	t Yes	57.7	NO	4.055	N/A
MW384	Sidegradient	Yes	54.1	NO	3.991	N/A
MW387	Downgradien	t Yes	53.3	NO	3.976	N/A
MW391	Downgradien	t Yes	40.9	NO	3.711	N/A
MW394	Upgradient	Yes	32.3	NO	3.475	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.481	S= 2.648	CV(1)= 0.253	K factor**= 2.523	TL(1)= 17.161	LL(1)= N/A
Statistics-Transformed Background	X= 2.322	S= 0.239	CV(2)= 0.103	K factor**= 2.523	TL(2)= 2.925	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MUNDOO

X7-11 Nt-----

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	10.4	2.342
1/15/2003	9.8	2.282
4/10/2003	15.4	2.734
7/14/2003	14.9	2.701
10/13/2003	13.5	2.603
1/13/2004	10.3	2.332
4/13/2004	14.3	2.660
7/21/2004	10.5	2.351
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.416
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 11.2	2.416
Date Collected 8/13/2002 9/16/2002	Result 11.2 8.3	2.416 2.116
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.2 8.3 8	2.416 2.116 2.079
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.2 8.3 8 8.5	2.416 2.116 2.079 2.140
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.2 8.3 8 8.5 7.9	2.416 2.116 2.079 2.140 2.067
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 11.2 8.3 8 8.5 7.9 8.4	2.416 2.116 2.079 2.140 2.067 2.128

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
Upgradient	Yes	16.5	NO	2.803	N/A	
Downgradient	t Yes	14.1	NO	2.646	N/A	
Downgradien	t Yes	11.9	NO	2.477	N/A	
Downgradient	t Yes	19.1	YES	2.950	N/A	
Downgradient	t Yes	13.4	NO	2.595	N/A	
Downgradient	t Yes	9.98	NO	2.301	N/A	
Downgradien	t Yes	102	YES	4.625	N/A	
Sidegradient	Yes	20.2	YES	3.006	N/A	
Downgradien	t Yes	26.7	YES	3.285	N/A	
Downgradien	t Yes	40.6	YES	3.704	N/A	
Upgradient	Yes	10.1	NO	2.313	N/A	
	Gradient Upgradient Downgradient Downgradient Downgradient Downgradient Downgradient Sidegradient Downgradient Upgradient	GradientDetected?UpgradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesUpgradientYes	GradientDetected?ResultUpgradientYes16.5DowngradientYes14.1DowngradientYes11.9DowngradientYes19.1DowngradientYes13.4DowngradientYes9.98DowngradientYes102SidegradientYes20.2DowngradientYes26.7DowngradientYes10.1	GradientDetected?ResultResult >TL(1)?UpgradientYes16.5NODowngradientYes14.1NODowngradientYes11.9NODowngradientYes19.1YESDowngradientYes13.4NODowngradientYes10.2YESDowngradientYes20.2YESSidegradientYes26.7YESDowngradientYes40.6YESUpgradientYes10.1NO	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 16.5 NO 2.803 Downgradient Yes 14.1 NO 2.646 Downgradient Yes 11.9 NO 2.477 Downgradient Yes 19.1 YES 2.950 Downgradient Yes 13.4 NO 2.595 Downgradient Yes 9.98 NO 2.301 Downgradient Yes 102 YES 4.625 Sidegradient Yes 20.2 YES 3.006 Downgradient Yes 26.7 YES 3.285 Downgradient Yes 40.6 YES 3.704	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exce	edances
MW223	
MW372	
MW384	
MW387	
MW391	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Tantalum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.029	S = 0.067	CV(1)= 2.267	K factor**= 2.523	TL(1)= 0.197	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.837	S= 1.260	CV(2)= -0.260	K factor**= 2.523	TL(2)= -1.658	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW220

Well Number

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.005	-5.298
1/15/2003	0.005	-5.298
4/10/2003	0.005	-5.298
7/14/2003	0.005	-5.298
10/13/2003	0.005	-5.298
1/13/2004	0.005	-5.298
4/13/2004	0.005	-5.298
7/21/2004	0.005	-5.298
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 0.2	-1.609
Date Collected 8/13/2002 9/16/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.2 0.2 0.005	-1.609 -1.609 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.2 0.2 0.005 0.005	-1.609 -1.609 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.2 0.02 0.005 0.005 0.005	-1.609 -1.609 -5.298 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.2 0.205 0.005 0.005 0.005 0.005	-1.609 -1.609 -5.298 -5.298 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.005	N/A	-5.298	N/A
MW221	Downgradien	t Yes	0.00104	N/A	-6.869	NO
MW222	Downgradien	t No	0.005	N/A	-5.298	N/A
MW223	Downgradien	t Yes	0.00133	N/A	-6.623	NO
MW224	Downgradien	t No	0.005	N/A	-5.298	N/A
MW369	Downgradien	t No	0.005	N/A	-5.298	N/A
MW372	Downgradien	t No	0.005	N/A	-5.298	N/A
MW384	Sidegradient	No	0.005	N/A	-5.298	N/A
MW387	Downgradien	t No	0.005	N/A	-5.298	N/A
MW391	Downgradien	t No	0.005	N/A	-5.298	N/A
MW394	Upgradient	No	0.005	N/A	-5.298	N/A
	Its identified as N	Jon Detects	luring lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.354	S = 9.280	CV(1)= 0.992	K factor**= 2.523	TL(1)= 32.768	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.270	S = 0.849	CV(2)= 0.374	K factor**= 2.523	TL(2)= 3.262	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	19.7	2.981
1/15/2003	26.1	3.262

1.270

#Func! 3.045

1.844

1.099

2.681

2.639

1.696

0.912

2.907 #Func!

#Func!

2.907

#Func!

LN(Result)

3.56

0

21

3

6.32

14.6

MW394

Result

14

5.45

2.49

18.3

-1.45

-1.71

18.3

0

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	18.4	N/A	2.912	N/A
MW221	Downgradient	t No	16	N/A	2.773	N/A
MW222	Downgradient	t No	12.4	N/A	2.518	N/A
MW223	Downgradient	t No	-1.08	N/A	#Error	N/A
MW224	Downgradient	t No	8.18	N/A	2.102	N/A
MW369	Downgradient	Yes	52.7	YES	3.965	N/A
MW372	Downgradient	t No	18.3	N/A	2.907	N/A
MW384	Sidegradient	Yes	210	YES	5.347	N/A
MW387	Downgradient	Yes	232	YES	5.447	N/A
MW391	Downgradient	t No	0.266	N/A	-1.324	N/A
MW394	Upgradient	No	4.07	N/A	1.404	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW369	
MW384	
MW387	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

1		,	0			
Statistics-Background Data	X= 1.494	S = 0.737	CV(1)= 0.493	K factor**= 2.523	TL(1)= 3.353	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.315	S = 0.402	CV(2)= 1.279	K factor**= 2.523	TL(2)= 1.330	LL(2)= N/A

Historical Background Data from	
Upgradient Wells with Transformed Result	,

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1.1	0.095
4/10/2003	1	0.000
7/14/2003	3.3	1.194
10/13/2003	1.8	0.588
1/13/2004	1	0.000
4/13/2004	2	0.693
7/21/2004	3.1	1.131
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.262
Date Collected	Result	
Date Collected 8/13/2002	Result 1.3	0.262
Date Collected 8/13/2002 9/16/2002	Result 1.3 1	0.262 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.3 1 1	0.262 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.3 1 1 1.6	0.262 0.000 0.000 0.470
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.3 1 1.6 1	0.262 0.000 0.000 0.470 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.3 1 1.6 1 1.4	0.262 0.000 0.000 0.470 0.000 0.336

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.762	NO	-0.272	N/A
MW221	Downgradien	t Yes	0.814	NO	-0.206	N/A
MW222	Downgradien	t Yes	0.781	NO	-0.247	N/A
MW223	Downgradien	t Yes	1	NO	0.000	N/A
MW224	Downgradien	t Yes	1.06	NO	0.058	N/A
MW369	Downgradien	t Yes	1.29	NO	0.255	N/A
MW372	Downgradien	t Yes	1.29	NO	0.255	N/A
MW384	Sidegradient	Yes	1.19	NO	0.174	N/A
MW387	Downgradien	t Yes	1.13	NO	0.122	N/A
MW391	Downgradien	t Yes	0.792	NO	-0.233	N/A
MW394	Upgradient	Yes	0.77	NO	-0.261	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 63.475	S = 163.1	35 CV(1)=2.570	K factor**= 2.523	TL(1)= 475.063	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.103	S= 1.145	CV(2) =0.369	K factor**= 2.523	TL(2)= 5.992	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	50	3.912
1/15/2003	10	2.303
4/10/2003	10	2.303
7/14/2003	10	2.303
10/13/2003	10	2.303
1/13/2004	10	2.303
4/13/2004	10	2.303
7/21/2004	10	2.303
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 672	3.912 6.510
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 50 672 50	3.912 6.510 3.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 50 672 50 36.1	3.912 6.510 3.912 3.586
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 50 672 50 36.1 10	3.912 6.510 3.912 3.586 2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	8.82	N/A	2.177	N/A	
MW221	Downgradien	t No	5.56	N/A	1.716	N/A	
MW222	Downgradien	t No	5.64	N/A	1.730	N/A	
MW223	Downgradien	t No	6.44	N/A	1.863	N/A	
MW224	Downgradien	t No	5.36	N/A	1.679	N/A	
MW369	Downgradien	t Yes	25.4	N/A	3.235	NO	
MW372	Downgradien	t Yes	8.86	N/A	2.182	NO	
MW384	Sidegradient	Yes	4.42	N/A	1.486	NO	
MW387	Downgradien	t Yes	6.1	N/A	1.808	NO	
MW391	Downgradien	t Yes	5.56	N/A	1.716	NO	
MW394	Upgradient	Yes	6.82	N/A	1.920	NO	
NI/A Dame	14. : J	I Detecte			1 . 11 .	1 /	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

1	,	2	0			
Statistics-Background Data	X= 8.813	S = 8.376	CV(1)= 0.951	K factor**= 2.523	TL(1)= 29.946	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.395	S= 1.449	CV(2)= 1.039	K factor**= 2.523	TL(2)= 5.052	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1 111 1000

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.773
Date Collected	Result	
Date Collected 8/13/2002	Result 16	2.773
Date Collected 8/13/2002 9/30/2002	Result 16 20	2.773 2.996
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 16 20 17	2.773 2.996 2.833
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 16 20 17 15	2.773 2.996 2.833 2.708
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 16 20 17 15 10	2.773 2.996 2.833 2.708 2.303
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 16 20 17 15 10 19	2.773 2.996 2.833 2.708 2.303 2.944

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Downgradien	t No	1	N/A	0.000	N/A
MW222	Downgradien	t No	1	N/A	0.000	N/A
MW223	Downgradien	t Yes	0.34	N/A	-1.079	N/A
MW224	Downgradien	t No	1	N/A	0.000	N/A
MW369	Downgradien	t Yes	1.08	N/A	0.077	N/A
MW372	Downgradien	t Yes	9.87	NO	2.289	N/A
MW384	Sidegradient	Yes	0.33	N/A	-1.109	N/A
MW387	Downgradien	t Yes	1.03	N/A	0.030	N/A
MW391	Downgradien	t Yes	9.31	NO	2.231	N/A
MW394	Upgradient	Yes	6.44	NO	1.863	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.021	S = 0.002	CV(1)= 0.083	K factor**= 2.523	TL(1)= 0.025	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.884	S= 0.076	CV(2)= -0.020	K factor**= 2.523	TL(2)= -3.692	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	0.02	-3.912				
1/15/2003	0.02	-3.912				
4/10/2003	0.02	-3.912				
7/14/2003	0.02	-3.912				
10/13/2003	0.02	-3.912				
1/13/2004	0.02	-3.912				
4/13/2004	0.02	-3.912				
7/21/2004	0.02	-3.912				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
8/13/2002	0.025	-3.689				
9/16/2002	0.025	-3.689				
10/16/2002	0.02	-3.912				

0.02

0.02

0.02

0.02

0.02

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
ell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
1W220	Upgradient	No	0.01	N/A	-4.605	N/A	
IW221	Downgradien	t No	0.01	N/A	-4.605	N/A	
1W222	Downgradien	t No	0.00839	N/A	-4.781	N/A	
1W223	Downgradien	t No	0.00302	N/A	-5.802	N/A	
1W224	Downgradien	t No	0.00417	N/A	-5.480	N/A	
1W369	Downgradien	t Yes	0.00337	NO	-5.693	N/A	
1W372	Downgradien	t No	0.01	N/A	-4.605	N/A	
1W384	Sidegradient	No	0.01	N/A	-4.605	N/A	
1W387	Downgradien	t No	0.01	N/A	-4.605	N/A	
1W391	Downgradien	t No	0.01	N/A	-4.605	N/A	
1W394	Upgradient	No	0.00302	N/A	-5.802	N/A	
1W391 1W394	Downgradien Upgradient	t No No	0.01 0.00302	N/A	-4.605 -5.802	N/A N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

-3.912

-3.912

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.036	S = 0.026	CV(1)= 0.722	K factor**= 2.523	TL(1)= 0.101	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.485	S= 0.525	CV(2)= -0.151	K factor**= 2.523	TL(2)= -2.162	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW220

wen number.	IVI VV 220	
Date Collected	Result	LN(Result)
10/14/2002	0.025	-3.689
1/15/2003	0.035	-3.352
4/10/2003	0.035	-3.352
7/14/2003	0.0389	-3.247
10/13/2003	0.026	-3.650
1/13/2004	0.02	-3.912
4/13/2004	0.02	-3.912
7/21/2004	0.02	-3.912
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -2.303
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 0.1	-2.303
Date Collected 8/13/2002 9/16/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.1 0.1 0.025	-2.303 -2.303 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.1 0.1 0.025 0.035	-2.303 -2.303 -3.689 -3.352
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.1 0.025 0.035 0.035	-2.303 -2.303 -3.689 -3.352 -3.352
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.1 0.025 0.035 0.035 0.02	-2.303 -2.303 -3.689 -3.352 -3.352 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.01	N/A	-4.605	N/A
MW221	Downgradien	t No	0.01	N/A	-4.605	N/A
MW222	Downgradien	t Yes	0.00497	NO	-5.304	N/A
MW223	Downgradien	t No	0.01	N/A	-4.605	N/A
MW224	Downgradien	t No	0.01	N/A	-4.605	N/A
MW369	Downgradien	t No	0.01	N/A	-4.605	N/A
MW372	Downgradien	t Yes	0.00547	NO	-5.208	N/A
MW384	Sidegradient	No	0.01	N/A	-4.605	N/A
MW387	Downgradien	t No	0.01	N/A	-4.605	N/A
MW391	Downgradien	t No	0.01	N/A	-4.605	N/A
MW394	Upgradient	No	0.01	N/A	-4.605	N/A
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis **Historical Background Comparison UNITS: mg/L** Aluminum LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.258	S = 0.221	CV(1)= 0.856	K factor**= 2.523	TL(1)= 0.815	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.266	S= 2.485	CV(2) =-1.097	K factor**= 2.523	TL(2)= 4.003	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.194
Date Collected	Result	· /
Date Collected 8/13/2002	Result 0.824	-0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	-0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	-0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	-0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	-0.194 -1.609 -8.517 -1.013 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t No	0.05	N/A	-2.996	N/A	
MW373	Downgradien	t Yes	0.02	NO	-3.912	N/A	
MW385	Sidegradient	Yes	0.0154	NO	-4.173	N/A	
MW388	Downgradien	t Yes	0.0615	NO	-2.789	N/A	
MW392	Downgradien	t Yes	0.021	NO	-3.863	N/A	
MW395	Upgradient	Yes	0.0396	NO	-3.229	N/A	
MW397	Upgradient	Yes	0.019	NO	-3.963	N/A	
N/A = Result	lts identified as N	Jon-Detects	luring lab	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis **Historical Background Comparison Beta activity UNITS: pCi/L** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.183	S= 2.612	CV(1)= 0.364	K factor**= 2.523	TL(1)= 13.773	LL(1)= N/A
Statistics-Transformed Background Data	X = 1.870	S= 0.552	CV(2) =0.295	K factor**= 2.523	TL(2)= 3.261	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1.09	0.086
9/16/2002	5.79	1.756
10/16/2002	6.82	1.920
1/13/2003	5.01	1.611
4/10/2003	6.1	1.808
7/16/2003	8.51	2.141
10/14/2003	4.99	1.607
1/13/2004	6.58	1.884
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.259
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 9.57	2.259
Date Collected 8/13/2002 9/16/2002	Result 9.57 11	2.259 2.398
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 9.57 11 9.3	2.259 2.398 2.230
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 9.57 11 9.3 8.63	2.259 2.398 2.230 2.155
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 9.57 11 9.3 8.63 10	2.259 2.398 2.230 2.155 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	35.4	N/A	3.567	N/A
MW373	Downgradien	t Yes	25.6	N/A	3.243	N/A
MW385	Sidegradient	Yes	172	YES	5.147	N/A
MW388	Downgradien	t Yes	146	YES	4.984	N/A
MW392	Downgradien	t No	2.23	N/A	0.802	N/A
MW395	Upgradient	Yes	17.2	N/A	2.845	N/A
MW397	Upgradient	Yes	9.49	N/A	2.250	N/A
N/A - Resul	ts identified as N	Ion-Detects (luring lah	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

```
Wells with Exceedances
MW385
```

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis **Historical Background Comparison** UNITS: mg/L LRGA Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.650	S = 0.805	CV(1)= 1.238	K factor**= 2.523	TL(1)= 2.681	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.034	S= 1.030	CV(2)= -0.996	K factor**= 2.523	TL(2)= 1.564	LL(2)= N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2 2. 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.0291	N/A	-3.537	NO
MW373	Downgradien	t Yes	1.42	N/A	0.351	NO
MW385	Sidegradient	Yes	0.0122	N/A	-4.406	NO
MW388	Downgradien	t Yes	0.0216	N/A	-3.835	NO
MW392	Downgradien	t Yes	0.0248	N/A	-3.697	NO
MW395	Upgradient	Yes	0.0225	N/A	-3.794	NO
MW397	Upgradient	Yes	0.00726	6 N/A	-4.925	NO
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.000	S = 0.000	CV(2) =#Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from	
Upgradient Wells with Transformed Result	

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1	0.000
9/16/2002	1	0.000
10/16/2002	1	0.000
1/13/2003	1	0.000
4/10/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	1	0.000
9/16/2002	1	0.000
10/17/2002	1	0.000
1/13/2003	1	0.000

1

1

1

1

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.472	NO	-0.751	N/A
MW373	Downgradien	t Yes	0.595	NO	-0.519	N/A
MW385	Sidegradient	Yes	0.277	NO	-1.284	N/A
MW388	Downgradien	t Yes	0.34	NO	-1.079	N/A
MW392	Downgradien	t Yes	0.575	NO	-0.553	N/A
MW395	Upgradient	Yes	0.551	NO	-0.596	N/A
MW397	Upgradient	Yes	0.497	NO	-0.699	N/A
N/A Door	Its identified as N	Ion Dotooto	امد المل	oratory analysis or	data validatio	n and man not

utilizing TL(1).

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

0.000

0.000

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

· · ·			*			
Statistics-Background Data	X= 23.103	S = 11.538	CV(1)= 0.499	K factor**= 2.523	TL(1)= 52.213	LL(1)= N/A
Statistics-Transformed Background	X= 2.357	S= 2.411	CV(2)= 1.023	K factor**= 2.523	TL(2)= 8.439	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

1111206

X7-11 Nt-----

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.965
Date Collected	Result	
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 19.4 19 0.0179 17.8 20.3 19.4	2.965 2.944 -4.023 2.879 3.011 2.965

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	Yes	27.6	NO	3.318	N/A
MW373	Downgradien	Yes	68	YES	4.220	N/A
MW385	Sidegradient	Yes	25.1	NO	3.223	N/A
MW388	Downgradien	Yes	27.2	NO	3.303	N/A
MW392	Downgradien	Yes	27.2	NO	3.303	N/A
MW395	Upgradient	Yes	27.4	NO	3.311	N/A
MW397	Upgradient	Yes	19.2	NO	2.955	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 35.313	S = 1.250	CV(1)= 0.035	K factor**= 2.523	TL(1)= 38.466	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.564	S = 0.033	CV(2) =0.009	K factor**= 2.523	TL(2)= 3.648	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MW305

Well Number

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	3.555
4/10/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/13/2004	35	3.555
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 40	3.689
Date Collected 8/13/2002 9/16/2002	Result 40 35	3.689 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 40 35 35	3.689 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 40 35 35 35	3.689 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 40 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 40 35 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	19.1	NO	2.950	N/A
MW373	Downgradien	t No	20	N/A	2.996	N/A
MW385	Sidegradient	No	20	N/A	2.996	N/A
MW388	Downgradien	t No	20	N/A	2.996	N/A
MW392	Downgradien	t No	20	N/A	2.996	N/A
MW395	Upgradient	No	20	N/A	2.996	N/A
MW397	Upgradient	No	20	N/A	2.996	N/A
MW397	Upgradient	No	20	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 51.844	S = 11.652	CV(1)= 0.225	K factor**= 2.523	TL(1)= 81.242	LL(1)= N/A
Statistics-Transformed Background	X= 3.924	S = 0.229	CV(2)= 0.058	K factor**= 2.523	TL(2)= 4.501	LL(2)= N/A

	kground Data from ells with Transformed Result
Well Number:	MW395

Date Collected	Result	LN(Result)
8/13/2002	62.2	4.130
9/16/2002	64.7	4.170
10/16/2002	62.2	4.130
1/13/2003	63.5	4.151
4/10/2003	64.1	4.160
7/16/2003	64	4.159
10/14/2003	63.2	4.146
1/13/2004	60.6	4.104
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.661
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 38.9	3.661
Date Collected 8/13/2002 9/16/2002	Result 38.9 39.8	3.661 3.684
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 38.9 39.8 39.3	3.661 3.684 3.671
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 38.9 39.8 39.3 40.5	3.661 3.684 3.671 3.701
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 38.9 39.8 39.3 40.5 42.1	3.661 3.684 3.671 3.701 3.740
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 38.9 39.8 39.3 40.5 42.1 42	3.661 3.684 3.671 3.701 3.740 3.738

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	36.6	NO	3.600	N/A
MW373	Downgradien	t Yes	48.1	NO	3.873	N/A
MW385	Sidegradient	Yes	31.5	NO	3.450	N/A
MW388	Downgradien	t Yes	32.1	NO	3.469	N/A
MW392	Downgradien	t Yes	47.9	NO	3.869	N/A
MW395	Upgradient	Yes	49.2	NO	3.896	N/A
MW397	Upgradient	Yes	39.7	NO	3.681	N/A
N/A Doon	Its identified as N	Ion Dotoota	luring lab	oratory analysis or	data validatio	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 5.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.609	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)= N/A

Historical Background Data from	
Upgradient Wells with Transformed Result	i

1 111200

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	5	1.609
9/30/2002	5	1.609
10/16/2002	5	1.609
1/13/2003	5	1.609
4/10/2003	5	1.609
7/16/2003	5	1.609
10/14/2003	5	1.609
1/13/2004	5	1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	· · · · ·
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	1	N/A	0.000	N/A
MW373	Downgradient	No	1	N/A	0.000	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradient	No	1	N/A	0.000	N/A
MW392	Downgradient	Yes	0.68	NO	-0.386	N/A
MW395	Upgradient	No	1	N/A	0.000	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A
N/A - Resu	lts identified as N	on-Detects of	luring lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis **Historical Background Comparison UNITS: mg/L** Cobalt LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.007	S = 0.011	CV(1)= 1.515	K factor**= 2.523	TL(1)= 0.034	LL(1)= N/A
Statistics-Transformed Background	X= -6.053	S= 1.416	CV(2)= -0.234	K factor**= 2.523	TL(2)= -2.480	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.00035	6 N/A	-7.941	NO
MW373	Downgradien	t Yes	0.00092	2 N/A	-6.989	NO
MW385	Sidegradient	No	0.001	N/A	-6.908	N/A
MW388	Downgradien	t Yes	0.00014	2 N/A	-8.860	NO
MW392	Downgradien	t Yes	0.00018	5 N/A	-8.595	NO
MW395	Upgradient	No	0.001	N/A	-6.908	N/A
MW397	Upgradient	No	0.001	N/A	-6.908	N/A
			0	oratory analysis or		n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis **Historical Background Comparison** Conductivity **UNITS: umho/cm** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 377.875 S = 52.101	CV(1)= 0.138	K factor**= 2.523	TL(1)= 509.326	LL(1)= N/A
Statistics-Transformed Background	X = 5.926 S = 0.136	CV(2)= 0.023	K factor**= 2.523	TL(2)= 6.270	LL(2)= N/A

Historical Background	Data from
Upgradient Wells with	Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.775
Date Collected	Result	
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	427	NO	6.057	N/A
MW373	Downgradien	t Yes	793	YES	6.676	N/A
MW385	Sidegradient	Yes	413	NO	6.023	N/A
MW388	Downgradien	t Yes	473	NO	6.159	N/A
MW392	Downgradien	t Yes	400	NO	5.991	N/A
MW395	Upgradient	Yes	408	NO	6.011	N/A
MW397	Upgradient	Yes	353	NO	5.866	N/A
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.028	S = 0.013	CV(1)= 0.474	K factor**= 2.523	TL(1)= 0.061	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.662	S= 0.406	CV(2)= -0.111	K factor**= 2.523	TL(2)= -2.638	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW305

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.0281	-3.572
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	· /
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.02	-2.996 -2.996 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.02 0.02	-2.996 -2.996 -3.912 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.02 0.02 0.02	-2.996 -2.996 -3.912 -3.912 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.05 0.05 0.02 0.02 0.02 0.02 0.02	-2.996 -2.996 -3.912 -3.912 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	0.001	N/A	-6.908	N/A
MW373	Downgradient	No	0.001	N/A	-6.908	N/A
MW385	Sidegradient	No	0.001	N/A	-6.908	N/A
MW388	Downgradient	Yes	0.00044	3 NO	-7.722	N/A
MW392	Downgradient	No	0.001	N/A	-6.908	N/A
MW395	Upgradient	Yes	0.00041	5 NO	-7.787	N/A
MW397	Upgradient	No	0.001	N/A	-6.908	N/A
			0	oratory analysis or		

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 4.678	S = 2.431	CV(1)= 0.520	K factor**= 2.523	TL(1)= 10.812	LL(1)=N/A
Statistics-Transformed Background Data	X= 1.414	S = 0.550	CV(2)= 0.389	K factor**= 2.523	TL(2)= 2.802	LL(2)=N/A

	kground Data from fells with Transformed Result
Well Number:	MW395

wen number.	IVI VV 393	
Date Collected	Result	LN(Result)
8/13/2002	7.29	1.987
9/30/2002	4.03	1.394
10/16/2002	3.85	1.348
1/13/2003	2.36	0.859
4/10/2003	1.14	0.131
7/16/2003	1.76	0.565
10/14/2003	4.05	1.399
1/13/2004	4.26	1.449
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.448
Date Collected	Result	
Date Collected 8/13/2002	Result 11.56	2.448
Date Collected 8/13/2002 9/16/2002	Result 11.56 5.86	2.448 1.768
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 11.56 5.86 5.94	2.448 1.768 1.782
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 11.56 5.86 5.94 4.66	2.448 1.768 1.782 1.539
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 11.56 5.86 5.94 4.66 3.77	2.448 1.768 1.782 1.539 1.327
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 11.56 5.86 5.94 4.66 3.77 3.47	2.448 1.768 1.782 1.539 1.327 1.244

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	3.44	NO	1.235	N/A
MW373	Downgradien	t Yes	2.24	NO	0.806	N/A
MW385	Sidegradient	Yes	2.8	NO	1.030	N/A
MW388	Downgradien	t Yes	3.17	NO	1.154	N/A
MW392	Downgradien	t Yes	0.98	NO	-0.020	N/A
MW395	Upgradient	Yes	3.03	NO	1.109	N/A
MW397	Upgradient	Yes	5.58	NO	1.719	N/A
	Its identified as N	Ion Detects	Juring Jah	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 219.25	0 S = 34.107	CV(1)= 0.156	K factor**= 2.523	TL(1)= 305.301	LL(1)= N/A
Statistics-Transformed Background Data	X= 5.379	S= 0.152	CV(2)= 0.028	K factor**= 2.523	TL(2)= 5.762	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.231
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	240	NO	5.481	N/A
MW373	Downgradien	Yes	507	YES	6.229	N/A
MW385	Sidegradient	Yes	221	NO	5.398	N/A
MW388	Downgradien	Yes	267	NO	5.587	N/A
MW392	Downgradien	Yes	227	NO	5.425	N/A
MW395	Upgradient	Yes	229	NO	5.434	N/A
MW397	Upgradient	Yes	204	NO	5.318	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.400	S = 0.514	CV(1)= 1.286	K factor**= 2.523	TL(1)= 1.698	LL(1)= N/A
Statistics-Transformed Background	X = -2.197	S= 2.634	CV(2) =-1.199	K factor**= 2.523	TL(2)= 4.449	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW395

() en i (anio en	112110990	
Date Collected	Result	LN(Result)
8/13/2002	0.294	-1.224
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	1.33	0.285
4/10/2003	1.31	0.270
7/16/2003	0.2	-1.609
10/14/2003	0.1	-2.303
1/13/2004	0.1	-2.303
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.457
Date Collected	Result	
Date Collected 8/13/2002	Result 1.58	0.457
Date Collected 8/13/2002 9/16/2002	Result 1.58 0.232	0.457 -1.461
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1.58 0.232 0.0002	0.457 -1.461 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1.58 0.232 0.0002 0.453	0.457 -1.461 -8.517 -0.792
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1.58 0.232 0.0002 0.453 0.2	0.457 -1.461 -8.517 -0.792 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 1.58 0.232 0.0002 0.453 0.2 0.2	0.457 -1.461 -8.517 -0.792 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	0.1	N/A	-2.303	N/A
MW373	Downgradien	t Yes	0.353	N/A	-1.041	NO
MW385	Sidegradient	No	0.1	N/A	-2.303	N/A
MW388	Downgradien	t Yes	0.308	N/A	-1.178	NO
MW392	Downgradien	t Yes	0.203	N/A	-1.595	NO
MW395	Upgradient	Yes	0.18	N/A	-1.715	NO
MW397	Upgradient	Yes	0.0373	N/A	-3.289	NO
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis **Historical Background Comparison** Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	V -0.102	S - 1.685	CV(1)= 0.515	K factor**= 2.523	TI $(1) = 20.022$	$\mathbf{I} \mathbf{I} (1) = \mathbf{N} / \mathbf{A}$	•
Statistics-Dackground Data	A - 9.102	5- 4.005	CV(1) = 0.515	K factor = 2.323	IL(I) – 20.922		
Statistics-Transformed Background Data	X= 1.423	S = 2.408	CV(2)= 1.692	K factor**= 2.523	TL(2)= 7.500	LL(2)= N/A	

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	12.5	2.526
9/16/2002	13	2.565
10/16/2002	0.0127	-4.366
1/13/2003	11.2	2.416
4/10/2003	17.5	2.862
7/16/2003	12.9	2.557
10/14/2003	13.4	2.595
1/13/2004	12.4	2.518
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.058
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 7.83	2.058
Date Collected 8/13/2002 9/16/2002	Result 7.83 7.64	2.058 2.033
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 7.83 7.64 0.00658	2.058 2.033 -5.024
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 7.83 7.64 0.00658 6.69	2.058 2.033 -5.024 1.901
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 7.83 7.64 0.00658 6.69 7.28	2.058 2.033 -5.024 1.901 1.985

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	11.8	NO	2.468	N/A
MW373	Downgradien	t Yes	26.4	YES	3.273	N/A
MW385	Sidegradient	Yes	8.82	NO	2.177	N/A
MW388	Downgradien	t Yes	11.9	NO	2.477	N/A
MW392	Downgradien	t Yes	10.1	NO	2.313	N/A
MW395	Upgradient	Yes	11.8	NO	2.468	N/A
MW397	Upgradient	Yes	8.18	NO	2.102	N/A
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validation	n and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.131	S = 0.195	CV(1)= 1.487	K factor**= 2.523	TL(1)= 0.624	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.104	S= 1.529	CV(2) =-0.493	K factor**= 2.523	TL(2)= 0.755	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number:	MW395

() en i (anio en	11211070	
Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) -0.764
Date Collected	Result	
Date Collected 8/13/2002	Result 0.466	-0.764
Date Collected 8/13/2002 9/16/2002	Result 0.466 0.077	-0.764 -2.564
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.466 0.077 0.028	-0.764 -2.564 -3.576
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.466 0.077 0.028 0.0164	-0.764 -2.564 -3.576 -4.110
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.466 0.077 0.028 0.0164 0.0407	-0.764 -2.564 -3.576 -4.110 -3.202
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.466 0.077 0.028 0.0164 0.0407 0.0167	-0.764 -2.564 -3.576 -4.110 -3.202 -4.092

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	0.00163	N/A	-6.419	NO
MW373	Downgradient	t Yes	0.0459	N/A	-3.081	NO
MW385	Sidegradient	No	0.005	N/A	-5.298	N/A
MW388	Downgradient	t Yes	0.00312	N/A	-5.770	NO
MW392	Downgradient	t Yes	0.0689	N/A	-2.675	NO
MW395	Upgradient	Yes	0.00266	N/A	-5.929	NO
MW397	Upgradient	Yes	0.00116	N/A	-6.759	NO
N/A - Resul	lts identified as N	on-Detects of	luring labo	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.018	S = 0.020	CV(1)= 1.089	K factor**= 2.523	TL(1)= 0.068	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.540	S = 1.020	CV(2)= -0.225	K factor**= 2.523	TL(2)= -1.965	LL(2)= N/A

Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	· /
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.005 0.00502	-2.996 -2.996 -5.298 -5.294
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.005 0.00502 0.005	-2.996 -2.996 -5.298 -5.294 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.05 0.05 0.005 0.00502 0.005 0.005	-2.996 -2.996 -5.298 -5.294 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.00079	5 N/A	-7.137	NO
MW373	Downgradien	t Yes	0.00069	6 N/A	-7.270	NO
MW385	Sidegradient	Yes	0.00094	7 N/A	-6.962	NO
MW388	Downgradien	t Yes	0.00132	N/A	-6.630	NO
MW392	Downgradien	t Yes	0.00085	3 N/A	-7.067	NO
MW395	Upgradient	Yes	0.00070	5 N/A	-7.257	NO
MW397	Upgradient	Yes	0.00077	9 N/A	-7.157	NO
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a						

well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

1	/	,	0			
Statistics-Background Data	X =157.250) S = 52.376	CV(1)= 0.333	K factor**= 2.523	TL(1)= 289.395	LL(1)=N/A
Statistics-Transformed Background Data	X= 5.003	S = 0.348	CV(2)= 0.069	K factor**= 2.523	TL(2)= 5.880	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

1111206

X7-11 Nt-----

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 4.745
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 115 140 185 230 155 188	4.745 4.942 5.220 5.438 5.043 5.236

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	415	YES	6.028	N/A
MW373	Downgradien	t Yes	193	NO	5.263	N/A
MW385	Sidegradient	Yes	466	YES	6.144	N/A
MW388	Downgradien	t Yes	410	YES	6.016	N/A
MW392	Downgradien	t Yes	414	YES	6.026	N/A
MW395	Upgradient	Yes	380	YES	5.940	N/A
MW397	Upgradient	Yes	473	YES	6.159	N/A
N/A - Resu	lts identified as N	on-Detects of	luring lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW370
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW385
concentration with respect to historical background data.	MW388
	MW392
	MW395
	MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.048	S = 0.248	CV(1)= 0.041	K factor**= 2.904	TL(1)= 6.767	LL(1)=5.3289
Statistics-Transformed Background Data	X= 1.799	S= 0.042	CV(2)= 0.023	K factor**= 2.904	TL(2)= 1.920	LL(2)= 1.6782

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	58	1 758

8/13/2002	5.8	1.758
9/16/2002	6	1.792
10/16/2002	5.47	1.699
1/13/2003	6	1.792
4/10/2003	6.18	1.821
7/16/2003	6	1.792
10/14/2003	6.31	1.842
1/13/2004	6.24	1.831
X7 11 N7 1	MW207	
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.765
Date Collected	Result	
Date Collected 8/13/2002	Result 5.84	1.765
Date Collected 8/13/2002 9/30/2002	Result 5.84 6	1.765 1.792
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5.84 6 5.75	1.765 1.792 1.749
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5.84 6 5.75 6	1.765 1.792 1.749 1.792
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5.84 6 5.75 6 6.3	1.765 1.792 1.749 1.792 1.841

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>. ,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	. ,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW370	Downgradient	Yes	6.17	NO	1.820	N/A
MW373	Downgradient	Yes	6.39	NO	1.855	N/A
MW385	Sidegradient	Yes	6.3	NO	1.841	N/A
MW388	Downgradient	Yes	6.26	NO	1.834	N/A
MW392	Downgradient	Yes	6.32	NO	1.844	N/A
MW395	Upgradient	Yes	6.24	NO	1.831	N/A
MW397	Upgradient	Yes	6.28	NO	1.837	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.590	S = 0.642	CV(1)= 0.404	K factor**= 2.523	TL(1)= 3.208	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.306	S= 2.457	CV(2)= -8.028	K factor**= 2.523	TL(2)= 5.892	LL(2)= N/A

Historical Bac Upgradient W		ata from ransformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)

Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.00129	-6.653
1/13/2003	1.51	0.412
4/10/2003	1.67	0.513
7/16/2003	1.73	0.548
10/14/2003	1.7	0.531
1/13/2004	1.58	0.457
XX7 11 X7 1	10000	
Well Number:	MW397	
Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.708
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 2.03	0.708
Date Collected 8/13/2002 9/16/2002	Result 2.03 2	0.708 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2.03 2 0.00145	0.708 0.693 -6.536
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2.03 2 0.00145 1.69	0.708 0.693 -6.536 0.525
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2.03 2 0.00145 1.69 1.73	0.708 0.693 -6.536 0.525 0.548

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	2.34	NO	0.850	N/A
MW373	Downgradien	t Yes	2.5	NO	0.916	N/A
MW385	Sidegradient	Yes	1.55	NO	0.438	N/A
MW388	Downgradien	t Yes	1.79	NO	0.582	N/A
MW392	Downgradien	t Yes	1.75	NO	0.560	N/A
MW395	Upgradient	Yes	1.57	NO	0.451	N/A
MW397	Upgradient	Yes	1.76	NO	0.565	N/A
	10				1. 1.1.1.	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 29.560	S = 13.894	CV(1)= 0.470	K factor**= 2.523	TL(1)= 64.616	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.615	S = 2.411	CV(2)= 0.922	K factor**= 2.523	TL(2)= 8.699	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.561
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 35.2 34.3 0.0336 31.3 46.1 38.4	3.561 3.535 -3.393 3.444 3.831 3.648

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	41.2	NO	3.718	N/A
MW373	Downgradien	t Yes	61.7	NO	4.122	N/A
MW385	Sidegradient	Yes	47	NO	3.850	N/A
MW388	Downgradien	t Yes	47.8	NO	3.867	N/A
MW392	Downgradien	t Yes	35.8	NO	3.578	N/A
MW395	Upgradient	Yes	31.2	NO	3.440	N/A
MW397	Upgradient	Yes	33.5	NO	3.512	N/A
N/A - Resul	ts identified as N	Ion-Detects of	luring lah	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.756 S = 2.147	CV(1)= 0.200	K factor**= 2.523	TL(1)= 16.173	LL(1)= N/A
Statistics-Transformed Background Data	X =2.356 S = 0.203	CV(2) =0.086	K factor**= 2.523	TL(2)= 2.869	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					

	D 1/	LN/D 10
Date Collected	Result	LN(Result)
8/13/2002	10.3	2.332
9/16/2002	9.1	2.208
10/16/2002	8.8	2.175
1/13/2003	9	2.197
4/10/2003	8.3	2.116
7/16/2003	8.2	2.104
10/14/2003	8.3	2.116
1/13/2004	8.2	2.104
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.639
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 12.8	2.639 2.549
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 14 12.8 12.3	2.639 2.549 2.510
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 14 12.8 12.3 12.7	2.639 2.549 2.510 2.542
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 14 12.8 12.3 12.7 12.8	2.639 2.549 2.510 2.542 2.549
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 14 12.8 12.3 12.7 12.8 13.1	2.639 2.549 2.510 2.542 2.549 2.573

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	18.4	YES	2.912	N/A
MW373	Downgradien	t Yes	127	YES	4.844	N/A
MW385	Sidegradient	Yes	21.3	YES	3.059	N/A
MW388	Downgradien	t Yes	23.5	YES	3.157	N/A
MW392	Downgradien	t Yes	6	NO	1.792	N/A
MW395	Upgradient	Yes	9.84	NO	2.286	N/A
MW397	Upgradient	Yes	11.2	NO	2.416	N/A
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW370 MW373 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Tantalum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.054	S = 0.087	CV(1)= 1.622	K factor**= 2.523	TL(1)= 0.274	LL(1)= N/A
Statistics-Transformed Background	X= -4.376	S= 1.650	CV(2)= -0.377	K factor**= 2.523	TL(2)= -0.214	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
	0.0	4 400

ult)
ult)

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	0.005	N/A	-5.298	N/A
MW373	Downgradien	t No	0.005	N/A	-5.298	N/A
MW385	Sidegradient	Yes	0.00217	N/A	-6.133	NO
MW388	Downgradien	t No	0.005	N/A	-5.298	N/A
MW392	Downgradien	t No	0.005	N/A	-5.298	N/A
MW395	Upgradient	No	0.005	N/A	-5.298	N/A
MW397	Upgradient	No	0.005	N/A	-5.298	N/A
Ν/Λ Ροσιι	Its identified as N	Ion Detects	Juring Jah	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 11.359	S = 9.138	CV(1)= 0.805	K factor**= 2.523	TL(1)= 34.414	LL(1)= N/A
Statistics-Transformed Background	X= 2.398	S = 0.859	CV(2) =0.358	K factor**= 2.523	TL(2)= 3.246	LL(2)= N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	20.8	3.035
9/16/2002	16.2	2.785
10/16/2002	8.28	2.114
1/13/2003	13	2.565
4/10/2003	-9.37	#Func!
7/16/2003	0.826	-0.191
10/14/2003	14.1	2.646
1/13/2004	0	#Func!
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	6.06	1.802
9/16/2002	17.3	2.851
10/17/2002	25.7	3.246
1/13/2003	20.9	3.040
4/8/2003	20.1	3.001
7/16/2003	9.2	2.219
10/14/2003	10.1	2.313
1/13/2004	8.54	2.145

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	32.1	NO	3.469	N/A
MW373	Downgradient	t Yes	50.3	YES	3.918	N/A
MW385	Sidegradient	Yes	199	YES	5.293	N/A
MW388	Downgradient	t Yes	164	YES	5.100	N/A
MW392	Downgradient	t No	-9.7	N/A	#Error	N/A
MW395	Upgradient	No	5.69	N/A	1.739	N/A
MW397	Upgradient	No	17.4	N/A	2.856	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

```
Wells with Exceedances
MW373
MW385
MW388
```

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis **Historical Background Comparison UNITS: mg/L Total Organic Carbon (TOC)** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 1.544	S = 0.856	CV(1) =0.554	K factor**= 2.523	TL(1)= 3.702	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.325	S= 0.452	CV(2)= 1.393	K factor**= 2.523	TL(2)= 1.465	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1.6	0.470
9/16/2002	1.1	0.095
10/16/2002	1	0.000
1/13/2003	2	0.693
4/10/2003	3.4	1.224
7/16/2003	2	0.693
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 3.6	0.000 0.000 0.000 1.281
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 3.6 1.9	0.000 0.000 0.000 1.281 0.642

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.852	NO	-0.160	N/A
MW373	Downgradien	t Yes	1.12	NO	0.113	N/A
MW385	Sidegradient	Yes	0.998	NO	-0.002	N/A
MW388	Downgradien	t Yes	1.1	NO	0.095	N/A
MW392	Downgradien	t Yes	0.984	NO	-0.016	N/A
MW395	Upgradient	Yes	0.766	NO	-0.267	N/A
MW397	Upgradient	Yes	0.773	NO	-0.257	N/A
Ν/Λ Ροσιι	Its identified as N	Jon Detects	luring lab	oratory analysis or	data validatio	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 31.513	S = 18.609	CV(1)= 0.591	K factor**= 2.523	TL(1)= 78.462	LL(1)= N/A	
Statistics-Transformed Background Data	X= 3.240	S = 0.707	CV(2)= 0.218	K factor**= 2.523	TL(2)= 5.024	LL(2)= N/A	

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW395

wen number.	IVI VV 393	
Date Collected	Result	LN(Result)
8/13/2002	50	3.912
9/16/2002	50	3.912
10/16/2002	50	3.912
1/13/2003	18.3	2.907
4/10/2003	51.2	3.936
7/16/2003	42.6	3.752
10/14/2003	12.3	2.510
1/13/2004	10	2.303
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 50	3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 50 50 50	3.912 3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 50 50 50 12	3.912 3.912 3.912 2.485
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 50 50 50 12 19.9	3.912 3.912 3.912 2.485 2.991
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 50 50 12 19.9 17.9	3.912 3.912 3.912 2.485 2.991 2.885

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	6.1	NO	1.808	N/A
MW373	Downgradien	t Yes	14.1	NO	2.646	N/A
MW385	Sidegradient	No	10	N/A	2.303	N/A
MW388	Downgradien	t Yes	3.86	NO	1.351	N/A
MW392	Downgradien	t Yes	26	NO	3.258	N/A
MW395	Upgradient	No	10	N/A	2.303	N/A
MW397	Upgradient	Yes	3.44	NO	1.235	N/A
NT/A D					1 . 1.1	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

	T 7.010	0 5 701				TT (1) NT/A	-
Statistics-Background Data	X = 1.313	S = 5.701	CV(1)= 0.780	K factor**= 2.523	TL(1)= 21.695	LL(1)= N/A	
Statistics-Transformed Background	X = 1.467	S = 1.213	CV(2)=0.827	K factor**= 2.523	TL(2)= 4.528	LL(2)=N/A	
Data							

Historical Background Data from
Upgradient Wells with Transformed Result

MW305

Well Number

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	14	2.639
10/16/2002	12	2.485
1/13/2003	14	2.639
4/10/2003	14	2.639
7/16/2003	13	2.565
10/14/2003	12	2.485
1/13/2004	11	2.398
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1	1.609 1.609 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1	1.609 1.609 0.000 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5 5 1 1 1 1 1	1.609 1.609 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.93	N/A	-0.073	N/A
MW373	Downgradien	t Yes	9.93	NO	2.296	N/A
MW385	Sidegradient	Yes	0.47	N/A	-0.755	N/A
MW388	Downgradien	t Yes	0.85	N/A	-0.163	N/A
MW392	Downgradien	t Yes	16.3	NO	2.791	N/A
MW395	Upgradient	Yes	4.61	N/A	1.528	N/A
MW397	Upgradient	Yes	0.3	N/A	-1.204	N/A
N/A - Resu	lts identified as N	on-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T First Quarter 2016 Statistical AnalysisCurrent Background ComparisonBeta activityUNITS: pCi/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

statistics-Backg	ground Dat	a	X= -0.783	S= 3.821	CV(1)= -4.8	880 K	factor	**= 3.188 T	L(1)= 11.39	9 LL(1)= N/A
Statistics-Trans Data	sformed Ba	ckground	X = 0.897	S = 0.816	CV(2) =0.9	09 K	factor	**= 3.188 T	L(2)= 1.575	5 LL(2)=N/A
Current Back Wells with Tra-	0	-0	adient				1 c	Because CV(1 , assume nor continue with utilizing TL(1	mal distri statistical	
Date Collected 1/22/2014 4/9/2014 7/17/2014	Result 3.08 -0.524 -5.25	LN(Resul 1.125 #Func! #Func!	t)				р Т	Because the possbile for a TL was consid naximum bac	ll backgrou dered equa	und values, the al to the
10/27/2014 1/8/2015	-5.77 -0.133	#Func! #Func!		Current	Quarter Data					
4/22/2015 7/16/2015	0.992 4.83	-0.008 1.575		Well No.	Gradient	Detected?	Result	Result >TL(1)	2 LN(Result)	LN(Result) >TL(2)
10/22/2015	-3.49	#Func!		MW390	Downgradient	Yes	51.5	YES	3.942	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =316.625 S = 152	2.698 CV(1)= 0.482	K factor**= 3.188	TL(1)= 803.425	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.647 S = 0.5	CV(2)= 0.091	K factor**= 3.188	TL(2)= 7.288	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW396	
Date Collected	Result	LN(Result)
1/22/2014	549	6.308
4/9/2014	427	6.057
7/17/2014	265	5.580
10/27/2014	141	4.949
1/8/2015	193	5.263
4/22/2015	469	6.151
7/16/2015	330	5.799
10/22/2015	159	5.069

Current Background Data from Upgradient

Wells with Transformed Result

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	160	NO	5.075	N/A
MW390	Downgradient	Yes	447	NO	6.103	N/A
MW393	Downgradient	Yes	156	NO	5.050	N/A
MW396	Upgradient	Yes	223	NO	5.407	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

statistics-Backg	ground Dat	a	X= 1.804	S= 6.358	CV(1)= 3.5	25 K	factor	**= 3.188 T	L(1)= 22.07	'3 LL(1)= N/A
statistics-Trans Data	formed Ba	ckground	X= 0.849	S = 1.542	CV(2) =1.8	17 K	factor	**= 3.188 T	L(2)= 2.416	5 LL(2)= N/A
Current Backs Wells with Tra Well Number:	5	-0	adient				n te		ithm of bac ts were cal	
Date Collected 1/22/2014	Result 8.86	LN(Resul 2.182	t)					Because the ossbile for a		g was not und values, the
4/9/2014 7/17/2014	-5.67 1.03	#Func! 0.030						L was consient naximum ba	-	
10/27/2014 1/8/2015	3.28 11.2	1.188 2.416		Current	Quarter Data					
4/22/2015 7/16/2015	2.84 0.171	1.044 -1.766		Well No.	Gradient	Detected?	Result	Result >TL(1)	2 LN(Result)	LN(Result) >TL(2)
10/22/2015	-7.28	#Func!		MW390	Downgradient	Yes	69.7	N/A	4.244	YES

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Current Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.079	S = 0.070	CV(1)= 0.889	K factor**= 2.523	TL(1)= 0.257	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.920	S= 0.923	CV(2) =-0.316	K factor**= 2.523	TL(2)= -0.590	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Date Collected	Result	LN(Result)
1/22/2014	0.2	-1.609
4/7/2014	0.05	-2.996
7/17/2014	0.05	-2.996
10/21/2014	0.0283	-3.565
1/5/2015	0.207	-1.575
4/14/2015	0.0162	-4.123
7/15/2015	0.05	-2.996
10/15/2015	0.0151	-4.193
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	· · · · · ·
Date Collected 1/22/2014	Result 0.2	-1.609
Date Collected 1/22/2014 4/9/2014	Result 0.2 0.05	-1.609 -2.996
Date Collected 1/22/2014 4/9/2014 7/17/2014	Result 0.2 0.05 0.05	-1.609 -2.996 -2.996
Date Collected 1/22/2014 4/9/2014 7/17/2014 10/27/2014	Result 0.2 0.05 0.05 0.0202	-1.609 -2.996 -2.996 -3.902
Date Collected 1/22/2014 4/9/2014 7/17/2014 10/27/2014 1/8/2015	Result 0.2 0.05 0.05 0.0202 0.133	-1.609 -2.996 -2.996 -3.902 -2.017

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW220

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW222	Downgradien	t Yes	1.01	YES	0.010	N/A		

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW222

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical AnalysisCurrent Background ComparisonBeta activityUNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.844 S = 5	5.987	CV(1)= 0.552	K factor**= 2.523	TL(1)= 25.949	LL(1)= N/A
Statistics-Transformed Background Data	X =2.248 S = 0).534	CV(2)= 0.237	K factor**= 2.523	TL(2)= 3.594	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW384	Sidegradient	Yes	170	YES	5.136	N/A		
MW387	Downgradient	t Yes	162	YES	5.088	N/A		

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

3.054

2.072

3.011

2.302

3.082

2.434

2.231

2.833

1.728

1.836

1.932

1.384

1.623

2.212

1.787

2.451

LN(Result)

MW220

Result

21.2

7.94

20.3

9.99

21.8

11.4

9.31

17

MW394

Result

5.63

6.27

6.9

3.99

5.07

9.13

5.97

11.6

Wells with Transformed Result

Well Number:

Date Collected

1/22/2014

4/7/2014

7/17/2014

1/5/2015

4/14/2015

7/15/2015

10/15/2015

Well Number:

Date Collected

1/22/2014

4/9/2014

7/17/2014

10/27/2014

1/8/2015

4/22/2015

7/17/2015

10/22/2015

10/21/2014

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-7

Wells with Exceedances MW384 MW387

C-746-S/T First Quarter 2016 Statistical Analysis Current Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =24.056 S = 3.169	CV(1)= 0.132	K factor**= 2.523	TL(1)= 32.052	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.172 S = 0.139	CV(2)= 0.044	K factor**= 2.523	TL(2)= 3.522	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Date Collected	Result	LN(Result)
1/22/2014	22.9	3.131
4/7/2014	25.6	3.243
7/17/2014	21.6	3.073
10/21/2014	18.4	2.912
1/5/2015	20	2.996
4/14/2015	23	3.135
7/15/2015	21.8	3.082
10/15/2015	18.5	2.918
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.243
Date Collected	Result	
Date Collected 1/22/2014	Result 25.6	3.243
Date Collected 1/22/2014 4/9/2014	Result 25.6 27.3	3.243 3.307
Date Collected 1/22/2014 4/9/2014 7/17/2014	Result 25.6 27.3 26.3	3.243 3.307 3.270
Date Collected 1/22/2014 4/9/2014 7/17/2014 10/27/2014	Result 25.6 27.3 26.3 26.5	3.243 3.307 3.270 3.277
Date Collected 1/22/2014 4/9/2014 7/17/2014 10/27/2014 1/8/2015	Result 25.6 27.3 26.3 26.5 27.2	3.243 3.307 3.270 3.277 3.303

Current Background Data from Upgradient

Wells with Transformed Result

MW220

Well Number:

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	t Yes	60.9	YES	4.109	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis **Current Background Comparison** Conductivity **URGA UNITS: umho/cm**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 376.313 S = 33.510	CV(1)= 0.089	K factor**= 2.523	TL(1)= 460.857	LL(1)= N/A
Statistics-Transformed Background Data	X =5.927 S = 0.092	CV(2) =0.016	K factor**= 2.523	TL(2)= 6.158	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

4/7/2014	403	5.999			
7/17/2014	407	6.009			
10/21/2014	316	5.756			
1/5/2015	330	5.799	Current	Quarter Dat	a
4/14/2015	422	6.045	X7 11 N		D ()
9/3/2015	343	5.838	Well No.	Gradient	Detecte
10/15/2015	330	5.799	MW372	Downgradier	nt Yes
Well Number:	MW394				
Date Collected	Result	LN(Result)			
1/22/2014	382	5.945			
4/9/2014	404	6.001			
7/17/2014	391	5.969			
10/27/2014	397	5.984			
1/8/2015	397	5.984			

Result Result >TL(1)? LN(Result) LN(Result) >TL(2) 700 YES 6.551 N/A

Conclusion of Statistical Analysis on Current Data

5.814

5.979

5.948

Current Background Data from Upgradient

LN(Result)

5.956

MW220

Result

386

335

395

383

Wells with Transformed Result

Well Number:

Date Collected

1/22/2014

4/22/2015

7/17/2015

10/22/2015

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical AnalysisCurrent Background ComparisonDissolved SolidsUNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =220.000 S = 93.309	CV(1)= 0.424	K factor**= 2.523	TL(1)= 455.418	LL(1)= N/A
Statistics-Transformed Background	X =5.342 S = 0.296	CV(2) =0.055	K factor**= 2.523	TL(2)= 6.089	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

1/22/2014	219	5.389
4/7/2014	226	5.421
7/17/2014	556	6.321
10/21/2014	159	5.069
1/5/2015	140	4.942
4/14/2015	197	5.283
7/15/2015	224	5.412
10/15/2015	236	5.464
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.338
Date Collected	Result	()
Date Collected 1/22/2014	Result 208	5.338
Date Collected 1/22/2014 4/9/2014	Result 208 214	5.338 5.366
Date Collected 1/22/2014 4/9/2014 7/17/2014	Result 208 214 196	5.338 5.366 5.278
Date Collected 1/22/2014 4/9/2014 7/17/2014 10/27/2014	Result 208 214 196 187	5.338 5.366 5.278 5.231
Date Collected 1/22/2014 4/9/2014 7/17/2014 10/27/2014 1/8/2015	Result 208 214 196 187 166	5.338 5.366 5.278 5.231 5.112

Current Background Data from Upgradient

LN(Result)

MW220

Result

Wells with Transformed Result

Data

Well Number: Date Collected

Current	Quarter Data	L				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	530	YES	6.273	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical AnalysisCurrent Background ComparisonMagnesiumUNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.094 S = 1.448	CV(1)= 0.143	K factor**= 2.523	TL(1)= 13.747	LL(1)= N/A
Statistics-Transformed Background Data	X =2.302 S = 0.151	CV(2)= 0.066	K factor**= 2.523	TL(2)= 2.683	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW372	Downgradient	Yes	23.7	YES	3.165	N/A

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

2.259

2.351

2.192

2.003

2.086

2.322

2.215

2.062

2.332

2.398

2.407

2.398

2.425

2.407

2.477

2.493

LN(Result)

MW220

Result

9.57

10.5

8.95

7.41

8.05

10.2

9.16

7.86

MW394

Result

10.3

11.1

11.3

11.1

11.9

12.1

11

11

Wells with Transformed Result

Well Number:

Date Collected

1/22/2014

4/7/2014

7/17/2014

1/5/2015

4/14/2015

7/15/2015

10/15/2015

Well Number:

Date Collected

1/22/2014

4/9/2014

7/17/2014

10/27/2014

1/8/2015

4/22/2015

7/17/2015

10/22/2015

10/21/2014

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =518.00	0 S= 148.8	95 CV(1)=0.287	K factor**= 2.523	TL(1)= 893.661	LL(1)= N/A
Statistics-Transformed Background Data	X= 6.215	S = 0.269	CV(2)= 0.043	K factor**= 2.523	TL(2)= 6.892	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	449	NO	6.107	N/A
MW221	Downgradient	Yes	463	NO	6.138	N/A
MW222	Downgradient	Yes	468	NO	6.148	N/A
MW223	Downgradient	Yes	467	NO	6.146	N/A
MW224	Downgradient	Yes	468	NO	6.148	N/A
MW369	Downgradient	Yes	398	NO	5.986	N/A
MW384	Sidegradient	Yes	459	NO	6.129	N/A
MW387	Downgradient	Yes	413	NO	6.023	N/A

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

5.943

5.991

5.979

5.994

6.597

6.190

6.510

6.590

6.724

6.246

5.875

6.116

6.116

6.133

6.410

6.019

LN(Result)

MW220

Result

381

400

395

401

733

488

672

728

MW394

Result

832

516

356

453

453

461

608

411

Wells with Transformed Result

Well Number:

Date Collected

1/22/2014

4/7/2014

7/17/2014 10/21/2014

1/5/2015

4/14/2015

9/3/2015

10/15/2015

Well Number:

Date Collected

1/22/2014

4/9/2014

7/17/2014

10/27/2014

1/8/2015

4/22/2015

7/17/2015

10/22/2015

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =13.644 S = 3.725	CV(1)= 0.273	K factor**= 2.523	TL(1)= 23.042	LL(1)= N/A
Statistics-Transformed Background Data	X =2.580 S = 0.266	CV(2)= 0.103	K factor**= 2.523	TL(2)= 3.250	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected Result LN(Result) 1/22/2014 18 2.890 4/7/2014 18.9 2.939 7/17/2014 2.965 19.4 10/21/2014 13.5 2.603 1/5/2015 14 2.639 4/14/2015 17.9 2.885 7/15/2015 18.6 2.923 10/15/2015 14.7 2.688 Well Number: MW394 Date Collected Result LN(Result) 1/22/2014 10 2.303 4/9/2014 10 2.303 7/17/2014 10.3 2.332 10/27/2014 11.1 2.407 1/8/2015 10.5 2.351 4/22/2015 10.3 2.332 7/17/2015 10.4 2.342 10/22/2015 10.7 2.370

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW223	Downgradient	t Yes	19.1	NO	2.950	N/A
MW372	Downgradient	Yes	102	YES	4.625	N/A
MW384	Sidegradient	Yes	20.2	NO	3.006	N/A
MW387	Downgradient	Yes	26.7	YES	3.285	N/A
MW391	Downgradient	t Yes	40.6	YES	3.704	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW372 MW387 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 16.130	S = 10.396	CV(1)= 0.645	K factor**= 2.523	TL(1)= 42.359	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.471	S = 0.993	CV(2)= 0.402	K factor**= 2.523	TL(2)= 4.976	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradient	Yes	52.7	YES	3.965	N/A
MW384	Sidegradient	Yes	210	YES	5.347	N/A
MW387	Downgradient	Yes	232	YES	5.447	N/A

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

3.469

3.211

2.493

3.555

3.481

2.501

2.695

2.451

2.934

1.463

2.313

2.845

2.845

2.442

1.135

LN(Result)

MW220

Result

32.1

24.8

12.1

35

32.5

12.2

14.8

11.6

MW394

Result

18.8

4.32

10.1

17.2

17.2

11.5

3.11

0.742

Wells with Transformed Result

Well Number:

Date Collected

1/22/2014

4/7/2014

7/17/2014

1/5/2015

4/14/2015

7/15/2015

10/15/2015

1/22/2014

4/9/2014

7/17/2014

10/27/2014

1/8/2015

4/22/2015

7/17/2015

10/22/2015

Well Number:

Date Collected

10/21/2014

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-14

Wells with Exceedances MW369 MW384 MW387

-0.298

C-746-S/T First Quarter 2016 Statistical Analysis **Current Background Comparison UNITS: pCi/L LRGA Beta activity**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 8.178	S = 5.894	CV(1)= 0.721	K factor**= 2.523	TL(1)= 23.050	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.925	S = 0.815	CV(2) =0.423	K factor**= 2.523	TL(2)= 2.950	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW385	Sidegradient	Yes	172	YES	5.147	N/A
MW388	Downgradien	t Yes	146	YES	4.984	N/A

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

2.241

0.737

2.442

2.950

1.788

0.030

1.332

2.370

2.303

1.394

1.645

2.342

2.791

1.681

2.833

#Func!

LN(Result)

MW395

Result

9.4

2.09

11.5

19.1

5.98

1.03

3.79

10.7

MW397

Result

10

4.03

5.18

10.4

16.3

5.37

-1.02

17

Wells with Transformed Result

Well Number:

Date Collected

1/22/2014

4/9/2014

7/17/2014

1/6/2015

4/22/2015

7/17/2015

10/22/2015

1/22/2014

4/8/2014

7/16/2014

10/21/2014

1/7/2015

4/22/2015

7/15/2015

10/22/2015

Well Number:

Date Collected

10/27/2014

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-15

Wells with Exceedances MW385

MW388

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW385	Sidegradient	Yes	172	YES	5.147	N/A
MW388	Downgradient	Yes	146	YES	4.984	N/A

C-746-S/T First Quarter 2016 Statistical Analysis **Current Background Comparison LRGA** Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =22.763 S = 4.106	CV(1)= 0.180	K factor**= 2.523	TL(1)= 33.123	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.110 S = 0.183	CV(2) =0.059	K factor**= 2.523	TL(2)= 3.571	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

well Number:	MW 395	
Date Collected	Result	LN(Result)
1/22/2014	27	3.296
4/9/2014	27.7	3.321
7/17/2014	26.5	3.277
10/27/2014	26.6	3.281
1/6/2015	25.8	3.250
4/22/2015	26.4	3.273
7/17/2015	26.5	3.277
10/22/2015	27	3.296
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.970
Date Collected	Result	· · · · · ·
Date Collected 1/22/2014	Result 19.5	2.970
Date Collected 1/22/2014 4/8/2014	Result 19.5 19.4	2.970 2.965
Date Collected 1/22/2014 4/8/2014 7/16/2014	Result 19.5 19.4 17.8	2.970 2.965 2.879
Date Collected 1/22/2014 4/8/2014 7/16/2014 10/21/2014	Result 19.5 19.4 17.8 19.8	2.970 2.965 2.879 2.986
Date Collected 1/22/2014 4/8/2014 7/16/2014 10/21/2014 1/7/2015	Result 19.5 19.4 17.8 19.8 18.6	2.970 2.965 2.879 2.986 2.923

Current Background Data from Upgradient

Wells with Transformed Result

MW395

Well Number[.]

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	t Yes	68	YES	4.220	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis **Current Background Comparison** Conductivity **UNITS: umho/cm LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =358.000 S = 28.916	CV(1)= 0.081	K factor**= 2.523	TL(1)= 430.955	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.878 S = 0.080	CV(2)= 0.014	K factor**= 2.523	TL(2)= 6.080	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

5.994							
5.958	<u> </u>						
5.930	Current	Quarter Data					
5.823 5.966	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
5.919	MW373	Downgradient	t Yes	793	YES	6.676	N/A
LN(Result)							

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

5.958

5.996

5.994

5.823

5.793

5.817

5.820

5.869

5.784

5.811

5.778

MW395

Result

387

402

401

387

376

338

390

372

MW397

Result

338

328

336

337

354

325

334

323

Wells with Transformed Result

Well Number:

Date Collected

1/22/2014

4/9/2014

7/17/2014

10/27/2014

1/6/2015

4/22/2015

7/17/2015

10/22/2015

Well Number:

Date Collected

1/22/2014

4/8/2014

7/16/2014

10/21/2014

1/7/2015

4/22/2015

7/15/2015

10/22/2015

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical AnalysisCurrent Background ComparisonDissolved SolidsUNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 177.625 S = 22.102	CV(1)= 0.124	K factor**= 2.523	TL(1)= 233.389	LL(1)= N/A
Statistics-Transformed Background	X = 5 172 $S = 0.124$	CV(2) = 0.024	K factor**= 2 523	TL(2) = 5.485	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW395	
Date Collected	Result	LN(Result)
1/22/2014	213	5.361
4/9/2014	217	5.380
7/17/2014	166	5.112
10/27/2014	181	5.198
1/6/2015	147	4.990
4/22/2015	179	5.187
7/17/2015	203	5.313
10/22/2015	194	5.268
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.247
Date Collected	Result	. ,
Date Collected 1/22/2014	Result 190	5.247
Date Collected 1/22/2014 4/8/2014	Result 190 171	5.247 5.142
Date Collected 1/22/2014 4/8/2014 7/16/2014	Result 190 171 167	5.247 5.142 5.118
Date Collected 1/22/2014 4/8/2014 7/16/2014 10/21/2014	Result 190 171 167 161	5.247 5.142 5.118 5.081
Date Collected 1/22/2014 4/8/2014 7/16/2014 10/21/2014 1/7/2015	Result 190 171 167 161 159	5.247 5.142 5.118 5.081 5.069

Current Background Data from Upgradient

Wells with Transformed Result

Data

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	507	YES	6.229	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical AnalysisCurrent Background ComparisonMagnesiumUNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.661	S= 1.826	CV(1)= 0.189	K factor**= 2.523	TL(1)= 14.269	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.251	S = 0.189	CV(2) =0.084	K factor**= 2.523	TL(2)= 2.729	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW373	Downgradient	Yes	26.4	YES	3.273	N/A

Date Collected Result 1/22/2014 10.8

Well Number:

Wells with Transformed Result

4/9/2014	12.2	2.501
7/17/2014	11	2.398
10/27/2014	11.3	2.425
1/6/2015	9.96	2.299
4/22/2015	11.3	2.425
7/17/2015	11.8	2.468
10/22/2015	12.3	2.510
Well Number:	MW397	
Date Collected	Result	LN(Result)
Date Collected 1/22/2014	Result 8.08	LN(Result) 2.089
		. ,
1/22/2014	8.08	2.089
1/22/2014 4/8/2014	8.08 8.36	2.089 2.123
1/22/2014 4/8/2014 7/16/2014	8.08 8.36 7.49	2.089 2.123 2.014
1/22/2014 4/8/2014 7/16/2014 10/21/2014	8.08 8.36 7.49 8.07	2.089 2.123 2.014 2.088
1/22/2014 4/8/2014 7/16/2014 10/21/2014 1/7/2015	8.08 8.36 7.49 8.07 7.64	2.089 2.123 2.014 2.088 2.033
1/22/2014 4/8/2014 7/16/2014 10/21/2014 1/7/2015 4/22/2015	8.08 8.36 7.49 8.07 7.64 8.09	2.089 2.123 2.014 2.088 2.033 2.091

Current Background Data from Upgradient

LN(Result)

2.380

MW395

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis **Current Background Comparison UNITS: mV LRGA Oxidation-Reduction Potential**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =477.563 S = 132.639	CV(1)= 0.278	K factor**= 2.523	TL(1)= 812.212	LL(1)= N/A
Statistics-Transformed Background Data	X =6.136 S = 0.259	CV(2)= 0.042	K factor**= 2.523	TL(2)= 6.789	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	415	NO	6.028	N/A
MW385	Sidegradient	Yes	466	NO	6.144	N/A
MW388	Downgradient	Yes	410	NO	6.016	N/A
MW392	Downgradient	Yes	414	NO	6.026	N/A
MW395	Upgradient	Yes	380	NO	5.940	N/A
MW397	Upgradient	Yes	473	NO	6.159	N/A

MW395 Well Number: Date Collected LN(Result) Result 1/22/2014 803 6 688

Current Background Data from Upgradient

Wells with Transformed Result

1/22/2014	803	6.688
4/9/2014	537	6.286
7/17/2014	381	5.943
10/27/2014	307	5.727
1/6/2015	586	6.373
4/22/2015	474	6.161
7/17/2015	468	6.148
10/22/2015	378	5.935
Well Number:	MW397	
Date Collected	Result	LN(Result)
Date Collected 1/22/2014	Result 389	LN(Result) 5.964
		· · ·
1/22/2014	389	5.964
1/22/2014 4/8/2014	389 363	5.964 5.894
1/22/2014 4/8/2014 7/16/2014	389 363 382	5.964 5.894 5.945
1/22/2014 4/8/2014 7/16/2014 10/21/2014	389 363 382 380	5.964 5.894 5.945 5.940
1/22/2014 4/8/2014 7/16/2014 10/21/2014 1/7/2015	389 363 382 380 675	5.964 5.894 5.945 5.940 6.515
1/22/2014 4/8/2014 7/16/2014 10/21/2014 1/7/2015 4/22/2015	389 363 382 380 675 471	5.964 5.894 5.945 5.940 6.515 6.155

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2016 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.892 S = 0.915	CV(1)= 0.084	K factor**= 2.523	TL(1)= 13.200	LL(1)= N/A
Statistics-Transformed Background Data	X =2.385 S = 0.083	CV(2)= 0.035	K factor**= 2.523	TL(2)= 2.595	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	18.4	YES	2.912	N/A
MW373	Downgradient	Yes	127	YES	4.844	N/A
MW385	Sidegradient	Yes	21.3	YES	3.059	N/A
MW388	Downgradient	Yes	23.5	YES	3.157	N/A

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-21

Date Collected	Result	LN(Result)
1/22/2014	9.8	2.282
4/9/2014	9.77	2.279
7/17/2014	10.1	2.313
10/27/2014	10.6	2.361
1/6/2015	10.1	2.313
4/22/2015	10.1	2.313
7/17/2015	10.2	2.322
10/22/2015	10	2.303
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.485
Date Collected	Result	· · · · · ·
Date Collected 1/22/2014	Result 12	2.485
Date Collected 1/22/2014 4/8/2014	Result 12 11.7	2.485 2.460
Date Collected 1/22/2014 4/8/2014 7/16/2014	Result 12 11.7 11.7	2.485 2.460 2.460
Date Collected 1/22/2014 4/8/2014 7/16/2014 10/21/2014	Result 12 11.7 11.7 12.6	2.485 2.460 2.460 2.534
Date Collected 1/22/2014 4/8/2014 7/16/2014 10/21/2014 1/7/2015	Result 12 11.7 11.7 12.6 11.7	2.485 2.460 2.460 2.534 2.460

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW395

Wells with Exceedances MW370 MW373 MW385 MW388

C-746-S/T First Quarter 2016 Statistical Analysis **Current Background Comparison UNITS: pCi/L Technetium-99 LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =13.401 S = 6.758	CV(1)= 0.504	K factor**= 2.523	TL(1)= 30.451	LL(1)= N/A
Statistics-Transformed Background Data	X =2.493 S = 0.462	CV(2)= 0.185	K factor**= 2.523	TL(2)= 3.659	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	Yes	50.3	YES	3.918	N/A
MW385	Sidegradient	Yes	199	YES	5.293	N/A
MW388	Downgradient	t Yes	164	YES	5.100	N/A

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

2.996

2.416

2.086

2.667

2.833

1.981

2.688

2.240

3.517

2.803

2.361

2.688

1.522

2.232

2.580

2.285

LN(Result)

MW395

Result

20

11.2

8.05

14.4

7.25

14.7

9.39

MW397

Result

33.7

16.5

10.6

14.7

4.58

9.32

13.2

9.83

17

Wells with Transformed Result

Well Number:

Date Collected

1/22/2014

4/9/2014

7/17/2014

1/6/2015

4/22/2015

7/17/2015

10/22/2015

1/22/2014

4/8/2014

7/16/2014

10/21/2014

1/7/2015

4/22/2015

7/15/2015

10/22/2015

Well Number:

Date Collected

10/27/2014

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Х Mean und results)

** Read fro ound-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-22

Wells with Exceedances MW373 MW385 MW388

	,	· ·			
, $X = (sum$	of backgro	ound resu	lts)/(cou	int of b	ackgrou
om Table 5,	Appendix	B of Stati	stical A	nalysis	of Gro
1	1 1	C1 1	1	1. /	

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

April 19, 2016

Ms. Myrna Redfield Fluor Federal Services, Inc. 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Redfield:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in biology, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Fluor Federal Services, Inc.

For this project, the statistical analyses conducted on the first quarter 2016 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

R. Blewett

Jennifer R. Blewett

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

GROUNDWATER FLOW RATE AND DIRECTION

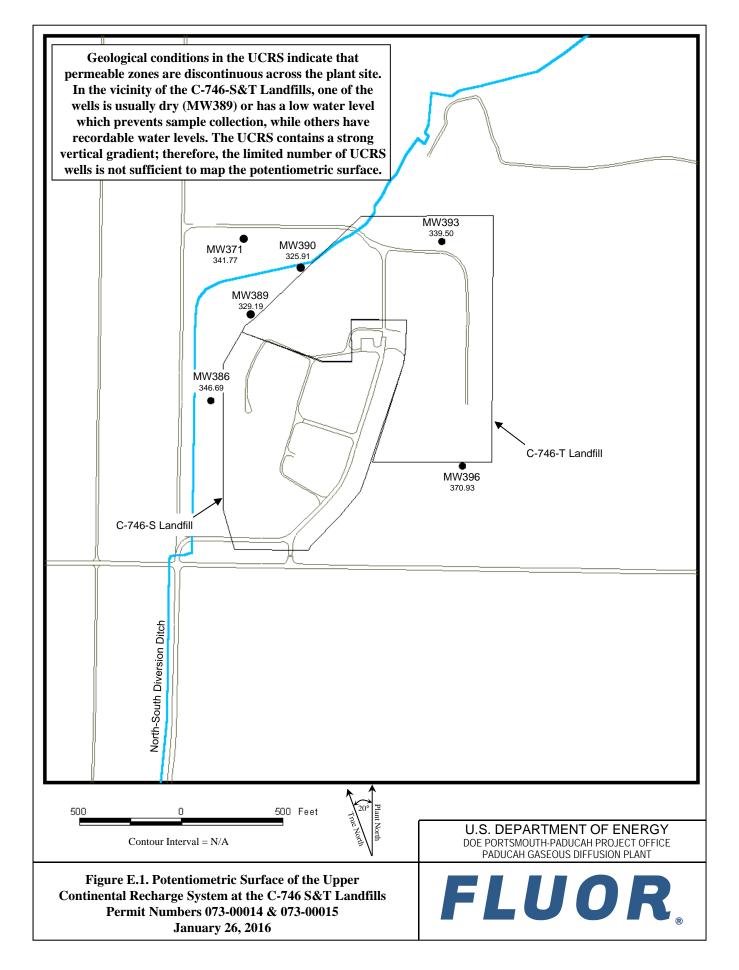
THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT—QUARTERLY, 1st CY 2016 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u> LAB ID: <u>None</u> For Official Use Only

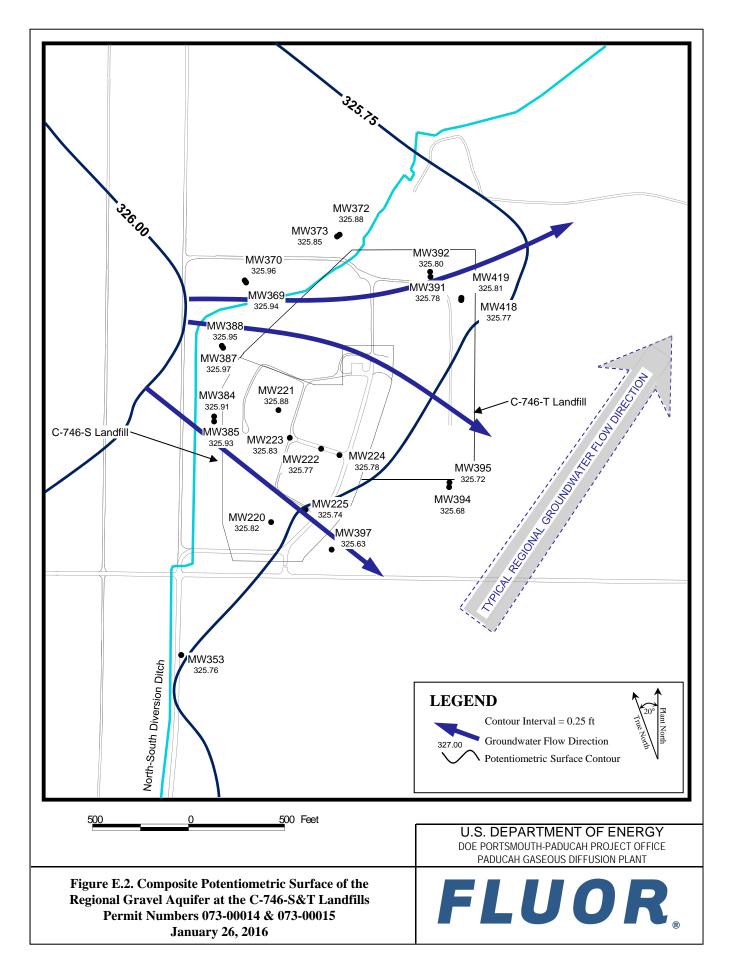
GROUNDWATER FLOW RATE AND DIRECTION

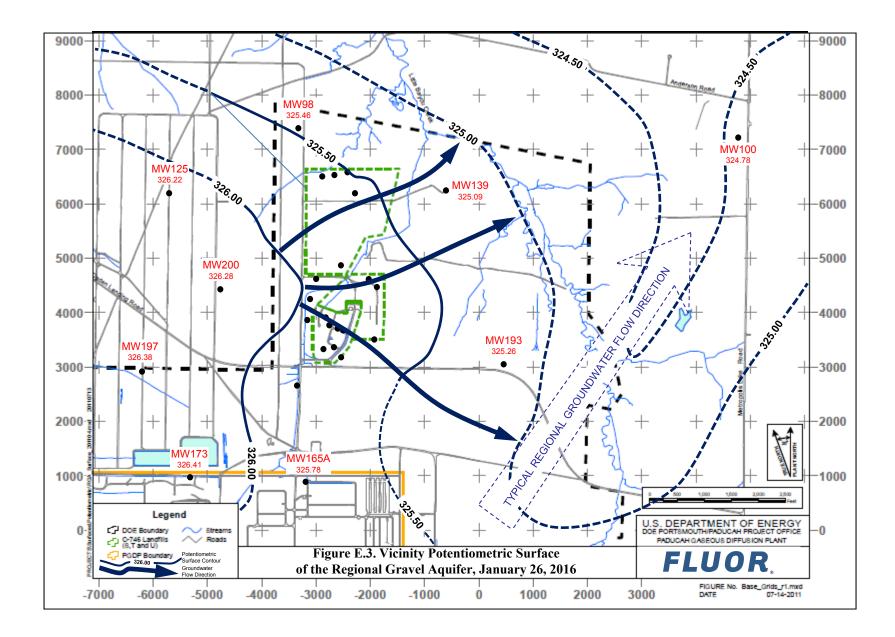
Whenever monitoring wells (MWs) are sampled, 401 *KAR* 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2016 and to determine the groundwater flow rate and direction.


Water levels during this reporting period were measured on January 26, 2016. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had sufficient water for measurement of the water level but insufficient water for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters.¹ Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill is 1.88×10^{-4} ft/ft. Additional water level measurements in January (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 2.22×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.


Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. During January 2016, the groundwater flow direction in the immediate area of the landfill was oriented southeast to east.


¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

(ft amsl) (in Hg) (ft H_4) (ft amsl) (ft) (ft				C-746-S&	&T Landfills (Ja	anuary 201	6) Water Le	vels			
(ft amsl) (in Hg) (ft H_4) (ft amsl) (ft) (ft								Ra	w Data	*Corre	ected Data
1/26/2016 8:46 MW220 URGA 381.44 30.20 -0.03 55.65 325.79 55.62 325.8 1/26/2016 8:50 MW221 URGA 390.83 30.20 -0.03 64.98 325.85 64.95 325.81 1/26/2016 8:55 MW222 URGA 394.87 30.20 -0.03 69.13 325.74 69.10 325.71 1/26/2016 8:57 MW224 URGA 395.41 30.20 -0.03 69.66 325.75 69.63 325.71 1/26/2016 9:30 MW353 LRGA 374.86 30.20 -0.03 59.84 325.71 59.81 325.71 1/26/2016 8:42 MW384 URGA 365.66 30.20 -0.03 39.18 325.88 39.15 325.91 1/26/2016 8:44 MW385 LRGA 365.21 30.20 -0.03 39.64 325.90 39.61 325.91 1/26/2016 8:44 MW387 URGA 363.27 30.20 -0.03 37.33 325.92 37.30 325.91 <	Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
1/26/2016 8:50 MW221 URGA 390.83 30.20 -0.03 64.98 325.85 64.95 325.81 1/26/2016 8:55 MW222 URGA 394.87 30.20 -0.03 69.13 325.74 69.10 325.71 1/26/2016 8:57 MW224 URGA 395.41 30.20 -0.03 69.63 325.75 69.63 325.71 1/26/2016 8:57 MW224 URGA 385.55 30.20 -0.03 49.13 325.73 49.10 325.71 1/26/2016 8:42 MW384 URGA 365.06 30.20 -0.03 39.18 325.88 39.15 325.91 1/26/2016 8:44 MW385 LRGA 365.21 30.20 -0.03 39.64 325.94 37.30 325.94 1/26/2016 8:44 MW386 UCRS 363.27 30.20 -0.03 37.33 325.94 37.30 325.94 1/26/2016 8:41 MW388 LRGA 366.52 30.20 -0.03 37.33 325.94 37.30 325.71					(ft amsl)	(in Hg)	(ft H ₂ 0)	(ft)	(ft amsl)	(ft)	(ft amsl)
1/26/2016 8:55 MW222 URGA 394.87 30.20 -0.03 69.13 325.74 69.10 325.7 1/26/2016 8:52 MW223 URGA 394.03 30.20 -0.03 68.23 325.80 68.20 325.81 1/26/2016 9:00 MW225 URGA 395.41 30.20 -0.03 69.66 325.75 69.63 325.71 59.81 325.71 159.81 325.71 159.81 325.71 159.81 325.71 159.81 325.73 49.10 325.71 126/2016 8:42 MW384 URGA 365.06 30.20 -0.03 39.18 325.79 39.61 325.9 1/26/2016 8:44 MW385 LRGA 365.54 30.20 -0.03 39.64 325.90 39.61 325.9 1/26/2016 8:43 MW386 UCRS 365.21 30.20 -0.03 37.33 325.92 37.30 325.99 37.63 325.91 126/2016 8:38 MW389 UCRS 363.82 30.20 -0.03 34.48 325.78 40.76 325.79 <td>1/26/2016</td> <td>8:46</td> <td>MW220</td> <td>URGA</td> <td>381.44</td> <td>30.20</td> <td>-0.03</td> <td>55.65</td> <td>325.79</td> <td>55.62</td> <td>325.82</td>	1/26/2016	8:46	MW220	URGA	381.44	30.20	-0.03	55.65	325.79	55.62	325.82
1/26/2016 8:52 MW223 URGA 394.03 30.20 -0.03 68.23 325.80 68.20 325.8 1/26/2016 8:57 MW224 URGA 395.41 30.20 -0.03 69.66 325.75 69.63 325.71 1/26/2016 9:00 MW353 LRGA 374.86 30.20 -0.03 49.13 325.73 49.10 325.73 1/26/2016 8:42 MW384 URGA 365.06 30.20 -0.03 39.18 325.73 49.10 325.9 1/26/2016 8:44 MW385 LRGA 365.51 30.20 -0.03 39.18 325.90 39.61 325.9 1/26/2016 8:44 MW386 UCRS 365.21 30.20 -0.03 37.33 325.94 37.30 325.91 1/26/2016 8:41 MW388 LRGA 363.27 30.20 -0.03 37.33 325.92 37.30 325.91 1/26/2016 8:34 MW389 UCRS 360.36 30.20 -0.03 34.48 325.88 34.45 325.91 <td>1/26/2016</td> <td>8:50</td> <td>MW221</td> <td>URGA</td> <td>390.83</td> <td>30.20</td> <td>-0.03</td> <td>64.98</td> <td>325.85</td> <td>64.95</td> <td>325.88</td>	1/26/2016	8:50	MW221	URGA	390.83	30.20	-0.03	64.98	325.85	64.95	325.88
1/26/2016 8:57 MW224 URGA 395.41 30.20 -0.03 69.66 325.75 69.63 325.71 1/26/2016 9:00 MW225 URGA 385.55 30.20 -0.03 59.84 325.71 59.81 325.71 1/26/2016 8:42 MW384 URGA 374.86 30.20 -0.03 49.13 325.73 49.10 325.71 1/26/2016 8:42 MW384 URGA 365.06 30.20 -0.03 39.64 325.90 39.61 325.91 1/26/2016 8:44 MW385 LRGA 365.21 30.20 -0.03 37.33 325.94 37.30 325.91 1/26/2016 8:44 MW388 LRGA 363.25 30.20 -0.03 37.33 325.92 37.30 325.91 1/26/2016 8:38 MW389 UCRS 363.82 30.20 -0.03 34.48 325.88 34.45 325.91 1/26/2016 8:32 MW390 UCRS 366.57 30.20 -0.03 34.48 325.88 34.45 325.91	1/26/2016	8:55	MW222	URGA	394.87	30.20	-0.03	69.13	325.74	69.10	325.77
1/26/2016 9:00 MW225 URGA 385.55 30.20 -0.03 59.84 325.71 59.81 325.71 1/26/2016 9:30 MW353 LRGA 374.86 30.20 -0.03 49.13 325.73 49.10 325.73 1/26/2016 8:42 MW384 URGA 365.06 30.20 -0.03 39.18 325.88 39.15 325.9 1/26/2016 8:44 MW385 LRGA 365.21 30.20 -0.03 37.33 325.94 37.30 325.91 1/26/2016 8:43 MW387 URGA 363.25 30.20 -0.03 37.33 325.92 37.30 325.91 1/26/2016 8:41 MW388 LRGA 363.25 30.20 -0.03 34.66 329.16 34.63 329.1 1/26/2016 8:38 MW389 UCRS 366.36 30.20 -0.03 34.48 325.88 34.45 325.91 1/26/2016 8:32 MW391 URGA 366.54 30.17 0.00 27.09 39.50 27.09 39.50 <td< td=""><td>1/26/2016</td><td>8:52</td><td>MW223</td><td>URGA</td><td>394.03</td><td>30.20</td><td>-0.03</td><td>68.23</td><td>325.80</td><td>68.20</td><td>325.83</td></td<>	1/26/2016	8:52	MW223	URGA	394.03	30.20	-0.03	68.23	325.80	68.20	325.83
1/26/2016 9:30 MW353 LRGA 374.86 30.20 -0.03 49.13 325.73 49.10 325.7 1/26/2016 8:42 MW384 URGA 365.06 30.20 -0.03 39.18 325.88 39.15 325.9 1/26/2016 8:44 MW385 LRGA 365.54 30.20 -0.03 39.64 325.90 39.61 325.9 1/26/2016 8:43 MW386 UCRS 365.21 30.20 -0.03 18.55 346.66 18.52 346.6 1/26/2016 8:40 MW387 URGA 363.27 30.20 -0.03 37.33 325.92 37.30 325.9 1/26/2016 8:41 MW388 LRGA 363.25 30.20 -0.03 37.33 325.92 37.30 325.9 1/26/2016 8:36 MW390 UCRS 363.82 30.20 -0.03 34.46 329.16 34.63 329.1 1/26/2016 8:36 MW390 UCRS 360.36 30.20 -0.03 34.48 325.88 34.45 325.9 1/26/2016 8:22 MW391 URGA 366.54 30.17 0.00 40.76 325.78 40.76 325.7 1/26/2016 8:24 MW392 LRGA 365.67 30.20 -0.03 39.90 325.77 39.87 325.8 1/26/2016 8:23 MW393 UCRS 366.59 30.17 0.00 27.09 339.50 27.09 339.5 1/26/2016 8:31 MW394 URGA 378.32 30.20 -0.03 52.67 325.65 52.64 325.6 1/26/2016 8:31 MW394 URGA 378.32 30.20 -0.03 7.74 370.90 7.71 370.9 1/26/2016 8:30 MW396 UCRS 378.64 30.20 -0.03 61.30 325.60 61.27 325.6 1/26/2016 8:30 MW397 LRGA 366.78 30.20 -0.03 41.04 325.74 41.01 325.7 1/26/2016 8:27 MW419 LRGA 366.68 30.20 -0.03 41.04 325.74 41.01 325.7 1/26/2016 8:27 MW419 LRGA 366.68 30.20 -0.03 40.90 325.78 40.87 325.8 Initial Barometric Pressure 30.17 Elev = elevation amsl = above mean sea level BP = barometric pressure DTW = depth to water in feet below datum URGA = Upper Continental Recharge System	1/26/2016	8:57	MW224	URGA	395.41	30.20	-0.03	69.66	325.75	69.63	325.78
1/26/2016 8:42 MW384 URGA 365.06 30.20 -0.03 39.18 325.88 39.15 325.9 1/26/2016 8:44 MW385 LRGA 365.54 30.20 -0.03 39.64 325.90 39.61 325.9 1/26/2016 8:43 MW386 UCRS 365.21 30.20 -0.03 18.55 346.66 18.52 346.6 1/26/2016 8:40 MW387 URGA 363.27 30.20 -0.03 37.33 325.94 37.30 325.9 1/26/2016 8:41 MW388 LRGA 363.25 30.20 -0.03 37.33 325.92 37.30 325.9 1/26/2016 8:38 MW389 UCRS 363.82 30.20 -0.03 34.66 329.16 34.63 329.1 1/26/2016 8:36 MW390 UCRS 360.36 30.20 -0.03 34.48 325.88 34.45 325.9 1/26/2016 8:22 MW391 URGA 366.54 30.17 0.00 40.76 325.77 39.87 325.8 1/26/2016 8:24 MW392 LRGA 365.67 30.20 -0.03 39.90 325.77 39.87 325.8 1/26/2016 8:24 MW393 UCRS 366.59 30.17 0.00 27.09 339.50 27.09 339.5 1/26/2016 8:31 MW394 URGA 378.32 30.20 -0.03 52.67 325.65 52.64 325.6 1/26/2016 8:31 MW394 URGA 378.32 30.20 -0.03 7.74 370.90 7.71 370.9 1/26/2016 8:30 MW395 LRGA 379.01 30.21 -0.05 53.34 325.67 53.29 325.7 1/26/2016 8:30 MW397 LRGA 366.78 30.20 -0.03 61.30 325.60 61.27 325.6 1/26/2016 8:30 MW397 LRGA 366.78 30.20 -0.03 41.04 325.74 41.01 325.7 1/26/2016 8:27 MW419 LRGA 366.78 30.20 -0.03 41.04 325.74 41.01 325.7 1/26/2016 8:27 MW419 LRGA 366.78 30.20 -0.03 41.04 325.74 41.01 325.7 1/26/2016 8:27 MW419 LRGA 366.78 30.20 -0.03 41.04 325.74 41.01 325.7 1/26/2016 8:27 MW419 LRGA 366.78 30.20 -0.03 40.90 325.78 40.87 325.8 Initial Barometric Pressure BP = barometric pressure DTW = depth to water in feet below datum UGA = Upper Regional Gravel Aquifer LRGA = Lower Regional Gravel Aquifer LRGA = Upper Continental Recharge System	1/26/2016	9:00	MW225	URGA	385.55	30.20	-0.03	59.84	325.71	59.81	325.74
1/26/2016 8:44 MW385 LRGA 365.54 30.20 -0.03 39.64 325.90 39.61 325.9 1/26/2016 8:43 MW386 UCRS 365.21 30.20 -0.03 18.55 346.66 18.52 346.66 1/26/2016 8:40 MW387 URGA 363.27 30.20 -0.03 37.33 325.94 37.30 325.9 1/26/2016 8:41 MW388 LRGA 363.25 30.20 -0.03 37.43 325.92 37.30 325.9 1/26/2016 8:36 MW390 UCRS 363.82 30.20 -0.03 34.46 325.88 34.45 325.9 1/26/2016 8:24 MW390 UCRS 366.54 30.17 0.00 40.76 325.77 39.87 325.8 1/26/2016 8:23 MW393 UCRS 366.59 30.17 0.00 27.09 339.50 27.09 339.51 225.65 52.64 325.67 53.29 325.7 1/26/2016 8:31 MW394 URGA 378.32 30.20 -0.03 <td< td=""><td>1/26/2016</td><td>9:30</td><td>MW353</td><td>LRGA</td><td>374.86</td><td>30.20</td><td>-0.03</td><td>49.13</td><td>325.73</td><td>49.10</td><td>325.76</td></td<>	1/26/2016	9:30	MW353	LRGA	374.86	30.20	-0.03	49.13	325.73	49.10	325.76
1/26/2016 8:43 MW386 UCRS 365.21 30.20 -0.03 18.55 346.66 18.52 346.66 1/26/2016 8:40 MW387 URGA 363.27 30.20 -0.03 37.33 325.94 37.30 325.9 1/26/2016 8:41 MW388 LRGA 363.25 30.20 -0.03 37.33 325.92 37.30 325.9 1/26/2016 8:38 MW389 UCRS 363.82 30.20 -0.03 34.66 329.16 34.63 329.1 1/26/2016 8:32 MW390 UCRS 360.36 30.20 -0.03 34.48 325.88 34.45 325.9 1/26/2016 8:22 MW391 URGA 366.54 30.17 0.00 40.76 325.77 39.87 325.8 1/26/2016 8:23 MW392 LRGA 376.57 30.20 -0.03 52.67 325.65 52.64 325.77 39.87 325.8 1/26/2016 8:31 MW394 URGA 378.32 30.20 -0.03 7.74 370.90 7.	1/26/2016	8:42	MW384	URGA	365.06	30.20	-0.03	39.18	325.88	39.15	325.91
1/26/2016 8:40 MW387 URGA 363.27 30.20 -0.03 37.33 325.94 37.30 325.9 1/26/2016 8:41 MW388 LRGA 363.25 30.20 -0.03 37.33 325.92 37.30 325.9 1/26/2016 8:38 MW389 UCRS 363.82 30.20 -0.03 34.66 329.16 34.63 329.11 1/26/2016 8:36 MW390 UCRS 360.36 30.20 -0.03 34.48 325.88 34.45 325.9 1/26/2016 8:22 MW391 URGA 366.54 30.17 0.00 40.76 325.78 40.76 325.7 1/26/2016 8:24 MW392 LRGA 365.67 30.20 -0.03 39.90 325.77 39.87 325.8 1/26/2016 8:31 MW394 URGA 378.32 30.20 -0.03 52.67 325.65 52.64 325.67 1/26/2016 8:30 MW395 LRGA 379.01 30.21 -0.05 53.34 325.67 53.29 325.71	1/26/2016	8:44	MW385	LRGA	365.54	30.20	-0.03	39.64	325.90	39.61	325.93
1/26/2016 8:41 MW388 LRGA 363.25 30.20 -0.03 37.33 325.92 37.30 325.9 1/26/2016 8:38 MW389 UCRS 363.82 30.20 -0.03 34.66 329.16 34.63 329.11 1/26/2016 8:36 MW390 UCRS 360.36 30.20 -0.03 34.48 325.88 34.45 325.9 1/26/2016 8:22 MW391 URGA 366.54 30.17 0.00 40.76 325.77 39.87 325.8 1/26/2016 8:24 MW392 LRGA 365.67 30.20 -0.03 39.90 325.77 39.87 325.8 1/26/2016 8:31 MW394 URGA 378.32 30.20 -0.03 52.67 325.65 52.64 325.6 1/26/2016 8:30 MW395 LRGA 379.01 30.21 -0.05 53.34 325.67 53.29 325.7 1/26/2016 8:30 MW397 LRGA 386.90 30.20 -0.03 61.30 325.60 61.27 325.60	1/26/2016	8:43	MW386	UCRS	365.21	30.20	-0.03	18.55	346.66	18.52	346.69
1/26/2016 8:38 MW389 UCRS 363.82 30.20 -0.03 34.66 329.16 34.63 329.1 1/26/2016 8:36 MW390 UCRS 360.36 30.20 -0.03 34.48 325.88 34.45 325.9 1/26/2016 8:22 MW391 URGA 366.54 30.17 0.00 40.76 325.77 39.87 325.8 1/26/2016 8:24 MW392 LRGA 365.67 30.20 -0.03 39.90 325.77 39.87 325.8 1/26/2016 8:23 MW394 URGA 378.32 30.20 -0.03 52.67 325.65 52.64 325.6 1/26/2016 8:31 MW395 LRGA 379.01 30.21 -0.05 53.34 325.67 53.29 325.7 1/26/2016 8:30 MW397 LRGA 386.90 30.20 -0.03 7.74 370.90 7.71 370.90 1/26/2016 8:25 MW418 URGA 366.78 30.20 -0.03 41.04 325.74 41.01 325.78	1/26/2016	8:40	MW387	URGA	363.27	30.20	-0.03	37.33	325.94	37.30	325.97
1/26/2016 8:36 MW 390 UCRS 360.36 30.20 -0.03 34.48 325.88 34.45 325.9 1/26/2016 8:22 MW 391 URGA 366.54 30.17 0.00 40.76 325.78 40.76 325.77 1/26/2016 8:24 MW 392 LRGA 365.67 30.20 -0.03 39.90 325.77 39.87 325.8 1/26/2016 8:23 MW 393 UCRS 366.59 30.17 0.00 27.09 339.50 27.09 339.51 1/26/2016 8:31 MW 394 URGA 378.32 30.20 -0.03 52.67 325.65 52.64 325.67 1/26/2016 8:30 MW 396 UCRS 378.64 30.20 -0.03 7.74 370.90 7.71 370.90 1/26/2016 8:33 MW 397 LRGA 366.78 30.20 -0.03 41.04 325.74 41.01 325.7 1/26/2016 8:27 MW 419 LRGA 366.68 30.20 -0.03 40.90 325.78 40.87 325.8	1/26/2016	8:41	MW388	LRGA	363.25	30.20	-0.03	37.33	325.92	37.30	325.95
1/26/20168:22MW391URGA 366.54 30.17 0.00 40.76 325.78 40.76 325.7 $1/26/2016$ 8:24MW392LRGA 365.67 30.20 -0.03 39.90 325.77 39.87 325.8 $1/26/2016$ 8:23MW393UCRS 366.59 30.17 0.00 27.09 339.50 27.09 339.51 $1/26/2016$ 8:31MW394URGA 378.32 30.20 -0.03 52.67 325.65 52.64 325.71 $1/26/2016$ 14:01MW395LRGA 379.01 30.21 -0.05 53.34 325.67 53.29 325.71 $1/26/2016$ 8:30MW396UCRS 378.64 30.20 -0.03 7.74 370.90 7.71 370.91 $1/26/2016$ 8:33MW397LRGA 386.90 30.20 -0.03 61.30 325.60 61.27 325.61 $1/26/2016$ 8:25MW418URGA 366.78 30.20 -0.03 41.04 325.74 41.01 325.78 $1/26/2016$ $8:27$ MW419LRGA 366.68 30.20 -0.03 40.90 325.78 40.87 325.88 Initial Barometric Pressure 30.17 Elev = elevationamsl = above mean sea levelBP = barometric pressureDTW = depth to water in feet below datumURGA = Lower Regional Gravel Aquifer </td <td>1/26/2016</td> <td>8:38</td> <td>MW389</td> <td>UCRS</td> <td>363.82</td> <td>30.20</td> <td>-0.03</td> <td>34.66</td> <td>329.16</td> <td>34.63</td> <td>329.19</td>	1/26/2016	8:38	MW389	UCRS	363.82	30.20	-0.03	34.66	329.16	34.63	329.19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/26/2016	8:36	MW390	UCRS	360.36	30.20	-0.03	34.48	325.88	34.45	325.91
1/26/2016 8:23 MW393 UCRS 366.59 30.17 0.00 27.09 339.50 27.09 339.5 1/26/2016 8:31 MW394 URGA 378.32 30.20 -0.03 52.67 325.65 52.64 325.67 1/26/2016 14:01 MW395 LRGA 379.01 30.21 -0.05 53.34 325.67 53.29 325.7 1/26/2016 8:30 MW396 UCRS 378.64 30.20 -0.03 7.74 370.90 7.71 370.9 1/26/2016 8:33 MW397 LRGA 386.90 30.20 -0.03 61.30 325.60 61.27 325.6 1/26/2016 8:25 MW418 URGA 366.78 30.20 -0.03 41.04 325.74 41.01 325.7 1/26/2016 8:27 MW419 LRGA 366.68 30.20 -0.03 40.90 325.78 40.87 325.8 Initial Barometric Pressure 30.17 Elev = elevation 30.17 Elev = elevation 40.90 325.78 40.87 325.8	1/26/2016	8:22	MW391	URGA	366.54	30.17	0.00	40.76	325.78	40.76	325.78
1/26/2016 8:31 MW394 URGA 378.32 30.20 -0.03 52.67 325.65 52.64 325.6 1/26/2016 14:01 MW395 LRGA 379.01 30.21 -0.05 53.34 325.67 53.29 325.7 1/26/2016 8:30 MW396 UCRS 378.64 30.20 -0.03 7.74 370.90 7.71 370.9 1/26/2016 8:33 MW397 LRGA 386.90 30.20 -0.03 61.30 325.60 61.27 325.6 1/26/2016 8:25 MW418 URGA 366.78 30.20 -0.03 41.04 325.74 41.01 325.7 1/26/2016 8:27 MW419 LRGA 366.68 30.20 -0.03 40.90 325.78 40.87 325.8 Initial Barometric Pressure 30.17 Elev = elevation amsl = above mean sea level BP = barometric pressure 30.17 DTW = depth to water in feet below datum URGA = Lower Regional Gravel Aquifer LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge System	1/26/2016	8:24	MW392	LRGA	365.67	30.20	-0.03	39.90	325.77	39.87	325.80
1/26/2016 $14:01$ MW395 LRGA 379.01 30.21 -0.05 53.34 325.67 53.29 325.7 $1/26/2016$ $8:30$ MW396 UCRS 378.64 30.20 -0.03 7.74 370.90 7.71 370.9 $1/26/2016$ $8:33$ MW397 LRGA 386.90 30.20 -0.03 61.30 325.60 61.27 325.6 $1/26/2016$ $8:25$ MW418 URGA 366.78 30.20 -0.03 41.04 325.74 41.01 325.7 $1/26/2016$ $8:27$ MW419 LRGA 366.68 30.20 -0.03 40.90 325.78 40.87 325.8 Initial Barometric Pressure 30.17 Elev = elevation amsl = above mean sea level BP = barometric pressure DTW = depth to water in feet below datum URGA = Upper Regional Gravel Aquifer LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge System UCRS = Upper Continental Recharge System UCRS = Upper Continental Recharge System	1/26/2016	8:23	MW393	UCRS	366.59	30.17	0.00	27.09	339.50	27.09	339.50
1/26/2016 $8:30$ MW396 UCRS 378.64 30.20 -0.03 7.74 370.90 7.71 370.9 $1/26/2016$ $8:33$ MW397 LRGA 386.90 30.20 -0.03 61.30 325.60 61.27 325.6 $1/26/2016$ $8:25$ MW418 URGA 366.78 30.20 -0.03 41.04 325.74 41.01 325.7 $1/26/2016$ $8:27$ MW419 LRGA 366.68 30.20 -0.03 40.90 325.78 40.87 325.8 Initial Barometric Pressure 30.17 BP = barometric pressure $30.17 BP = barometric pressure DTW = depth to water in feet below datum URGA = Upper Regional Gravel Aquifer URGA = Lower Regional Gravel Aquifer URGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge System URGR = Upper Continental Recharge System$	1/26/2016	8:31	MW394	URGA	378.32	30.20	-0.03	52.67	325.65	52.64	325.68
1/26/2016 $8:33$ MW397 LRGA 386.90 30.20 -0.03 61.30 325.60 61.27 325.6 $1/26/2016$ $8:25$ MW418 URGA 366.78 30.20 -0.03 41.04 325.74 41.01 325.7 $1/26/2016$ $8:27$ MW419 LRGA 366.68 30.20 -0.03 40.90 325.78 40.87 325.8 Initial Barometric Pressure 30.17 Elev = elevation amsl = above mean sea level BP = barometric pressure $BTW =$ depth to water in feet below datum URGA = Upper Regional Gravel Aquifer LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge System	1/26/2016	14:01	MW395	LRGA	379.01	30.21	-0.05	53.34	325.67	53.29	325.72
1/26/2016 $8:25$ MW418URGA 366.78 30.20 -0.03 41.04 325.74 41.01 325.7 $1/26/2016$ $8:27$ MW419LRGA 366.68 30.20 -0.03 40.90 325.78 40.87 325.8 Initial Barometric Pressure 30.17 Elev = elevationamsl = above mean sea levelBP = barometric pressureDTW = depth to water in feet below datumURGA = Lower Regional Gravel AquiferLRGA = Lower Regional Gravel AquiferUCRS = Upper Continental Recharge System	1/26/2016	8:30	MW396	UCRS	378.64	30.20	-0.03	7.74	370.90	7.71	370.93
1/26/2016 8:27 MW419 LRGA 366.68 30.20 -0.03 40.90 325.78 40.87 325.8 Initial Barometric Pressure 30.17 Elev = elevation amsl = above mean sea level BP = barometric pressure DTW = depth to water in feet below datum URGA = Upper Regional Gravel Aquifer LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge System	1/26/2016	8:33	MW397	LRGA	386.90	30.20	-0.03	61.30	325.60	61.27	325.63
Initial Barometric Pressure 30.17 Elev = elevation amsl = above mean sea level BP = barometric pressure DTW = depth to water in feet below datum URGA = Upper Regional Gravel Aquifer LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge System	1/26/2016	8:25	MW418	URGA	366.78	30.20	-0.03	41.04	325.74	41.01	325.77
Elev = elevation amsl = above mean sea level BP = barometric pressure DTW = depth to water in feet below datum URGA = Upper Regional Gravel Aquifer LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge System	1/26/2016	8:27	MW419	LRGA	366.68	30.20	-0.03	40.90	325.78	40.87	325.81
Elev = elevation amsl = above mean sea level BP = barometric pressure DTW = depth to water in feet below datum URGA = Upper Regional Gravel Aquifer LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge System	Initial Baro	metric Pı	ressure	30.17							
BP = barometric pressure DTW = depth to water in feet below datum URGA = Upper Regional Gravel Aquifer LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge System											
BP = barometric pressure DTW = depth to water in feet below datum URGA = Upper Regional Gravel Aquifer LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge System	amsl = abov	e mean	sea level								
DTW = depth to water in feet below datum URGA = Upper Regional Gravel Aquifer LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge System											
URGA = Upper Regional Gravel Aquifer LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge System				low datum							
LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge System											
UCRS = Upper Continental Recharge System	-		-	•							
		0		•							
*Assumes a barometric efficiency of 1.0		•		•••							

Table E.1. C-746-S&T Landfills First Quarter 2016 (January) Water Levels

	ft/ft
Beneath Landfill Mound	$1.88 imes 10^{-4}$
Vicinity	$2.22 imes 10^{-4}$

Table E.2. C-746-S&T Landfills Hydraulic Gradients

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific l	Discharge (q)	Average	e Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Beneath Landfill	Mound				
725	0.256	0.14	$4.82 imes 10^{-5}$	0.55	$1.93 imes 10^{-4}$
425	0.150	0.08	$2.82 imes 10^{-5}$	0.32	1.13×10^{-4}
Vicinity					
725	0.256	0.16	$5.68 imes10^{-5}$	0.64	$2.27 imes10^{-4}$
425	0.150	0.09	$3.33\times10^{\text{-5}}$	0.38	$1.33 imes 10^{-4}$

APPENDIX F

NOTIFICATIONS

THIS PAGE INTENTIONALLY LEFT BLANK

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the first quarter 2016 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	Parameter	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Technetium-99	MW369, MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW373, MW385, MW388
NOTE: Although to share time 00 is not sited	. 40 CED 8 202 4	A = -1

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

2/29/2016

Fluor Federal Services PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S and -T LANDFILLS PERMIT NUMBERS 073-00014 and 073-00015 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4808	MW372	Trichloroethene	8260B	9.87	ug/L	5
8004-4792	MW373	Trichloroethene Trichloroethene	8260B 8260B	9.93 9.89	ug/L ug/L	5 5
8004-4809	MW384	Beta activity Beta activity	9310 9310	170 153	pCi/L pCi/L	50 50
8004-4810	MW385	Beta activity	9310	172	pCi/L	50
8004-4815	MW387	Beta activity	9310	162	pCi/L	50
8004-4816	MW388	Beta activity	9310	146	pCi/L	50
8004-4811	MW390	Beta activity	9310	51.5	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	9.31	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	16.3	ug/L	5
8004-4802	MW394	Trichloroethene	8260B	6.44	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

THIS PAGE INTENTIONALLY LEFT BLANK

Groundwater Flow System			UCRS	5						1	URG	A								LRG	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
ACETONE																							
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
ALPHA ACTIVITY																							
Quarter 4, 2002																							
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*						*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003							*	*			*			*									
Quarter 1, 2004			*				*	*			*												
Quarter 2, 2004							*							*									
Quarter 3, 2004							*							*									
Quarter 4, 2004			*																				
Quarter 1, 2005			*		l		l			l	l	l		l									
Quarter 2, 2005			*			1	*																
Quarter 3, 2005			*				*			*											*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006							*						*										
Quarter 2, 2006	-		*				*																
Quarter 3, 2006							*															-	
Quarter 4, 2006	-		*			-	*																
Quarter 1, 2007	-					-	*										*						
Quarter 2, 2007	_						*										*						<u> </u>
Quarter 3, 2007	_						*										*						
Quarter 4, 2007	_						*																
· · ·	-						*							*								-	
Quarter 1, 2008	_						*				*			*									<u> </u>
Quarter 2, 2008	_										*												
Quarter 4, 2008	_						*																ļ
Quarter 1, 2009			*				*				*												
Quarter 1, 2010			*				*				*											-	
Quarter 2, 2010			*								*												
Quarter 3, 2010			*								*			*			*			*		-	
Quarter 1, 2011							*				*												
Quarter 2, 2011			*								*												
Quarter 2, 2012			*																				
Quarter 3, 2012							*																
Quarter 1, 2013							*				*												
Quarter 3, 2013			*		l		l			l	l	l		l									
Quarter 1, 2014						1	*																
Quarter 2, 2014						1					*												
Quarter 4, 2014			*			i –																	
Quarter 1, 2016						i –	*																
BARIUM																							
Quarter 3, 2003																							
Quarter 4, 2003		1											1										
						L	L	L	L	L	L			L	L		L	L	L	L	L		<u> </u>

Groundwater Flow System	1		UCRS	5						1	URGA	4							1	LRGA	4		
Gradient	S	D	D	D	U	s	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2002																							
Quarter 1, 2002																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																	_						
Quarter 4, 2005																							
Quarter 1, 2005																							
Quarter 2, 2006																							
Quarter 3, 2006			_																				
Quarter 4, 2006																	-						
Quarter 1, 2007																							
Quarter 1, 2007 Quarter 2, 2007																							
			-																-				
Quarter 3, 2007																							
Quarter 4, 2007																			-				
Quarter 1, 2008												-											
Quarter 2, 2008			-								-												
Quarter 3, 2008																				-			
Quarter 4, 2008			_							_													
Quarter 1, 2009																							
Quarter 2, 2009																				_			
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010			_							_							_						
Quarter 2, 2010																							
Quarter 3, 2010												_											
Quarter 4, 2010																							
Quarter 1, 2011			_																				L
Quarter 2, 2011																				_			L
Quarter 3, 2011												_											L
Quarter 4, 2011	I																			_			
Quarter 1, 2012																							
Quarter 2, 2012	I	L					L								L								
Quarter 3, 2012	I																			-			
Quarter 4, 2012																							
Quarter 1, 2013																	-						
Quarter 2, 2013	I																						
Quarter 3, 2013	I	L					L								L								
Quarter 4, 2013	I	L					L								L								
Quarter 1, 2014	I																			-			
Quarter 2, 2014	I																						
Quarter 3, 2014	I											_											
Quarter 4, 2014	<u> </u>							L			L								L				
Quarter 1, 2015	<u> </u>																						
Quarter 2, 2015	<u> </u>																						
Quarter 3, 2015	I	L					L	L							L				L				
Quarter 4, 2015	I	L					L	L							L				L				
Quarter 1, 2016																							

Groundwater Flow System			UCRS	5						1	URGA	4]	LRG	ł		
Gradient	S	D	D	D	U	S	S	s	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BROMIDE																							
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				1
CALCIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003			*																				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				-
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				-
Quarter 4, 2004			*									*							*				<u> </u>
Quarter 1, 2005		-										*							*				├
Quarter 2, 2005												*							*				├──
· · ·												*							*				<u> </u>
Quarter 3, 2005												*							* *				┣—
Quarter 4, 2005																							—
Quarter 1, 2006												*							*				<u> </u>
Quarter 2, 2006												*							*				
Quarter 3, 2006									-			*						-	*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				1
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				1
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				-
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				<u> </u>
												*							*				──
Quarter 2, 2009												*							* *				<u> </u>
Quarter 3, 2009																							<u> </u>
Quarter 4, 2009									-			*						-	*				\vdash
Quarter 1, 2010												*							*				
Quarter 2, 2010									-			*						-	*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				1
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				-
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				──
												*					<u> </u>		* *				┝──
Quarter 4, 2012														<u> </u>					*	<u> </u>			–
Quarter 1, 2013		<u> </u>										* *											_
Quarter 2, 2013			L	L	L		L	L		L		*							* :			L	<u> </u>
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*							*				Γ
Quarter 3, 2014		1									I	*	I		I			*	*				1
-		1										*							*				
Quarter 4, 2014																							
Quarter 4, 2014 Quarter 1, 2015												*	*						*				<u> </u>

Groundwater Flow System	T		UCRS	3						1	URG	A					1			LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well		389	390	393	396	221	222	223	224	384		372		391	220	394	385	370	373	388	392		
CALCIUM																							-
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
CARBON DISULFIDE																							-
Quarter 4, 2010											*												
Quarter 1, 2010												*									*		
CHEMICAL OXYGEN DEMAN	ND ND																						-
Quarter 1, 2003	I I			*																			
Quarter 2, 2003				*																			-
Quarter 3, 2003				*			*			*													-
Quarter 4, 2003				*																			
Quarter 1, 2004	*			*																			
Quarter 4, 2004	*																						
Quarter 1, 2005	*																						-
Quarter 2, 2005	*																-						
Quarter 3, 2005	*									*		*					-				*		
Quarter 4, 2005	*									*		-									-	┢──┤	
Quarter 1, 2006	*																						
Quarter 2, 2006	*																					-	-
Quarter 3, 2006	*																					-	
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 1, 2007 Quarter 2, 2007	*									Ŧ													
Quarter 3, 2007	*																						<u> </u>
Quarter 4, 2007	*																						
· ·	*																						-
Quarter 1, 2008	*																						<u> </u>
Quarter 2, 2008	*																						<u> </u>
Quarter 3, 2008																							<u> </u>
Quarter 4, 2008	*																						<u> </u>
Quarter 1, 2009	*																I			-			<u> </u>
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*							L	L	L		L			L		I						<u> </u>
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 3, 2011	*																						
Quarter 4, 2011	*																						
Quarter 1, 2012	*																						
Quarter 1, 2013	*		ſ														I						
Quarter 3, 2013	*																						
Quarter 3, 2014	*								*				*					*					
Quarter 4, 2014	1		l				*										1						
Quarter 2, 2015	1															*							
Quarter 3, 2015	1														*		1						
	-			-	-													-					<u> </u>

Groundwater Flow System			UCRS	3						1	URGA	A]	LRGA	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392		397
CHLORIDE																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				
Quarter 3, 2005			*																				<u> </u>
Quarter 4, 2005			*																				
Quarter 1, 2005			-															*					
Quarter 2, 2006			*																			├ ─-	
Quarter 3, 2006	_		*																			┣──┤	┣───
- ·			*																			<u> </u>	
Quarter 4, 2006			*																				
Quarter 1, 2007	_																					<u> </u>	<u> </u>
Quarter 2, 2007			*																				
Quarter 3, 2007			*																				
Quarter 4, 2007			*																				
Quarter 1, 2008			*																				
Quarter 2, 2008			*																				
Quarter 3, 2008			*																				
Quarter 4, 2008			*																				
Quarter 1, 2009			*																				
Quarter 2, 2009			*																				
Quarter 3, 2009			*																				
Quarter 4, 2009			*																				
Quarter 1, 2010			*																				
Quarter 2, 2010			*																				
Quarter 3, 2010			*																				<u> </u>
Quarter 4, 2010			*																				
Quarter 2, 2010			*																			-	
Quarter 3, 2011			*																			┢──┤	<u> </u>
Quarter 4, 2011	_		*																				
Quarter 3, 2012	_		*																			┣──┤	┣───
			*																			\vdash	<u> </u>
Quarter 3, 2013			*																				
Quarter 4, 2013	_																					\vdash	┣
Quarter 4, 2014			*																				
CHROMIUM								_															
Quarter 4, 2002			ļ									ļ										⊢	┣
Quarter 1, 2003		L			L			_	L		L		L										┣
Quarter 2, 2003			ļ			-						ļ										\vdash	┣
Quarter 3, 2009						•																	
COBALT							440																
Quarter 3, 2003							*																

Groundwater Flow System			UCRS								URGA									LRGA			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*					*		*									*				
Quarter 4, 2003			*							*									*				
Quarter 1, 2004																			*				
Quarter 2, 2004										*									*				1
Quarter 3, 2004										*									*				
Quarter 4, 2004			*							*									*				
Quarter 1, 2005										*		*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005																			*				
Quarter 4, 2005	-									*		*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				┢──
Quarter 3, 2006												*							*				
Quarter 4, 2006												-11-					*		*				
Quarter 1, 2008 Quarter 1, 2007	_											*					*		*				├
Quarter 1, 2007 Quarter 2, 2007	_											*					*		* *				
	_																*		*				
Quarter 3, 2007												*					*		*				
Quarter 4, 2007	_																*						<u> </u>
Quarter 1, 2008	_											*							*				
Quarter 2, 2008	_											*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*							*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*							*				
Quarter 2, 2012												*							*				1
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014									-			*						-	*		-		-
Quarter 2, 2014												*							*				
Quarter 3, 2014											-	*	-						*	-			├──
Quarter 4, 2014												*							*				
	_											*							*				
Quarter 1, 2015	_											* *							* *				┣──
Quarter 2, 2015	_					<u> </u>		<u> </u>	<u> </u>			* *										<u> </u>	<u> </u>
Quarter 3, 2015	_																		* *				<u> </u>
Quarter 4, 2015		L					L			L		* *		L					* *				⊢
Quarter 1, 2016								l		1	1	*	1	1					*	I			1

Groundwater Flow System			UCRS	3						i	URG	A								LRG	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				ļ
Quarter 1, 2003			*							*									*				ļ
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				ļ
Quarter 1, 2004			*									*							*				<u> </u>
Quarter 2, 2004										*		*							*				
Quarter 3, 2004										*		*							*				<u> </u>
Quarter 4, 2004										*		*							*				<u> </u>
Quarter 1, 2005												*							*				<u> </u>
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005		<u> </u>					<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*			L		*	L	*			L	
Quarter 1, 2007																			*				
Quarter 2, 2007										*		*							*				
Quarter 3, 2007										*		*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				1
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008										*		*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*	*						*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010										*		*							*				
Quarter 4, 2010										*		*							*				1
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*	*						*				1
Quarter 3, 2011												*							*				1
Quarter 4, 2011												*							*				1
Quarter 1, 2012											*	*	*						*				
Quarter 2, 2012												*							*				1
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*	*						*				
Quarter 2, 2014												*							*				
Quarter 3, 2014									*			*	*						*				
Quarter 4, 2014												*	*						*				
Quarter 1, 2015												*							*				
Quarter 2, 2015	1											*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015									*			*						*	*				
Quarter 1, 2016			I								1	*					I		*				1
	-																-						

Groundwater Flow System			UCRS	5						1	URGA	ł]	LRGA	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	
Quarter 3, 2003													*										
Quarter 1, 2004				*																			
Quarter 3, 2010																					*		
Quarter 2, 2013										*													
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*											1
Quarter 2, 2007											*												-
Quarter 2, 2008												*											t
Quarter 3, 2008												*											

Groundwater Flow System			UCRS	5						1	URGA	ł]	LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009	-											*							*				
Quarter 2, 2009	-											*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009	-											*	-1-						*				
Quarter 1, 2009	-											*							*				
Quarter 2, 2010												*	*						*				
	-											*	*						*				
Quarter 3, 2010	_											* *							*				
Quarter 4, 2010	-																						
Quarter 1, 2011												* *	*						*				
Quarter 2, 2011	_											*	*										
Quarter 3, 2011												*							*				ļ
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*	*						*				
Quarter 3, 2014	1											*							*				
Quarter 4, 2014	1											*	*						*				
Quarter 1, 2015	1		I									*	*						*				
Quarter 2, 2015	1											*							*				
Quarter 3, 2015	1											*							*				
Quarter 4, 2015	1											*							*				
Quarter 1, 2016	1											*							*				
						-					-						-						

MANGANESE Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2003 Quarter 3, 2005 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2009	*	D 389	D 390	D 393	U 396	S 221	S 222 * * * * * * *	S 223 * *	S 224	S 384	D 369	D 372	D 387	D 391	U 220	U 394	S 385	D 370	D 373	D 388	D 392 *	U 395	U 397
Monitoring Well MANGANESE Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2009 OXIDATION-REDUCTION POT Quarter 2, 2004 Quarter 3, 2009 OXIDATION-REDUCTION POT Quarter 3, 2004 Quarter 4, 2003 Quarter 4, 2004	*		390	393	396 	221	222 * * * *	223 *	224		369	372	387	391	220	394	385	370	373	388		395	397
MANGANESE Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2009 OXIDATION-REDUCTION POT Quarter 2, 2004 Quarter 3, 2009 OXIDATION-REDUCTION POT Quarter 2, 2004 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2004							* * *														*		
Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2009 OXIDATION-REDUCTION POT Quarter 2, 2004 Quarter 3, 2009 OXIDATION-REDUCTION POT Quarter 3, 2004 Quarter 4, 2003 Quarter 4, 2004							* * *														*		-
Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POT Quarter 2, 2004 Quarter 4, 2003 Quarter 3, 2009 OXIDATION-REDUCTION POT Quarter 4, 2003 Quarter 3, 2004 Quarter 4, 2004		FIAL					* * *																1
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POT Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2009		FIAL					*	*														<u> </u>	
Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POT Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2009		FIAL					*																
Quarter 2, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POT Quarter 4, 2003 Quarter 2, 2004 Quarter 4, 2003 Quarter 4, 2004		FIAL																					
Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POT Quarter 4, 2003 Quarter 2, 2004 Quarter 4, 2003 Quarter 3, 2004 Quarter 4, 2004		FIAL					*																
Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POT Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004		FIAL						*															
Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POT Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004		FIAL					*																
Quarter 3, 2009 OXIDATION-REDUCTION POT Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004		FIAL				-															*	—	
OXIDATION-REDUCTION POT Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004		FIAL		1																		<u> </u>	
Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004	LINI																					—	
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004			*																				
Quarter 3, 2004 Quarter 4, 2004			*																			⊢	┝──┤
Quarter 4, 2004			*															*				⊢	┝──┤
			*			*												<u>т</u>				⊢	┝──┤
Quarter 1, 2005			*			-												*					┝──┦
Quarter 2, 2005	*	<u> </u>	*														<u> </u>	т	┣──			<u> </u>	\vdash
Quarter 3, 2005	*		*																			<u> </u>	\vdash
Quarter 3, 2005 Quarter 4, 2005	ጥ		*																──				\vdash
Quarter 4, 2005 Quarter 2, 2006			*																			<u> </u>	\vdash
Quarter 3, 2006			*															*				<u> </u>	┝──┦
Quarter 3, 2006 Quarter 4, 2006			*															Ť				<u> </u>	\vdash
			*																			<u> </u>	┝──┦
Quarter 1, 2007 Quarter 2, 2007			*				*															<u> </u>	┝──┦
			*				*															<u> </u>	┝──┦
Quarter 3, 2007			*				*											-				<u> </u>	\vdash
Quarter 4, 2007			*			*			*									-				<u> </u>	\vdash
Quarter 1, 2008	*		*	*		*			*				*				*	-	*	*		<u> </u>	\vdash
Quarter 2, 2008	*		*	*		*							*				*	-	*	*		<u> </u>	\vdash
Quarter 3, 2008			*	*		*	*	*	*				*				*	*	*	*		⊢!	└──
Quarter 4, 2008			*	*		*	*	* *	*				* *	*			*	*		*		⊢!	└──
Quarter 1, 2009				*		*	*	Ŧ	*				Ŧ	Ŧ			*		*			<u> </u>	\vdash
Quarter 3, 2009			*	*		*			*								*	*	*	*		⊢!	
Quarter 4, 2009	*		*			*			*									不		*		\vdash	
Quarter 1, 2010	*		*	*					*				*				*	*		*		⊢!	
Quarter 2, 2010	*		*	*		*			*				*				*	*	*	*		⊢!	└──
Quarter 3, 2010	不		*	*		*		*			*			*			*					⊢!	└──
Quarter 4, 2010	4		*	J.		J.	J.		J.		* *		÷					*	*	*	J.	<u> </u>	
Quarter 1, 2011	*		J.	*		*	*	* 3	*	Ł.	* *		*	* *			*		J.	*	*	<u> </u>	
Quarter 2, 2011	*		*	*			*	*	*	*	* *			*				*	*	*	*	<u> </u>	
Quarter 3, 2011	*		*	*			*		*		* *		*				*	*	*	*		<u> </u>	
Quarter 4, 2011	*		*	*		<u>т</u>	*	J.	J.	Ł.	*		Ł.	L.			*	*	J.	*	J.	<u> </u>	
Quarter 1, 2012	*		*	*		*	*	*	*	*	4		*	*			*	*	*	*	*		
Quarter 2, 2012	*		*			*	*	÷	*	<u>ب</u>	*		*	* *			*	*	*	*	*	⊢ '	\vdash
Quarter 3, 2012	*		*	-14		*	*	* *	*	*	.		*	* *			*	*	*	*	* *	⊢ '	\vdash
Quarter 4, 2012				*		*		* *	*	*	*		*	* *			*	*	*	*	*	⊢ '	\vdash
Quarter 1, 2013	*			* *		*	ىبر	*	*		* *		*	*			ىر	* *	ىبر	*	*	⊢ '	\vdash
Quarter 2, 2013	*	ļ	-14	*		-11-	*	44	*	ى ي	*		* *				*	*	*	*	*		\square
Quarter 3, 2013	*	ļ	*	*		*	*	* *	*	* *	-	44	* *	-			*	*	*	*	-11-		\square
Quarter 4, 2013	4-		*	* *		*	*	*	*	*	*	*	*	*			*	*	* *	*	*	└───	\square
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*	└───	\square
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*	└───	\square
Quarter 3, 2014	*		*	* *		*							.1.				*	*	* *	*	-11/	└───	\square
Quarter 4, 2014	*		*	*							*		*				*	*	*	*	*	L	ليب
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*		*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	* *	*	* *	*		* *	*	* *	*	*	*	*	*	*	*	*
Quarter 4, 2015	*	ļ	*	*	*	*	*	* *	*	* *			*		* *	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*

Groundwater Flow System			UCRS	5						1	URGA	4]	LRGA	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
PCB, 1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												1
Quarter 3, 2005							*				*												1
Quarter 1, 2006											*												
Quarter 2, 2006											*												1
Quarter 4, 2006											*												1
Quarter 1, 2007											*	*											1
Quarter 2, 2007												*											1
Quarter 3, 2007											*												1
Quarter 2, 2008											*	*											1
Quarter 3, 2008											*												1
Quarter 4, 2008											*												
Quarter 1, 2009											*												-
Quarter 2, 2009	1										*												<u> </u>
Quarter 3, 2009											*												
Quarter 4, 2009											*												-
Quarter 1, 2009	+										*												<u> </u>
Quarter 2, 2010											*												<u> </u>
Quarter 3, 2010	-										*												<u> </u>
	-										*												──
Quarter 4, 2010						_					•												
PCB-1232	-										*												-
Quarter 1, 2011	_										*												<u> </u>
PCB-1248	-											*											<u> </u>
Quarter 2, 2008												*											
PCB-1260	-																	*					<u> </u>
Quarter 2, 2006	_																	不					_
pH	-																*						
Quarter 4, 2002	-																*	-					<u> </u>
Quarter 2, 2003	-																*	-					<u> </u>
Quarter 3, 2003	-						*										*	-					<u> </u>
Quarter 4, 2003	-						*										*	-					<u> </u>
Quarter 1, 2004							*										*						──
Quarter 2, 2004																	*						──
Quarter 3, 2004 Quarter 4, 2004																	*						──
Quarter 3, 2005										*							*				*		──
	-									*							*				Ť		──
Quarter 4, 2005	-									*							*						──
Quarter 1, 2006	-																*						<u> </u>
Quarter 2, 2006	+																*						—
Quarter 3, 2006 Quarter 3, 2007	-																*						┣—
Quarter 3, 2007 Quarter 4, 2007	-																*						┣—
Quarter 4, 2007 Quarter 4, 2008	-																*						┣—
Quarter 1, 2008 Quarter 1, 2009	-																*						┣—
Quarter 1, 2009 Quarter 1, 2011	+																*						┢
Quarter 1, 2011 Quarter 2, 2011	-										*						Ť						┣—
Quarter 2, 2011 Quarter 3, 2011											*												┣—
Quarter 1, 2012	+										*			*									┣—
Quarter 1, 2012 Quarter 1, 2013										*			*	*			*						┣—
										*			*				*				*		┣—
Quarter 4, 2014																							

Groundwater Flow System			UCRS	5						I	URGA	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
POTASSIUM																							
Quarter 4, 2002																		*	*				
Quarter 3, 2004																			*				1
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				T
Quarter 3, 2006																			*				T
Quarter 4, 2006																			*				T
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013	1	I																	*				
Quarter 2, 2013	1	I																	*				
Quarter 3, 2013																			*				
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004																			*				1
Quarter 2, 2005									*														T
Quarter 1, 2009											*												T
Quarter 3, 2014									*			*											T
Quarter 4, 2014			*								*							*					T
Quarter 1, 2015			*				*			*		*						*					T
Quarter 2, 2015			*				*			*		*						*					T
Quarter 3, 2015			*																				T
Quarter 4, 2015					*	*									*		*				*	*	T
RADIUM-228																							
Quarter 2, 2005																							
Quarter 3, 2005																							1
Quarter 4, 2005																							1
Quarter 1, 2006																							1
SELENIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							1

Groundwater Flow System			UCR								URG									LRG			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SODIUM																							
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*												
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*		*													
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*													1
Quarter 1, 2006									*	*													1
Quarter 2, 2006									*														1
Quarter 3, 2006					1				*	*		*							*				+
Quarter 4, 2006					1				*	*							*						<u> </u>
Quarter 1, 2007									*			*											-
Quarter 2, 2007									*	*													-
Quarter 3, 2007									*	-													
Quarter 4, 2007	-								*														+
Quarter 1, 2008									*														
Quarter 3, 2008									Ŧ			*											-
-									*	*		Ť											
Quarter 4, 2008	-								* *	*		*							*				-
Quarter 1, 2009									Ŧ										*				
Quarter 3, 2009									4			*											L
Quarter 4, 2009									*			*											
Quarter 1, 2010												*											
Quarter 2, 2010										*		*											
Quarter 3, 2010										*													
Quarter 4, 2010									*	*													
Quarter 1, 2011										*													
Quarter 2, 2011									*														
Quarter 4, 2011																			*				
Quarter 1, 2012											*												Γ
Quarter 3, 2012			1		1							*							*	1			
Quarter 4, 2012			1									*								1			
Quarter 1, 2013					1					*		*							*				
Quarter 2, 2013			1		1							*								1			1
Quarter 3, 2013			1		1							*							*	1			1
Quarter 4, 2013					1							*							*				<u> </u>
Quarter 1, 2014												*											+
Quarter 2, 2014					1				*		*	*							*				<u> </u>
Quarter 3, 2014			<u> </u>		<u> </u>				-		-	*							*	-			├
Quarter 4, 2014	_								*	*		*	*						-				┼──
Quarter 1, 2014 Quarter 1, 2015	_								- P	-		-17	*										┼──
Quarter 1, 2015 Quarter 2, 2015	_											*											┼──
Quarter 2, 2015 Quarter 3, 2015			<u> </u>							*		*											–
Quarter 3, 2015 Quarter 4, 2015	_								*	*		*											┢
Quarter 4, 2015		L	1		L	L	L	L	*	*		*					_	L	L	1	L	1	ᄂ

Groundwater Flow System			UCRS	5						i	URG	4								LRG/	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
STRONTIUM-90																							
Quarter 2, 2003																							
Quarter 1, 2004																							
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*					*	*				
Quarter 3, 2005										*		*	*				*	*	*				
Quarter 4, 2005										*		*	*					*	*	*			<u> </u>
Quarter 1, 2006	1	-	-		-		-			*	-	*	*	-		-	*	*	*	*			<u> </u>
Quarter 2, 2006	_								*	*		*	*				*	*	*	*			
Quarter 3, 2006	_								*	*		*	*				*		*	*			<u> </u>
Quarter 3, 2006 Quarter 4, 2006	_								*	*	<u> </u>	*	*	<u> </u>		<u> </u>	*		*		<u> </u>		-
Quarter 4, 2006 Quarter 1, 2007	_								* *	*		*	*				*		*	*			┣──
- · ·	_																*						
Quarter 2, 2007									*	*		*	*						*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007	_									*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
Quarter 4, 2009	*									*		*	*				*	*	*				
Quarter 1, 2010	*								*	*		*	*				*		*				
Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 3, 2010										*		*	*				*	*	*	*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011 Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
	*									*		*	*	Ť			*	*	*	*			
Quarter 4, 2011																							
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	* *									*		*	*				*	*	*	*			⊢
Quarter 3, 2012	*					 				*	<u> </u>	*	*	<u> </u>		<u> </u>	*	*	*	*			┣
Quarter 4, 2012			ļ							*		*	*				*	*	*	*			
Quarter 1, 2013										*		*	*				*	*	*	*			
Quarter 2, 2013										*		*	*	*			*	*	*	*			
Quarter 3, 2013		L			L	L	L			*		*	*	*			*	*	*	*			L
Quarter 4, 2013										*		*	*				*	*	*	*			
Quarter 1, 2014			ſ					*		*		*	*				*	*	*	*			ľ
Quarter 2, 2014										*		*	*	*			*	*	*	*			
Quarter 3, 2014										*		*	*	*			*	*	*	*			
Quarter 4, 2014										*		*	*				*	*	*	*			
Quarter 1, 2015										*		*	*				*	*	*	*			
Quarter 2, 2015	1									*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2015								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2015										*		*	*	*			*		*	*			
Quarter 1, 2016								*		*		*	*	*			*	*	*	*			-
		·	·	L	·		I	L	-						L		-	L					

Groundwater Flow System			UCRS								URGA	Ą								LRG			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003			*										*				*			*			
Quarter 4, 2003			*							*		*	*				*		*	*			
Quarter 1, 2004			*									*	*				*		*				
Quarter 2, 2004			*									*	*				*		*	*			
Quarter 3, 2004			*									*					*		*				
Quarter 4, 2004			*							*		*	*				*	*	*				
Quarter 1, 2005			*							*		*	*				*			*			
Quarter 2, 2005			*							*			*				*	*	*	*			1
Quarter 3, 2005			*							*			*				*	*	*	*			
Quarter 4, 2005			*							*		*	*				*		*	*			
Quarter 1, 2006										*		*	*						*	*			1
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006			*							*			*				*	*	*	*			1
Quarter 4, 2006	*									*		*	*						*	*			<u> </u>
Quarter 1, 2007	1	-	*				-			*			*	-		-	*		*	*		-	<u> </u>
Quarter 2, 2007			*							*		*	*				*	*	-	*			┢
Quarter 3, 2007	-		*							*	*	*	*				*		*	*			├──
Quarter 4, 2007	+		*							*		*	*				*		*	*			┣—
Quarter 1, 2007 Quarter 1, 2008	_		*							• *		• *	*				*	*	*	*			<u> </u>
											*	*						*					<u> </u>
Quarter 2, 2008			*							*	*	ч г	*				*		*	*			<u> </u>
Quarter 3, 2008										*		*	*				*		.14	*			<u> </u>
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 3, 2009			*							*	*	*	*				*			*			1
Quarter 4, 2009			*							*		*	*				*						
Quarter 1, 2010			*							*		*	*				*						1
Quarter 2, 2010			*							*			*				*	*		*			
Quarter 3, 2010			*							*	*	*	*				*						
Quarter 4, 2010			*							*		*	*				*						
Quarter 1, 2011										*			*				*						
Quarter 2, 2011			*							*			*				*			*			-
Quarter 3, 2011	_		*							*			*				*			*			<u> </u>
Quarter 4, 2011	_		*							*	*	*	*				*						<u> </u>
	_		*							*	Ŧ	т	*				*			*			──
Quarter 1, 2012	-		*							* *			*				*		*	*			┣—
Quarter 2, 2012	-											<u>.</u>					*		*	*			
Quarter 3, 2012	-		*							* *		* *	*						4	-11-			⊢
Quarter 4, 2012	1									*		*	*			<u> </u>	*		*	*			⊢
Quarter 1, 2013			ļ							*			*				*		*	*			\vdash
Quarter 2, 2013	1									*		*	*				*		*	*			\vdash
Quarter 3, 2013			*							*		*	*				*		*	*			L
Quarter 4, 2013			*							*		*	*				*		*	*			
Quarter 1, 2014	T		*							*	*		*				*		*	*			
Quarter 2, 2014			*							*	*		*	*			*		*	*			Ĩ
Quarter 3, 2014	1		*							*			*				*			*			1
Quarter 4, 2014	1		*							*	*	*	*				*		*	*			1
Quarter 1, 2015	1	1	*				1	1		*	*	*	*	1	1	1	*			*	1	1	1
Quarter 2, 2015			*							*	*		*				*			*			1
Quarter 3, 2015	1	-	*				-			*	*	*	*	-		-	*	*	*	*		-	
Quarter 4, 2015	+		*							*	*	*	*				*	*		*			<u> </u>
Quarter 1, 2015	1		*							*	*		*				*		*	*			⊢
THORIUM-230										-									-	H.			
Quarter 1, 2012	*								*					*									-
Quarter 4, 2012 Quarter 4, 2014	*		*						-17					-17									⊢
	*								*	*			*		*								┼──
Quarter 3, 2015									- TT						- m	1						1	1

Groundwater Flow System			UCRS	5						1	URGA	4					I]	LRGA	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well		389	390	393	396	221	222	223	224	384		372		391	220	394	385	370	373	388	392	395	397
THORIUM-234								-															
Quarter 2, 2003						*			*					*									
Quarter 4, 2007									*														
TOLUENE																							
Quarter 2, 2014										*	*		*										
TOTAL ORGANIC CARBON																							
Quarter 4, 2002																					*		
Quarter 1, 2002				*						*	*							*	*		*		
Quarter 2, 2003										*	*		*								*		
Quarter 3, 2003							*	*	*	*	*	*	-								-		
Quarter 4, 2003							*	-	*	*	-	-											
Quarter 1, 2003										*													
Quarter 1, 2004 Quarter 2, 2004										*	*												
Quarter 3, 2004										*	-1-												
Quarter 4, 2004										*													
Quarter 1, 2005										*													
Quarter 1, 2005 Quarter 2, 2005										*											*		
										*		*									* *		
Quarter 3, 2005												*					I						
Quarter 4, 2005										*							I				*		
Quarter 1, 2006										*								-					
Quarter 2, 2006										*		*											
Quarter 4, 2006																	*	-					
Quarter 1, 2007	*									*													
Quarter 3, 2007	*					*	*	*	*	*			*	*			*						
Quarter 2, 2011											*												
Quarter 3, 2012	*																						
TOTAL ORGANIC HALIDES																							
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*														*			*		
Quarter 3, 2003				*																	*		
Quarter 2, 2004																					*		
Quarter 3, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*																						
Quarter 4, 2005	*	I	I				I				1						I						
Quarter 1, 2006	*										1						1						
Quarter 2, 2006	*										1						1						
Quarter 3, 2006	*										1						1						
Quarter 4, 2006		l	l				l				1						*						
Quarter 1, 2007	*																1						
Quarter 2, 2007	*																1						
Quarter 3, 2007	*																1						
Quarter 4, 2007	*	l	l	1			l		1	l				l	1	1	1				*		
Quarter 1, 2008	*																1						
Quarter 4, 2008	*																1						
Quarter 4, 2008	*																1						
Quarter 1, 2009	*										1						1						
Quarter 2, 2009	*										1						1				*		
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						
		<u> </u>			<u> </u>				l														
-	*																						
Quarter 1, 2010	* *																						
-	* *																						

Groundwater Flow System	I		UCRS	3						1	URGA	4					r		1	LRGA			
Gradient	S	D	D	, D	U	S	S	S	S	s	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392		397
	380	369	390	393	390	221	222	223	224	564	309	512	367	391	220	394	365	370	373	366	392	395	391
TOTAL ORGANIC HALIDES	*																				-		
Quarter 4, 2010 Quarter 1, 2011	*																						
`	*																				*		
Quarter 3, 2013																					*		
TRICHLOROETHENE														_			_					_	
Quarter 4, 2002																					_		
Quarter 1, 2003																					-		
Quarter 2, 2003																					_		
Quarter 3, 2003																					-		
Quarter 4, 2003																_					_		
Quarter 1, 2004												_						_			_		
Quarter 2, 2004																							
Quarter 3, 2004																					_		
Quarter 4, 2004																							
Quarter 1, 2005	<u> </u>																						
Quarter 2, 2005	I	L	L										L		L					L			
Quarter 3, 2005	I	L	L										L		L					L			
Quarter 4, 2005	<u> </u>																						
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012	1																						
Quarter 4, 2012	1	1	1										1		1					1		<u> </u>	
Quarter 1, 2013	1																						
Quarter 2, 2013	1																						
Quarter 3, 2013	1																					1	
Quarter 4, 2013	1																					 	
Quarter 1, 2014																						 	
Quarter 2, 2014	1																						
Quarter 3, 2014	1																						
Quarter 4, 2014	1																						
Quarter 1, 2015								-	-	-								-				 	
Quarter 1, 2015	1																					 	
Quarter 3, 2015	-																				-		
Quarter 4, 2015	-																						┝─┤
Quarter 1, 2015	-																						
Zumitri 1, 2010						_						_					_				_	L	

Groundwater Flow System	1		UCRS	5						1	URGA	4]	LRGA	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														
* Statistical test results indicate a	n elev	ated c	concei	ntratio	on (i.e	e., a st	atisti	cally s	signif	icant	increa	ise)											
MCL Exceedance																							
UCRS Upper Continental Recharg	e Syst	em																					
URGA Upper Regional Gravel Aq	uifer																						
LRGA Lower Regional Gravel Aq	uifer																						
S Sidegradient; D Downgradient;	U Upg	radie	nt																				

APPENDIX H

METHANE MONITORING DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:		2/2	29/20	016			т	ime	:		12:3	5			Mon	ito	r:		Т	amm	y Sm	ith
Weather Cor Sunny at 64.			ds o	out o	f the	SOL	ith v	vest	I													
Monitoring E RAE System	Equipm	ent:																		4		
INAL OJSTON	13, man	intac	·	00-0		loni	torir	ng Lo	ocat	ion											Reac (% L	
Ogden Landir Road Entranc		Che	ecked	d at g	round	d leve	el									· · · · · · · · · · · · · · · · · · ·					0	
North Landfill	Gate	Che	ecked	d at g	round	d leve	el											T			0	
West Side of Landfill:																						
North 37° (West 88° 4		Che	ecked	d at g	round	d leve	el														0	
East Side of Landfill: North 37° (West 88° 4		Che	ecked	d at g	round	d leve	el														0	1
Cell 1 Gas Ve	nt (17)	1 0	2 0	3 0	4 0	5 0	6 0	7 0	8 0	9 0	10 0	11 0	12 0	13 0	14 0	15 0	1) C		17 0		0	
Cell 2 Gas Ve	ent (3)	1 0	2 0	3 0																	0	
Cell 3 Gas Ve	ent (7)	1 0	2 0	3 0	4 0	5 0	6 0	7 0													0	
Landfill		Che	ecked	d at fl	oor le	evel															0	
	oblem Areas	No	area	s note	ed															Bé	0 - 29 -	16
Remarks: ALL VENTS	CHEC	KEI	D 1"	FR	I MC	MOL	ЛТН	OF	THE	EVE	ΝΤ											
Performed b	y :			0	ton	um	4	S,). Mut	Ŕ									2/	29/2		
	1920 - E. W. W. Store				SI	gnaţ	ure														Date	

WD-F-0040 (8/19/13) CP3-WM-0017 Review the Identified Source Document for This Form Prior to Attempting Completion Complete All Forms In Accordance With PAD-WC-0044

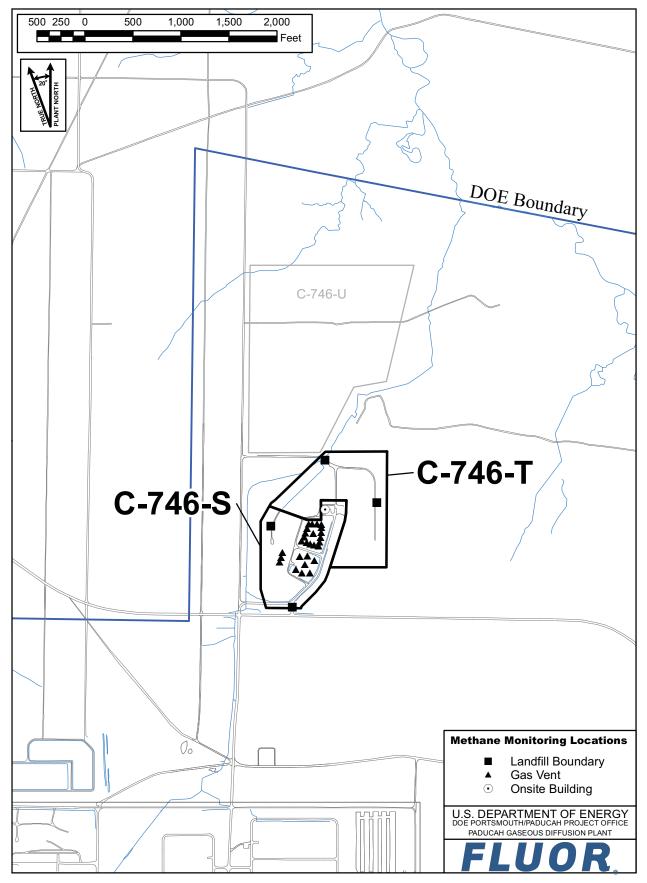


Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I

SURFACE WATER ANALYSES AND WRITTEN COMMENTS

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

14 Reilly Road

Facility: US DOE – Paducah Gaseous Diffusion Plant

Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

Division of Waste Management

LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po	(KPDES Discharge Number, or "U	L135 UPSTREA	٩M	L154 DOWNSTREAM		L136 AT SITE		F. BLANK					
Sample Sequence #						1		1		1		1	
If sample is a	a Bl	lank, specify Type: (F)ield, (T)r	ip, (M)ethod	, or (E)quipment	NA		NA		NA		F	
Sample Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		2/16/2016 14:0)1	2/16/2016 13:4	45	2/16/2016 14	:17	2/16/2016 14:04	
Duplicate (")	" c	or "N") ¹				Ν		N		N		N	
Split ('Y' or	· "]	₹") ²				N		N		N		N	
Facility Sam	le	ID Number (if applicable)				L135SS2-16		L154US2-16	5	L136SS2-16		FB1SS2-16	
Laboratory Sa	mpl	le ID Number (if applicable)				391519002		391512002		391519003		391519004	
Date of Analy	ate of Analysis (Month/Day/Year)					2/24/2016		2/25/2016		2/24/2016		2/24/2016	
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷
A200-00-0	0	Flow	т	MGD	Field	0.17		0.56		0.08			*
16887-00-6	2	Chloride(s)	т	mg/L	300.0	51.1		40.5		3.56		0.0988	J
14808-79-8	0	Sulfate	т	mg/L	300.0	22.5		12.9		37.4		<0.4	
7439-89-6	39-89-6 0 Iron T mg/L 200.8		200.8	1.13		2.51		0.514		<0.1			
7440-23-5	0	Sodium	т	mg/L	200.8	26.5		15.3		5.14		<0.25	
s0268	0	Organic Carbon ⁶	т	mg/L	9060	16.8		16.3		13.5			*
s0097	0	BOD ⁶	т	mg/L	not applicable		*		*		*		*
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	42.6		44.7		40.6			*

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by <u>separate</u> laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

Ъ

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page. STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID

Page 2 of 2

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	nitoring Point (KPDES Discharge Number, or "UPSTREAM" or "DOWNSTREAM")						L135 UPSTREAM L154 DOWNSTREAM		L136 AT SITE		F. BLANK		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷						
s0145	1	Specific Conductance	т	µhmo/cm	Field	405		284		322			*
S0270	0	Total Suspended Solids	т	mg/L	160.2	11.6		32.8		4.67			*
S0266	0	Total Dissolved Solids	т	mg/L	160.1	249		240		223			*
S0269	0	Total Solids	т	mg/L	SM-2540B	275		281		232			*
S0296	0	рН	т	Units	Field	7.59		7.63		8.06			*
7440-61-1		Uranium	т	mg/L	200.8	0.00872	*	0.00502		0.00662	*	<0.0002	*
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	0.407	*	4.08	*	2.92	*	-1.05	*
12587-47-2		Gross Beta (β)	т	pCi/L	9310	11.3	*	-10.4	*	6.81	*	-4.09	*
													<u> </u>
													<u> </u>
							<u> </u>						
							<u> </u>						

Division of Waste Management RESIDENTIA Solid Waste Branch Facility: U 14 Reilly Road Permit Num

RESIDENTIAL/INERT-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po:	(KPDES Discharge Number, or "U	L135 UPSTRE	٩M	\backslash					7					
Sample Sequence #						2								
If sample is a	в1	ank, specify Type: (F)ield, (T)r:	ip, (M)ethod	, or (E)quipment	NA								
Sample Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		2/16/2016 14:0)1							
Duplicate ("Y	" c	or "N") ¹				Y								
Split ('Y' or	"N	I") ²				N			\frown		/			
Facility Samp	le	ID Number (if applicable)				L135DSS2-16	35DSS2-16							
Laboratory Sa	mpl	e ID Number (if applicable)				391519001			<u>/</u>					
Date of Analy	sis	(Month/Day/Year)				2/24/2016								
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR FQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	
A200-00-0	0	Flow	т	MGD	Field	0.17					$\overline{\ }$			
16887-00-6	2	Chloride(s)	т	mg/L	300.0	52.3								
14808-79-8	0	Sulfate	т	mg/L	300.0	23			\bigvee					
7439-89-6	0	Iron	т	mg/L	200.8	1.12								
7440-23-5	0	Sodium	т	mg/L	200.8	25.4								
S0268	0	Organic Carbon ⁶	т	mg/L	9060	18.7								
S0097	0	BOD ⁶	т	mg/L	not applicable		*							
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	38.5							$\left \right\rangle$	

 1 Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by <u>separate</u> laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

P

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page. STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID

Page 4 of 4

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	Monitoring Point (KPDES Discharge Number, or "UPSTREAM" or "DOWNSTREAM")						L135 UPSTREAM						\square
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE CR PQD ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S	DETECTED VALUE OR PQL ⁵	F L G S ⁷
S0145	1	Specific Conductance	т	µmho/cm	Field	405		\setminus					
s0270	0	Total Suspended Solids	т	mg/L	160.2	21.2							
S0266	0	Total Dissolved Solids	т	mg/L	160.1	271			$\underline{\ }$				
S0269	0	Total Solids	т	mg/L	SM-2540B	288							
S0296	0	рН	т	Units	Field	7.59				\backslash			
7440-61-1		Uranium	т	mg/L	200.8	0.00871	*						
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	2.1	*				/		
12587-47-2		Gross Beta (β)	т	pCi/L	9310	15.9	*						
											\backslash		
									_/	·		\mathbf{n}	
									\square				
								/	/				
													\downarrow
								/					\setminus

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 & 073-00015 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: _____ None

For Official Use Only

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ng Facility Sample ID	Constituent	Flag	Description
L135	L135SS2-16	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Uranium	Х	Other specific flags and footnotes may be required to properly define the results.
		Alpha activity		TPU is 5.67. Rad error is 5.67.
		Beta activity		TPU is 9.93. Rad error is 9.75.
L154	L154US2-16	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 7.55. Rad error is 7.52.
		Beta activity		TPU is 8.51. Rad error is 8.51.
L136	L136SS2-16	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Uranium	Х	Other specific flags and footnotes may be required to properly define the results.
		Alpha activity		TPU is 4.48. Rad error is 4.45.
		Beta activity		TPU is 5.55. Rad error is 5.42.
QC	FB1SS2-16	Flow Rate		Analysis of constituent not required and not performed.
		Total Organic Carbon (TOC)		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)		Analysis of constituent not required and not performed.
		Conductivity		Analysis of constituent not required and not performed.
		Suspended Solids		Analysis of constituent not required and not performed.
		Dissolved Solids		Analysis of constituent not required and not performed.
		Total Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Uranium	Х	Other specific flags and footnotes may be required to properly define the results.
		Alpha activity		TPU is 2.93. Rad error is 2.93.
		Beta activity		TPU is 4.39. Rad error is 4.39.
L135	L135DSS2-16	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Uranium	Х	Other specific flags and footnotes may be required to properly define the results.
		Alpha activity		TPU is 7.02. Rad error is 7.01.
		Beta activity		TPU is 11.3. Rad error is 11.

THIS PAGE INTENTIONALLY LEFT BLANK