RECEIVED

By Darla Bowen at 7:23 am, Feb 29, 2016

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

FEB 2 6 2016

Ms. Robin Green
Division of Waste Management
Kentucky Department for Environmental Protection
200 Fair Oaks Lane, 2nd Floor
Frankfort, Kentucky 40601

Mr. Todd Hendricks
Division of Waste Management
Kentucky Department for Environmental Protection
200 Fair Oaks Lane, 2nd Floor
Frankfort, Kentucky 40601

Mr. Allan Shingleton
Division of Waste Management
Kentucky Department for Environmental Protection
625 Hospital Drive
Madisonville, Kentucky 42431

Dear Ms. Green, Mr. Hendricks, and Mr. Shingleton:

C-746-S&T LANDFILLS FOURTH QUARTER CALENDAR YEAR 2015 (OCTOBER-DECEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, PAD-ENM-0094/V4, PERMIT NUMBER: SW07300014, SW07300015, SW07300045

Enclosed is the subject report for fourth quarter calendar year (CY) 2015, provided in accordance with Solid Waste Landfill Permit Number: SW07300014, SW07300015, SW07300045. The report includes groundwater and surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

This report serves as the statistical increase notification for the fourth quarter CY 2015, in accordance with Condition GSTR0003, Standard Requirement 8, of the C-746-S&T Solid Waste Landfill Permit Number: SW07300014, SW07300015, SW07300045.

PPPO-02-3394115-16A

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely, Junifa Worderd

Yennifer Woodard Paducah Site Lead

Portsmouth/Paducah Project Office

Enclosure:

C-746-S&T Landfills Fourth Quarter CY 2015 (October-December) Compliance Monitoring Report

e-copy w/enclosure:

april.webb@ky.gov, KDEP/Frankfort brian.begley@ky.gov, KDEP/Frankfort dave.dollins@lex.doe.gov, PPPO/PAD ffscorrespondence@ffspaducah.com, FFS/Kevil gary.hines@ffspaducah.com, FFS/Kevil gaye.brewer@ky.gov, KDEP/PAD jennifer.blewett@ffspaducah.com, FFS/Kevil jennifer.watson@ffspaducah.com, FFS/Kevil jennifer.woodard@lex.doe.gov, PPPO/PAD joseph.towarnicky@ffspaducah.com, FFS/Kevil ken.davis@ffspaducah.com, FFS/Kevil leo.williamson@ky.gov, KDEP/Frankfort lisa.crabtree@ffspaducah.com, FFS/Kevil mark.duff@ffspaducah.com, FFS/Kevil mike.guffev@kv.gov, KDEP/Frankfort myrna.redfield@ffspaducah.com, FFS/Kevil pad.rmc@swiftstaley.com, SSI/Kevil reinhard.knerr@lex.doe.gov, PPPO/PAD stephaniec.brock@ky.gov, KYRHB/Frankfort

C-746-S&T Landfills

Fourth Quarter Calendar Year 2015
(October–December)

Compliance Monitoring Report,

Paducah Gaseous Diffusion Plant,

Paducah, Kentucky

FLUOR.

This document is approved for public release per review by:

FFS, Inc., Classification Support

Date

C-746-S&T Landfills
Fourth Quarter Calendar Year 2015
(October–December)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—February 2016

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FLUOR FEDERAL SERVICES, INC.,
Paducah Deactivation Project
managing the
Deactivation Project at the
Paducah Gaseous Diffusion Plant
under Task Order DE-DT0007774

CONTENTS

FI	GURES			v
TA	ABLES .			v
ΑC	CRONY	MS		vii
1.	INTRO	ODUC'	ΓΙΟΝ	1
	1.1	BACK	GROUND	1
	1.2	MONI	FORING PERIOD ACTIVITIES	2
		1.2.1	Groundwater Monitoring	2
		1.2.2	Methane Monitoring	2
		1.2.3	Surface Water Monitoring	
	1.3	KEY R	ESULTS	
2.	DATA	EVAI	LUATION/STATISTICAL SYNOPSIS	11
	2.1	STATI	STICAL ANALYSIS OF GROUNDWATER DATA	12
		2.1.1	Upper Continental Recharge System	12
		2.1.2	Upper Regional Gravel Aquifer	
		2.1.3	Lower Regional Gravel Aquifer	13
	2.2	DATA	VERIFICATION AND VALIDATION	13
3.	PROF	ESSIO	NAL GEOLOGIST AUTHORIZATION	15
4.	REFE	RENCI	ES	17
ΑF	PPENDI	X A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑF	PENDI	XB:	FACILITY INFORMATION SHEET	B-1
ΑF	PENDI	X C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑF	PENDI	X D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PENDI	XE:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑF	PENDI	XF:	NOTIFICATIONS	F-1
ΑF	PENDI	X G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑF	PENDI	X H:	METHANE MONITORING DATA	H-1
ΔΙ	PPENDI	ΧI·	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	T-1

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	3
2.	C-746-S&T Landfills Surface Water Monitoring Locations	5
	TABLES	
	Summary of MCL Exceedances	
2.	Exceedances of Statistically Derived Historical Background Concentrations	6
	Exceedances of Current Background UTL in Downgradient Wells	
4.	C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	8
5.	Exceedances of Current Background UTL in UCRS Wells	
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations

CY calendar year

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

PGDP Paducah Gaseous Diffusion Plant

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills Fourth Quarter Calendar Year 2015 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 for the C-746-S Residential Landfill and for the C-746-T Inert Landfill. This report was written in accordance with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014), Technical Application, Attachment 25 of the Solid Waste Landfill permit.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year (CY) 2002. Methane monitoring was conducted in accordance with 401 KAR 48:090 § 4 and the approved Explosive Gas Monitoring Program (KEEC 2011), Technical Application Attachment 12 of the Solid Waste Landfill permit. Methane monitoring results are documented on the approved C-746-S&T Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 4. Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and KY-073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), Technical Application Attachment 24 of the Solid Waste Landfill permit. Surface water results are provided in Appendix I.

1.1 BACKGROUND

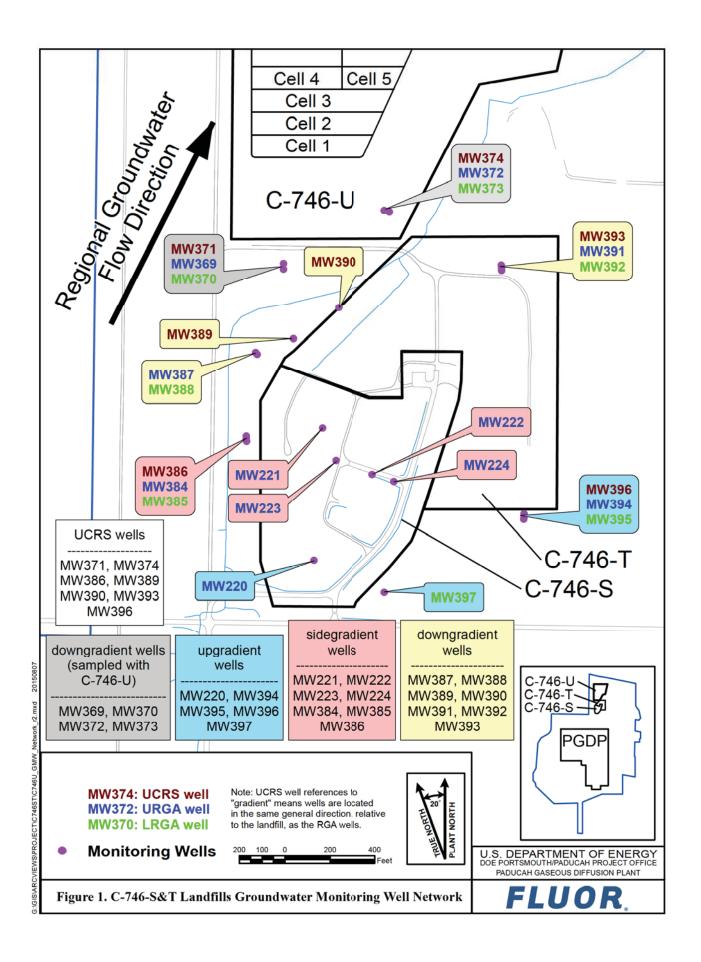
The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Gaseous Diffusion Plant (PGDP) and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for PGDP. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from PGDP. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for this location.


Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for the UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the RGA wells located in the same direction (relative to the landfill) as nearby UCRS wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within fourth quarter 2015 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using Fluor Federal Services, Inc., procedure CP4-ES-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled. Polychlorinated biphenyls, which are evaluated annually as required by Special Condition 1, also were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water measurements were collected on October 28, 2015, in MWs of the C-746-S&T Landfills (see Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is northeastward, toward the Ohio River. During late October, however, groundwater flow in the area of the landfill was oriented to the north. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in October was 5.86×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 4.90×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.83 to 1.70 ft/day (see Table E.3).

1.2.2 Methane Monitoring

In accordance with the Explosive Gas Monitoring Program (KEEC 2011), landfill operations staff monitored for the occurrence of methane in 1 on-site building location, 4 locations along the landfill

boundary, and 27 gas-passive vents located in Cells 1, 2, and 3 of the C-746-S Landfill on December 9, 2015. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the approved C-746-S&T Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was sampled in accordance with 401 KAR 48:300 § 2 and the approved Surface Water Monitoring Plan (PRS 2008). Sampling was performed at the three locations monitored for the C-746-S&T Landfills. The landfills have an upstream location, L135; a downstream location, L154; and a location capturing runoff from the landfill surface, L136. A map of the surface water monitoring locations is presented in Figure 2. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled for report only format, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Parameters that had concentrations that exceeded the respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were further evaluated against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL during the fourth quarter 2015, as well as parameters that exceeded their MCL (beta activity) and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

UCRSURGALRGANoneMW372: Beta activity, trichloroetheneMW373:TrichloroetheneMW384: Beta activityMW385: Beta activityMW387: Beta activityMW388: Beta activityMW391: TrichloroetheneMW392: TrichloroetheneMW394: Trichloroethene

Table 1. Summary of MCL Exceedances

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

There were no new MCL exceedances for this quarter. The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW372, MW373, MW391, and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfill.

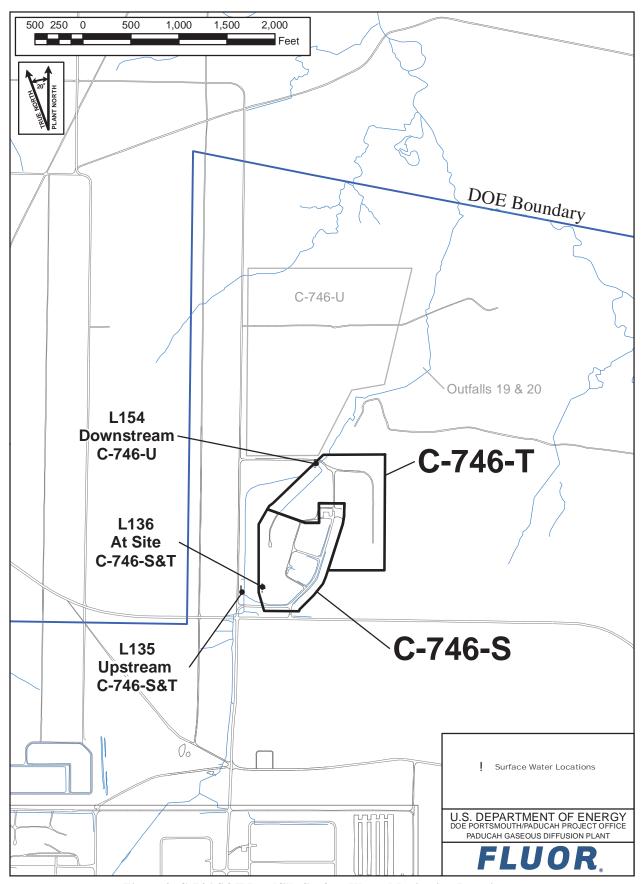


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA		
MW386: Oxidation-reduction	MW220: Oxidation-reduction	MW370: Dissolved solids,		
potential	potential, radium-226	oxidation-reduction potential,		
		technetium-99		
MW390: Oxidation-reduction	MW221: Oxidation-reduction	MW373: Calcium, conductivity,		
potential, technetium-99	potential, radium-226	dissolved solids, magnesium,		
		oxidation-reduction potential, sulfate		
MW393: Oxidation-reduction	MW222: Oxidation-reduction	MW385: Beta activity, ^a		
potential	potential	oxidation-reduction potential,		
		radium-226, sulfate, technetium-99		
MW396: Oxidation-reduction	MW223: Oxidation-reduction	MW388: Beta activity, ^a		
potential, radium-226	potential	oxidation-reduction potential,		
		sulfate, technetium-99		
	MW224: Dissolved solids,	MW392: Oxidation-reduction		
	oxidation-reduction potential,	potential, radium-226		
	sodium			
	MW369: Technetium-99	MW395: Oxidation-reduction		
		potential, radium-226		
	MW372: Beta activity, a calcium,	MW397: Oxidation-reduction		
	conductivity, dissolved solids,	potential		
	magnesium, sodium, sulfate,			
	technetium-99			
	MW384: Beta activity, a oxidation-			
	reduction potential, sodium, sulfate,			
	technetium-99			
	MW387: Beta activity, a oxidation-			
	reduction potential, sulfate,			
	technetium-99			
	MW391: Sulfate			
	MW394: Oxidation-reduction			
	potential			

^{*}Gradients in the UCRS are downward. UCRS gradient designations refer to locations of wells in the same direction, relative to the landfill as the RGA wells.

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW369: Technetium-99	MW370: Dissolved solids, technetium-99
MW372: Beta activity, calcium, conductivity, magnesium,	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
sodium, sulfate, technetium-99	
MW387: Beta activity, sulfate, technetium-99	MW388: Beta activity, technetium-99

The MCL exceedances for beta activity in MW372, MW387, and MW388 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances because the source(s) of these exceedances

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Upgradient wells: MW220, MW394, MW395, MW396, MW397

^a Beta activity has an MCL; the exceedances of the MCL were subjected to a comparison against the statistically derived historical background.

is not determined. To evaluate these preliminary Type 2 exceedances further, these parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All but one of these preliminary Type 2 exceedances in downgradient wells had no increasing trend and are considered to be Type 1 exceedances (not attributable to the landfill).

The Mann-Kendall statistical test indicates that there is an increasing trend in beta activity in MW388 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, this should be considered a Type 2 exceedance (source unknown). The source of the trend is believed to be unrelated to the C-746-S&T Landfills for the following reasons:

- Although MW388 is considered a downgradient well, MW372, which is located more directly downgradient of the landfill and MW387, which is collocated with MW388, do not show the increasing Mann-Kendall trend (refer to Table 4);
- There is a known upgradient regional source of beta activity associated with the Tc-99 Northwest Plume (refer to Figure 10 in the Groundwater Monitoring Plan that shows the lower concentration portions of the 2009 Tc-99 Plume map); and
- The recent beta activity in MW388 is within the range of historical levels of beta activity since 2002.

Beta activity and Tc-99 results of upcoming quarters' results will provide additional evidence related to this trend and will be evaluated in the context of this quarter's observations.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 8; and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as upgradient, to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance. Those constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and preliminarily are considered to be a Type 2 exceedance per the approved Groundwater Monitoring Plan. To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All but one of these preliminary Type 2 exceedances in downgradient wells did not have an increasing trend and are considered to be Type 1 exceedances (not attributable to the landfill). Beta activity in MW388 shows an increasing trend during this reporting period after application of the Mann-Kendall statistical test; however, the source of the trend is believed to be unrelated to the C-746-S&T Landfills.

In accordance with Permit Condition GSTR0003, Variance 2, of the Solid Waste Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the Permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

00

Table 4. C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value 2	S^3	Var(S)4	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
	MW369	Technetium-99	8	0.05	0.054	14.00	0.000	2.150	0.500	No Trend
	MW370	Dissolved Solids	8	0.05	0.138	10.00	0.000	13.17	0.357	No Trend
	W W 370	Technetium-99	8	0.05	0.138	10.00	0.000	3.953	0.357	No Trend
		Beta Activity	8	0.05	0.452	2.000	0.000	0.737	0.071	No Trend
		Calcium	8	0.05	0.274	6.000	0.000	0.763	0.214	No Trend
		Conductivity	8	0.05	0.138	-10.00	0.000	-8.000	-0.357	No Trend
	MW372	Magnesium	8	0.05	0.274	6.000	0.000	0.800	0.214	No Trend
		Sodium	8	0.05	0.054	-14.00	0.000	-1.175	-0.500	No Trend
		Sulfate	8	0.05	0.054	-14.00	0.000	-7.542	-0.500	No Trend
C-746-S and T Landfills		Technetium-99	8	0.05	0.548	0.000	0.000	0.975	0.000	No Trend
Downgradient Wells	MW373	Calcium	8	0.05	0.309	-5.000	64.33	-0.242	-0.182	No Trend
		Conductivity	8	0.05	0.007	-20.00	0.000	-13.50	-0.714	Negative Trend
		Dissolved Solids	8	0.05	0.007	-20.00	0.000	-14.30	-0.714	Negative Trend
		Magnesium	8	0.05	0.452	2.000	0.000	0.200	0.071	No Trend
		Sulfate	8	0.05	0.016	-18.00	0.000	-7.417	-0.643	Negative Trend
		Beta Activity	8	0.05	0.452	2.000	0.000	1.500	0.071	No Trend
	MW387	Sulfate	8	0.05	0.309	-5.000	64.33	-0.373	-0.182	No Trend
		Technetium-99	8	0.05	0.500	-1.000	64.33	-0.667	-0.036	No Trend
	MW388	Beta Activity	8	0.05	0.031	16.00	0.000	8.225	0.571	Positive Trend
	IVI VV 388	Technetium-99	8	0.05	0.159	9.000	64.33	5.979	0.327	No Trend

Footnotes:

³The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

⁶Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is postive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend.

⁷The Mann-Kendall decision operates on two hypothesis, the H₀ and H₂. H₀ assumes there is no trend in the data, whereas H₃ assumes either a positive or negative trend. Two different tests were ran to test for positive or negative trends. This table reports the test with the lowest p-value.

Note: Statistics generated using XLSTAT Version 2015.2.01.16684

¹An alpha of 0.05 represents a 95% confidence interval.

 $^{^2}$ The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

 $^{^4}VAR(S)$ represents the varience of S in the sample set and takes into account statistical ties.

⁵The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all $(x_- x_k)/(j-k)$, where x is a data point and j and k are values of time.

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified a UCRS well with a technetium-99 value that exceeds both the historical and current backgrounds. Because this well is not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T sources and is considered to be a Type 1 exceedance (Table 5).

Table 5. Exceedances of Current Background UTL in UCRS Wells

UCRS
MW390: Technetium-99

All MCL and UTL exceedances, except for one parameter, reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills. The source of an increasing trend for beta activity in MW388 does not appear to be landfill-related.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the fourth quarter 2015 groundwater data collected from the C746-S&T Landfills MWs were performed in accordance with the *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).* The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the respective Kentucky solid waste facility MCL found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance.

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389***	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396**	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	, 10
	MW387	
	MW391	
	MW394 (upgradient)	

^{*}A map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the UCRS. During the fourth quarter, oxidation-reduction potential, radium-226, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Technetium-99 exceeded the current background UTL and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 30 parameters, including those with MCLs, required statistical analysis in the URGA. During the fourth quarter, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, conductivity, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL and are included in Table 4.

^{**}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^{***}MW389 had insufficient water to permit a water level measurement and a water sample for laboratory analysis.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the LRGA. During the fourth quarter, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99 exceeded the current background UTL and are included in Table 4.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices, and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples—such as matrix spikes, matrix spike duplicates, and method blanks—are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION: C-746-S&T Landfills

Fourth Quarter Calendar Year 2015 (October–December)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (PAD-ENM-0094/V4)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

Registration for Professional General Professional Control of the Professional Control

February 25, 2016 Date

Kenneth R. Davis

PG1194

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and KY-073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:				Diffusion Plant	Activity:	C-746-S&T Landfills
	(As offi	icially show	n on DWM F	ermit Face)		
SW07300014, Permit No: SW07300015, SW07300045		Find	ls/Unit No:	Quarter & Year	4th Qtr. CY 2015	
Please check the j	following as	applicabl	e:			
Character	ization	X Qu	arterly _	Semiannual	Annual	Assessment
Please check appl	icable subm	ittal(s):	X	_ Groundwater	<u>X</u>	Surface Water
		9		Leachate	<u>X</u>	Methane Monitoring
45:160) or by statute jurisdiction of the D hours of making the lab report is NC pages. I certify under pena accordance with a serior based on my inquiry best of my knowledge.	e (Kentucky Rivision of Wase determination of Wase determination of Italy o	Revised State Managion using I notification at the document of the document of the second to assure or person rue, accurately of fine a	atues Chapt ement. You statistical a ion. Instruc- cument and e that quali s directly re- ate, and con and impriso	must report any indicanalyses, direct compartions for completing the all attachments were pfied personnel properly exponsible for gathering inplete. I am aware that the nament for such violations	ndwater and surface ation of contaminar rison, or other simi form are attached. Description or expared under my or gather and evaluate information, the information, the information of the second or expansion or expansion of the second or expansion of the second or expansion of the second or expansion or expansi	ations-401 KAR 48:300 and water monitoring under the ion within forty-eight (48 ar techniques. Submitting to not submit the instruction direction or supervision in the information submitted. The matter submitted is, to the malties for submitting false Date
Jennifer Woodar U.S. Department		Site Lead	lare	<u></u>	2/	26/16 Date

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date:	Groundwater: October 20 Methane: December 2015 Surface Water: November		n Permit Nos.	SW07300014, SW07300015, SW07300045
Facility Name:	U.S. DOE, Paducah Gaseo	us Diffusion Plant		
	(As offic	cially shown on DWM Permit Face)		
Site Address:	5501 Hobbs Road	Kevil, Kentucky		42053
	Street	City/State		Zip
Phone No:	(270) 441-6800 I	Latitude: N 37° 07' 37.70"	Longitude:	W 88° 47' 55.41"
		OWNER INFORMATION		
Facility Owner:	U.S. DOE, Robert E. Edwa	ards III, Acting Manager	Phone No:	(859) 227-5020
Contact Person:	Mark J. Duff	<u> </u>		(270) 441-6127
Contact Person Ti	tle: Director, Environme	ental Management, Fluor Federal Services, Inc.		
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053
-	Street	City/State		Zip
	(IF OT	SAMPLING PERSONNEL THER THAN LANDFILL OR LABORATORY)	
Company:	GEO Consultants, LLC			
Contact Person:	Sam Martin		Phone No:	(270) 441-6755
Mailing Address:	325 Kentucky Avenue	Kevil, Kentucky		42053
	Street	City/State		Zip
		LABORATORY RECORD #1		
Laboratory:	GEL Laboratories, LLC	Lab ID No:	KY90129	
Contact Person:	Valerie Davis	 -	Phone No:	(843) 769-7391
Mailing Address:	2040 Savage Road	Charleston, South Carolina		29407
	Street	City/State		Zip
		LABORATORY RECORD #2		
Laboratory:		Lab ID No): 	
Contact Person:			Phone No:	
Mailing Address:				
	Street	City/State		Zip
		LABORATORY RECORD #3		
Laboratory:		Lab ID No):	
Contact Person:			Phone No:	
Mailing Address:				
	Street	City/State		Zip

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-520°	1	8000-52	202	8000-52	242	8000-524	13
Facility's Loc	cal Well or Spring Number (e.g., M	ſW−1	, MW-2, etc	:.)	220		221		222		223	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/15/2015 0	7:38	10/15/2015	5 09:24	10/15/2015	12:25	10/15/2015	10:50
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	cility Sample ID Number (if applicable)					-16	MW221S	G1-16	MW222S0	G1-16	MW223SG	1-16
Laboratory San	boratory Sample ID Number (if applicable)					1	383484	003	3834840	005	3834840	07
Date of Analys	ate of Analysis (Month/Day/Year) For Volatile Organics Anal				10/22/201	5	10/22/2	015	10/23/20)15	10/22/201	15
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.258		0.488		0.469		0.447	
16887-00-6	Chloride(s)	т	mg/L	9056	23.2		36.4		35.1		33.5	
16984-48-8	Fluoride	т	mg/L	9056	0.159		0.169		0.24		0.22	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.21		1.27		1.22		1.2	
14808-79-8	Sulfate	т	mg/L	9056	14.7		13.8		12.1		14.7	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.1		30.11		30.11		30.13	
s0145	Specific Conductance	т	μ MH 0/cm	Field	330		384		362		386	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242)	8000-5243	
Facility's Loca	al Well or Spring Number (e.g., MW-	-1, 1	MW-2, BLANK-I	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	325.26		325.02		325.14		325.04	
N238	Dissolved Oxygen	Т	mg/L	Field	5.51		4.68		3.8		2.26	
s0266	Total Dissolved Solids	Т	mg/L	160.1	236		270		290		281	
s0296	На	Т	Units	Field	6.23		6.16		6.29		6.23	
NS215	Eh	Т	mV	Field	728		599		523		570	
s0907	Temperature	Т	°C	Field	16.39		17.22		18.94		17.83	
7429-90-5	Aluminum	Т	mg/L	6020	0.0151	J	<0.05		0.0418	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.189		0.22		0.291		0.251	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0105	J	0.0145	J	0.0105	J	0.00739	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	18.5		20.1		17.3		21	
7440-47-3	Chromium	Т	mg/L	6020	0.00309	J	0.0204		<0.01		0.0095	J
7440-48-4	Cobalt	Т	mg/L	6020	0.000221	J	0.000335	J	0.000727	J	0.000713	J
7440-50-8	Copper	Т	mg/L	6020	0.00098	BJ	0.00122	В	0.000806	BJ	0.000461	BJ
7439-89-6	Iron	Т	mg/L	6020	0.0448	J	0.117		0.0686	J	<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	7.86		9.16		7.96		9.06	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.00187	J	0.00441	J	0.00567	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8000-520	01	8000-52	:02	8000-524	42	8000-52	43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.000669		0.00217		0.000216	J	0.00384	
7440-02-0	Nickel	Т	mg/L	6020	0.0303		0.0182		0.0378		0.254	
7440-09-7	Potassium	Т	mg/L	6020	2.92		1.2		0.486		1.76	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	T	mg/L	6020	33.5		41.8		44.2		44.4	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003	*	<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520)2	8000-52	242	8000-52	243
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	:c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00031	J	<0.001		<0.001	*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	12	8000-524	43
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000207		<0.0000202		<0.0000203		<0.0000204	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0952	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0962		<0.0952		<0.0962	-	<0.0952	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5201		8000-5202	2	8000-524	2	8000-524	13
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	L, MW-2, et	:c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0952	
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.688	*	-0.995	*	-2.05	*	3.29	*
12587-47-2	Gross Beta	т	pCi/L	9310	17	*	0.362	*	3.29	*	3.27	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.636	*	0.821	*	0.457	*	0.236	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	1.21	*	-1.73	*	-1.49	*	-3.66	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	11.6	*	5.58	*	-1.96	*	-5.43	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.159	*	0.415	*	0.0896	*	-0.121	*
10028-17-8	Tritium	Т	pCi/L	906.0	-81.9	*	-21.3	*	31	*	57.2	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		<20		27.7	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.33	J	1.18	J	1.06	J	1.08	J
s0586	Total Organic Halides	т	mg/L	9020	0.00524	J	0.0067	J	0.0066	J	0.00564	J
		\perp										

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	118	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., N	w−1	, MW-2, etc	:.)	224		369		370		372	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/15/2015 1	3:46	10/13/2015	11:29	10/13/2015	14:05	10/13/2015 (08:36
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW224SG1	-16	MW369U	G1-16	MW370U0	G1-16	MW372UG	1-16
Laboratory Sar	boratory Sample ID Number (if applicable)					9	383206	003	3832060	005	38320600	01
Date of Analys	ate of Analysis (Month/Day/Year) For Volatile Organics Analysis				10/22/201	5	10/16/2	015	10/16/20)15	10/16/201	15
Gradient with	respect to Monitored Unit (UP, DO	, NW	SIDE, UNKN	IOWN)	SIDE		DOW	N	DOWI	٧	DOWN	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.451		0.378	J	<0.2		0.663	J
16887-00-6	Chloride(s)	т	mg/L	9056	33.7		34.6		5.57		49.4	
16984-48-8	Fluoride	т	mg/L	9056	0.247		0.181		0.276		0.162	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.798		0.599		0.278	J	0.312	
14808-79-8	Sulfate	т	mg/L	9056	14.9		7.89		11		116	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.08		29.85		29.87		29.84	
s0145	Specific Conductance	т	μ MH 0/cm	Field	439		370		432		751	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., MV	7-1, I	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.16		324.84		324.82		324.86	
N238	Dissolved Oxygen	Т	mg/L	Field	2.44		1.73		4.29		1.72	
s0266	Total Dissolved Solids	т	mg/L	160.1	307		189		414		419	
s0296	рн	Т	Units	Field	6.18		6.24		6.19		6.29	
NS215	Eh	Т	mV	Field	541		382		416		294	
s0907	Temperature	Т	°C	Field	19.17		17.06		19.06		15.39	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.0774		<0.05		0.0637	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.231		0.389		0.207		0.0518	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0177		0.0139	J	0.0328		1.28	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	22.2		17.1		27.3		61.9	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.000373	J	0.00742		0.000578	J	0.000346	J
7440-50-8	Copper	Т	mg/L	6020	0.00101	В	0.00145		0.000816	J	<0.001	
7439-89-6	Iron	т	mg/L	6020	<0.1		0.148		<0.1		0.502	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	10.1		6.93		11.6		23.5	
7439-96-5	Manganese	Т	mg/L	6020	0.00507		0.019		0.00374	J	0.0199	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	08
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	0.000406	J	<0.0005		<0.0005		0.000402	J
7440-02-0	Nickel	т	mg/L	6020	0.00409		0.00888		0.00116	J	0.00135	J
7440-09-7	Potassium	Т	mg/L	6020	0.869		0.554		2.38		2.42	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.00153	J	<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	0.000103	J	<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	59.2		48.3		50.4		58.9	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	20	8004-48	318	8004-48	308
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		0.00032	J
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		0.00123		0.0008	J	0.00918	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-4820	0	8004-487	18	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000208		<0.00002		<0.0000205		<0.0000206	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0962		<0.0971		<0.098		0.0511	J
12674-11-2	PCB-1016	т	ug/L	8082	<0.0962		<0.0971		<0.098		<0.0962	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0962		<0.0971		<0.098	_	<0.0962	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0962		<0.0971		<0.098		<0.0962	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0962		<0.0971		<0.098		0.0511	J
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0962		<0.0971		<0.098		<0.0962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244		8004-4820)	8004-481	8	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	L, MW-2, et	:c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0962		<0.0971		<0.098		<0.0962	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0962		<0.0971		<0.098		<0.0962	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0962		<0.0971		<0.098		<0.0962	
12587-46-1	Gross Alpha	т	pCi/L	9310	8.27	*	-2.55	*	0.324	*	2.94	*
12587-47-2	Gross Beta	т	pCi/L	9310	5.39	*	28	*	33.1	*	86.8	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.542	*	1.19	*	0.903	*	1.03	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.12	*	-1.78	*	-1.21	*	-1.19	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-11	*	46.7	*	50.5	*	89.5	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.44	*	-0.445	*	0.414	*	-0.381	*
10028-17-8	Tritium	Т	pCi/L	906.0	-8.88	*	-106	*	-18	*	-77.1	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	7.73	J	<20		31.1		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.32	J	1.12	J	0.847	J	1.91	J
s0586	Total Organic Halides	т	mg/L	9020	0.00644	J	0.0187		0.0119		0.0138	

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

Solid Waste Branch

14 Reilly Road

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	2	8004-48	309	8004-48	10	8004-480)4
Facility's Loc	cal Well or Spring Number (e.g., N	ſW−1	, MW-2, etc	:.)	373		384		385		386	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/13/2015 1	0:14	10/21/2015	08:49	10/21/2015	09:58	10/21/2015	12:09
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG1	-16	MW384S0	G1-16	MW385S0	§1-16	MW386SG	1-16
Laboratory San	mple ID Number (if applicable)		38320600	19	383811	003	3838110	005	3838110	09		
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					5	10/27/2	015	10/27/20)15	10/27/201	15
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	DOWN		SIDE	Ē	SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.575	J	0.53		<0.8		<0.8	
16887-00-6	Chloride(s)	Т	mg/L	9056	48.6		44.6		25.8		16.6	
16984-48-8	Fluoride	т	mg/L	9056	0.168		0.229		0.164		0.593	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.973		1.47		0.504		<0.1	
14808-79-8	Sulfate	т	mg/L	9056	160		20.3		19.5		44	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.84		30.29		30.28		30.25	
s0145	Specific Conductance	т	μ MH 0/cm	Field	849		511		495		660	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	ocal Well or Spring Number (e.g., MW	I-1,	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.81		324.28		324.23		343.84	
N238	Dissolved Oxygen	Т	mg/L	Field	1.99		4.57		2.39		1.22	
s0266	Total Dissolved Solids	T	mg/L	160.1	480		269		259		389	
s0296	рн	Т	Units	Field	6.19		6.21		6.4		6.64	
NS215	Eh	Т	mV	Field	312		716		689		390	
s0907	Temperature	т	°C	Field	16.56		17.39		17.28		19.94	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		0.00268	J
7440-39-3	Barium	Т	mg/L	6020	0.026		0.122		0.252		0.22	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	1.75		0.0127	J	0.012	J	<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	71.8		28.4		39.6		23.6	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		0.00429	J	<0.01		<0.01	
7440-48-4	Cobalt	T	mg/L	6020	0.000271	J	<0.001		<0.001		0.0105	
7440-50-8	Copper	т	mg/L	6020	0.00048	J	0.000523	J	0.000462	J	0.00045	J
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.0396	J	<0.1		1.95	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	26.1		11.4		14.6		9.83	
7439-96-5	Manganese	Т	mg/L	6020	0.0146		0.00871		0.00931		1.33	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005		<0.0005		0.000693		0.000564	
7440-02-0	Nickel	Т	mg/L	6020	0.000914	J	0.000756	J	0.00166	J	0.00251	
7440-09-7	Potassium	Т	mg/L	6020	2.7		1.05		1.86		0.298	J
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005	*	<0.005	*	<0.005	*
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	59.5		60.3		31.3		112	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000269	В	<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-480	09	8004-48	310	8004-48	304
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	l, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00914		0.00034	J	<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809)	8004-481	10	8004-480	04
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000205		<0.0000207		<0.0000206		<0.0000207	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.099		<0.0952		<0.0962		<0.0952	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.099		<0.0952		<0.0962		<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082	<0.099		<0.0952		<0.0962		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.099		<0.0952		<0.0962		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082	<0.099		<0.0952		<0.0962		<0.0952	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.099		<0.0952		<0.0962		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	!	8004-4809)	8004-481	0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.099		<0.0952		<0.0962		<0.0952	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.099		<0.0952		<0.0962		<0.0952	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.099		<0.0952		<0.0962		<0.0952	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-3.1	*	3.77	*	9.1	*	2.53	*
12587-47-2	Gross Beta	Т	pCi/L	9310	10.7	*	109	*	73.6	*	3.45	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.73	*	0.86	*	1.7	*	0.507	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.175	*	-1.01	*	-0.898	*	-2.48	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	15.9	*	162	*	112	*	-12	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.022	*	0.121	*	0.0445	*	0.147	*
10028-17-8	Tritium	Т	pCi/L	906.0	-130	*	84.9	*	57.6	*	74.1	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		17.7	J	<20		15.4	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.11	J	2.33		2.51		8.62	
s0586	Total Organic Halides	Т	mg/L	9020	0.0112		0.00368	*J	<0.01	*	0.187	*

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	316	8004-48	12	8004-481	1
Facility's Loc	cal Well or Spring Number (e.g., 1	nw−1	, MW-2, etc	.)	387		388		389		390	
Sample Sequence	ce #				1		1		1		1	
If sample is a E	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		10/21/2015 0	7:15	10/22/2015	07:27	NA		10/26/2015 0	7:41
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	Le ID Number (if applicable)				MW387SG1	-16	MW388S0	G1-16	NA		MW390SG1	I-16
Laboratory Sam	poratory Sample ID Number (if applicable))1	383920	001	NA		38408600)3
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					5	10/28/20	015	NA		10/30/201	5
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	N	SIDE		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.444	J	0.372			*	0.753	
16887-00-6	Chloride(s)	Т	mg/L	9056	39		32.5			*	80.4	
16984-48-8	Fluoride	Т	mg/L	9056	0.469		0.176			*	0.238	
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.09		1.04			*	3.22	
14808-79-8	Sulfate	Т	mg/L	9056	30.1		20.5			*	36.3	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.28		30.26			*	30.18	
s0145	Specific Conductance	Т	μ M H0/cm	Field	538		402			*	735	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Lo	ocal Well or Spring Number (e.g., MV	/-1, i	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.34		324.28			*	324.21	
N238	Dissolved Oxygen	т	mg/L	Field	4.27		5.17			*	5.38	
s0266	Total Dissolved Solids	Т	mg/L	160.1	263		234			*	406	
s0296	рн	Т	Units	Field	6.22		6.17			*	6.62	
NS215	Eh	Т	mV	Field	832		696			*	415	
s0907	Temperature	т	°C	Field	16.83		17.33			*	16.5	
7429-90-5	Aluminum	Т	mg/L	6020	0.0195	J	0.039	J		*	0.0498	J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	0.00189	J	<0.005			*	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.117		0.202			*	0.265	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.034		0.0202			*	0.00639	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	32.1		26			*	33.8	
7440-47-3	Chromium	Т	mg/L	6020	0.00317	J	<0.01			*	<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.000167	BJ		*	0.000201	J
7440-50-8	Copper	Т	mg/L	6020	0.000507	J	0.000796	BJ		*	0.000695	J
7439-89-6	Iron	т	mg/L	6020	0.0855	J	0.131			*	0.0461	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	13.7		12.3			*	15.8	
7439-96-5	Manganese	т	mg/L	6020	0.00581		0.00192	J		*	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-48	15	8004-48	16	8004-48	12	8004-481	1
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.000269	BJ		*	0.000651	
7440-02-0	Nickel	т	mg/L	6020	0.00119	J	0.00126	J		*	0.00237	
7440-09-7	Potassium	т	mg/L	6020	1.64		2.19			*	0.381	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005	*	<0.005			*	<0.005	
7782-49-2	Selenium	T	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	Т	mg/L	6020	48.4		50			*	103	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005	*		*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	0.00011	J
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01			*	<0.01	
108-05-4	Vinyl acetate	T	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	T	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-48	16	8004-4	812	8004-481	1
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		0.00034	J		*	<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00079	J	0.00074	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-4816	6	8004-48	12	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g., M	1W -1	l, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000203		<0.0000202			*	<0.0000204	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0952		<0.0943			*	<0.099	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.0943			*	<0.099	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.0943			*	<0.099	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.0943			*	<0.099	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.0943			*	<0.099	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0952		<0.0943			*	<0.099	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815		8004-4816	6	8004-4812		8004-4811	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	:c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.0943			*	<0.099	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952		<0.0943			*	<0.099	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.0943			*	<0.099	
12587-46-1	Gross Alpha	т	pCi/L	9310	4.34	*	1.16	*		*	-4.02	*
12587-47-2	Gross Beta	Т	pCi/L	9310	123	*	72.6	*		*	46.3	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.656	*	0.553	*		*	0.645	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.383	*	2.32	*		*	1.3	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	192	*	95.8	*		*	58.6	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.201	*	-0.347	*		*	-0.00192	*
10028-17-8	Tritium	Т	pCi/L	906.0	128	*	196	*		*	119	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20			*	<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	2.29		2.03			*	2.21	
s0586	Total Organic Halides	т	mg/L	9020	0.00976	*J	0.0062	J		*	0.0316	

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

Solid Waste Branch

14 Reilly Road

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number						8004-4806		8004-4807		8004-480	02
Facility's Loc	al Well or Spring Number (e.g., 1	/W−1	, MW-2, etc	.)	391		392		393		394	
Sample Sequence	e #				1		1		1		1	
If sample is a B	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment						NA		NA		NA	
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)					8:55	10/26/2015	5 11:49	10/26/2015	12:56	10/22/2015	10:01
Duplicate ("Y"	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or	Split ("Y" or "N") ³						N		N		N	
Facility Sampl	Facility Sample ID Number (if applicable)						MW392S0	G1-16	MW393S0	91-16	MW394SG	1-16
Laboratory Sam	uple ID Number (if applicable)				38408600	1	384086	005	3840860	007	3839200	003
Date of Analys	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	10/30/2015		10/30/2015		10/30/2015		10/28/20	15
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOWN		DOWN		DOWN		UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G s ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.579		0.63		0.205		0.669	
16887-00-6	Chloride(s)	Т	mg/L	9056	48.6		46.9		14.3		49.9	
16984-48-8	Fluoride	т	mg/L	9056	0.12		0.186		0.101		0.115	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.1		0.257		<0.1		1.31	
14808-79-8	Sulfate	Т	mg/L	9056	22.7		5.9		10.2		10.7	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.18		30.19		30.15		30.28	
s0145	Specific Conductance	т	μ MH0/cm	Field	421		412		366		383	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807		8004-4802	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-E	, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	324.14		324.13		340.14		324.52	
N238	Dissolved Oxygen	Т	mg/L	Field	4.1		1.23		1.81		4.59	
S0266	Total Dissolved Solids	Т	mg/L	160.1	227		204		216		210	
s0296	рн	Т	Units	Field	6.16		6.24		6.15		6.12	
NS215	Eh	Т	mV	Field	363		336		233		411	
s0907	Temperature	Т	°C	Field	16.94		17.06		17.5		18	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.0157	J	0.0196	J	0.0162	J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		0.00332	J	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.252		0.206		0.0978		0.244	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0498		0.0281		0.0156		0.0215	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	27.7		28		10.7		26.9	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	T	mg/L	6020	<0.001		0.000148	J	<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000638	J	0.000453	J	0.00286		0.000526	BJ
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.273		1.69		0.056	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	12.8		10.7		3.47		12.1	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.109		0.0406		0.00224	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	05	8004-48	06	8004-480	07	8004-4802	
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.000211	J	<0.0005		<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.000874	J	0.000696	J	0.00631		0.00184	J
7440-09-7	Potassium	т	mg/L	6020	1.56		1.81		0.398		1.23	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	37		41.9		74.8		33.1	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01		0.00618	J	<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-4806		8004-4807		8004-48	302
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	0.00048	J	0.0006	J	<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0124		0.0172		<0.001		0.00711	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	6	8004-4807		8004-480)2
Facility's Loc	al Well or Spring Number (e.g., N	ıw−1	, MW-2, et	:c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000204		<0.0000207		<0.0000209		<0.0000202	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.098		<0.0971		<0.098		<0.0971	
12674-11-2	PCB-1016	т	ug/L	8082	<0.098		<0.0971		<0.098		<0.0971	
11104-28-2	PCB-1221	т	ug/L	8082	<0.098		<0.0971		<0.098		<0.0971	
11141-16-5	PCB-1232	т	ug/L	8082	<0.098		<0.0971		<0.098		<0.0971	
53469-21-9	PCB-1242	т	ug/L	8082	<0.098		<0.0971		<0.098		<0.0971	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.098		<0.0971		<0.098		<0.0971	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4805		8004-4806	5	8004-4807		8004-480)2
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	:c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.098		<0.0971		<0.098		<0.0971	
11096-82-5	PCB-1260	т	ug/L	8082	<0.098		<0.0971		<0.098		<0.0971	
11100-14-4	PCB-1268	т	ug/L	8082	<0.098		<0.0971		<0.098		<0.0971	
12587-46-1	Gross Alpha	т	pCi/L	9310	-1.63	*	-0.904	*	-0.653	*	0.571	*
12587-47-2	Gross Beta	Т	pCi/L	9310	5.22	*	0.185	*	-0.734	*	11.6	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.438	*	0.718	*	0.238	*	0.43	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	6.69	*	3.12	*	-0.258	*	0.241	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	6.38	*	4.63	*	-2.21	*	0.742	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.233	*	-0.145	*	0.016	*	-0.0832	*
10028-17-8	Tritium	Т	pCi/L	906.0	-5.11	*	43.5	*	20.4	*	67.8	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		14.4	J	<20		12.9	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.809	J	1.2	J	2.34		1.66	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0123		0.0361		0.0119		0.0068	*J

Division of Waste Management RI Solid Waste Branch Fa

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Per

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

14 Reilly Road

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480°	1	8004-48	303	8004-48	17	0000-000)0
Facility's Loc	al Well or Spring Number (e.g., N	ſW−1	L, MW-2, etc	.)	395		396		397		E. BLAN	K
Sample Sequenc	e #				1	1		1		1		
If sample is a B	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment						NA	NA		NA		
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)					2:19	10/22/2015	13:24	10/22/2015	08:52	10/21/2015 ()6:40
Duplicate ("Y"	N		N		N		N					
Split ("Y" or	N		N		N		N					
Facility Sampl	MW395SG1	-16	MW396S0	G1-16	MW397S0	G1-16	RI1SG1-1	16				
Laboratory Sam	ple ID Number (if applicable)				38392000	5	383920	007	3839200	009	38381101	12
Date of Analys	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	10/28/2015		10/28/2015		10/28/2015		10/27/201	15
Gradient with	respect to Monitored Unit (UP, DO	NWN ,	, SIDE, UNKN	OWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.581		1.23		0.497			*
16887-00-6	Chloride(s)	т	mg/L	9056	46.7		82.3		41.3			*
16984-48-8	Fluoride	т	mg/L	9056	0.103		0.481		0.117			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.64		<0.4		1.5			*
14808-79-8	Sulfate	т	mg/L	9056	10		22.6		11.6			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.25		30.21		30.28			*
s0145	Specific Conductance	т	μ MHO/cm	Field	372		768		323			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817		0000-0000	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-F	, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.94		366.52		324.54			*
N238	Dissolved Oxygen	Т	mg/L	Field	5.59		1.38		5.81			*
s0266	Total Dissolved Solids	Т	mg/L	160.1	194		426		160			*
s0296	рН	Т	Units	Field	5.97		6.43		6.08			*
NS215	Eh	Т	mV	Field	378		159		448			*
s0907	Temperature	Т	°C	Field	19.33		20.56		17.61			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0244	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00327	J	<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.252		0.439		0.135		<0.002	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0233		0.00657	J	0.00698	J	<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	27		37.3		19.2		<0.2	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00442	В	<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000839	BJ	0.000468	BJ	0.000662	BJ	<0.001	
7439-89-6	Iron	Т	mg/L	6020	<0.1		5.2		0.0395	J	0.968	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	12.3		17.3		8.64		<0.03	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.585		0.00221	J	0.00305	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	395		396		397		E. BLAN	ΙΚ
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	0.000231	BJ	0.000724	В	<0.0005		<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.000741	J	0.00173	J	0.000752	J	<0.002	
7440-09-7	Potassium	Т	mg/L	6020	1.59		0.816		1.86		<0.3	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	*
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	32.5		114		36		<0.25	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.000124	J	<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	T	mg/L	6020	<0.01		0.00436	BJ	<0.01		0.0059	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480 ⁻	1	8004-480	03	8004-48	317	0000-00	000
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	l, MW-2, et	.c.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00392		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-481	17	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	395		396		397		E. BLAN	ΙΚ
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000206		<0.0000209		<0.0000202		<0.000021	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0962		<0.0943		<0.0952		<0.0943	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0962		<0.0943		<0.0952		<0.0943	
11104-28-2	PCB-1221	Т	ug/L	8082	<0.0962		<0.0943		<0.0952		<0.0943	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.0962		<0.0943		<0.0952		<0.0943	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0962		<0.0943		<0.0952		<0.0943	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0962		<0.0943		<0.0952		<0.0943	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4801		8004-4803	3	8004-481	7	0000-000)0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	395		396		397		E. BLAN	.K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0962		<0.0943		<0.0952		<0.0943	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0962		<0.0943		<0.0952		<0.0943	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0962		<0.0943		<0.0952		<0.0943	
12587-46-1	Gross Alpha	т	pCi/L	9310	-5.12	*	4.17	*	0.348	*	-2.04	*
12587-47-2	Gross Beta	т	pCi/L	9310	10.7	*	-3.49	*	-1.02	*	-4.67	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	1.01	*	0.988	*	0.356	*	0.126	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.806	*	-2.42	*	-2.12	*	-2.6	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	9.39	*	-7.28	*	9.83	*	-3.17	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.169	*	0.0132	*	-0.179	*	-0.0658	*
10028-17-8	Tritium	т	pCi/L	906.0	46.5	*	91.4	*	8.31	*	196	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		12.9	J	10.4	J		*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		0.783		<0.5			*
s0268	Total Organic Carbon	т	mg/L	9060	0.755	J	5.96		0.699	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.0105	*	0.0478	*	0.00564	*J		*
		\perp										

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

Solid Waste Branch

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000)0
Facility's Loc	al Well or Spring Number (e.g., N	1W−1	L, MW-2, etc	:.)	F. BLAN	K	T. BLAN	K 1	T. BLANK	(2	T. BLANK	(3
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	F		Т		Ţ		Т	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		10/21/2015 ·	12:20	10/15/2015	06:50	10/21/2015	06:35	10/22/2015 ()6:50
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				FB1SG1-	16	TB1SG1	-16	TB2SG1-	16	TB3SG1-	16
Laboratory Sam	ple ID Number (if applicable)		3838110 ⁻	11	3834840	11	3838110	13	3839200	11		
Date of Analys	is (Month/Day/Year) For Volatile	rganics Anal	ysis	10/27/20	15	10/22/20	15	10/27/20	15	10/28/201	15	
Gradient with	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	μMH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., MW	/-1, i	MW-2, BLANK-	F, etc.)	F. BLAN	<	T. BLANK	1	T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	т	mg/L	6020	<0.002			*		*		*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	т	mg/L	6020	<0.001			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	Т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	Т	mg/L	6020	0.0183	J		*		*		*
7439-96-5	Manganese	Т	mg/L	6020	0.00113	J		*		*		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	0000-00	000	0000-00	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	F. BLAN	lK	T. BLAN	IK 1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	Т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005	*		*		*		*
7782-49-2	Selenium	Т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	Т	mg/L	6020	0.22	J		*		*		*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	Т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	Т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	Т	mg/L	6020	<0.01			*		*		*
7440-66-6	Zinc	Т	mg/L	6020	<0.01			*		*		*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000	0	0000-000	00	0000-00	000	0000-00)00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	l, MW-2, et	.c.)	F. BLAN	(T. BLAN	< 1	T. BLAN	IK 2	T. BLAN	IK 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	1 W−1	1, MW-2, et	:c.)	F. BLAN	(T. BLANK	1	T. BLAN	< 2	T. BLANI	К 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000208		<0.0000211		<0.0000207		<0.0000211	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0962			*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0962			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0962			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0962			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0962			*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0962			*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-0000		0000-000)	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	F. BLAN	(T. BLANK 1		T. BLANK	2	T. BLANK	(3
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0962			*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0962			*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0962			*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.145	*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	2.39	*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.552	*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.279	*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	2.6	*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.117	*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0	97.5	*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*		*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch

Frankfort, KY 40601 (502)564-6716

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				0000-000	00	8004-480)4				$\overline{}$
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, etc	:.)	T. BLANK	(4	386					
Sample Sequence	ce #				1		2					
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)	ethod, or (E)	quipment	Т		NA					/
Sample Date an	nd Time (Month/Day/Year hour: minu	ıtes	1)		10/26/2015	06:50	10/21/2015	12:09			/	
Duplicate ("Y	" or "N") ²				N		Y					
Split ("Y" or	"N") ³				N		N		\	\		
Facility Samp	le ID Number (if applicable)				TB4SG1-	16	MW386DSG	G1-16				
Laboratory Sar	mple ID Number (if applicable)		38408600	09	3838110	07		$\overline{}$				
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u>	ysis	10/30/20	15	10/27/201	15						
Gradient with	respect to Monitored Unit (UP, D	OWN	, SIDE, UNKN	IOWN)	NA		SIDE				X	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056		*	<0.8		/			
16887-00-6	Chloride(s)	Т	mg/L	9056		*	16.5					
16984-48-8	Fluoride	Т	mg/L	9056		*	0.583					
s0595	Nitrate & Nitrite	Т	mg/L	9056		*	<0.1				'	
14808-79-8	Sulfate	Т	mg/L	9056		*	43.9					
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*	30.25					
s0145	Specific Conductance	Т	μ MHO /cm	Field		*	660		/			
	•											

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

	· • • • • • • • • • • • • • • • • • • •				(00110	• ,						
AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	8004-480	14	\setminus			/
Facility's Lo	ocal Well or Spring Number (e.g., M	V-1,	MW-2, BLANK-	F, etc.)	T. BLANK	4	386					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR FQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*	343.84					
N238	Dissolved Oxygen	т	mg/L	Field		*	1.22					
S0266	Total Dissolved Solids	т	mg/L	160.1		*	377					
s0296	рн	т	Units	Field		*	6.64		\			
NS215	Eh	т	mV	Field		*	390			$\overline{\ }$		
s0907	Temperature	т	°C	Field		*	19.94					
7429-90-5	Aluminum	Т	mg/L	6020		*	<0.05			$\overline{}$		
7440-36-0	Antimony	т	mg/L	6020		*	<0.003			$\neg \uparrow$		
7440-38-2	Arsenic	т	mg/L	6020		*	0.00243	J			(
7440-39-3	Barium	т	mg/L	6020		*	0.219			/		
7440-41-7	Beryllium	Т	mg/L	6020		*	<0.0005					
7440-42-8	Boron	Т	mg/L	6020		*	<0.015			7		
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001					
7440-70-2	Calcium	т	mg/L	6020		*	23.5		/			
7440-47-3	Chromium	т	mg/L	6020		*	<0.01					
7440-48-4	Cobalt	т	mg/L	6020		*	0.0105					
7440-50-8	Copper	т	mg/L	6020		*	<0.001					
7439-89-6	Iron	т	mg/L	6020		*	1.89				\	\
7439-92-1	Lead	т	mg/L	6020		*	<0.002					
7439-95-4	Magnesium	т	mg/L	6020		*	10.1					
7439-96-5	Manganese	т	mg/L	6020		*	1.31					
7439-97-6	Mercury	Т	mg/L	7470		*	<0.0002					\

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				0000-000	00	8004-48	304	\			/
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLAN	K 4	386					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	Т	mg/L	6020		*	0.000552				/	
7440-02-0	Nickel	Т	mg/L	6020		*	0.00246					
7440-09-7	Potassium	Т	mg/L	6020		*	0.279	J				
7440-16-6	Rhodium	т	mg/L	6020		*	<0.005	*				
7782-49-2	Selenium	Т	mg/L	6020		*	<0.005		\			
7440-22-4	Silver	Т	mg/L	6020		*	<0.001					
7440-23-5	Sodium	Т	mg/L	6020		*	112					
7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005				/	
7440-28-0	Thallium	Т	mg/L	6020		*	<0.002					
7440-61-1	Uranium	Т	mg/L	6020		*	<0.0002					
7440-62-2	Vanadium	Т	mg/L	6020		*	<0.01					
7440-66-6	Zinc	Т	mg/L	6020		*	<0.01			/		
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		/			
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005					
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005					
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005					
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		7			
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001					
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003					
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001					
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001					
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER1,	Facility Well/Spring Number				0000-0000	0	8004-480	04	<u> </u>			
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	T. BLANK 4		386					\mathcal{I}
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR FQL ⁶	F L A G	DETECTED FOR A PQL6 S	L A
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001				/	-
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001					
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001				/	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		V			
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		N	\		
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005					
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001					
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001				/	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001				X	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001					
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001					
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001					
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			/		
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		/			
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001					
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001					
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001					
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001					
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001					
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		7			
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001					1
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		/			7

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	0	8004-4804	4	\			
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	T. BLANK	4	386					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR FOL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001				/	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005					
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005					
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		\			
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001			\setminus		
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005					
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005					
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000211		<0.0000207					
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001				X	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001					
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001					
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001					
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001					
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		/			
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001					
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001					
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.0962					
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.0962					\
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.0962		/			
11141-16-5	PCB-1232	Т	ug/L	8082		*	<0.0962		/			
53469-21-9	PCB-1242	Т	ug/L	8082		*	<0.0962					
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.0962		/			

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				0000-000	0	8004-4804		Λ			$\overline{}$
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	T. BLANK	4	386					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.0962					
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.0962					
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.0962					
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	4.76	*				
12587-47-2	Gross Beta	Т	pCi/L	9310		*	0.0476	*	ľ			
10043-66-0	Iodine-131	Т	pCi/L			*		*				
13982-63-3	Radium-226	Т	pCi/L	HASL 300		*	0.224	*				
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	6.98	*		/		
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	-7.02	*			\setminus	
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	-0.16	*				
10028-17-8	Tritium	Т	pCi/L	906.0		*	48.4	*				
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*	32.7					
57-12-5	Cyanide	Т	mg/L	9012		*	<0.2					
20461-54-5	Iodide	Т	mg/L	300.0		*	<0.5					
s0268	Total Organic Carbon	Т	mg/L	9060		*	8.65					
s0586	Total Organic Halides	Т	mg/L	9020		*	0.144	*				
											1	
									/			
									/			

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

	acility Sample ID	Constituent	Flag	Description
8000-5201 MW220 MW	/220SG1-16	Gross alpha		TPU is 3.77. Rad error is 3.76.
		Gross beta		TPU is 8.18. Rad error is 7.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.464. Rad error is 0.463.
		Strontium-90		TPU is 3.44. Rad error is 3.44.
		Technetium-99		TPU is 12.4. Rad error is 12.4.
		Thorium-230		TPU is 0.398. Rad error is 0.398.
		Tritium		TPU is 120. Rad error is 120.
8000-5202 MW221 MW	/221SG1-16	Gross alpha		TPU is 2.76. Rad error is 2.76.
		Gross beta		TPU is 5.45. Rad error is 5.45.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.485. Rad error is 0.484.
		Strontium-90		TPU is 1.8. Rad error is 1.8.
		Technetium-99		TPU is 12.7. Rad error is 12.7.
		Thorium-230		TPU is 0.593. Rad error is 0.584.
		Tritium		TPU is 123. Rad error is 123.
8000-5242 MW222 MW	/222SG1-16	Gross alpha		TPU is 3.64. Rad error is 3.63.
		Gross beta		TPU is 7.2. Rad error is 7.18.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.383. Rad error is 0.382.
		Strontium-90		TPU is 1.65. Rad error is 1.65.
		Technetium-99		TPU is 12.1. Rad error is 12.1.
		Thorium-230		TPU is 0.537. Rad error is 0.535.
		Tritium		TPU is 125. Rad error is 125.
8000-5243 MW223 MW	/223SG1-16	Gross alpha		TPU is 5.4. Rad error is 5.38.
		Gross beta		TPU is 5.51. Rad error is 5.47.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.299. Rad error is 0.299.
		Strontium-90		TPU is 3.24. Rad error is 3.24.
		Technetium-99		TPU is 11.7. Rad error is 11.7.
		Thorium-230		TPU is 0.49. Rad error is 0.49.
		Tritium		TPU is 126. Rad error is 125.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5244 MW224 M	1W224SG1-16	Gross alpha		TPU is 7.5. Rad error is 7.35.
		Gross beta		TPU is 5.07. Rad error is 4.98.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.395. Rad error is 0.395.
		Strontium-90		TPU is 2.16. Rad error is 2.16.
		Technetium-99		TPU is 11.6. Rad error is 11.6.
		Thorium-230		TPU is 0.617. Rad error is 0.608.
		Tritium		TPU is 124. Rad error is 124.
004-4820 MW369 M	1W369UG1-16	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 4.73. Rad error is 4.73.
		Gross beta		TPU is 11.7. Rad error is 10.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.633. Rad error is 0.632.
		Strontium-90		TPU is 1.04. Rad error is 1.04.
		Technetium-99		TPU is 13.7. Rad error is 12.6.
		Thorium-230		TPU is 0.334. Rad error is 0.333.
		Tritium		TPU is 117. Rad error is 117.
3004-4818 MW370 M	1W370UG1-16	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 5. Rad error is 4.99.
		Gross beta		TPU is 10.6. Rad error is 9.14.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.573. Rad error is 0.572.
		Strontium-90		TPU is 1.83. Rad error is 1.83.
		Technetium-99		TPU is 14.8. Rad error is 13.7.
		Thorium-230		TPU is 0.599. Rad error is 0.591.
		Tritium		TPU is 123. Rad error is 123.
004-4808 MW372 M	1W372UG1-16	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 6.42. Rad error is 6.36.
		Gross beta		TPU is 19.6. Rad error is 13.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.656. Rad error is 0.654.
		Strontium-90		TPU is 1.59. Rad error is 1.59.
		Technetium-99		TPU is 16.6. Rad error is 13.3.
		Thorium-230		TPU is 0.372. Rad error is 0.372.
		Tritium		TPU is 121. Rad error is 121.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4792 MW37	3 MW373UG1-16	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 5.27. Rad error is 5.26.
		Gross beta		TPU is 7.04. Rad error is 6.82.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.477. Rad error is 0.476.
		Strontium-90		TPU is 1.81. Rad error is 1.81.
		Technetium-99		TPU is 12.5. Rad error is 12.3.
		Thorium-230		TPU is 0.338. Rad error is 0.337.
		Tritium		TPU is 118. Rad error is 118.
004-4809 MW38	4 MW384SG1-16	Rhodium	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 5.71. Rad error is 5.63.
		Gross beta		TPU is 23.1. Rad error is 14.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.859. Rad error is 0.859.
		Strontium-90		TPU is 2.2. Rad error is 2.2.
		Technetium-99		TPU is 23.1. Rad error is 14.5.
		Thorium-230		TPU is 0.436. Rad error is 0.433.
		Tritium		TPU is 130. Rad error is 128.
		Total Organic Halides	Н	Analysis performed outside holding time requirement
004-4810 MW38	5 MW385SG1-16	Rhodium	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 9.46. Rad error is 9.3.
		Gross beta		TPU is 18.2. Rad error is 13.6.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.652. Rad error is 0.649.
		Strontium-90		TPU is 2.26. Rad error is 2.26.
		Technetium-99		TPU is 18.4. Rad error is 13.6.
		Thorium-230		TPU is 0.41. Rad error is 0.408.
		Tritium		TPU is 131. Rad error is 131.
		Total Organic Halides	Н	Analysis performed outside holding time requirement
004-4804 MW38	6 MW386SG1-16	Rhodium	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 6.2. Rad error is 6.18.
		Gross beta		TPU is 6.32. Rad error is 6.29.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.436. Rad error is 0.436.
		Strontium-90		TPU is 2.88. Rad error is 2.88.
		Technetium-99		TPU is 10.4. Rad error is 10.4.
		Thorium-230		TPU is 0.4. Rad error is 0.396.
		Tritium		TPU is 130. Rad error is 129.
		Total Organic Halides	Н	Analysis performed outside holding time requirement

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4815 MW387	7 MW387SG1-16	Rhodium	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 6.83. Rad error is 6.73.
		Gross beta		TPU is 24.9. Rad error is 15.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.578. Rad error is 0.578.
		Strontium-90		TPU is 3.05. Rad error is 3.05.
		Technetium-99		TPU is 26.1. Rad error is 15.2.
		Thorium-230		TPU is 0.426. Rad error is 0.421.
		Tritium		TPU is 134. Rad error is 131.
		Total Organic Halides	Н	Analysis performed outside holding time requirement
8004-4816 MW388	3 MW388SG1-16	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 6.36. Rad error is 6.35.
		Gross beta		TPU is 18.5. Rad error is 14.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.526. Rad error is 0.526.
		Strontium-90		TPU is 2.81. Rad error is 2.79.
		Technetium-99		TPU is 17.2. Rad error is 13.5.
		Thorium-230		TPU is 0.357. Rad error is 0.357.
		Tritium		TPU is 139. Rad error is 134.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well was dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well was dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample wa collected.
		рН		During sampling, the well was dry; therefore, no sample w collected.
		Eh		During sampling, the well was dry; therefore, no sample w collected.
		Temperature		During sampling, the well was dry; therefore, no sample w collected.
		Aluminum		During sampling, the well was dry; therefore, no sample w collected.
		Antimony		During sampling, the well was dry; therefore, no sample w collected.
		Arsenic		During sampling, the well was dry; therefore, no sample w collected.
		Barium		During sampling, the well was dry; therefore, no sample w collected.
		Beryllium		During sampling, the well was dry; therefore, no sample w collected.
		Boron		During sampling, the well was dry; therefore, no sample w collected.
		Cadmium		During sampling, the well was dry; therefore, no sample w collected.
		Calcium		During sampling, the well was dry; therefore, no sample w collected.
		Chromium		During sampling, the well was dry; therefore, no sample w collected.
		Cobalt		During sampling, the well was dry; therefore, no sample w collected.
		Copper		During sampling, the well was dry; therefore, no sample w collected.
		Iron		During sampling, the well was dry; therefore, no sample w collected.
		Lead		During sampling, the well was dry; therefore, no sample w collected.
		Magnesium		During sampling, the well was dry; therefore, no sample w collected.
		Manganese		During sampling, the well was dry; therefore, no sample w collected.
		Mercury		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample wa collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample wa collected.
		Selenium		During sampling, the well was dry; therefore, no sample wa collected.
		Silver		During sampling, the well was dry; therefore, no sample wa collected.
		Sodium		During sampling, the well was dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well was dry; therefore, no sample wa collected.
		Thallium		During sampling, the well was dry; therefore, no sample wa collected.
		Uranium		During sampling, the well was dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well was dry; therefore, no sample wa collected.
		Zinc		During sampling, the well was dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample w collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample was collected.
		Gross beta		During sampling, the well was dry; therefore, no sample was collected.
		lodine-131		During sampling, the well was dry; therefore, no sample w collected.
		Radium-226		During sampling, the well was dry; therefore, no sample w collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample was collected.
		Tritium		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample was collected.
		Cyanide		During sampling, the well was dry; therefore, no sample was collected.
		lodide		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample was collected.
8004-4811 MW390	MW390SG1-16	Gross alpha		TPU is 4.59. Rad error is 4.59.
		Gross beta		TPU is 12.7. Rad error is 10.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.677. Rad error is 0.677.
		Strontium-90		TPU is 3.09. Rad error is 3.08.
		Technetium-99		TPU is 15.1. Rad error is 13.6.
		Thorium-230		TPU is 0.268. Rad error is 0.267.
		Tritium		TPU is 133. Rad error is 131.
3004-4805 MW391	MW391SG1-16	Gross alpha		TPU is 4.76. Rad error is 4.76.
		Gross beta		TPU is 6.5. Rad error is 6.44.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.428. Rad error is 0.427.
		Strontium-90		TPU is 4.58. Rad error is 4.44.
		Technetium-99		TPU is 10.7. Rad error is 10.7.
		Thorium-230		TPU is 0.388. Rad error is 0.383.
		Tritium		TPU is 125. Rad error is 125.
3004-4806 MW392	MW392SG1-16	Gross alpha		TPU is 4.24. Rad error is 4.24.
		Gross beta		TPU is 5.66. Rad error is 5.65.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.512. Rad error is 0.511.
		Strontium-90		TPU is 4.11. Rad error is 4.08.
		Technetium-99		TPU is 10.5. Rad error is 10.5.
		Thorium-230		TPU is 0.245. Rad error is 0.243.
		Tritium		TPU is 127. Rad error is 127.
3004-4807 MW393	MW393SG1-16	Gross alpha		TPU is 5.54. Rad error is 5.54.
		Gross beta		TPU is 8.38. Rad error is 8.38.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.354. Rad error is 0.354.
		Strontium-90		TPU is 1.38. Rad error is 1.38.
		Technetium-99		TPU is 10.3. Rad error is 10.3.
		Thorium-230		TPU is 0.271. Rad error is 0.269.
		Tritium		TPU is 128. Rad error is 128.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4802 MW394	MW394SG1-16	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 4.59. Rad error is 4.59.
		Gross beta		TPU is 8.31. Rad error is 8.09.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.391. Rad error is 0.391.
		Strontium-90		TPU is 1.56. Rad error is 1.56.
		Technetium-99		TPU is 10.9. Rad error is 10.9.
		Thorium-230		TPU is 0.405. Rad error is 0.405.
		Tritium		TPU is 130. Rad error is 130.
		Total Organic Halides	Н	Analysis performed outside holding time requirement
004-4801 MW395	MW395SG1-16	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 3.38. Rad error is 3.38.
		Gross beta		TPU is 9.39. Rad error is 9.22.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.623. Rad error is 0.621.
		Strontium-90		TPU is 2.44. Rad error is 2.43.
		Technetium-99		TPU is 10.6. Rad error is 10.6.
		Thorium-230		TPU is 0.319. Rad error is 0.315.
		Tritium		TPU is 128. Rad error is 128.
		Total Organic Halides	Н	Analysis performed outside holding time requirement
3004-4803 MW396	MW396SG1-16	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 7.11. Rad error is 7.08.
		Gross beta		TPU is 4.92. Rad error is 4.92.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.597. Rad error is 0.596.
		Strontium-90		TPU is 2.54. Rad error is 2.54.
		Technetium-99		TPU is 10.6. Rad error is 10.6.
		Thorium-230		TPU is 0.288. Rad error is 0.286.
		Tritium		TPU is 126. Rad error is 125.
		Total Organic Halides	Н	Analysis performed outside holding time requirement

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4817 MW397	MW397SG1-16	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 7.11. Rad error is 7.11.
		Gross beta		TPU is 6.53. Rad error is 6.53.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.384. Rad error is 0.384.
		Strontium-90		TPU is 1.75. Rad error is 1.75.
		Technetium-99		TPU is 11.1. Rad error is 11.1.
		Thorium-230		TPU is 0.188. Rad error is 0.187.
		Tritium		TPU is 126. Rad error is 126.
		Total Organic Halides	Н	Analysis performed outside holding time requirement
000-0000 QC	RI1SG1-16	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Rhodium	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 2.79. Rad error is 2.79.
		Gross beta		TPU is 4.5. Rad error is 4.5.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.347. Rad error is 0.347.
		Strontium-90		TPU is 2.09. Rad error is 2.09.
		Technetium-99		TPU is 10.6. Rad error is 10.6.
		Thorium-230		TPU is 0.338. Rad error is 0.337.
		Tritium		TPU is 140. Rad error is 135.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG1-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Rhodium	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 4.32. Rad error is 4.32.
		Gross beta		TPU is 7.29. Rad error is 7.28.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.637. Rad error is 0.637.
		Strontium-90		TPU is 1.42. Rad error is 1.42.
		Technetium-99		TPU is 10.8. Rad error is 10.8.
		Thorium-230		TPU is 0.531. Rad error is 0.528.
		Tritium		TPU is 132. Rad error is 131.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG1-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG1-16	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG1-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG1-16	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG1-16	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG1-16	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4SG1-16	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG1-16	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
8004-4804 MW38	6 MW386DSG1-16	Rhodium	N	Sample spike recovery not within control limits.
		Gross alpha		TPU is 7.83. Rad error is 7.79.
		Gross beta		TPU is 8.74. Rad error is 8.74.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.292. Rad error is 0.291.
		Strontium-90		TPU is 4.85. Rad error is 4.71.
		Technetium-99		TPU is 10.3. Rad error is 10.3.
		Thorium-230		TPU is 0.292. Rad error is 0.291.
		Tritium		TPU is 130. Rad error is 129.
		Total Organic Halides	Н	Analysis performed outside holding time requirement

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/INERT—QUARTERLY, 4th CY 2015

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-980-008-982/1</u>

Lab ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the fourth quarter 2015 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The fourth quarter 2015 data used to conduct the statistical analyses were collected in October 2015. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that exceeded the historical background using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the

current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper tolerance limit using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower tolerance limit to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:¹

- 1. The tolerance limit (TL) is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be lognormally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit is calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells is compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well concentration exceeds the historical background.

lower $TL = X - (K \times S)$

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 lists the parameters from the available data set for which a statistically derived historical background concentration was developed using the one-sided tolerance interval and the statistical test performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, fourth quarter 2015. The observations are representative of the current quarter data. Background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a well is sampled on two different dates, the most current available data are used. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
$MW390^1$	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

¹NOTE: The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells **TW**: downgradient or test wells

SG: sidegradient wells

^{*}Well was dry this quarter and a groundwater sample could not be collected.

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters Aluminum Beta Activity Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride cis-1,2-Dichloroethene Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iodide Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential PCB, Total PCB-1242 pH* Potassium Radium-226 Sodium Sulfate Technetium-99 Total Organic Carbon (TOC) Total Organic Halides (TOX) Trichloroethene

Uranium

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	2	2	Yes
Antimony	4	4	0	No
Aroclor-1268	4	4	0	No
Beryllium	4	4	0	No
Beta Activity	4	4	0	No
Boron	4	1	3	Yes
Bromide	4	1	3	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	2	2	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	1	3	Yes
Conductivity	4	0	4	Yes
Copper	4	1	3	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Ethylbenzene	4	4	0	No
Iodide	4	3	1	Yes
Iodomethane	4	4	0	No
Iron	4	3	1	Yes
Magnesium	4	0	4	Yes
Manganese	4	1	3	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	3	1	Yes
Nickel	4	0	4	Yes
Oxidation-Reduction Potential	4	0	4	Yes
PCB, Total	4	4	0	No
PCB-1016	4	4	0	No
PCB-1221	4	4	0	No
PCB-1232	4	4	0	No
PCB-1242	4	4	0	No
PCB-1248	4	4	0	No
PCB-1254	4	4	0	No
PCB-1260	4	4	0	No
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	2	2	Yes
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichloroethene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Uranium	4	2	2	Yes
Vanadium	4	4	0	No
Vinyl Acetate	4	4	0	No
Zinc	4	4	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	5	6	Yes
Antimony	11	11	0	No
Aroclor-1268	11	11	0	No
Beryllium	11	11	0	No
Beta Activity	11	6	5	Yes
Boron	11	6	5	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	7	4	Yes
Chloride	11	0	<u>.</u> 11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	9	2	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	5	6	Yes
Conductivity	11	0	11	Yes
Copper	11	7	4	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Oxygen Dissolved Solids	11	0	11	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Ethylbenzene	11	11	0	No
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	9	2	Yes
Magnesium	11	0	11	Yes
Manganese	11	6	5	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	6	5	Yes
Nickel	11	0	11	Yes
Oxidation-Reduction Potential	11	0	11	Yes
PCB, Total	11	10	1	Yes
PCB-1016	11	11	0	No
PCB-1221	11	11	0	No
PCB-1232	11	11	0	No
PCB-1242	11	10	1	Yes
PCB-1248	11	11	0	No
PCB-1254	11	11	0	No
PCB-1260	11	11	0	No
pН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	6	5	Yes
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	7	4	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	0	11	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	4	7	Yes
Trichlorofluoromethane	11	11	0	No
Uranium	11	11	0	No
Vanadium	11	11	0	No
Vinyl Acetate	11	11	0	No
Zinc	11	11	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	5	2	Yes
Antimony	7	7	0	No
Aroclor-1268	7	7	0	No
Beryllium	7	7	0	No
•	7	3	4	
Beta Activity				Yes
Boron	7	1	6	Yes
Bromide	7	2	5	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	4	3	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	5	2	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	4	3	Yes
Conductivity	7	0	7	Yes
Copper	7	3	4	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iron	7	7	0	No
Magnesium	7	0	7	Yes
Manganese	7	3	4	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	6	1	Yes
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	7	0	No
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	7	0	No
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	4	3	Yes
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	4	3	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	1	6	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	2	5	Yes
Trichlorofluoromethane	7	7	0	No
Uranium	7	7	0	No
Vanadium	7	7	0	No
Vinyl Acetate	7	7	0	No
Zinc Rold denotes parameters with at least one unconsored	7	7	0	No

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 27, 30, and 27 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background UTL for oxidation-reduction potential, radium-226, and technetium-99.

URGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: Oxidation-reduction potential, radium-226	MW370: Dissolved solids, oxidation-reduction potential, technetium-99
MW390: Oxidation-reduction potential, technetium-99	MW221: Oxidation-reduction potential, radium-226	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate
MW393: Oxidation-reduction potential	MW222: Oxidation-reduction potential	MW385: Beta activity, oxidation-reduction potential, radium-226, sulfate, technetium-99
MW396: Oxidation-reduction potential, radium-226	MW223: Oxidation-reduction potential	MW388: Beta activity, oxidation-reduction potential, sulfate, technetium-99
	MW224: Dissolved solids, oxidation-reduction potential, sodium	MW392: Oxidation-reduction potential, radium-226
	MW369: Technetium-99	MW395: Oxidation-reduction potential, radium-226
	MW372: Beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW397: Oxidation-reduction potential
	MW384: Beta activity, oxidation-reduction potential, sodium, sulfate, technetium-99	
	MW387: Beta activity, oxidation-reduction potential, sulfate, technetium-99	
	MW391: Sulfate	
	MW394: Oxidation-reduction potential	

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel CV: coefficient of variation	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
pH	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	1.78	Current results exceed statistically derived historical background concentration in MW396.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentration in MW372, MW384, and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW224 and MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

¹ Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220, MW221, MW222, MW223, MW224, MW384, MW387, and MW394.
PCB, Total	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
pН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.59	Current results exceed statistically derived historical background concentration in MW220 and MW221.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW224, MW372, and MW384.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW372, MW384, MW387, and MW391.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW372, MW384, and MW387.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation

^{*}If CV > 1.0, used log-transformed data.

Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW385 and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW370 and MW373.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, MW395, and MW397.
pH	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.74	Current results exceed statistically derived historical background concentration in MW385, MW392, and MW395.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.81	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

¹ Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2 and the statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 10, and 9 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10, presented by well number.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW369: Technetium-99	MW370: Dissolved solids, technetium-99
MW372: Beta activity, calcium, conductivity, magnesium, sodium, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
MW387: Beta activity, sulfate, technetium-99	MW388: Beta activity, technetium-99

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted, however, that the technetium-99 concentration in one UCRS well (i.e., MW390) was higher than the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.41	No exceedance of statistically derived current background concentration.
Radium-226	Tolerance Interval	0.78	No exceedance of statistically derived current background concentration.
Technetium-99	Tolerance Interval	1.75	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill. However, technetium-99 concentrations exceeded the TL calculated using current background data in MW390.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA


Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.61	Current results exceed statistically derived current background concentration in MW372, MW384, and MW387.
Calcium	Tolerance Interval	0.12	Current results exceed statistically derived current background concentration in MW372.
Conductivity	Tolerance Interval	0.08	Current results exceed statistically derived current background concentration in MW372.
Dissolved Solids	Tolerance Interval	0.43	No exceedance of statistically derived current background concentration.
Magnesium	Tolerance Interval	0.14	Current results exceed statistically derived current background concentration in MW372.
Oxidation-Reduction Potential	Tolerance Interval	0.30	No exceedance of statistically derived current background concentration.
Radium-226	Tolerance Interval	1.37	No exceedance of statistically derived current background concentration.
Sodium	Tolerance Interval	0.15	Current results exceed statistically derived current background concentration in MW224, MW372, and MW384.
Sulfate	Tolerance Interval	0.28	Current results exceed statistically derived current background concentration in MW372 and MW387.
Technetium-99	Tolerance Interval	0.56	Current results exceed statistically derived current background concentration MW369, MW372, MW384, and MW387.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA


Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.62	Current results exceed statistically derived current background concentration in MW385 and MW388.
Calcium	Tolerance Interval	0.18	Current results exceed statistically derived current background concentration in MW373.
Conductivity	Tolerance Interval	0.08	Current results exceed statistically derived current background concentration in MW373.
Dissolved Solids	Tolerance Interval	0.14	Current results exceed statistically derived current background concentration in MW370 and MW373.
Magnesium	Tolerance Interval	0.19	Current results exceed statistically derived current background concentration in MW373.
Oxidation-Reduction Potential	Tolerance Interval	0.28	No exceedance of statistically derived current background concentration.
Radium-226	Tolerance Interval	1.09	No exceedance of statistically derived current background concentration.
Sulfate	Tolerance Interval	0.29	Current results exceed statistically derived current background concentration in MW373.
Technetium-99	Tolerance Interval	0.48	Current results exceed statistically derived current background concentration in MW370, MW385, and MW388.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.320

S= 0.182 **CV(1)**=0.567

K factor=** 3.188

TL(1)= 0.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.259 S = 0.503

3 **CV(2)=**-0.400

K factor=** 3.188

TL(2) = 0.345

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.393	-0.934
9/16/2002	0.2	-1.609
10/16/2002	0.2	-1.609
1/13/2003	0.501	-0.691
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.668	-0.403

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A			
MW390	Downgradien	t Yes	0.0498	NO	-3.000	N/A			
MW393	Downgradien	t Yes	0.0196	NO	-3.932	N/A			
MW396	Upgradient	No	0.05	N/A	-2.996	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.833 CV(1) = 1.282

K factor=** 3.188

TL(1) = 3.306

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.034 **S**= 1.066

CV(2)=-1.031

K factor=** 3.188

TL(2) = 2.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	No	0.015	N/A	-4.200	N/A			
MW390	Downgradien	t Yes	0.00639	N/A	-5.053	NO			
MW393	Downgradien	t Yes	0.0156	N/A	-4.160	NO			
MW396	Upgradient	Yes	0.00657	N/A	-5.025	NO			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.388

S= 0.327 **CV(1)**=0.236

K factor=** 3.188

TL(1)= 2.430

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.301

S = 0.252

CV(2) = 0.838

K factor=** 3.188

TL(2) = 1.105

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.405 1.5 9/16/2002 1.6 0.470 1.6 10/16/2002 0.470 1/13/2003 1 0.000 0.000 4/8/2003 1 7/16/2003 1 0.000 10/14/2003 1.7 0.531 1/14/2004 1.7 0.531

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	No	0.8	N/A	-0.223	N/A			
MW390	Downgradien	t Yes	0.753	NO	-0.284	N/A			
MW393	Downgradien	t Yes	0.205	NO	-1.585	N/A			
MW396	Upgradient	Yes	1.23	NO	0.207	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.825 S = 8.445 CV(1) = 0.202

K factor=** 3.188 **T**

TL(1)= 68.748 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.711 S = 0.241

CV(2) = 0.065

K factor=** 3.188

TL(2) = 4.479

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	23.6	NO	3.161	N/A	
MW390	Downgradien	t Yes	33.8	NO	3.520	N/A	
MW393	Downgradien	t Yes	10.7	NO	2.370	N/A	
MW396	Upgradient	Yes	37.3	NO	3.619	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.375 S = 0.744

CV(1)=0.021

K factor=** 3.188

TL(1)= 37.747

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.566 **S**= 0.021

CV(2)=0.006

K factor=** 3.188

TL(2) = 3.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	32.7	NO	3.487	N/A	
MW390	Downgradien	t No	20	N/A	2.996	N/A	
MW393	Downgradien	t No	20	N/A	2.996	N/A	
MW396	Upgradient	Yes	12.9	NO	2.557	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 101.725 S = 5.245

CV(1)=0.052 K factor**= 3.188

TL(1)= 118.447

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.621 S = 0.053

CV(2)=0.011

K factor=** 3.188

TL(2) = 4.789

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	16.6	NO	2.809	N/A	
MW390	Downgradien	t Yes	80.4	NO	4.387	N/A	
MW393	Downgradien	t Yes	14.3	NO	2.660	N/A	
MW396	Upgradient	Yes	82.3	NO	4.410	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.008

S= 0.011 **CV(1)**=1.340

K factor=** 3.188

TL(1) = 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.645 S = 1.339

CV(2) = -0.237

K factor=** 3.188

TL(2) = -1.377

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.0105	N/A	-4.556	NO	
MW390	Downgradien	t Yes	0.00020	1 N/A	-8.512	NO	
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW396	Upgradient	Yes	0.00442	N/A	-5.422	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 922.500 S = 107.616 CV(1) = 0.117

K factor=** 3.188

TL(1)= 1265.579 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.822

S = 0.111 CV(2) = 0.016

K factor**= 3.188

TL(2) = 7.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	784	6.664
9/30/2002	871	6.770
10/16/2002	868	6.766
1/13/2003	912	6.816
4/8/2003	942	6.848
7/16/2003	910	6.813
10/14/2003	935	6.841
1/14/2004	1158	7.054

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	660	NO	6.492	N/A	
MW390	Downgradien	t Yes	735	NO	6.600	N/A	
MW393	Downgradien	t Yes	366	NO	5.903	N/A	
MW396	Upgradient	Yes	768	NO	6.644	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

S= 0.014 **CV(1)**=0.481

K factor=** 3.188

TL(1)= 0.072

LL(1)=N/A

Statistics-Transformed Background Data

X= -3.650 **S**= 0.414

CV(2) = -0.113

K factor=** 3.188

TL(2)= -2.331

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.00045	NO	-7.706	N/A		
MW390	Downgradien	t Yes	0.00069	5 NO	-7.272	N/A		
MW393	Downgradien	t Yes	0.00286	NO	-5.857	N/A		
MW396	Upgradient	No	0.00046	8 N/A	-7.667	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.395

 $S= 1.677 \quad CV(1)=1.202$

K factor=** 3.188

TL(1) = 6.743

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.043 S = 0.814

14 **CV(2)=**-18.867

K factor=** 3.188

TL(2) = 2.553

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 5.45 1.696 9/16/2002 0.4 -0.91610/16/2002 0.54 -0.6161/13/2003 0.72 -0.3294/8/2003 0.69 -0.3717/16/2003 1.1 0.095 10/14/2003 0.71 -0.3421/14/2004 1.55 0.438

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.22	N/A	0.199	NO
MW390	Downgradien	t Yes	5.38	N/A	1.683	NO
MW393	Downgradien	t Yes	1.81	N/A	0.593	NO
MW396	Upgradient	Yes	1.38	N/A	0.322	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

K factor**= 3.188

TL(1)= 882.980 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.298

S = 0.162 CV(2) = 0.026

K factor=** 3.188

TL(2) = 6.815

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	389	NO	5.964	N/A
MW390	Downgradien	t Yes	406	NO	6.006	N/A
MW393	Downgradien	t Yes	216	NO	5.375	N/A
MW396	Upgradient	Yes	426	NO	6.054	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.150

S = 0.283 CV(1) = 0.132

K factor=** 3.188

TL(1) = 3.052

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.759

S= 0.123

CV(2)=0.162

K factor=** 3.188

TL(2)=1.150

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.693 9/16/2002 2 0.693 2 10/16/2002 0.693 1/13/2003 2 0.693 2 4/8/2003 0.693 7/16/2003 2.7 0.993 10/14/2003 2.5 0.916 1/14/2004 2 0.693

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A	
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A	
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A	
MW396	Upgradient	Yes	0.783	NO	-0.245	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.796

S= 3.723 **CV(1)**=0.478

K factor=** 3.188

TL(1)= 19.666

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.880

S= 0.723

CV(2) = 0.384

K factor=** 3.188

TL(2) = 4.184

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.8	0.588
9/16/2002	9.53	2.254
10/16/2002	7.43	2.006
1/13/2003	9.93	2.296
4/8/2003	10.2	2.322
7/16/2003	9.16	2.215
10/14/2003	11.9	2.477
1/14/2004	2.42	0.884

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well N	o. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW38	36 Sidegradient	No	1.95	N/A	0.668	N/A
MW39	O Downgradien	it No	0.0461	N/A	-3.077	N/A
MW39	93 Downgradien	it No	1.69	N/A	0.525	N/A
MW39	96 Upgradient	Yes	5.2	NO	1.649	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 16.876 S = 3.313

CV(1)=0.196

K factor=** 3.188

TL(1) = 27.438

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.804

S = 0.240

CV(2)=0.086

K factor=** 3.188

TL(2) = 3.569

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 15.5 2.741 9/16/2002 17.3 2.851 10/16/2002 17.8 2.879 1/13/2003 19.2 2.955 4/8/2003 17.8 2.879 7/16/2003 17.8 2.879 10/14/2003 20.2 3.006 1/14/2004 9.41 2.242

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	10.1	NO	2.313	N/A	
MW390	Downgradien	t Yes	15.8	NO	2.760	N/A	
MW393	Downgradien	t Yes	3.47	NO	1.244	N/A	
MW396	Upgradient	Yes	17.3	NO	2.851	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Manganese

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.774

S = 0.353CV(1)=0.456 **K factor**=** 3.188

TL(1)=1.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.566 S = 1.192

CV(2) = -2.105

K factor=** 3.188

TL(2) = 3.235

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Cur	Current Quarter Data						
Well	No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW	386	Sidegradient	Yes	1.33	NO	0.285	N/A
MW	390	Downgradien	t No	0.005	N/A	-5.298	N/A
MW	393	Downgradien	t Yes	0.0406	NO	-3.204	N/A
MW	396	Upgradient	Yes	0.585	NO	-0.536	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S= 0.011 **CV(1)**=1.507

K factor=** 3.188

TL(1)= 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.928

S= 1.420 **CV(2)**=-0.240

K factor=** 3.188

TL(2) = -1.400

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00128	-6.661
4/8/2003	0.00271	-5.911
7/16/2003	0.00117	-6.751
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	0.00056	4 N/A	-7.480	N/A		
MW390	Downgradien	t Yes	0.00065	1 N/A	-7.337	NO		
MW393	Downgradien	t No	0.0005	N/A	-7.601	N/A		
MW396	Upgradient	No	0.00072	4 N/A	-7.231	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

CV(1) = 1.272

K factor=** 3.188

TL(1) = 0.083

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.706 S = 1.057

S = 0.021

CV(2) = -0.225

K factor=** 3.188

TL(2) = -1.338

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.00251	N/A	-5.987	NO	
MW390	Downgradien	t Yes	0.00237	N/A	-6.045	NO	
MW393	Downgradien	t Yes	0.00631	N/A	-5.066	NO	
MW396	Upgradient	Yes	0.00173	N/A	-6.360	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison UNITS: mV Oxidation-Reduction Potential**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.000 S = 61.952 CV(1) = 4.766

K factor=** 3.188

TL(1)= 210.502 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.364

S = 0.333

CV(2) = 0.076

K factor=** 3.188

TL(2) = 4.736

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:		MW396	
	Date Collected	Result	LN(Result)
	8/13/2002	60	4.094
	4/8/2003	71	4.263
	7/16/2003	-56	#Func!
	10/14/2003	-54	#Func!
	1/14/2004	-22	#Func!
	4/12/2004	-6	#Func!
	7/20/2004	-3	#Func!
	10/12/2004	114	4.736

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	390	N/A	5.966	YES
MW390	Downgradien	t Yes	415	N/A	6.028	YES
MW393	Downgradien	t Yes	233	N/A	5.451	YES
MW396	Upgradient	Yes	159	N/A	5.069	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390

MW393

MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.460

S = 0.350 CV(1) = 0.054

K factor=** 3.736

TL(1) = 7.766

LL(1)=5.1541

Statistics-Transformed Background Data

X = 1.864

S = 0.054

CV(2) = 0.029

K factor=** 3.736

TL(2)= 2.067

LL(2)=1.6621

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data	Current	Ouarter	Data
----------------------	---------	----------------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	6.64	NO	1.893	N/A
MW390	Downgradien	t Yes	6.62	NO	1.890	N/A
MW393	Downgradien	t Yes	6.15	NO	1.816	N/A
MW396	Upgradient	Yes	6.43	NO	1.861	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.411

S= 0.399 **CV(1)**=0.282

K factor=** 3.188

TL(1) = 2.682

LL(1)=N/A

Statistics-Transformed Background Data

X= 0.311

S = 0.271

CV(2)=0.870

K factor=** 3.188

TL(2) = 1.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.298	NO	-1.211	N/A
MW390	Downgradien	t Yes	0.381	NO	-0.965	N/A
MW393	Downgradien	t Yes	0.398	NO	-0.921	N/A
MW396	Upgradient	Yes	0.816	NO	-0.203	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.157

S= 0.280 **CV(1)**=1.782

K factor=** 3.188

TL(1)= 1.050

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.836 **S**= 1.229

CV(2) = -0.669

K factor=** 3.188

TL(2) = -0.371

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396				
Date Collected	Result	LN(Result)			
10/16/2002	0.69	-0.371			
1/13/2003	-0.00693	#Func!			
10/14/2003	-0.0514	#Func!			
1/14/2004	0.494	-0.705			
4/12/2004	-0.082	#Func!			
7/20/2004	0.0879	-2.432			
10/12/2004	0.0408	-3.199			
1/18/2005	0.0844	-2.472			

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.507	N/A	-0.679	NO	
MW390	Downgradien	t No	0.645	N/A	-0.439	N/A	
MW393	Downgradien	t No	0.238	N/A	-1.435	N/A	
MW396	Upgradient	Yes	0.988	N/A	-0.012	YES	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

K factor=** 3.188

TL(1)= 208.973 **LL(1)**=N/A

Statistics-Transformed Background Data

X= 4.595 **S**= 0.492

CV(2) = 0.107

K factor=** 3.188

TL(2) = 6.163

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396		
Date Collected	Result	LN(Result)	
8/13/2002	115	4.745	
9/16/2002	116	4.754	
10/16/2002	117	4.762	
1/13/2003	122	4.804	
4/8/2003	106	4.663	
7/16/2003	117	4.762	
10/14/2003	132	4.883	
1/14/2004	29.6	3.388	

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	112	NO	4.718	N/A	
MW390	Downgradien	t Yes	103	NO	4.635	N/A	
MW393	Downgradien	t Yes	74.8	NO	4.315	N/A	
MW396	Upgradient	Yes	114	NO	4.736	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.463 S = 8.876

CV(1)=0.395

K factor=** 3.188

TL(1)= 50.759

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.054

S = 0.351 CV(2):

CV(2) = 0.115

K factor=** 3.188

TL(2) = 4.173

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	44	NO	3.784	N/A		
MW390	Downgradien	t Yes	36.3	NO	3.592	N/A		
MW393	Downgradien	t Yes	10.2	NO	2.322	N/A		
MW396	Upgradient	Yes	22.6	NO	3.118	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.624

CV(1)=0.860

K factor=** 3.188

TL(1)= 28.531

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.498

S= 1.321

S = 6.558

CV(2)=0.882

K factor=** 3.188

TL(2) = 5.710

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW386	Sidegradient	No	-7.02	N/A	#Error	N/A
MW390	Downgradien	t Yes	58.6	YES	4.071	N/A
MW393	Downgradien	t No	-2.21	N/A	#Error	N/A
MW396	Upgradient	No	-7.28	N/A	#Error	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.988

CV(1)=0.470

K factor=** 3.188

TL(1)= 24.959

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.210

S = 4.696S = 0.454

CV(2) = 0.205

K factor=** 3.188

TL(2) = 3.657

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	19	2.944
9/16/2002	14.6	2.681
10/16/2002	10.4	2.342
1/13/2003	4.4	1.482
4/8/2003	7	1.946
7/16/2003	7.3	1.988
10/14/2003	9.1	2.208
1/14/2004	8.1	2.092

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	8.65	NO	2.158	N/A		
MW390	Downgradien	t Yes	2.21	NO	0.793	N/A		
MW393	Downgradien	t Yes	2.34	NO	0.850	N/A		
MW396	Upgradient	Yes	5.96	NO	1.785	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 142.650 S = 53.533 CV(1) = 0.375

K factor=** 3.188

TL(1)= 313.314 **LL(1)**=N/A

Statistics-Transformed Background Data

X= 4.896 **S**= 0.390

CV(2) = 0.080

K factor**= 3.188

TL(2)= 6.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	187	NO	5.231	N/A		
MW390	Downgradien	t Yes	31.6	NO	3.453	N/A		
MW393	Downgradien	t Yes	11.9	NO	2.477	N/A		
MW396	Upgradient	Yes	47.8	NO	3.867	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Uranium

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.001

S = 0.000CV(1)=0.314 **K factor**=** 3.188

TL(1) = 0.002

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.821 S = 0.245

CV(2) = -0.036

K factor=** 3.188

TL(2) = -6.040

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.002 -6.2159/16/2002 0.001 -6.90810/16/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/8/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/14/2004 0.001 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

MW396 Upgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

-8.995

N/A

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	No	0.0002	N/A	-8.517	N/A			
MW390	Downgradien	t Yes	0.00011	NO	-9.115	N/A			
MW393	Downgradien	t No	0.0002	N/A	-8.517	N/A			

NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

0.000124

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Aluminum **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 0.221S = 0.061CV(1)=0.277TL(1) = 0.376LL(1)=N/A **Statistics-Transformed Background** X = -1.534 S = 0.212

Data

CV(2) = -0.138

K factor=** 2.523

TL(2) = -0.999

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.2 -1.6097/14/2003 0.2 -1.609-0.851 10/13/2003 0.427 1/13/2004 0.309 -1.1744/13/2004 0.2 -1.609 7/21/2004 0.202 -1.599Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.2 -1.6099/16/2002 0.2 -1.609 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	0.0151	NO	-4.193	N/A	
MW221	Downgradien	t No	0.05	N/A	-2.996	N/A	
MW222	Downgradien	t Yes	0.0418	NO	-3.175	N/A	
MW223	Downgradien	t No	0.05	N/A	-2.996	N/A	
MW224	Downgradien	t No	0.05	N/A	-2.996	N/A	
MW369	Downgradien	t Yes	0.0774	NO	-2.559	N/A	
MW372	Downgradien	t Yes	0.0637	NO	-2.754	N/A	
MW384	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW387	Downgradien	t Yes	0.0195	NO	-3.937	N/A	
MW391	Downgradien	t No	0.05	N/A	-2.996	N/A	
MW394	Upgradient	Yes	0.0162	NO	-4.123	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison Beta activity** UNITS: pCi/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 14.273 S = 13.883 CV(1) = 0.973

K factor=** 2.523

TL(1) = 49.300

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.213 S = 1.033 CV(2) = 0.467

K factor=** 2.523

TL(2) = 4.819

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	15.2	2.721
1/15/2003	42.5	3.750
4/10/2003	45.4	3.816
7/14/2003	8.53	2.144
10/13/2003	11.7	2.460
1/13/2004	13.5	2.603
4/13/2004	33.5	3.512
7/21/2004	13.7	2.617
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.615
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 5.03	1.615
Date Collected 8/13/2002 9/16/2002	Result 5.03 5.57	1.615 1.717
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 5.03 5.57 12.8	1.615 1.717 2.549
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 5.03 5.57 12.8 4.3	1.615 1.717 2.549 1.459
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.03 5.57 12.8 4.3 9.52	1.615 1.717 2.549 1.459 2.253

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	17	N/A	2.833	N/A	
MW221	Downgradien	t No	0.362	N/A	-1.016	N/A	
MW222	Downgradien	t No	3.29	N/A	1.191	N/A	
MW223	Downgradien	t No	3.27	N/A	1.185	N/A	
MW224	Downgradien	t No	5.39	N/A	1.685	N/A	
MW369	Downgradien	t Yes	28	N/A	3.332	N/A	
MW372	Downgradien	t Yes	86.8	YES	4.464	N/A	
MW384	Sidegradient	Yes	109	YES	4.691	N/A	
MW387	Downgradien	t Yes	123	YES	4.812	N/A	
MW391	Downgradien	t No	5.22	N/A	1.652	N/A	
MW394	Upgradient	No	11.6	N/A	2.451	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.425 S = 0.615 CV(1) = 1.447 K factor** = 2.523
 TL(1) = 1.976 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.322 S = 0.786 CV(2) = -0.595 K factor** = 2.523
 TL(2) = 0.663 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.2 -1.6097/14/2003 0.2 -1.60910/13/2003 0.2 -1.6091/13/2004 0.2 -1.6094/13/2004 0.2 -1.609 7/21/2004 0.2 -1.609Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.0105	N/A	-4.556	N/A	
MW221	Downgradien	t No	0.0145	N/A	-4.234	N/A	
MW222	Downgradien	t No	0.0105	N/A	-4.556	N/A	
MW223	Downgradien	t No	0.00739	N/A	-4.908	N/A	
MW224	Downgradien	t No	0.0177	N/A	-4.034	N/A	
MW369	Downgradien	t Yes	0.0139	N/A	-4.276	NO	
MW372	Downgradien	t Yes	1.28	N/A	0.247	NO	
MW384	Sidegradient	No	0.0127	N/A	-4.366	N/A	
MW387	Downgradien	t Yes	0.034	N/A	-3.381	NO	
MW391	Downgradien	t Yes	0.0498	N/A	-3.000	NO	
MW394	Upgradient	Yes	0.0215	N/A	-3.840	NO	
NT/A D	1, '1 ,'C' 1 X	. D.			1.4 11.1.2	1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1 0.000 0.000 4/10/2003 7/14/2003 1 0.000 1 0.000 10/13/2003 1/13/2004 1 0.000 4/13/2004 1 0.000 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/16/2002 1 0.000 1/13/2003 0.000 4/10/2003 0.000

1

1

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.258	NO	-1.355	N/A	
MW221	Downgradien	t Yes	0.488	NO	-0.717	N/A	
MW222	Downgradien	t Yes	0.469	NO	-0.757	N/A	
MW223	Downgradien	t Yes	0.447	NO	-0.805	N/A	
MW224	Downgradien	t Yes	0.451	NO	-0.796	N/A	
MW369	Downgradien	t Yes	0.378	NO	-0.973	N/A	
MW372	Downgradien	t Yes	0.663	NO	-0.411	N/A	
MW384	Sidegradient	Yes	0.53	NO	-0.635	N/A	
MW387	Downgradien	t Yes	0.444	NO	-0.812	N/A	
MW391	Downgradien	t Yes	0.579	NO	-0.546	N/A	
MW394	Upgradient	Yes	0.669	NO	-0.402	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

0.000

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 27.638 S = 4.743 CV(1) = 0.172 K factor** = 2.523
 TL(1) = 39.604 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.304 S = 0.183 CV(2) = 0.055 K factor** = 2.523
 TL(2) = 3.765 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 23.6 3.161 1/15/2003 25.9 3.254 4/10/2003 30.4 3.414 7/14/2003 33.9 3.523 10/13/2003 21.3 3.059 1/13/2004 20.3 3.011 4/13/2004 23.8 3.170 7/21/2004 19 2.944 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 29.5 3.384 9/16/2002 29.9 3.398 10/16/2002 31.2 3.440 1/13/2003 30.7 3.424 4/10/2003 34.4 3.538 7/16/2003 29.6 3.388 3.411 10/14/2003 30.3 1/13/2004 28.4 3.346

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	18.5	NO	2.918	N/A	
MW221	Downgradien	t Yes	20.1	NO	3.001	N/A	
MW222	Downgradien	t Yes	17.3	NO	2.851	N/A	
MW223	Downgradien	t Yes	21	NO	3.045	N/A	
MW224	Downgradien	t Yes	22.2	NO	3.100	N/A	
MW369	Downgradien	t Yes	17.1	NO	2.839	N/A	
MW372	Downgradien	t Yes	61.9	YES	4.126	N/A	
MW384	Sidegradient	Yes	28.4	NO	3.346	N/A	
MW387	Downgradien	t Yes	32.1	NO	3.469	N/A	
MW391	Downgradien	t Yes	27.7	NO	3.321	N/A	
MW394	Upgradient	Yes	26.9	NO	3.292	N/A	
N/A - Resu	lts identified as N	Ion-Detects	luring lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 35.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523
 TL(1) = 35.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 3.555 S = 0.000 CV(2) = 0.000 K factor**= 2.523
 TL(2) = 3.555 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35 3.555 1/15/2003 35 3.555 4/10/2003 35 3.555 7/14/2003 35 3.555 10/13/2003 35 3.555 1/13/2004 35 3.555 4/13/2004 35 3.555 7/21/2004 35 3.555 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 4/10/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555

35

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	20	N/A	2.996	N/A	
MW221	Downgradien	t No	20	N/A	2.996	N/A	
MW222	Downgradien	t No	20	N/A	2.996	N/A	
MW223	Downgradien	t Yes	27.7	NO	3.321	N/A	
MW224	Downgradien	t Yes	7.73	NO	2.045	N/A	
MW369	Downgradien	t No	20	N/A	2.996	N/A	
MW372	Downgradien	t No	20	N/A	2.996	N/A	
MW384	Sidegradient	Yes	17.7	NO	2.874	N/A	
MW387	Downgradien	t No	20	N/A	2.996	N/A	
MW391	Downgradien	t No	20	N/A	2.996	N/A	
MW394	Upgradient	Yes	12.9	NO	2.557	N/A	
N/A Pagu	lte identified as N	Ion Detects	luring lab	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** Chloride UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.044 S = 11.278 CV(1) = 0.230

K factor=** 2.523

TL(1) = 77.499

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.866 S = 0.244

CV(2) = 0.063

K factor=** 2.523

TL(2) = 4.482

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	44.6	3.798
1/15/2003	43.2	3.766
4/10/2003	31.5	3.450
7/14/2003	30.8	3.428
10/13/2003	40.9	3.711
1/13/2004	40.8	3.709
4/13/2004	37.5	3.624
7/21/2004	40.8	3.709
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.101
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 60.4	4.101
Date Collected 8/13/2002 9/16/2002	Result 60.4 60.3	4.101 4.099
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 60.4 60.3 58	4.101 4.099 4.060
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 60.4 60.3 58 60.7	4.101 4.099 4.060 4.106
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 60.4 60.3 58 60.7 62.9	4.101 4.099 4.060 4.106 4.142

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	23.2	NO	3.144	N/A	
MW221	Downgradien	t Yes	36.4	NO	3.595	N/A	
MW222	Downgradien	t Yes	35.1	NO	3.558	N/A	
MW223	Downgradien	t Yes	33.5	NO	3.512	N/A	
MW224	Downgradien	t Yes	33.7	NO	3.517	N/A	
MW369	Downgradien	t Yes	34.6	NO	3.544	N/A	
MW372	Downgradien	t Yes	49.4	NO	3.900	N/A	
MW384	Sidegradient	Yes	44.6	NO	3.798	N/A	
MW387	Downgradien	t Yes	39	NO	3.664	N/A	
MW391	Downgradien	t Yes	48.6	NO	3.884	N/A	
MW394	Upgradient	Yes	49.9	NO	3.910	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor**= 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 5 1.609 1/15/2003 5 1.609 4/10/2003 5 1.609 7/14/2003 5 1.609 5 10/13/2003 1.609 1/13/2004 5 1.609 4/13/2004 5 1.609 5 7/21/2004 1.609 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	1	N/A	0.000	N/A	
MW221	Downgradien	t No	1	N/A	0.000	N/A	
MW222	Downgradien	t No	1	N/A	0.000	N/A	
MW223	Downgradien	t No	1	N/A	0.000	N/A	
MW224	Downgradien	t No	1	N/A	0.000	N/A	
MW369	Downgradien	t No	1	N/A	0.000	N/A	
MW372	Downgradien	t Yes	0.32	NO	-1.139	N/A	
MW384	Sidegradient	No	1	N/A	0.000	N/A	
MW387	Downgradien	t No	1	N/A	0.000	N/A	
MW391	Downgradien	t Yes	0.48	NO	-0.734	N/A	
MW394	Upgradient	No	1	N/A	0.000	N/A	
N/A - Resu	lts identified as N	Ion-Detects of	luring lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.016 S = 0.040 CV(1) = 2.440 K factor** = 2.523
 TL(1) = 0.116 LL(1) = N/A

 Statistics-Transformed Background
 X = -5.582 S = 1.573 CV(2) = -0.282 K factor** = 2.523
 TL(2) = -1.613 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0041 -5.4971/15/2003 0.00496 -5.3060.00289 4/10/2003 -5.8467/14/2003 0.161 -1.826-3.790 0.0226 10/13/2003 1/13/2004 0.00464 -5.3734/13/2004 0.001 -6.908 7/21/2004 0.00264 -5.937Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/16/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/10/2003 0.001 -6.9087/16/2003 0.001 -6.908 10/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00022	1 N/A	-8.417	NO
MW221	Downgradien	t Yes	0.00033	5 N/A	-8.001	NO
MW222	Downgradien	t Yes	0.00072	7 N/A	-7.227	NO
MW223	Downgradien	t Yes	0.00071	3 N/A	-7.246	NO
MW224	Downgradien	t Yes	0.00037	3 N/A	-7.894	NO
MW369	Downgradien	t Yes	0.00742	N/A	-4.904	NO
MW372	Downgradien	t No	0.00034	6 N/A	-7.969	N/A
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A
MW394	Upgradient	No	0.001	N/A	-6.908	N/A
N/A - Recu	Its identified as N	Jon-Detects	during labo	ratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison Conductivity URGA UNITS:** umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

X = 382.132 S = 107.134 CV(1) = 0.280

K factor=** 2.523

TL(1)= 652.432 **LL(1)**=N/A

Statistics-Transformed Background

X = 5.716 S = 1.164 CV(2) = 0.204

K factor=** 2.523

TL(2) = 8.652

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	368	5.908
1/15/2003	433.2	6.071
4/10/2003	489	6.192
7/14/2003	430	6.064
10/13/2003	346	5.846
1/13/2004	365	5.900
4/13/2004	416	6.031
7/21/2004	353	5.866
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 6.006
Date Collected	Result	
Date Collected 8/13/2002	Result 406	6.006
Date Collected 8/13/2002 9/16/2002	Result 406 418	6.006 6.035
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 406 418 411	6.006 6.035 6.019
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 406 418 411 422	6.006 6.035 6.019 6.045
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 406 418 411 422 420	6.006 6.035 6.019 6.045 6.040

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	330	NO	5.799	N/A	
MW221	Downgradien	t Yes	384	NO	5.951	N/A	
MW222	Downgradien	t Yes	362	NO	5.892	N/A	
MW223	Downgradien	t Yes	386	NO	5.956	N/A	
MW224	Downgradien	t Yes	439	NO	6.084	N/A	
MW369	Downgradien	t Yes	370	NO	5.914	N/A	
MW372	Downgradien	t Yes	751	YES	6.621	N/A	
MW384	Sidegradient	Yes	511	NO	6.236	N/A	
MW387	Downgradien	t Yes	538	NO	6.288	N/A	
MW391	Downgradien	t Yes	421	NO	6.043	N/A	
MW394	Upgradient	Yes	383	NO	5.948	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.010 CV(1) = 0.429 K factor** = 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.794 S = 0.312 CV(2) = -0.082 K factor** = 2.523
 TL(2) = -3.007 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0211 -3.8581/15/2003 0.02 -3.9120.02 -3.912 4/10/2003 7/14/2003 0.02 -3.912 0.02 -3.912 10/13/2003 1/13/2004 0.02 -3.9124/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.99610/16/2002 0.02 -3.9121/13/2003 0.02 -3.912 4/10/2003 0.02 -3.9127/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.00098	N/A	-6.928	N/A
MW221	Downgradien	t No	0.00122	N/A	-6.709	N/A
MW222	Downgradien	t No	0.00080	6 N/A	-7.123	N/A
MW223	Downgradien	t No	0.00046	1 N/A	-7.682	N/A
MW224	Downgradien	t No	0.00101	N/A	-6.898	N/A
MW369	Downgradien	t Yes	0.00145	NO	-6.536	N/A
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A
MW384	Sidegradient	Yes	0.00052	3 NO	-7.556	N/A
MW387	Downgradien	t Yes	0.00050	7 NO	-7.587	N/A
MW391	Downgradien	t Yes	0.00063	8 NO	-7.357	N/A
MW394	Upgradient	No	0.00052	6 N/A	-7.550	N/A
N/A - Resu	lts identified as N	Ion-Detects o	luring labo	ratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 3.784 S = 1.887 CV(1) = 0.499 K factor**= 2.523 TL(1) = 8.545 LL(1) = N/A Statistics-Transformed Background X = 1.182 S = 0.612 CV(2) = 0.518 K factor**= 2.523 TL(2) = 2.727 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.915 6.79 1/15/2003 7.25 1.981 4/10/2003 3.6 1.281 7/14/2003 0.94 -0.0620.501 10/13/2003 1.65 1/13/2004 3.48 1.247 4/13/2004 1.05 0.049 7/21/2004 4.46 1.495 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 6.09 1.807 9/16/2002 3.85 1.348 10/16/2002 5.11 1.631 1/13/2003 1.343 3.83 4/10/2003 4.15 1.423 7/16/2003 0.604 1.83 10/14/2003 3.33 1.203 1/13/2004 3.14 1.144

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	5.51	NO	1.707	N/A		
MW221	Downgradien	t Yes	4.68	NO	1.543	N/A		
MW222	Downgradien	t Yes	3.8	NO	1.335	N/A		
MW223	Downgradien	t Yes	2.26	NO	0.815	N/A		
MW224	Downgradien	t Yes	2.44	NO	0.892	N/A		
MW369	Downgradien	t Yes	1.73	NO	0.548	N/A		
MW372	Downgradien	t Yes	1.72	NO	0.542	N/A		
MW384	Sidegradient	Yes	4.57	NO	1.520	N/A		
MW387	Downgradien	t Yes	4.27	NO	1.452	N/A		
MW391	Downgradien	t Yes	4.1	NO	1.411	N/A		
MW394	Upgradient	Yes	4.59	NO	1.524	N/A		
M/A Dogu	lte identified as N	Ion Detects	luring lab	oratory analysis or	data validation	and were not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 232.688 S = 27.490 CV(1) = 0.118

K factor=** 2.523

TL(1)= 302.045 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.443 S = 0.118 CV(2) = 0.022

K factor=** 2.523

TL(2) = 5.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	236	NO	5.464	N/A
MW221	Downgradien	t Yes	270	NO	5.598	N/A
MW222	Downgradien	t Yes	290	NO	5.670	N/A
MW223	Downgradien	t Yes	281	NO	5.638	N/A
MW224	Downgradien	t Yes	307	YES	5.727	N/A
MW369	Downgradien	t Yes	189	NO	5.242	N/A
MW372	Downgradien	t Yes	419	YES	6.038	N/A
MW384	Sidegradient	Yes	269	NO	5.595	N/A
MW387	Downgradien	t Yes	263	NO	5.572	N/A
MW391	Downgradien	t Yes	227	NO	5.425	N/A
MW394	Upgradient	Yes	210	NO	5.347	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW224 MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.897 S = 1.050 CV(1) = 1.170 K factor** = 2.523
 TL(1) = 3.545 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.565 S = 0.951 CV(2) = -1.683 K factor** = 2.523
 TL(2) = 1.834 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.429 -0.8467/14/2003 4.33 1.466 10/13/2003 1.81 0.593 1/13/2004 0.793 -0.2324/13/2004 0.13 -2.040 7/21/2004 0.382 -0.962Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 1.34 0.293 9/16/2002 0.328 -1.115 0.322 10/16/2002 1.38 1/13/2003 0.262 1.3 4/10/2003 0.494 -0.7057/16/2003 0.62 -0.47810/14/2003 0.37 -0.9941/13/2004 0.251 -1.382

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.0448	N/A	-3.106	N/A
MW221	Downgradien	t No	0.117	N/A	-2.146	N/A
MW222	Downgradien	t No	0.0686	N/A	-2.679	N/A
MW223	Downgradien	t No	0.1	N/A	-2.303	N/A
MW224	Downgradien	t No	0.1	N/A	-2.303	N/A
MW369	Downgradien	t Yes	0.148	N/A	-1.911	NO
MW372	Downgradien	t Yes	0.502	N/A	-0.689	NO
MW384	Sidegradient	No	0.0396	N/A	-3.229	N/A
MW387	Downgradien	t No	0.0855	N/A	-2.459	N/A
MW391	Downgradien	t No	0.1	N/A	-2.303	N/A
MW394	Upgradient	No	0.056	N/A	-2.882	N/A
N/A - Resu	lts identified as N	Ion-Detects (during lah	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 10.796
 S= 1.703
 CV(1)=0.158 K factor**= 2.523
 TL(1)=15.092 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.368
 S= 0.158
 CV(2)=0.067 K factor**= 2.523
 TL(2)=2.766 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 9.16 2.215 1/15/2003 10 2.303 4/10/2003 10.8 2.380 7/14/2003 14.7 2.688 10/13/2003 9.03 2.201 1/13/2004 8.49 2.139 4/13/2004 9.7 2.272 7/21/2004 8.06 2.087 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 11.8 2.468 9/16/2002 12.1 2.493 10/16/2002 11.3 2.425 1/13/2003 10.3 2.332 4/10/2003 11.7 2.460 7/16/2003 12 2.485 10/14/2003 2.501 12.2 1/13/2004 11.4 2.434

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	7.86	NO	2.062	N/A
MW221	Downgradien	t Yes	9.16	NO	2.215	N/A
MW222	Downgradien	t Yes	7.96	NO	2.074	N/A
MW223	Downgradien	t Yes	9.06	NO	2.204	N/A
MW224	Downgradien	t Yes	10.1	NO	2.313	N/A
MW369	Downgradien	t Yes	6.93	NO	1.936	N/A
MW372	Downgradien	t Yes	23.5	YES	3.157	N/A
MW384	Sidegradient	Yes	11.4	NO	2.434	N/A
MW387	Downgradien	t Yes	13.7	NO	2.617	N/A
MW391	Downgradien	t Yes	12.8	NO	2.549	N/A
MW394	Upgradient	Yes	12.1	NO	2.493	N/A
N/A - Resu	lts identified as N	Ion-Detects	luring lah	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.287 S = 0.619 CV(1) = 2.156 K factor**= 2.523
 TL(1) = 1.848 LL(1) = N/A

 Statistics-Transformed Background
 X = -2.455 S = 1.619 CV(2) = -0.659 K factor**= 2.523
 TL(2) = 1.630 LL(2) = N/A

Data

Historical Background Data from

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0306	-3.487
1/15/2003	0.0291	-3.537
4/10/2003	0.0137	-4.290
7/14/2003	2.54	0.932
10/13/2003	0.378	-0.973
1/13/2004	0.159	-1.839
4/13/2004	0.00707	-4.952
7/21/2004	0.0841	-2.476
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -0.612
Date Collected	Result	` '
Date Collected 8/13/2002	Result 0.542	-0.612
Date Collected 8/13/2002 9/16/2002	Result 0.542 0.155	-0.612 -1.864
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.542 0.155 0.103	-0.612 -1.864 -2.273
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.542 0.155 0.103 0.128	-0.612 -1.864 -2.273 -2.056
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.542 0.155 0.103 0.128 0.005	-0.612 -1.864 -2.273 -2.056 -5.298

Upgradient Wells with Transformed Result

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.005	N/A	-5.298	N/A
MW221	Downgradient	t No	0.00187	N/A	-6.282	N/A
MW222	Downgradient	t No	0.00441	N/A	-5.424	N/A
MW223	Downgradient	Yes	0.00567	N/A	-5.173	NO
MW224	Downgradient	t No	0.00507	N/A	-5.284	N/A
MW369	Downgradient	t Yes	0.019	N/A	-3.963	NO
MW372	Downgradient	t Yes	0.0199	N/A	-3.917	NO
MW384	Sidegradient	Yes	0.00871	N/A	-4.743	NO
MW387	Downgradient	t Yes	0.00581	N/A	-5.148	NO
MW391	Downgradient	t No	0.005	N/A	-5.298	N/A
MW394	Upgradient	No	0.00224	N/A	-6.101	N/A
N/A Pacul	te identified as N	on Detects of	luring lobe	oratory analysis or	data validation	and ware not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.006 S = 0.008 CV(1) = 1.261 K factor** = 2.523
 TL(1) = 0.026 LL(1) = N/A

 Statistics-Transformed Background
 X = -5.747 S = 1.205 CV(2) = -0.210 K factor** = 2.523
 TL(2) = -2.708 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.00558 -5.1891/15/2003 0.00983 -4.6220.0109 -4.519 4/10/2003 7/14/2003 0.00245 -6.012 0.00566 -5.174 10/13/2003 1/13/2004 0.00572 -5.1644/13/2004 0.001 -6.908 7/21/2004 0.00392 -5.542Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/16/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/10/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00066	9 N/A	-7.310	NO
MW221	Downgradien	t Yes	0.00217	N/A	-6.133	NO
MW222	Downgradien	t Yes	0.00021	6 N/A	-8.440	NO
MW223	Downgradien	t Yes	0.00384	N/A	-5.562	NO
MW224	Downgradien	t Yes	0.00040	6 N/A	-7.809	NO
MW369	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW372	Downgradien	t No	0.00040	2 N/A	-7.819	N/A
MW384	Sidegradient	No	0.0005	N/A	-7.601	N/A
MW387	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW391	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW394	Upgradient	No	0.0005	N/A	-7.601	N/A
N/A Pagu	Ite identified as N	Ion Detects	during labe	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.127 S = 0.228 CV(1) = 1.790 K factor** = 2.523
 TL(1) = 0.701 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.617 S = 1.837 CV(2) = -0.508 K factor** = 2.523
 TL(2) = 1.019 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.418 -0.8721/15/2003 0.738 -0.3044/10/2003 0.544 -0.6097/14/2003 0.106-2.244-2.93910/13/2003 0.0529 1/13/2004 0.0209 -3.8684/13/2004 0.005 -5.298 7/21/2004 0.0192 -3.953Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.996 10/16/2002 0.005 -5.2980.005 -5.298 1/13/2003 4/10/2003 0.005 -5.2987/16/2003 0.005 -5.29810/14/2003 0.005 -5.298 1/13/2004 0.005 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0303	N/A	-3.497	NO
MW221	Downgradien	t Yes	0.0182	N/A	-4.006	NO
MW222	Downgradien	t Yes	0.0378	N/A	-3.275	NO
MW223	Downgradien	t Yes	0.254	N/A	-1.370	NO
MW224	Downgradien	t Yes	0.00409	N/A	-5.499	NO
MW369	Downgradien	t Yes	0.00888	N/A	-4.724	NO
MW372	Downgradien	t Yes	0.00135	N/A	-6.608	NO
MW384	Sidegradient	Yes	0.00075	6 N/A	-7.187	NO
MW387	Downgradien	t Yes	0.00119	N/A	-6.734	NO
MW391	Downgradien	t Yes	0.000874	4 N/A	-7.042	NO
MW394	Upgradient	Yes	0.00184	N/A	-6.298	NO
N/A - Resu	lts identified as N	Ion-Detects o	luring labo	ratory analysis or	data validation	and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a

well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 179.872 **S**= 86.318 **CV(1)**=0.480

K factor=** 2.523

TL(1)= 397.652 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.861

 $S= 1.252 \quad CV(2)=0.258$

K factor=** 2.523

TL(2) = 8.021

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 205 5.323 1/15/2003 1.95 0.668 203 4/10/2003 5.313 7/14/2003 30 3.401 10/13/2003 107 4.673 1/13/2004 295 5.687 4/13/2004 190 5.247 7/21/2004 319 5.765 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 90 4.500 9/16/2002 240 5.481 10/16/2002 185 5.220 1/13/2003 220 5.394 4/10/2003 196 5.278 7/16/2003 5.147 172 10/14/2003 175 5.165 1/13/2004 249 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	728	YES	6.590	N/A
MW221	Downgradien	t Yes	599	YES	6.395	N/A
MW222	Downgradien	t Yes	523	YES	6.260	N/A
MW223	Downgradien	t Yes	570	YES	6.346	N/A
MW224	Downgradien	t Yes	541	YES	6.293	N/A
MW369	Downgradien	t Yes	382	NO	5.945	N/A
MW372	Downgradien	t Yes	294	NO	5.684	N/A
MW384	Sidegradient	Yes	716	YES	6.574	N/A
MW387	Downgradien	t Yes	832	YES	6.724	N/A
MW391	Downgradien	t Yes	363	NO	5.894	N/A
MW394	Upgradient	Yes	411	YES	6.019	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW220
MW221
MW222
MW223
MW224
MW384
MW387
MW394

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison PCB, Total UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.212

S = 0.152 CV(1) = 0.715

K factor=** 2.523

TL(1) = 0.594

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.655 **S**= 0.376

CV(2) = -0.227

K factor=** 2.523

TL(2) = -0.706

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
7/14/2003	0.78	-0.248
10/13/2003	0.17	-1.772
7/21/2004	0.18	-1.715
7/14/2005	0.18	-1.715
7/17/2006	0.18	-1.715
7/18/2007	0.17	-1.772
10/24/2007	0.17	-1.772
1/24/2008	0.17	-1.772
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -1.772
Date Collected	Result	
Date Collected 8/13/2002	Result 0.17	-1.772
Date Collected 8/13/2002 9/16/2002	Result 0.17 0.17	-1.772 -1.772
Date Collected 8/13/2002 9/16/2002 7/16/2003	Result 0.17 0.17 0.17	-1.772 -1.772 -1.772
Date Collected 8/13/2002 9/16/2002 7/16/2003 10/14/2003	Result 0.17 0.17 0.17 0.17	-1.772 -1.772 -1.772 -1.772
Date Collected 8/13/2002 9/16/2002 7/16/2003 10/14/2003 7/20/2004	Result 0.17 0.17 0.17 0.17 0.18	-1.772 -1.772 -1.772 -1.772 -1.715

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	No	0.0962	N/A	-2.341	N/A	
MW221	Downgradien	t No	0.0952	N/A	-2.352	N/A	
MW222	Downgradien	t No	0.0962	N/A	-2.341	N/A	
MW223	Downgradien	t No	0.0952	N/A	-2.352	N/A	
MW224	Downgradien	t No	0.0962	N/A	-2.341	N/A	
MW369	Downgradien	t No	0.0971	N/A	-2.332	N/A	
MW372	Downgradien	t Yes	0.0511	NO	-2.974	N/A	
MW384	Sidegradient	No	0.0952	N/A	-2.352	N/A	
MW387	Downgradien	t No	0.0952	N/A	-2.352	N/A	
MW391	Downgradien	t No	0.098	N/A	-2.323	N/A	
MW394	Upgradient	No	0.0971	N/A	-2.332	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **PCB-1242 URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor**= 2.523 Statistics-Background Data X = 0.146S = 0.170CV(1)=1.164TL(1) = 0.573LL(1)=N/A **Statistics-Transformed Background**

Data

X = -2.149 S = 0.517CV(2) = -0.241 **K factor**=** 2.523

TL(2) = -0.844

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 7/14/2003 0.78 -0.24810/13/2003 0.09 -2.4087/21/2004 0.1 -2.3037/14/2005 0.1 -2.303-2.3037/17/2006 0.1 7/18/2007 0.1 -2.30310/24/2007 0.1 -2.303 1/24/2008 0.1 -2.303Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.11 -2.207 9/16/2002 0.13 -2.040-2.0407/16/2003 0.13 10/14/2003 0.09 -2.408 7/20/2004 0.1 -2.303-2.303 7/11/2005 0.1 7/17/2006 -2.3030.1

0.1

7/17/2007

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.0962	N/A	-2.341	N/A
MW221	Downgradien	t No	0.0952	N/A	-2.352	N/A
MW222	Downgradien	t No	0.0962	N/A	-2.341	N/A
MW223	Downgradien	t No	0.0952	N/A	-2.352	N/A
MW224	Downgradien	t No	0.0962	N/A	-2.341	N/A
MW369	Downgradien	t No	0.0971	N/A	-2.332	N/A
MW372	Downgradien	t Yes	0.0511	N/A	-2.974	NO
MW384	Sidegradient	No	0.0952	N/A	-2.352	N/A
MW387	Downgradien	t No	0.0952	N/A	-2.352	N/A
MW391	Downgradien	t No	0.098	N/A	-2.323	N/A
MW394	Upgradient	No	0.0971	N/A	-2.332	N/A
NI/A D	1, '1 ,'C' 1 N	T D		1 1	1.4 11.1.2	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.303

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.138 S = 0.282 CV(1) = 0.046 K factor** = 2.904 TL(1) = 6.957 LL(1) = 5.3179

Statistics-Transformed Background Data

X= 1.813 **S**= 0.047 **CV(2)**= 0.026

K factor**= 2.904

TL(2)= 1.950

LL(2)=1.6765

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.798 6.04 1/15/2003 6.31 1.842 4/10/2003 6.5 1.872 7/14/2003 6.3 1.841 10/13/2003 6.34 1.847 1/13/2004 6.33 1.845 4/13/2004 6.3 1.841 7/21/2004 5.9 1.775 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 5.8 1.758 9/30/2002 5.93 1.780 10/16/2002 5.42 1.690 1.792 1/13/2003 6 4/10/2003 6.04 1.798 7/16/2003 6.2 1.825 10/14/2003 1.856 6.4 1/13/2004 6.39 1.855

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	6.23	NO	1.829	N/A
MW221	Downgradien	t Yes	6.16	NO	1.818	N/A
MW222	Downgradien	t Yes	6.29	NO	1.839	N/A
MW223	Downgradien	t Yes	6.23	NO	1.829	N/A
MW224	Downgradien	t Yes	6.18	NO	1.821	N/A
MW369	Downgradien	t Yes	6.24	NO	1.831	N/A
MW372	Downgradien	t Yes	6.29	NO	1.839	N/A
MW384	Sidegradient	Yes	6.21	NO	1.826	N/A
MW387	Downgradien	t Yes	6.22	NO	1.828	N/A
MW391	Downgradien	t Yes	6.16	NO	1.818	N/A
MW394	Upgradient	Yes	6.12	NO	1.812	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.654 S = 9.310 CV(1) = 1.399 K factor** = 2.523
 TL(1) = 30.144 LL(1) = N/A

 Statistics-Transformed Background
 X = 1.130 X = 1.208 X

Historical Poolsonand Data from

Data

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Historical Background Data from					
Upgradient Wells with Transformed Result					

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.7	1.902
1/15/2003	29.7	3.391
4/10/2003	24.9	3.215
7/14/2003	1.13	0.122
10/13/2003	3.43	1.233
1/13/2004	6.71	1.904
4/13/2004	19.3	2.960
7/21/2004	3.97	1.379
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	` ,
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 1.03	0.693 0.693 0.030
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 2 1.03 1.1	0.693 0.693 0.030 0.095
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 2 1.03 1.1 1.24	0.693 0.693 0.030 0.095 0.215

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	2.92	N/A	1.072	NO	
MW221	Downgradien	t Yes	1.2	N/A	0.182	NO	
MW222	Downgradien	t Yes	0.486	N/A	-0.722	NO	
MW223	Downgradien	t Yes	1.76	N/A	0.565	NO	
MW224	Downgradien	t Yes	0.869	N/A	-0.140	NO	
MW369	Downgradien	t Yes	0.554	N/A	-0.591	NO	
MW372	Downgradien	t Yes	2.42	N/A	0.884	NO	
MW384	Sidegradient	Yes	1.05	N/A	0.049	NO	
MW387	Downgradien	t Yes	1.64	N/A	0.495	NO	
MW391	Downgradien	t Yes	1.56	N/A	0.445	NO	
MW394	Upgradient	Yes	1.23	N/A	0.207	NO	
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.036 S = 0.382 CV(1) = 10.588 K factor**= 2.523
 TL(1) = 1.001 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.873 X =

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -0.804 #Func! 1/15/2003 #Func! -0.944 10/13/2003 0.389 1/13/2004 -0.12#Func! -1.8394/13/2004 0.159 7/21/2004 0.382 -0.96210/11/2004 0.211 -1.556 1/20/2005 0.229 -1.474Well Number: MW394 Date Collected LN(Result) Result 10/16/2002 0.584 -0.538 1/13/2003 -0.839#Func! 10/14/2003 0.0325 -3.427-0.00402 #Func! 1/13/2004 4/12/2004 -0.000337 #Func! 7/20/2004 0.29 -1.238-3.308 10/12/2004 0.0366 0.0319 1/18/2005 -3.445

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.636	N/A	-0.453	YES
MW221	Downgradien	t Yes	0.821	N/A	-0.197	YES
MW222	Downgradien	t Yes	0.457	N/A	-0.783	NO
MW223	Downgradien	t No	0.236	N/A	-1.444	N/A
MW224	Downgradien	t Yes	0.542	N/A	-0.612	NO
MW369	Downgradien	t No	1.19	N/A	0.174	N/A
MW372	Downgradien	t No	1.03	N/A	0.030	N/A
MW384	Sidegradient	No	0.86	N/A	-0.151	N/A
MW387	Downgradien	t No	0.656	N/A	-0.422	N/A
MW391	Downgradien	t No	0.438	N/A	-0.826	N/A
MW394	Upgradient	Yes	0.43	N/A	-0.844	NO
NI/A D	14. : 14:C: - 1 N	T D-44-	J 1 . 1.	1!	4-41:4-4:	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW220 MW221

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 36.363 S = 8.666 CV(1) = 0.238 K factor**= 2.523 TL(1) = 58.227 LL(1) = N/A Statistics-Transformed Background X = 3.570 S = 0.222 CV(2) = 0.062 K factor**= 2.523 TL(2) = 4.129 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35.4 3.567 1/15/2003 40.6 3.704 4/10/2003 51 3.932 7/14/2003 58.2 4.064 10/13/2003 38.1 3.640 1/13/2004 37 3.611 4/13/2004 43.2 3.766 7/21/2004 33.8 3.520 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 32.9 3.493 9/16/2002 29.9 3.398 10/16/2002 29 3.367 1/13/2003 27.1 3.300 4/10/2003 24.8 3.211 7/16/2003 3.572 35.6 10/14/2003 3.523 33.9 1/13/2004 31.3 3.444

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	33.5	NO	3.512	N/A	
MW221	Downgradien	t Yes	41.8	NO	3.733	N/A	
MW222	Downgradien	t Yes	44.2	NO	3.789	N/A	
MW223	Downgradien	t Yes	44.4	NO	3.793	N/A	
MW224	Downgradien	t Yes	59.2	YES	4.081	N/A	
MW369	Downgradien	t Yes	48.3	NO	3.877	N/A	
MW372	Downgradien	t Yes	58.9	YES	4.076	N/A	
MW384	Sidegradient	Yes	60.3	YES	4.099	N/A	
MW387	Downgradien	t Yes	48.4	NO	3.879	N/A	
MW391	Downgradien	t Yes	37	NO	3.611	N/A	
MW394	Upgradient	Yes	33.1	NO	3.500	N/A	
N/A - Resu	Its identified as N	Ion-Detects (luring lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW224 MW372 MW384

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 10.481 S = 2.648 CV(1) = 0.253 K factor** = 2.523
 TL(1) = 17.161 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.322 S = 0.239 CV(2) = 0.103 K factor** = 2.523
 TL(2) = 2.925 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 10.4 2.342 1/15/2003 9.8 2.282 4/10/2003 15.4 2.734 7/14/2003 14.9 2.701 10/13/2003 13.5 2.603 1/13/2004 10.3 2.332 4/13/2004 14.3 2.660 7/21/2004 10.5 2.351 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 11.2 2.416 9/16/2002 8.3 2.116 2.079 10/16/2002 8 1/13/2003 2.140 8.5 4/10/2003 7.9 2.067 7/16/2003 2.128 8.4 10/14/2003 2.104 8.2 1/13/2004 8.1 2.092

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	14.7	NO	2.688	N/A	
MW221	Downgradien	t Yes	13.8	NO	2.625	N/A	
MW222	Downgradien	t Yes	12.1	NO	2.493	N/A	
MW223	Downgradien	t Yes	14.7	NO	2.688	N/A	
MW224	Downgradien	t Yes	14.9	NO	2.701	N/A	
MW369	Downgradien	t Yes	7.89	NO	2.066	N/A	
MW372	Downgradien	t Yes	116	YES	4.754	N/A	
MW384	Sidegradient	Yes	20.3	YES	3.011	N/A	
MW387	Downgradien	t Yes	30.1	YES	3.405	N/A	
MW391	Downgradien	t Yes	22.7	YES	3.122	N/A	
MW394	Upgradient	Yes	10.7	NO	2.370	N/A	
N/A - Resu	lts identified as N	Ion-Detects	luring lab	oratory analysis or	data validatior	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW384 MW387

MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 9.354 S = 9.280 CV(1) = 0.992 K factor**= 2.523
 TL(1) = 32.768 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.270 X = 0.849 X =

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 2.981 19.7 1/15/2003 26.1 3.262 1.270 4/10/2003 3.56 7/14/2003 0 #Func! 3.045 10/13/2003 2.1 1/13/2004 6.32 1.844 4/13/2004 3 1.099 7/21/2004 14.6 2.681 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 14 2.639 9/16/2002 5.45 1.696 0.912 10/16/2002 2.49 1/13/2003 2.907 18.3 4/10/2003 -1.45#Func! 7/16/2003 -1.71#Func! 10/14/2003 18.3 2.907 1/13/2004 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	11.6	N/A	2.451	N/A	
MW221	Downgradien	t No	5.58	N/A	1.719	N/A	
MW222	Downgradien	t No	-1.96	N/A	#Error	N/A	
MW223	Downgradien	t No	-5.43	N/A	#Error	N/A	
MW224	Downgradien	t No	-11	N/A	#Error	N/A	
MW369	Downgradien	t Yes	46.7	YES	3.844	N/A	
MW372	Downgradien	t Yes	89.5	YES	4.494	N/A	
MW384	Sidegradient	Yes	162	YES	5.088	N/A	
MW387	Downgradien	t Yes	192	YES	5.257	N/A	
MW391	Downgradien	t No	6.38	N/A	1.853	N/A	
MW394	Upgradient	No	0.742	N/A	-0.298	N/A	
N/A - Resu	lts identified as N	Ion-Detects o	luring lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369 MW372 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.494 S = 0.737 CV(1) = 0.493 K factor**= 2.523 TL(1) = 3.353 LL(1) = N/A Statistics-Transformed Background X = 0.315 S = 0.402 CV(2) = 1.279 K factor**= 2.523 TL(2) = 1.330 LL(2) = N/A Data

Historical Background Data from

Upgradient Wells with Transformed Result

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1.1	0.095
4/10/2003	1	0.000
7/14/2003	3.3	1.194
10/13/2003	1.8	0.588
1/13/2004	1	0.000
4/13/2004	2	0.693
7/21/2004	3.1	1.131
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.262
Date Collected	Result	
Date Collected 8/13/2002	Result 1.3	0.262
Date Collected 8/13/2002 9/16/2002	Result 1.3 1	0.262 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.3 1 1	0.262 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.3 1 1 1.6	0.262 0.000 0.000 0.470
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.3 1 1 1.6 1	0.262 0.000 0.000 0.470 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.3 1 1 1.6 1 1.4	0.262 0.000 0.000 0.470 0.000 0.336

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	1.33	NO	0.285	N/A			
MW221	Downgradien	t Yes	1.18	NO	0.166	N/A			
MW222	Downgradien	t Yes	1.06	NO	0.058	N/A			
MW223	Downgradien	t Yes	1.08	NO	0.077	N/A			
MW224	Downgradien	t Yes	1.32	NO	0.278	N/A			
MW369	Downgradien	t Yes	1.12	NO	0.113	N/A			
MW372	Downgradien	t Yes	1.91	NO	0.647	N/A			
MW384	Sidegradient	Yes	2.33	NO	0.846	N/A			
MW387	Downgradien	t Yes	2.29	NO	0.829	N/A			
MW391	Downgradien	t Yes	0.809	NO	-0.212	N/A			
MW394	Upgradient	Yes	1.66	NO	0.507	N/A			
N/A Pagu	lts identified as N	Ion Dotoots	lurina lah	orotory analyzis or	data validation	and ware not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 63.475 S = 163.135 CV(1) = 2.570

K factor=** 2.523

TL(1)= 475.063

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.103 S = 1.145 CV(2) = 0.369

K factor=** 2.523

TL(2) = 5.992

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.912 50 1/15/2003 10 2.303 10 4/10/2003 2.303 7/14/2003 10 2.303 10 10/13/2003 2.303 1/13/2004 10 2.303 4/13/2004 10 2.303 7/21/2004 10 2.303 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 50 3.912 9/16/2002 672 6.510 10/16/2002 50 3.912 1/13/2003 36.1 3.586 4/10/2003 10 2.303 7/16/2003 42.7 3.754 10/14/2003 22 3.091 1/13/2004 12.8 2.549

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	5.24	N/A	1.656	NO
MW221	Downgradien	t Yes	6.7	N/A	1.902	NO
MW222	Downgradien	t Yes	6.6	N/A	1.887	NO
MW223	Downgradien	t Yes	5.64	N/A	1.730	NO
MW224	Downgradien	t Yes	6.44	N/A	1.863	NO
MW369	Downgradien	t Yes	18.7	N/A	2.929	NO
MW372	Downgradien	t Yes	13.8	N/A	2.625	NO
MW384	Sidegradient	Yes	3.68	N/A	1.303	NO
MW387	Downgradien	t Yes	9.76	N/A	2.278	NO
MW391	Downgradien	t Yes	12.3	N/A	2.510	NO
MW394	Upgradient	Yes	6.8	N/A	1.917	NO
37/4 5						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 8.813 S = 8.376 CV(1) = 0.951 K factor**= 2.523 TL(1) = 29.946 LL(1) = N/A Statistics-Transformed Background X = 1.395 S = 1.449 CV(2) = 1.039 K factor**= 2.523 TL(2) = 5.052 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1 0.000 0.000 4/10/2003 7/14/2003 1 0.000 1 0.000 10/13/2003 1/13/2004 1 0.000 4/13/2004 1 0.000 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 16 2.773 9/30/2002 20 2.996 10/16/2002 17 2.833 1/13/2003 15 2.708 4/10/2003 10 2.303 7/16/2003 19 2.944 10/14/2003 20 2.996 1/13/2004 16 2.773

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.31	N/A	-1.171	N/A
MW221	Downgradien	t No	1	N/A	0.000	N/A
MW222	Downgradien	t No	1	N/A	0.000	N/A
MW223	Downgradien	t No	1	N/A	0.000	N/A
MW224	Downgradien	t No	1	N/A	0.000	N/A
MW369	Downgradien	t Yes	1.23	N/A	0.207	N/A
MW372	Downgradien	t Yes	9.18	NO	2.217	N/A
MW384	Sidegradient	Yes	0.34	N/A	-1.079	N/A
MW387	Downgradien	t Yes	0.79	N/A	-0.236	N/A
MW391	Downgradien	t Yes	12.4	NO	2.518	N/A
MW394	Upgradient	Yes	7.11	NO	1.962	N/A
N/A - Recu	Its identified as N	Ion-Detects	during lah	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.258

S= 0.221 **CV(1)**=0.856

K factor=** 2.523

TL(1) = 0.815

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.266 S = 2.485

CV(2) = -1.097

K factor=** 2.523

TL(2) = 4.003

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.194
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 0.824	-0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	-0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	-0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	-0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	-0.194 -1.609 -8.517 -1.013 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2					
MW370	Downgradient	No	0.05	N/A	-2.996	N/A					
MW373	Downgradient	No	0.05	N/A	-2.996	N/A					
MW385	Sidegradient	No	0.05	N/A	-2.996	N/A					
MW388	Downgradient	No	0.039	N/A	-3.244	N/A					
MW392	Downgradient	Yes	0.0157	NO	-4.154	N/A					
MW395	Upgradient	No	0.05	N/A	-2.996	N/A					
MW397	Upgradient	Yes	0.0244	NO	-3.713	N/A					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 7.183 S = 2.612 CV(1) = 0.364 K factor**= 2.523 TL(1) = 13.773 LL(1) = N/A Statistics-Transformed Background X = 1.870 S = 0.552 CV(2) = 0.295 K factor**= 2.523 TL(2) = 3.261 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.086 1.09 9/16/2002 5.79 1.756 10/16/2002 6.82 1.920 1/13/2003 5.01 1.611 4/10/2003 6.1 1.808 7/16/2003 8.51 2.141 10/14/2003 4.99 1.607 1/13/2004 6.58 1.884 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 9.57 2.259 9/16/2002 11 2.398 10/17/2002 9.3 2.230 1/13/2003 8.63 2.155 4/8/2003 10 2.303 7/16/2003 1.930 6.89 10/14/2003 2.313 10.1 1/13/2004 4.55 1.515

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW370	Downgradient	Yes	33.1	N/A	3.500	N/A				
MW373	Downgradient	Yes	10.7	N/A	2.370	N/A				
MW385	Sidegradient	Yes	73.6	YES	4.299	N/A				
MW388	Downgradient	Yes	72.6	YES	4.285	N/A				
MW392	Downgradient	No	0.185	N/A	-1.687	N/A				
MW395	Upgradient	No	10.7	N/A	2.370	N/A				
MW397	Upgradient	No	-1.02	N/A	#Error	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.650 S = 0.805 CV(1) = 1.238 K factor**= 2.523
 TL(1) = 2.681 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.034 X = 1.030 X = -0.996 X = -0

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 2. 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.6090.2 -1.609 4/10/2003 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/17/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/8/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	0.0328	N/A	-3.417	NO
MW373	Downgradient	Yes	1.75	N/A	0.560	NO
MW385	Sidegradient	No	0.012	N/A	-4.423	N/A
MW388	Downgradient	Yes	0.0202	N/A	-3.902	NO
MW392	Downgradient	Yes	0.0281	N/A	-3.572	NO
MW395	Upgradient	Yes	0.0233	N/A	-3.759	NO
MW397	Upgradient	Yes	0.00698	N/A	-4.965	NO
NT/A D 1		D		. 1 .	1 / 11 /	1

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.000 9/16/2002 1 0.000 0.000 10/16/2002 1 1/13/2003 1 0.000 1 0.000 4/10/2003 7/16/2003 1 0.000 10/14/2003 1 0.000 1/13/2004 1 0.000 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/17/2002 1 0.000 1/13/2003 0.000 4/8/2003 0.000 7/16/2003 1 0.000 10/14/2003 0.000 1 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No	o. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW37	0 Downgradien	t No	0.2	N/A	-1.609	N/A			
MW37	3 Downgradien	t Yes	0.575	NO	-0.553	N/A			
MW38	5 Sidegradient	No	0.8	N/A	-0.223	N/A			
MW38	8 Downgradien	t Yes	0.372	NO	-0.989	N/A			
MW39	2 Downgradien	t Yes	0.63	NO	-0.462	N/A			
MW39	5 Upgradient	Yes	0.581	NO	-0.543	N/A			
MW39	7 Upgradient	Yes	0.497	NO	-0.699	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 23.103 **S**= 11.538 **CV(1)**= 0.499

K factor=** 2.523

TL(1)= 52.213

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.357

 $S= 2.411 \quad CV(2)=1.023$

K factor=** 2.523

TL(2)= 8.439

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.965
Date Collected	Result	
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data										
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2					
MW370	Downgradient	Yes	27.3	NO	3.307	N/A					
MW373	Downgradient	Yes	71.8	YES	4.274	N/A					
MW385	Sidegradient	Yes	39.6	NO	3.679	N/A					
MW388	Downgradient	Yes	26	NO	3.258	N/A					
MW392	Downgradient	Yes	28	NO	3.332	N/A					
MW395	Upgradient	Yes	27	NO	3.296	N/A					
MW397	Upgradient	Yes	19.2	NO	2.955	N/A					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 35.313 S = 1.250 CV(1) = 0.035 K factor**= 2.523
 TL(1) = 38.466 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.564 S = 0.033 CV(2) = 0.009 K factor**= 2.523
 TL(2) = 3.648 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 4/10/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555 1/13/2004 35 3.555 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 40 3.689 9/16/2002 35 3.555 10/17/2002 35 3.555 1/13/2003 35 3.555 4/8/2003 35 3.555 7/16/2003 35 3.555 10/14/2003 35 3.555 1/13/2004 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
	MW370	Downgradient	t Yes	31.1	NO	3.437	N/A	
	MW373	Downgradient	t No	20	N/A	2.996	N/A	
	MW385	Sidegradient	No	20	N/A	2.996	N/A	
	MW388	Downgradient	t No	20	N/A	2.996	N/A	
	MW392	Downgradient	t Yes	14.4	NO	2.667	N/A	
	MW395	Upgradient	No	20	N/A	2.996	N/A	
	MW397	Upgradient	Yes	10.4	NO	2.342	N/A	
	37/4 75							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.844 S = 11.652 CV(1) = 0.225

K factor**= 2.523

TL(1) = 81.242

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.924

S= 0.229

CV(2) = 0.058

K factor=** 2.523

TL(2) = 4.501

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	62.2	4.130
9/16/2002	64.7	4.170
10/16/2002	62.2	4.130
1/13/2003	63.5	4.151
4/10/2003	64.1	4.160
7/16/2003	64	4.159
10/14/2003	63.2	4.146
1/13/2004	60.6	4.104
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.661
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 38.9	3.661
Date Collected 8/13/2002 9/16/2002	Result 38.9 39.8	3.661 3.684
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 38.9 39.8 39.3	3.661 3.684 3.671
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 38.9 39.8 39.3 40.5	3.661 3.684 3.671 3.701
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 38.9 39.8 39.3 40.5 42.1	3.661 3.684 3.671 3.701 3.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	5.57	NO	1.717	N/A		
MW373	Downgradient	Yes	48.6	NO	3.884	N/A		
MW385	Sidegradient	Yes	25.8	NO	3.250	N/A		
MW388	Downgradient	Yes	32.5	NO	3.481	N/A		
MW392	Downgradient	Yes	46.9	NO	3.848	N/A		
MW395	Upgradient	Yes	46.7	NO	3.844	N/A		
MW397	Upgradient	Yes	41.3	NO	3.721	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor** = 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Rackground Data from

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	5	1.609
9/30/2002	5	1.609
10/16/2002	5	1.609
1/13/2003	5	1.609
4/10/2003	5	1.609
7/16/2003	5	1.609
10/14/2003	5	1.609
1/13/2004	5	1.609
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	. No	1	N/A	0.000	N/A	
MW373	Downgradient	No	1	N/A	0.000	N/A	
MW385	Sidegradient	No	1	N/A	0.000	N/A	
MW388	Downgradient	Yes	0.34	NO	-1.079	N/A	
MW392	Downgradient	Yes	0.6	NO	-0.511	N/A	
MW395	Upgradient	No	1	N/A	0.000	N/A	
MW397	Upgradient	No	1	N/A	0.000	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S= 0.011 **CV(1)**=1.515

K factor=** 2.523

TL(1) = 0.034

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.053 S = 1.416

1.416 **CV(2)=**-0.234

K factor=** 2.523

TL(2) = -2.480

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	•
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	0.000578	8 N/A	-7.456	NO		
MW373	Downgradient	Yes	0.000271	1 N/A	-8.213	NO		
MW385	Sidegradient	No	0.001	N/A	-6.908	N/A		
MW388	Downgradient	No	0.000167	7 N/A	-8.698	N/A		
MW392	Downgradient	Yes	0.000148	8 N/A	-8.818	NO		
MW395	Upgradient	No	0.001	N/A	-6.908	N/A		
MW397	Upgradient	No	0.001	N/A	-6.908	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison Conductivity UNITS:** umho/cm **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

K factor=** 2.523

TL(1)= 509.326 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.926 S = 0.136 CV(2) = 0.023

K factor=** 2.523

TL(2) = 6.270

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.775
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966

X

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW370	Downgradient	Yes	432	NO	6.068	N/A		
MW373	Downgradient	Yes	849	YES	6.744	N/A		
MW385	Sidegradient	Yes	495	NO	6.205	N/A		
MW388	Downgradient	Yes	402	NO	5.996	N/A		
MW392	Downgradient	Yes	412	NO	6.021	N/A		
MW395	Upgradient	Yes	372	NO	5.919	N/A		
MW397	Upgradient	Yes	323	NO	5.778	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.028 S = 0.013 CV(1) = 0.474 K factor** = 2.523
 TL(1) = 0.061 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.662 S = 0.406 CV(2) = -0.111 K factor** = 2.523
 TL(2) = -2.638 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.99610/16/2002 0.0281 -3.5721/13/2003 0.02 -3.9120.02 -3.912 4/10/2003 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 1/13/2004 0.02 -3.912Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.996 10/17/2002 0.02 -3.9121/13/2003 0.02 -3.912 4/8/2003 0.02 -3.912 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	0.00081	6 NO	-7.111	N/A	
MW373	Downgradient	Yes	0.00048	NO	-7.642	N/A	
MW385	Sidegradient	Yes	0.00046	2 NO	-7.680	N/A	
MW388	Downgradient	No	0.00079	6 N/A	-7.136	N/A	
MW392	Downgradient	Yes	0.00045	3 NO	-7.700	N/A	
MW395	Upgradient	No	0.00083	9 N/A	-7.083	N/A	
MW397	Upgradient	No	0.00066	2 N/A	-7.320	N/A	
37/1 5							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 4.678 S = 2.431 CV(1) = 0.520 K factor**= 2.523
 TL(1) = 10.812 LL(1) = N/A

 Statistics-Transformed Background
 X = 1.414 X = 0.550 X =

Data Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 7.29 1.987 9/30/2002 4.03 1.394 10/16/2002 3.85 1.348 1/13/2003 2.36 0.859 4/10/2003 1.14 0.131 7/16/2003 1.76 0.565 10/14/2003 4.05 1.399 1/13/2004 4.26 1.449 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 11.56 2.448 9/16/2002 5.86 1.768 10/17/2002 5.94 1.782 1/13/2003 1.539 4.66 4/8/2003 3.77 1.327 7/16/2003 3.47 1.244 10/14/2003 5.34 1.675 1/13/2004 5.51 1.707

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	4.29	NO	1.456	N/A	
MW373	Downgradient	Yes	1.99	NO	0.688	N/A	
MW385	Sidegradient	Yes	2.39	NO	0.871	N/A	
MW388	Downgradient	Yes	5.17	NO	1.643	N/A	
MW392	Downgradient	Yes	1.23	NO	0.207	N/A	
MW395	Upgradient	Yes	5.59	NO	1.721	N/A	
MW397	Upgradient	Yes	5.81	NO	1.760	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

K factor=** 2.523

TL(1) = 305.301

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.379 S = 0.152 CV(2) = 0.028

K factor=** 2.523

TL(2) = 5.762

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.231
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	414	YES	6.026	N/A	
MW373	Downgradient	Yes	480	YES	6.174	N/A	
MW385	Sidegradient	Yes	259	NO	5.557	N/A	
MW388	Downgradient	Yes	234	NO	5.455	N/A	
MW392	Downgradient	Yes	204	NO	5.318	N/A	
MW395	Upgradient	Yes	194	NO	5.268	N/A	
MW397	Upgradient	Yes	160	NO	5.075	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 9.102 S = 4.685 CV(1) = 0.515 K factor**= 2.523 TL(1) = 20.922 LL(1) = N/A Statistics-Transformed Background X = 1.423 S = 2.408 CV(2) = 1.692 K factor**= 2.523 TL(2) = 7.500 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 12.5 2.526 9/16/2002 13 2.565 0.0127 10/16/2002 -4.3661/13/2003 11.2 2.416 4/10/2003 17.5 2.862 7/16/2003 12.9 2.557 10/14/2003 13.4 2.595 1/13/2004 12.4 2.518 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 7.83 2.058 9/16/2002 7.64 2.033 10/17/2002 0.00658 -5.0241/13/2003 6.69 1.901 4/8/2003 7.28 1.985 7/16/2003 2.057 7.82 10/14/2003 2.072 7.94 1/13/2004 7.51 2.016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	11.6	NO	2.451	N/A	
MW373	Downgradient	Yes	26.1	YES	3.262	N/A	
MW385	Sidegradient	Yes	14.6	NO	2.681	N/A	
MW388	Downgradient	Yes	12.3	NO	2.510	N/A	
MW392	Downgradient	Yes	10.7	NO	2.370	N/A	
MW395	Upgradient	Yes	12.3	NO	2.510	N/A	
MW397	Upgradient	Yes	8.64	NO	2.156	N/A	
NI/A D	14 - 1 - 1 - 1 - 1 N	D-44-	1		4-4 1: 4-4:		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

MW373

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X= 0

X = 0.131 S = 0.195 CV(1) = 1.487

K factor=** 2.523

TL(1) = 0.624

LL(1)=N/A

Statistics-Transformed Background Data

X= -3.104 **S**= 1.529

CV(2) = -0.493

K factor=** 2.523

TL(2) = 0.755

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.764
Date Collected	Result	•
Date Collected 8/13/2002	Result 0.466	-0.764
Date Collected 8/13/2002 9/16/2002	Result 0.466 0.077	-0.764 -2.564
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.466 0.077 0.028	-0.764 -2.564 -3.576
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.466 0.077 0.028 0.0164	-0.764 -2.564 -3.576 -4.110
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.466 0.077 0.028 0.0164 0.0407	-0.764 -2.564 -3.576 -4.110 -3.202

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	0.00374	N/A	-5.589	NO		
MW373	Downgradient	Yes	0.0146	N/A	-4.227	NO		
MW385	Sidegradient	Yes	0.00931	N/A	-4.677	NO		
MW388	Downgradient	No	0.00192	N/A	-6.255	N/A		
MW392	Downgradient	Yes	0.109	N/A	-2.216	NO		
MW395	Upgradient	No	0.005	N/A	-5.298	N/A		
MW397	Upgradient	No	0.00221	N/A	-6.115	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.007 S = 0.011 CV(1) = 1.451 K factor** = 2.523
 TL(1) = 0.034 LL(1) = N/A

 Statistics-Transformed Background
 X = -5.990 S = 1.443 CV(2) = -0.241 K factor** = 2.523
 TL(2) = -2.349 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.68910/16/2002 0.001 -6.9081/13/2003 0.00609 -5.101 -6.908 0.001 4/10/2003 7/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/17/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/8/2003 0.001 -6.908 7/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	No	0.0005	N/A	-7.601	N/A	
MW373	Downgradient	No	0.0005	N/A	-7.601	N/A	
MW385	Sidegradient	No	0.000693	3 N/A	-7.274	N/A	
MW388	Downgradient	No	0.000269	9 N/A	-8.221	N/A	
MW392	Downgradient	Yes	0.00021	l N/A	-8.464	NO	
MW395	Upgradient	No	0.00023	l N/A	-8.373	N/A	
MW397	Upgradient	No	0.0005	N/A	-7.601	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.018

S= 0.020 **CV(1)**=1.089

K factor**= 2.523

TL(1)= 0.068

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.540 S = 1.020

CV(2) = -0.225

K factor=** 2.523

TL(2) = -1.965

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	` '
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.005 0.005	-2.996 -2.996 -5.298 -5.294
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.005 0.005 0.00502 0.005	-2.996 -2.996 -5.298 -5.294 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	0.00116	N/A	-6.759	NO		
MW373	Downgradient	Yes	0.000914	4 N/A	-6.998	NO		
MW385	Sidegradient	Yes	0.00166	N/A	-6.401	NO		
MW388	Downgradient	Yes	0.00126	N/A	-6.677	NO		
MW392	Downgradient	Yes	0.000696	6 N/A	-7.270	NO		
MW395	Upgradient	Yes	0.00074	1 N/A	-7.208	NO		
MW397	Upgradient	Yes	0.000752	2 N/A	-7.193	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS:** mV **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 157.250 S = 52.376 CV(1) = 0.333

K factor=** 2.523

TL(1)= 289.395

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.003 S = 0.348

CV(2) = 0.069

K factor=** 2.523

TL(2) = 5.880

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 4.745
Date Collected	Result	•
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	416	YES	6.031	N/A	
MW373	Downgradient	Yes	312	YES	5.743	N/A	
MW385	Sidegradient	Yes	689	YES	6.535	N/A	
MW388	Downgradient	Yes	696	YES	6.545	N/A	
MW392	Downgradient	Yes	336	YES	5.817	N/A	
MW395	Upgradient	Yes	378	YES	5.935	N/A	
MW397	Upgradient	Yes	448	YES	6.105	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW370
MW373
MW385
MW388
MW392
MW395
MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.048 S = 0.248 CV(1) = 0.041 K factor** = 2.904 TL(1) = 6.767 LL(1) = 5.3289

Statistics-Transformed Background Data

X= 1.799 **S**= 0.042 **CV(2)**= 0.023

K factor=** 2.904

TL(2)= 1.920

LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	5.8	1.758
9/16/2002	6	1.792
10/16/2002	5.47	1.699
1/13/2003	6	1.792
4/10/2003	6.18	1.821
7/16/2003	6	1.792
10/14/2003	6.31	1.842
1/13/2004	6.24	1.831
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result)
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 5.84	1.765
Date Collected 8/13/2002 9/30/2002	Result 5.84 6	1.765 1.792
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5.84 6 5.75	1.765 1.792 1.749
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5.84 6 5.75 6	1.765 1.792 1.749 1.792
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5.84 6 5.75 6 6.3	1.765 1.792 1.749 1.792 1.841

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
				Result (LL(1).		En(Result) \EE(z):
MW370	Downgradien	t Yes	6.19	NO	1.823	N/A
MW373	Downgradien	t Yes	6.19	NO	1.823	N/A
MW385	Sidegradient	Yes	6.4	NO	1.856	N/A
MW388	Downgradien	t Yes	6.17	NO	1.820	N/A
MW392	Downgradien	t Yes	6.24	NO	1.831	N/A
MW395	Upgradient	Yes	5.97	NO	1.787	N/A
MW397	Upgradient	Yes	6.08	NO	1.805	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.590 S = 0.642 CV(1) = 0.404 K factor**= 2.523
 TL(1) = 3.208 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.306 S = 2.457 CV(2) = -8.028 K factor**= 2.523
 TL(2) = 5.892 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 2. 9/16/2002 2 0.693 0.00129 10/16/2002 -6.6531/13/2003 1.51 0.412 0.513 4/10/2003 1.67 7/16/2003 1.73 0.548 10/14/2003 1.7 0.531 1/13/2004 1.58 0.457 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2.03 0.708 9/16/2002 0.693 2 0.00145 10/17/2002 -6.5361/13/2003 1.69 0.525 4/8/2003 1.73 0.548 7/16/2003 2 0.693 10/14/2003 1.92 0.652 1/13/2004 1.87 0.626

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
Downgradien	t Yes	2.38	NO	0.867	N/A	
Downgradien	t Yes	2.7	NO	0.993	N/A	
Sidegradient	Yes	1.86	NO	0.621	N/A	
Downgradien	t Yes	2.19	NO	0.784	N/A	
Downgradien	t Yes	1.81	NO	0.593	N/A	
Upgradient	Yes	1.59	NO	0.464	N/A	
Upgradient	Yes	1.86	NO	0.621	N/A	
	Gradient Downgradien Downgradien Sidegradient Downgradien Downgradien Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Sidegradient Yes Downgradient Yes Downgradient Yes Upgradient Yes	Gradient Detected? Result Downgradient Yes 2.38 Downgradient Yes 2.7 Sidegradient Yes 1.86 Downgradient Yes 2.19 Downgradient Yes 1.81 Upgradient Yes 1.59	Gradient Detected? Result Result >TL(1)? Downgradient Yes 2.38 NO Downgradient Yes 2.7 NO Sidegradient Yes 1.86 NO Downgradient Yes 2.19 NO Downgradient Yes 1.81 NO Upgradient Yes 1.59 NO	Gradient Detected? Result Result >TL(1)? LN(Result) Downgradient Yes 2.38 NO 0.867 Downgradient Yes 2.7 NO 0.993 Sidegradient Yes 1.86 NO 0.621 Downgradient Yes 2.19 NO 0.784 Downgradient Yes 1.81 NO 0.593 Upgradient Yes 1.59 NO 0.464	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.039

CV(1) = 10.740

K factor=** 2.523

TL(1)= 1.096

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.695 **S**= 1.043

S = 0.419

CV(2) = -0.615

K factor=** 2.523

TL(2) = -0.414

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/16/2002	0.661	-0.414
1/13/2003	-0.839	#Func!
10/14/2003	0.0266	-3.627
1/13/2004	-0.0777	#Func!
4/12/2004	-0.115	#Func!
7/20/2004	0.105	-2.254
10/12/2004	0.408	-0.896
1/18/2005	0.0564	-2.875
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.552
Date Collected	Result	` ′
Date Collected 10/17/2002	Result 0.576	-0.552
Date Collected 10/17/2002 1/13/2003	Result 0.576 -0.841	-0.552 #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003	Result 0.576 -0.841 -0.179	-0.552 #Func! #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003 1/13/2004	Result 0.576 -0.841 -0.179 -0.0564	-0.552 #Func! #Func! #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003 1/13/2004 4/12/2004	Result 0.576 -0.841 -0.179 -0.0564 0.174	-0.552 #Func! #Func! #Func! -1.749

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	0.903	N/A	-0.102	N/A	
MW373	Downgradient	No	0.73	N/A	-0.315	N/A	
MW385	Sidegradient	Yes	1.7	N/A	0.531	YES	
MW388	Downgradient	No	0.553	N/A	-0.592	N/A	
MW392	Downgradient	Yes	0.718	N/A	-0.331	YES	
MW395	Upgradient	Yes	1.01	N/A	0.010	YES	
MW397	Upgradient	No	0.356	N/A	-1.033	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW385 MW392

MW395

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison Sodium** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 29.560 S = 13.894 CV(1) = 0.470

K factor=** 2.523

TL(1)= 64.616

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.615 S = 2.411

CV(2) = 0.922

K factor=** 2.523

TL(2)= 8.699

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.561
Date Collected	Result	,
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	50.4	NO	3.920	N/A	
MW373	Downgradient	Yes	59.5	NO	4.086	N/A	
MW385	Sidegradient	Yes	31.3	NO	3.444	N/A	
MW388	Downgradient	Yes	50	NO	3.912	N/A	
MW392	Downgradient	Yes	41.9	NO	3.735	N/A	
MW395	Upgradient	Yes	32.5	NO	3.481	N/A	
MW397	Upgradient	Yes	36	NO	3.584	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.756 S = 2.147

CV(1)=0.200

K factor=** 2.523

TL(1)= 16.173

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.356

S = 0.203

CV(2) = 0.086

K factor**= 2.523

TL(2)= 2.869

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	10.3	2.332
9/16/2002	9.1	2.208
10/16/2002	8.8	2.175
1/13/2003	9	2.197
4/10/2003	8.3	2.116
7/16/2003	8.2	2.104
10/14/2003	8.3	2.116
1/13/2004	8.2	2.104
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.639
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 12.8	2.639 2.549
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 14 12.8 12.3	2.639 2.549 2.510
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 14 12.8 12.3 12.7	2.639 2.549 2.510 2.542
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 14 12.8 12.3 12.7 12.8	2.639 2.549 2.510 2.542 2.549

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	11	NO	2.398	N/A	
MW373	Downgradient	Yes	160	YES	5.075	N/A	
MW385	Sidegradient	Yes	19.5	YES	2.970	N/A	
MW388	Downgradient	Yes	20.5	YES	3.020	N/A	
MW392	Downgradient	Yes	5.9	NO	1.775	N/A	
MW395	Upgradient	Yes	10	NO	2.303	N/A	
MW397	Upgradient	Yes	11.6	NO	2.451	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW373 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 11.359 S = 9.138 CV(1) = 0.805 K factor** = 2.523
 TL(1) = 34.414 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 2.398 S = 0.859 CV(2) = 0.358 K factor** = 2.523
 TL(2) = 3.246 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 20.8 3.035 9/16/2002 16.2 2.785 10/16/2002 8.28 2.114 1/13/2003 13 2.565 -9.37 4/10/2003 #Func! 7/16/2003 0.826 -0.19110/14/2003 14.1 2.646 1/13/2004 0 #Func! Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 6.06 1.802 9/16/2002 17.3 2.851 10/17/2002 25.7 3.246 1/13/2003 20.9 3.040 4/8/2003 20.1 3.001 7/16/2003 9.2 2.219 10/14/2003 10.1 2.313 1/13/2004 8.54 2.145

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	50.5	YES	3.922	N/A
MW373	Downgradient	No	15.9	N/A	2.766	N/A
MW385	Sidegradient	Yes	112	YES	4.718	N/A
MW388	Downgradient	Yes	95.8	YES	4.562	N/A
MW392	Downgradient	No	4.63	N/A	1.533	N/A
MW395	Upgradient	No	9.39	N/A	2.240	N/A
MW397	Upgradient	No	9.83	N/A	2.285	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.544 S = 0.856 CV(1) = 0.554 K factor** = 2.523
 TL(1) = 3.702 LL(1) = N/A

 Statistics-Transformed Background
 X = 0.325 X = 0.452 X = 0

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.470 1.6 9/16/2002 1.1 0.095 10/16/2002 1 0.000 1/13/2003 2 0.693 4/10/2003 3.4 1.224 7/16/2003 2 0.693 10/14/2003 0.000 1 1/13/2004 1 0.000 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/17/2002 1 0.000 1/13/2003 1.281 4/8/2003 1.9 0.642 7/16/2003 1.1 0.095 10/14/2003 0.000 1 0.000 1/13/2004 1

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradien	t Yes	0.847	NO	-0.166	N/A
MW373	Downgradien	t Yes	1.11	NO	0.104	N/A
MW385	Sidegradient	Yes	2.51	NO	0.920	N/A
MW388	Downgradien	t Yes	2.03	NO	0.708	N/A
MW392	Downgradien	t Yes	1.2	NO	0.182	N/A
MW395	Upgradient	Yes	0.755	NO	-0.281	N/A
MW397	Upgradient	Yes	0.699	NO	-0.358	N/A
	10					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: ug/L **Total Organic Halides (TOX) LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 31.513 S = 18.609 CV(1) = 0.591

K factor=** 2.523

TL(1) = 78.462

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.240

S = 0.707

CV(2) = 0.218

K factor=** 2.523

TL(2) = 5.024

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	50	3.912
9/16/2002	50	3.912
10/16/2002	50	3.912
1/13/2003	18.3	2.907
4/10/2003	51.2	3.936
7/16/2003	42.6	3.752
10/14/2003	12.3	2.510
1/13/2004	10	2.303
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 50	3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 50 50 50	3.912 3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 50 50 12	3.912 3.912 3.912 2.485
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 50 50 12 19.9	3.912 3.912 3.912 2.485 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	11.9	NO	2.477	N/A		
MW373	Downgradient	Yes	11.2	NO	2.416	N/A		
MW385	Sidegradient	No	10	N/A	2.303	N/A		
MW388	Downgradient	Yes	6.2	NO	1.825	N/A		
MW392	Downgradient	Yes	36.1	NO	3.586	N/A		
MW395	Upgradient	Yes	10.5	NO	2.351	N/A		
MW397	Upgradient	Yes	5.64	NO	1.730	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=7.313
 S= 5.701 CV(1)=0.780
 K factor**= 2.523
 TL(1)= 21.695
 LL(1)=N/A

 Statistics-Transformed Background
 X=1.467
 S= 1.213 CV(2)=0.827
 K factor**= 2.523
 TL(2)= 4.528
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 11 2.398 9/30/2002 14 2.639 10/16/2002 12 2.485 1/13/2003 14 2.639 14 4/10/2003 2.639 7/16/2003 13 2.565 10/14/2003 12 2.485 1/13/2004 11 2.398 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 1 0.000 1/13/2003 0.000 4/8/2003 0.000 7/16/2003 1 0.000 10/14/2003 0.000 1 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
	MW370	Downgradient	t Yes	0.8	N/A	-0.223	N/A	
	MW373	Downgradient	t Yes	9.14	NO	2.213	N/A	
	MW385	Sidegradient	No	1	N/A	0.000	N/A	
	MW388	Downgradient	t Yes	0.74	N/A	-0.301	N/A	
	MW392	Downgradient	t Yes	17.2	NO	2.845	N/A	
	MW395	Upgradient	Yes	3.92	N/A	1.366	N/A	
	MW397	Upgradient	No	1	N/A	0.000	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$


TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-S/T Fourth Quarter 2015 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 337.125 S = 138.898 CV(1) = 0.412

K factor**= 3.188 TL(1)

TL(1)= 779.932 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.735 S = 0.459 CV(2) = 0.080

K factor=** 3.188

TL(2)= 7.199

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396			
Date Collected	Result	LN(Result)		
10/3/2013	323	5.778		
1/22/2014	549	6.308		
4/9/2014	427	6.057		
7/17/2014	265	5.580		
10/27/2014	141	4.949		
1/8/2015	193	5.263		
4/22/2015	469	6.151		
7/16/2015	330	5.799		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	390	NO	5.966	N/A	
MW390	Downgradient	Yes	415	NO	6.028	N/A	
MW393	Downgradient	Yes	233	NO	5.451	N/A	
MW396	Upgradient	Yes	159	NO	5.069	N/A	

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Radium-226 UNITS: pCi/L

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.805

CV(1)=0.776

K factor=** 3.188

TL(1) = 2.794

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.409 S = 0.628

S = 0.624

CV(2) = -1.538

K factor=** 3.188

TL(2) = 1.595

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW396 Well Number: Date Collected Result LN(Result) 10/3/2013 0.404 -0.9061/22/2014 0.255 -1.3664/9/2014 2.28 0.824 7/17/2014 0.709 -0.34410/27/2014 0.633 -0.457 1/8/2015 0.585 -0.5364/22/2015 0.786 -0.241-0.2427/16/2015 0.785

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Current	Qual ttl	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW396	Ungradient	Yes	0.988	NO	-0.012	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Current Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 2.979	S = 5.203	CV(1) =1.747	K factor**= 3.188	TL(1)= 19.566	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.835	S = 1.408	CV(2)= 1.687	K factor**= 3.188	TL(2)= 2.416	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 10/3/2013 2.12 0.751 1/22/2014 8.86 2.182 4/9/2014 -5.67 #Func! 0.030 7/17/2014 1.03 10/27/2014 3.28 1.188 1/8/2015 11.2 2.416 4/22/2015 2.84 1.044 7/16/2015 0.171 -1.766

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW390	Downgradient	t Yes	58.6	N/A	4.071	YES	

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Beta activity UNITS: pCi/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.981 **S**= 6.676

CV(1)=0.608

K factor**= 2.523

TL(1) = 27.823

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.240

S = 0.564 CV(2) = 0.252

K factor**= 2.523

TL(2)= 3.662

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 10/1/2013 23.4 3.153 1/22/2014 21.2 3.054 2.072 4/7/2014 7.94 7/17/2014 20.3 3.011 10/21/2014 9.99 2.302 1/5/2015 21.8 3.082 4/14/2015 11.4 2.434

7/15/2015	9.31	2.231
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/3/2013	7.39	2.000
1/22/2014	5.63	1.728
4/9/2014	6.27	1.836
7/17/2014	6.9	1.932
10/27/2014	3.99	1.384
1/8/2015	5.07	1.623
4/22/2015	9.13	2.212
7/17/2015	5.97	1.787

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	86.8	YES	4.464	N/A
MW384	Sidegradient	Yes	109	YES	4.691	N/A
MW387	Downgradient	Yes	123	YES	4.812	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis

al Analysis Current Background Comparison UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Calcium

X = 24.056 S = 2.982

CV(1)=0.124

K factor**= 2.523

TL(1) = 31.580

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.173

 $S = 0.130 \quad CV(2) = 0.041$

K factor**= 2.523

TL(2)= 3.500

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 10/1/2013 19.7 2.981 1/22/2014 22.9 3.131 4/7/2014 25.6 3.243 7/17/2014 3.073 21.6 10/21/2014 18.4 2.912 1/5/2015 20 2.996 4/14/2015 23 3.135

7/15/2015 21.8 3.082

Well Number: MW394

Date Collected Result LN(Result)

10/3/2013 25.7 3.246 1/22/2014 25.6 3.243 4/9/2014 27.3 3.307 7/17/2014 26.3 3.270 10/27/2014 26.5 3.277 1/8/2015 27.2 3.303 4/22/2015 26.5 3.277 7/17/2015 26.8 3.288

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW372	Downgradien	t Yes	61.9	YES	4.126	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Current Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 377.938 **S**= 31.884 **CV(1)**=0.084

S = 0.087

K factor=** 2.523

TL(1) = 458.381 LL(1) = N/A

Statistics-Transformed Background Data

X = 5.931

CV(2) = 0.015

K factor**= 2.523

utilizing TL(1).

TL(2) = 6.151

Because CV(1) is less than or equal to

1, assume normal distribution and

6.621

N/A

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/1/2013 353 5.866 1/22/2014 386 5.956 5.999 4/7/2014 403 7/17/2014 407 6.009 10/21/2014 316 5.756 1/5/2015 330 5.799 4/14/2015 422 6.045 9/3/2015 343 5.838

Current Quarter Data

Downgradient Yes

MW372

Well No. Gradient Detected? Result >TL(1)? LN(Result) LN(Result) >TL(2)

YES

751

Well Number: MW394 Date Collected Result LN(Result) 10/3/2013 386 5.956 1/22/2014 382 5.945 4/9/2014 404 6.001 7/17/2014 391 5.969 10/27/2014 397 5.984 1/8/2015 397 5.984 4/22/2015 335 5.814 7/17/2015 395 5.979

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Dissolved Solids UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 218.750 S = 93.328 CV(1) = 0.427

K factor=** 2.523

TL(1)= 454.218 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.336 S = 0.295 CV(2) = 0.055

K factor**= 2.523

TL(2)= 6.082

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 10/1/2013 200 5.298 1/22/2014 219 5.389 4/7/2014 226 5.421 7/17/2014 6.321 556 10/21/2014 159 5.069 1/5/2015 140 4.942

4/14/2015	197	5.283
7/15/2015	224	5.412
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/3/2013	226	5.421
1/22/2014	208	5.338
4/9/2014	214	5.366
7/17/2014	196	5.278
10/27/2014	187	5.231
1/8/2015	166	5.112
4/22/2015	181	5.198
7/17/2015	201	5.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW224	Downgradien	t Yes	307	NO	5.727	N/A
MW372	Downgradien	t Yes	419	NO	6.038	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis

Current Background Comparison URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Magnesium

X = 9.996

CV(1)=0.138 S = 1.376

K factor**= 2.523

TL(1)= 13.467

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.293

S= 0.146 CV(2)=0.064 **K** factor**= 2.523

TL(2)= 2.661

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/1/2013 7.7 2.041 1/22/2014 9.57 2.259 4/7/2014 2.351 10.5 7/17/2014 8.95 2.192 10/21/2014 7.41 2.003 1/5/2015 8.05 2.086 4/14/20 7/15/20

4/14/2015 7/15/2015	10.2 9.16	2.322 2.215
Well Number:	MW394	
Date Collected	Result	LN(Result)
Date Collected 10/3/2013	Result 10.7	LN(Result) 2.370
zuie cometica		` /

10/3/2013	10.7	2.370
1/22/2014	10.3	2.332
4/9/2014	11	2.398
7/17/2014	11.1	2.407
10/27/2014	11	2.398
1/8/2015	11.3	2.425
4/22/2015	11.1	2.407
7/17/2015	11.9	2.477

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	23.5	YES	3.157	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 545.563 S = 165.961 CV(1) = 0.304

K factor**= 2.523

TL(1)= 964.282 LL(1

LL(1)=N/A

Statistics-Transformed Background Data

X = 6.261 S = 0.293 CV(2) = 0.047

K factor**= 2.523

TL(2) = 7.000

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/1/2013	777	6.655
1/22/2014	381	5.943
4/7/2014	400	5.991
7/17/2014	395	5.979
10/21/2014	401	5.994
1/5/2015	733	6.597
4/14/2015	488	6.190
9/3/2015	672	6.510
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 6.688
Date Collected	Result	, ,
Date Collected 10/3/2013	Result 803	6.688
Date Collected 10/3/2013 1/22/2014	Result 803 832	6.688 6.724
Date Collected 10/3/2013 1/22/2014 4/9/2014	Result 803 832 516	6.688 6.724 6.246
Date Collected 10/3/2013 1/22/2014 4/9/2014 7/17/2014	Result 803 832 516 356	6.688 6.724 6.246 5.875
Date Collected 10/3/2013 1/22/2014 4/9/2014 7/17/2014 10/27/2014	Result 803 832 516 356 453	6.688 6.724 6.246 5.875 6.116

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

6.019

N/A

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	728	NO	6.590	N/A
MW221	Downgradient	Yes	599	NO	6.395	N/A
MW222	Downgradient	Yes	523	NO	6.260	N/A
MW223	Downgradient	Yes	570	NO	6.346	N/A
MW224	Downgradient	Yes	541	NO	6.293	N/A
MW384	Sidegradient	Yes	716	NO	6.574	N/A
MW387	Downgradient	Yes	832	NO	6.724	N/A

NO

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW394 Upgradient

Yes

411

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Radium-226 UNITS: pCi/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.736	S = 1.005	CV(1) = 1.365	K factor**= 2.523	TL(1)= 3.272	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.511	S = 0.772	CV(2)= -1.510	K factor**= 2.523	TL(2)= 1.449	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

*** 11 3 7 1	1.0000	
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/1/2013	0.199	-1.614
1/22/2014	0.357	-1.030
4/7/2014	1.3	0.262
7/17/2014	0.583	-0.540
10/21/2014	0.858	-0.153
1/5/2015	0.484	-0.726
4/14/2015	0.409	-0.894
7/15/2015	0.709	-0.344
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) #Func!
Date Collected	Result	` ′
Date Collected 10/3/2013	Result -0.051	#Func!
Date Collected 10/3/2013 1/22/2014	Result -0.051 -0.0832	#Func!
Date Collected 10/3/2013 1/22/2014 4/9/2014	Result -0.051 -0.0832 4.26	#Func! #Func! 1.449
Date Collected 10/3/2013 1/22/2014 4/9/2014 7/17/2014	Result -0.051 -0.0832 4.26 0.232	#Func! #Func! 1.449 -1.461
Date Collected 10/3/2013 1/22/2014 4/9/2014 7/17/2014 10/27/2014	Result -0.051 -0.0832 4.26 0.232 0.706	#Func! #Func! 1.449 -1.461 -0.348

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.636	N/A	-0.453	NO
MW221	Downgradient	t Yes	0.821	N/A	-0.197	NO

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Sodium UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 35.044 **S**= 5.210

CV(1)=0.149

K factor**= 2.523

TL(1)= 48.188

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.546

S= 0.146 **CV(2)**= 0.041

K factor**= 2.523

TL(2) = 3.915

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/1/2013 34.6 3.544 1/22/2014 39.5 3.676 4/7/2014 43.9 3.782 7/17/2014 39.1 3.666 10/21/2014 36 3.584 1/5/2015 38.1 3.640 4/14/2015 44.9 3.804 7/15/2015 38.3 3.645 Well Number: MW394 Date Collected Result LN(Result) 10/3/2013 28.8 3.360

28.8

29.9

29.6

33.9

33.8

30.3

31.2

1/22/2014

4/9/2014

7/17/2014

1/8/2015

4/22/2015

7/17/2015

10/27/2014

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW224	Downgradient	Yes	59.2	YES	4.081	N/A
MW372	Downgradient	Yes	58.9	YES	4.076	N/A
MW384	Sidegradient	Yes	60.3	YES	4.099	N/A

Conclusion of Statistical Analysis on Current Data

3.360

3.398

3.388

3.523

3.520

3.411

3.440

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW224 MW372 MW384

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Sulfate UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.556 S = 3.756

CV(1)=0.277

K factor**= 2.523

TL(1) = 23.033

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.572

S = 0.269

CV(2) = 0.104

K factor**= 2.523

TL(2) = 3.250

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 10/1/2013 14 2.639 1/22/2014 18 2.890 2.939 4/7/2014 18.9 7/17/2014 19.4 2.965 10/21/2014 13.5 2.603 1/5/2015 14 2.639 4/14/2015 179 2 885

4/14/2013	17.7	2.003
7/15/2015	18.6	2.923
Well Number:	MW394	
Date Collected	Result	LN(Result)
10/3/2013	10	2.303
1/22/2014	10	2.303
4/9/2014	10	2.303
7/17/2014	10.3	2.332
10/27/2014	11.1	2.407
1/8/2015	10.5	2.351
4/22/2015	10.3	2.332
7/17/2015	10.4	2.342

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	116	YES	4.754	N/A
MW384	Sidegradient	Yes	20.3	NO	3.011	N/A
MW387	Downgradient	Yes	30.1	YES	3.405	N/A
MW391	Downgradient	Yes	22.7	NO	3.122	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Technetium-99 UNITS: pCi/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 17.257 **S**= 9.682

CV(1)=0.561

K factor**= 2.523

TL(1)= 41.684

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.668

S= 0.676 **CV(2)**=0.253

K factor**= 2.523

TL(2) = 4.372

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

utilizing TL(1).

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/1/2013 20.7 3.030 1/22/2014 32.1 3.469 4/7/2014 24.8 3.211 7/17/2014 12.1 2.493 10/21/2014 35 3.555 1/5/2015 32.5 3.481 4/14/2015 12.2 2.501 7/15/2015 14.8 2.695 Well Number: MW394 Date Collected Result LN(Result) 10/3/2013 9.68 2.270

18.8

4.32

10.1

17.2

17.2

11.5

3.11

1/22/2014

4/9/2014

7/17/2014

1/8/2015

4/22/2015

7/17/2015

10/27/2014

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradient	t Yes	46.7	YES	3.844	N/A
MW372	Downgradient	t Yes	89.5	YES	4.494	N/A
MW384	Sidegradient	Yes	162	YES	5.088	N/A
MW387	Downgradient	t Yes	192	YES	5.257	N/A

Conclusion of Statistical Analysis on Current Data

2.934

1.463

2.313

2.845

2.845

2.442

1.135

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW369 MW372

MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Beta activity UNITS: pCi/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 9.317

CV(1)=0.621

K factor**= 2.523

TL(1)= 23.923

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.982

S = 0.821 CV(2) = 0.414

S = 5.789

K factor=** 2.523

TL(2) = 4.053

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected Result LN(Result) 10/3/2013 10.3 2.332 1/22/2014 9.4 2.241 4/9/2014 2.09 0.737 7/17/2014 2.442 11.5 10/27/2014 19.1 2.950 1/6/2015 5.98 1.788 4/22/2015 1.03 0.030 7/17/2015 3 79 1.332

7/17/2013	3.17	1.332
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/2/2013	17.6	2.868
1/22/2014	10	2.303
4/8/2014	4.03	1.394
7/16/2014	5.18	1.645
10/21/2014	10.4	2.342
1/7/2015	16.3	2.791
4/22/2015	5.37	1.681
7/15/2015	17	2.833

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW385	Sidegradient	Yes	73.6	YES	4.299	N/A
MW388	Downgradien	t Yes	72.6	YES	4.285	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis

al Analysis Current Background Comparison UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Calcium

X= 22.706 **S**= 4.124

CV(1)=0.182

K factor**= 2.523

TL(1)= 33.110

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.107

S = 0.184 CV(2) = 0.059

K factor**= 2.523

TL(2) = 3.572

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395			
Date Collected	Result	LN(Result)		
10/3/2013	26.7	3.285		
1/22/2014	27	3.296		
4/9/2014	27.7	3.321		
7/17/2014	26.5	3.277		
10/27/2014	26.6	3.281		
1/6/2015	25.8	3.250		
4/22/2015	26.4	3.273		
7/17/2015	26.5	3.277		

7/17/2015	26.5	3.277
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/2/2013	18.6	2.923
1/22/2014	19.5	2.970
4/8/2014	19.4	2.965
7/16/2014	17.8	2.879
10/21/2014	19.8	2.986
1/7/2015	18.6	2.923
4/22/2015	18.7	2.929
7/15/2015	17.7	2.874

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	Voc	71.8	VES	4 274	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Current Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 360.125 S = 27.565 CV(1) = 0.077

K factor=** 2.523

TL(1)= 429.672 **LL**

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.884 S = 0.076 CV(2) = 0.013

K factor=** 2.523

TL(2) = 6.076

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/3/2013	376	5.930
1/22/2014	387	5.958
4/9/2014	402	5.996
7/17/2014	401	5.994
10/27/2014	387	5.958
1/6/2015	376	5.930
4/22/2015	338	5.823
7/17/2015	390	5.966

Γ	(
, r	
1	V

Well Number:	MW397	
Date Collected	Result	LN(Result)
10/2/2013	353	5.866
1/22/2014	338	5.823
4/8/2014	328	5.793
7/16/2014	336	5.817
10/21/2014	337	5.820
1/7/2015	354	5.869
4/22/2015	325	5.784
7/15/2015	334	5.811

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW373	Downgradien	t Yes	849	YES	6 744	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis **Dissolved Solids** UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 180.125 S = 24.451 CV(1) = 0.136

K factor=** 2.523

TL(1) = 241.815 LL(1) = N/A

Statistics-Transformed Background Data

X = 5.185S = 0.134CV(2)=0.026 **K** factor**= 2.523

TL(2) = 5.524

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/3/2013	225	5.416
1/22/2014	213	5.361
4/9/2014	217	5.380
7/17/2014	166	5.112
10/27/2014	181	5.198
1/6/2015	147	4.990
4/22/2015	179	5.187
7/17/2015	203	5.313

Well Number:	MW397	
Date Collected	Result	LN(Result)
10/2/2013	169	5.130
1/22/2014	190	5.247
4/8/2014	171	5.142
7/16/2014	167	5.118
10/21/2014	161	5.081
1/7/2015	159	5.069
4/22/2015	144	4.970
7/15/2015	190	5.247

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	414	YES	6.026	N/A
MW373	Downgradien	t Yes	480	YES	6.174	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis

al Analysis Current Background Comparison UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Magnesium

X = 9.460 S = 1.778

CV(1)=0.188

K factor**= 2.523

TL(1)= 13.945

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.230

S= 0.188 **CV(2)**=0.084

K factor**= 2.523

TL(2) = 2.705

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/3/2013	10.4	2.342
1/22/2014	10.8	2.380
4/9/2014	12.2	2.501
7/17/2014	11	2.398
10/27/2014	11.3	2.425
1/6/2015	9.96	2.299
4/22/2015	11.3	2.425
7/17/2015	11.8	2.468

Well Number:	MW397	
Date Collected	Result	LN(Result)
10/2/2013	7.32	1.991
1/22/2014	8.08	2.089
4/8/2014	8.36	2.123
7/16/2014	7.49	2.014
10/21/2014	8.07	2.088
1/7/2015	7.64	2.033
4/22/2015	8.09	2.091
7/15/2015	7.55	2.022

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	26.1	YES	3.262	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Quarter Data

MW395 Upgradient

MW397

Upgradient

Yes

Yes

378

448

Statistics-Background Data

X = 502.250 S = 138.585 CV(1) = 0.276

K factor=** 2.523

TL(1)= 851.901 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.184 S = 0.271 CV(2) = 0.044

K factor**= 2.523

TL(2)= 6.867

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/3/2013 542 6.295 1/22/2014 803 6.688 4/9/2014 537 6.286 7/17/2014 381 5.943 10/27/2014 307 5.727 1/6/2015 586 6.373 4/22/2015 474 6.161 7/17/2015 468 6.148 Well Number: MW397 Date Collected Result LN(Result) 10/2/2013 679 6.521 1/22/2014 389 5.964 4/8/2014 363 5.894 7/16/2014 382 5.945 10/21/2014 380 5.940

675

471

599

1/7/2015

4/22/2015

7/15/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

5.935

6.105

N/A

N/A

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	t Yes	416	NO	6.031	N/A	
MW373	Downgradient	t Yes	312	NO	5.743	N/A	
MW385	Sidegradient	Yes	689	NO	6.535	N/A	
MW388	Downgradient	t Yes	696	NO	6.545	N/A	
MW392	Downgradient	t Yes	336	NO	5.817	N/A	

NO

NO

Conclusion of Statistical Analysis on Current Data

6.515

6.155

6.395

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Radium-226 UNITS: pCi/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.019	S = 1.110	CV(1)= 1.089	K factor**= 2.523	TL(1)= 3.819	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.324	S = 1.136	CV(2)= -3.512	K factor**= 2.523	TL(2)= 1.218	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/3/2013 -0.081#Func! 1/22/2014 0.116 -2.1544/9/2014 0.756 2.13 7/17/2014 2.32 0.842 10/27/2014 0.537 -0.6221/6/2015 0.566 -0.569 4/22/2015 0.892 -0.1147/17/2015 1.2 0.182 Well Number: MW397 Date Collected Result LN(Result) 10/2/2013 -0.0866 #Func! 1/22/2014 0.0698 -2.6624/8/2014 3.11 1.135 7/16/2014 3.38 1.218 10/21/2014 0.492 -0.7091/7/2015 0.45 -0.799 4/22/2015 0.69 -0.3717/15/2015 0.516 -0.662

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW385	Sidegradient	Yes	1.7	N/A	0.531	NO
MW392	Downgradient	Yes	0.718	N/A	-0.331	NO
MW395	Upgradient	Yes	1.01	N/A	0.010	NO

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Sulfate UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 12.167 **S**= 3.574

CV(1)=0.294

K factor**= 2.523

TL(1)= 21.184

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.468

S= 0.239 **CV(2)**=0.097

K factor**= 2.523

TL(2) = 3.070

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 10/3/2013 20 2.996 1/22/2014 9.8 2.282 4/9/2014 2.279 9.77 7/17/2014 10.1 2.313 10/27/2014 10.6 2.361 1/6/2015 10.1 2.313 4/22/2015 10.1 2.313

7/17/2015	10.2	2.322
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/2/2013	22	3.091
1/22/2014	12	2.485
4/8/2014	11.7	2.460
7/16/2014	11.7	2.460
10/21/2014	12.6	2.534
1/7/2015	11.7	2.460
4/22/2015	10.9	2.389
7/15/2015	11.4	2.434

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	Yes	160	YES	5.075	N/A
MW385	Sidegradient	Yes	19.5	NO	2.970	N/A
MW388	Downgradient	Yes	20.5	NO	3.020	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Fourth Quarter 2015 Statistical Analysis Technetium-99 UNITS: pCi/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 14.056 S = 6.781

CV(1)=0.482 **K factor****= 2.523

TL(1)= 31.164

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.543 **S**= 0.467 **CV(2)**= 0.184

K factor=** 2.523

TL(2) = 3.722

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/3/2013	10.6	2.361
1/22/2014	20	2.996
4/9/2014	11.2	2.416
7/17/2014	8.05	2.086
10/27/2014	14.4	2.667
1/6/2015	17	2.833
4/22/2015	7.25	1.981
7/17/2015	14.7	2.688
Well Number:	MW397	
Date Collected	Result	LN(Result)
10/2/2013	19.1	2.950

33.7

16.5

10.6

14.7

4.58

9.32

13.2

1/22/2014

4/8/2014

7/16/2014

1/7/2015

4/22/2015

7/15/2015

10/21/2014

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	50.5	YES	3.922	N/A
MW385	Sidegradient	Yes	112	YES	4.718	N/A
MW388	Downgradient	Yes	95.8	YES	4.562	N/A

Conclusion of Statistical Analysis on Current Data

3.517

2.803

2.361

2.688

1.522

2.232

2.580

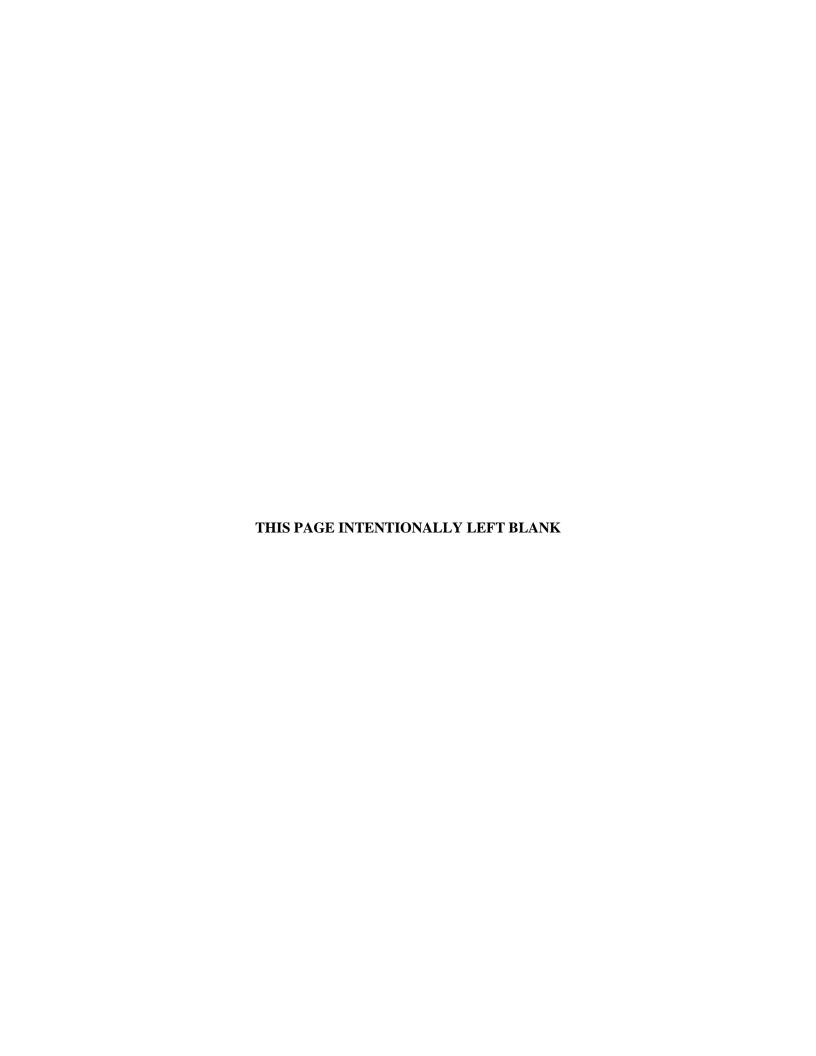
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.


CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

January 22, 2016

Ms. Myrna Redfield Fluor Federal Services, Inc. 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Redfield:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in biology, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Fluor Federal Services, Inc.

For this project, the statistical analyses conducted on the fourth quarter 2015 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Jennifer R. Blewett

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/INERT—OUARTERLY, 4th CY 2015

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Numbers: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None
For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the fourth quarter 2015 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on October 28, 2015. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both a measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill is 4.90×10^{-4} ft/ft. Additional water level measurements in October (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 5.86×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for October 2015, the groundwater flow direction in the immediate area of the landfill was oriented to the north.

¹Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

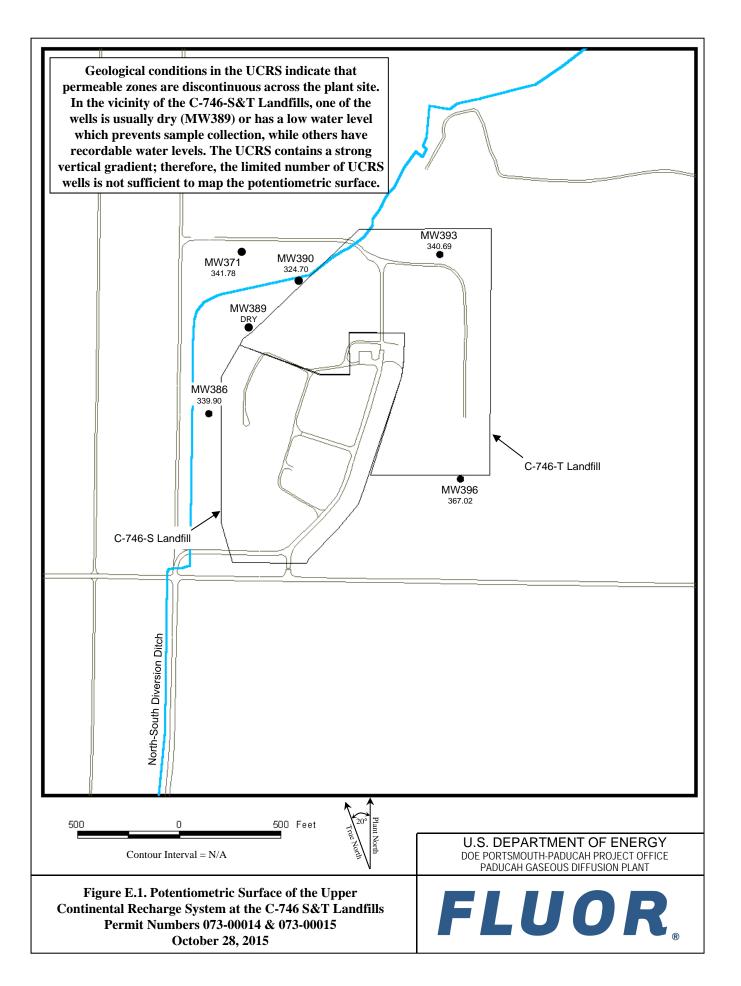


Table E.1. C-746-S&T Landfills Fourth Quarter 2015 (October) Water Levels

C-746-S&T Landfills (October 2015) Water Levels										
							Raw Data		*Corrected Data	
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
10/28/2015	14:48	MW220	URGA	381.44	29.68	0.01	56.37	325.07	56.38	325.06
10/28/2015	10:26	MW221	URGA	390.83	29.69	0.00	66.07	324.76	66.07	324.76
10/28/2015	10:21	MW222	URGA	394.87	29.69	0.00	70.07	324.80	70.07	324.80
10/28/2015	10:23	MW223	URGA	394.03	29.69	0.00	69.26	324.77	69.26	324.77
10/28/2015	10:20	MW224	URGA	395.41	29.69	0.00	70.55	324.86	70.55	324.86
10/28/2015	10:15	MW225	URGA	385.55	29.69	0.00	60.58	324.97	60.58	324.97
10/28/2015	8:53	MW353	LRGA	374.86	29.67	0.02	49.26	325.60	49.28	325.58
10/28/2015	10:07	MW384	URGA	365.06	29.69	0.00	40.32	324.74	40.32	324.74
10/28/2015	10:05	MW385	LRGA	365.54	29.69	0.00	40.79	324.75	40.79	324.75
10/28/2015	10:06	MW386	UCRS	365.21	26.69	3.39	21.92	343.29	25.31	339.90
10/28/2015	10:08	MW387	URGA	363.27	29.69	0.00	38.54	324.73	38.54	324.73
10/28/2015	10:09	MW388	LRGA	363.25	29.69	0.00	38.52	324.73	38.52	324.73
10/28/2015		MW389	UCRS	363.82			DRY		DRY	
10/28/2015	10:11	MW390	UCRS	360.36	29.69	0.00	35.66	324.70	35.66	324.70
10/28/2015	9:50	MW391	URGA	366.54	29.68	0.01	41.88	324.66	41.89	324.65
10/28/2015	9:52	MW392	LRGA	365.67	29.68	0.01	41.02	324.65	41.03	324.64
10/28/2015	9:51	MW393	UCRS	366.59	29.68	0.01	25.89	340.70	25.90	340.69
10/28/2015	10:00	MW394	URGA	378.32	29.69	0.00	53.34	324.98	53.34	324.98
10/28/2015	9:58	MW395	LRGA	379.01	29.69	0.00	53.99	325.02	53.99	325.02
10/28/2015	9:59	MW396	UCRS	378.64	29.69	0.00	11.62	367.02	11.62	367.02
10/28/2015	10:02	MW397	LRGA	386.90	29.69	0.00	61.88	325.02	61.88	325.02
10/28/2015	14:41	MW418	URGA	366.78	29.68	0.01	42.07	324.71	42.08	324.70
10/28/2015	14:42	MW419	LRGA	366.68	29.68	0.01	41.99	324.69	42.00	324.68

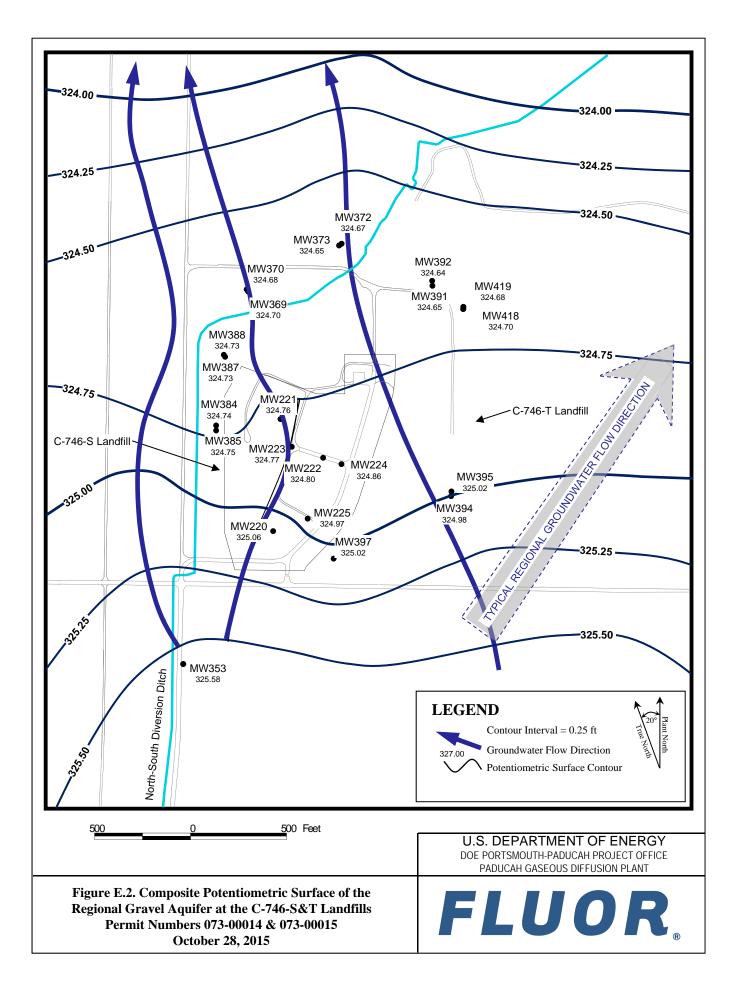
Initial Barometric Pressure

29.69

Elev = elevation

amsl = above mean sea level

BP = barometric pressure


DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

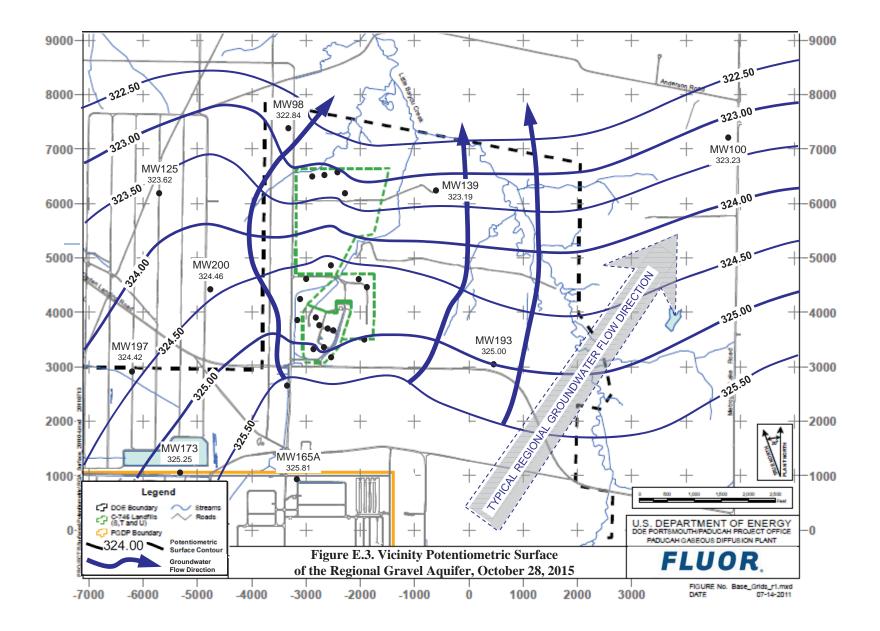


Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	4.90×10^{-4}
Vicinity	5.86×10^{-4}

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific 1	Discharge (q)	Average	e Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Beneath Landfill	Mound				
725	0.256	0.36	1.25×10^{-4}	1.42	5.02×10^{-4}
425	0.150	0.21	7.35×10^{-5}	0.83	2.94×10^{-4}
<u>Vicinity</u>					
725	0.256	0.43	1.50×10^{-4}	1.70	6.00×10^{-4}
425	0.150	0.25	8.80×10^{-5}	1.00	3.52×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the fourth quarter 2015 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW224, MW372, MW384 MW369, MW372, MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW370, MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

12/9/2015

Fluor Federal Services PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S and -T LANDFILLS PERMIT NUMBERS 073-00014 and 073-00015 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4808	MW372	Beta activity	9310	86.8	pCi/L	50
		Trichloroethene	8260B	9.18	ug/L	5
8004-4792	MW373	Trichloroethene	8260B	9.14	ug/L	5
8004-4809	MW384	Beta activity	9310	109	pCi/L	50
8004-4810	MW385	Beta activity	9310	73.6	pCi/L	50
8004-4815	MW387	Beta activity	9310	123	pCi/L	50
8004-4816	MW388	Beta activity	9310	72.6	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	12.4	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	17.2	ug/L	5
8004-4802	MW394	Trichloroethene	8260B	7.11	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills

Groundwater Flow System			UCR	S						1	URGA	A								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
ACETONE																							
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
ALPHA ACTIVITY																							
Quarter 4, 2002																							
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*						*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003							*	*			*			*									
Quarter 1, 2004			*				*	*			*												
Quarter 2, 2004							*							*									
Quarter 3, 2004							*							*									
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*				*																
Quarter 3, 2005			*				*			*											*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
Quarter 1, 2007							*										*						
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008	-						*																
Quarter 1, 2009	-		*				*				*												
Quarter 1, 2010	-		*				*				*												
Quarter 2, 2010			*								*												
Quarter 3, 2010	-		*								*			*			*			*			
Quarter 1, 2011							*				*												1
Quarter 1, 2011 Quarter 2, 2011	-		*				<u> </u>				*												
	-		*			-	1				т.			<u> </u>	<u> </u>						-		
Quarter 2, 2012	_		*	-	-	_	*													-		-	<u> </u>
Quarter 3, 2012	_			-	-	_	*				*									-		-	<u> </u>
Quarter 1, 2013	_		*				*				不												
Quarter 3, 2013	\perp		木			<u> </u>	4																₽
Quarter 1, 2014							*				-t-												<u> </u>
Quarter 2, 2014			,1.								*												<u> </u>
Quarter 4, 2014			*																				_
BARIUM																							
Quarter 3, 2003	\perp					<u> </u>																	₽
Quarter 4, 2003	1	1	l	1	1	1			1	1		1	1					1	1	1	l	1	<u> </u>

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System		-	UCRS	S						1	URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY										-			-			-		-	-				
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003			=										=				-						
										-			H				-						
Quarter 1, 2004 Quarter 2, 2004													H				H						├
` '																			-	_			—
Quarter 3, 2004																							Н—
Quarter 4, 2004										_		-											⊢
Quarter 1, 2005			_										_				_			_			Ь—
Quarter 2, 2005																	•						<u> </u>
Quarter 3, 2005																							<u> </u>
Quarter 4, 2005																							
Quarter 1, 2006																							<u> </u>
Quarter 2, 2006								<u> </u>	<u> </u>												<u> </u>	<u> </u>	<u></u>
Quarter 3, 2006																							L
Quarter 4, 2006																							
Quarter 1, 2007																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							\vdash
Quarter 1, 2009																							\vdash
Quarter 2, 2009																							
Quarter 3, 2009																	H						
Quarter 4, 2009																	H			-			
										_							_						├
Quarter 1, 2010												-											
Quarter 2, 2010			-																				—
Quarter 3, 2010												_											├
Quarter 4, 2010																							Ь—
Quarter 1, 2011										_			_				╚						Ь—
Quarter 2, 2011				ļ													_	ļ	ļ	L_			<u> </u>
Quarter 3, 2011				ļ								L						ļ	ļ				
Quarter 4, 2011																							<u> </u>
Quarter 1, 2012																							<u> </u>
Quarter 2, 2012																							
Quarter 3, 2012																	-						
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																							
Quarter 2, 2014																							
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015																							
Quarter 2, 2015				1			1				1	1			1			1	1				
Quarter 3, 2015				-														-	-				
Quarter 4, 2015		-		-	-		-				-			-	-		H	-	-				
Quarter 4, 2013	<u> </u>					_				_		_	_				Ľ						

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	4								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BROMIDE																							
Quarter 1, 2003			*																				
Quarter 4, 2003	1		*																				
Quarter 1, 2004	1		*																				
Quarter 2, 2004	1		*																				
Quarter 3, 2004	1		*																				
Quarter 4, 2004	1		*																				
Quarter 1, 2005	1		*																				
Quarter 3, 2006	1		*																				
CALCIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003	1		*																				
Quarter 4, 2003	1		*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004	1		*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005	1											*							*				
Quarter 2, 2005	1											*							*				
Quarter 3, 2005	1											*							*				
Quarter 4, 2005	-											*							*				-
	1-											*							*				
Quarter 1, 2006	-											*							*				
Quarter 2, 2006	-											*							*				
Quarter 3, 2006																							
Quarter 4, 2006	-											*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*							*				
Quarter 1, 2010	1											*							*				
Quarter 2, 2010	1											*							*				
Quarter 3, 2010	1											*							*				
Quarter 4, 2010	+											*							*				
Quarter 1, 2011	1											*							*				-
Quarter 2, 2011	1											*	*						*				
Quarter 3, 2011	1											*	<u> </u>	-	-				*	-	-	-	-
Quarter 4, 2011	1											*							*				
-	1											*	-	-	-				*	-	-	-	\vdash
Quarter 1, 2012	1											*		-	-				*	-	-		\vdash
Quarter 2, 2012	1													ļ	ļ					ļ	ļ		
Quarter 3, 2012	1									<u> </u>		*	ļ	<u> </u>	<u> </u>	<u> </u>			*	<u> </u>	<u> </u>	ļ	igwdown
Quarter 4, 2012	1									ļ		*		ļ	ļ	ļ			*	ļ	ļ		
Quarter 1, 2013	1											*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
										_			_		_					_			

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System			UCR	S						1	URGA	A								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CALCIUM																							
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*						*	*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
CARBON DISULFIDE																							
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		
CHEMICAL OXYGEN DEMA	ND																						
Quarter 1, 2003	T			*																			
Quarter 2, 2003				*																			
Quarter 3, 2003				*			*			*													
Quarter 4, 2003				*																			
Quarter 1, 2004	*			*																			
Quarter 4, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*									*		*									*		
Quarter 4, 2005	*									*													
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																						
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*																						\vdash
Quarter 4, 2009	*																						\vdash
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						\vdash
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						\vdash
Quarter 3, 2011	*																						\vdash
Quarter 4, 2011	*																						
Quarter 1, 2012	*					1																	<u> </u>
Quarter 1, 2013	*																						\vdash
Quarter 3, 2013	*																						\vdash
Quarter 3, 2014	*						-		*				*	-				*					
Quarter 4, 2014	Ŧ						*		Ė				Ė					Ė			-		<u> </u>
Quarter 2, 2015	1			-	-											*					-		<u> </u>
Quarter 3, 2015	+					-	-	-			-			-	*	-							
Zumi01 3, 2013											l		1										Щ

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						Ţ	URGA	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHLORIDE																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				
Quarter 3, 2005			*																				
Quarter 4, 2005			*																				
Quarter 1, 2006																		*					
Quarter 2, 2006			*																				
Quarter 3, 2006			*																				
Quarter 4, 2006	1		*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*																				
Quarter 3, 2007			*																				
Quarter 4, 2007			*																				
Quarter 1, 2008			*																				
Quarter 2, 2008	-		*																				
Quarter 3, 2008			*																				
Quarter 4, 2008			*																				
Quarter 1, 2009	-		*																				
Quarter 2, 2009	-		*																				
Quarter 3, 2009	-		*																				
Quarter 4, 2009	-		*																				
Quarter 1, 2010			*																				<u> </u>
*			*																				<u> </u>
Quarter 2, 2010 Quarter 3, 2010	-		*																				
	-		*																				
Quarter 4, 2010	-		*																				<u> </u>
Quarter 2, 2011	-					<u> </u>					-			-	-							-	
Quarter 3, 2011	_		*																				
Quarter 4, 2011	-		*																				<u> </u>
Quarter 3, 2012	_					<u> </u>																	<u> </u>
Quarter 3, 2013	_		*			<u> </u>																	<u> </u>
Quarter 4, 2013	_		*																				Щ.
Quarter 4, 2014			*																				
CHROMIUM																							
Quarter 4, 2002	_					<u> </u>																	<u> </u>
Quarter 1, 2003	_																		ļ	ļ			<u> </u>
Quarter 2, 2003	_					_													ļ	ļ			<u> </u>
Quarter 3, 2009						•																	
COBALT							342																
Quarter 3, 2003							*																<u> </u>

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System		1	UCRS	3						1	URGA	١								LRGA	Α		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*					*		*									*				
Quarter 4, 2003			*							*									*				
Quarter 1, 2004																			*				
Quarter 2, 2004										*									*				
Quarter 3, 2004										*									*				
Quarter 4, 2004			*							*									*				
Quarter 1, 2005										*		*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005																			*				
Quarter 4, 2005	 						-			*		*	 	-	-			-	*	 			
	 						-					*	 	-	-			-	*	 			
Quarter 1, 2006						-						*	 				-		*	 			
Quarter 2, 2006												*	<u> </u>						*	<u> </u>			Н—
Quarter 3, 2006							<u> </u>					不	<u> </u>		<u> </u>		*	<u> </u>	*	<u> </u>			<u> </u>
Quarter 4, 2006																	*						Ь—
Quarter 1, 2007	!											*	<u> </u>				,,,		*	<u> </u>			Ь—
Quarter 2, 2007																	*		*				<u> </u>
Quarter 3, 2007																	*		*				<u> </u>
Quarter 4, 2007												*					*		*				<u> </u>
Quarter 1, 2008												*							*				<u> </u>
Quarter 2, 2008												*							*				<u> </u>
Quarter 3, 2008												*					*		*				<u> </u>
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*							*				
Quarter 3, 2011												*							*				
Quarter 4, 2011	1						1					*	1		1			1	*	1			
Quarter 1, 2012											*	*							*				
Quarter 2, 2012	1											*	1	1					*	1			
Quarter 3, 2012												*	t						*	t			
Quarter 4, 2012	1						1					*	1	1	1			1	*	1			
Quarter 1, 2013	1											*	1	-					*	1			
Quarter 2, 2013	1					 		-	-			*	1				-		*	1	-	-	
Quarter 3, 2013	1					 		-	-			*	1				-		*	1	-	-	
Quarter 4, 2013	1					-	-					*	1	-	-		-	-	*	1			
Quarter 4, 2013 Quarter 1, 2014	-					-						*		-					*				
Quarter 1, 2014 Quarter 2, 2014						-						*	 				-		*	 			
							-					*	-	-	-			-	*	-			
Quarter 3, 2014												*	<u> </u>						*	<u> </u>			Н—
Quarter 4, 2014						-	<u> </u>					*	<u> </u>	<u> </u>	<u> </u>			<u> </u>	*	<u> </u>			-
Quarter 1, 2015	!												<u> </u>	ļ						<u> </u>			Ь—
Quarter 2, 2015												*	<u> </u>						*	<u> </u>			<u> </u>
Quarter 3, 2015	<u> </u>											*	<u> </u>	ļ					*	<u> </u>			
Quarter 4, 2015												*							*				

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System			UCRS	S						1	URGA	1								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003	1		*							*									*				<u> </u>
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003	+		*				*	т-	*	*		*							*				-
	-		*				Ψ.		т.	т.		*							*				-
Quarter 1, 2004	-		*							*		*							*				-
Quarter 2, 2004	-									*		*											-
Quarter 3, 2004																			*				
Quarter 4, 2004										*		*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006	1																*	*	*	*	*		
Quarter 3, 2006	1				1	1								1	1		*	*	*	*	*		
Quarter 4, 2006	+				-	1				*		*	-	-	-	-	*	-	*	<u> </u>	<u> </u>	-	
	+				-					_		·r		-	-		-		*				
Quarter 1, 2007										4		ų.											
Quarter 2, 2007										*		*							*				
Quarter 3, 2007										*		*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008										*		*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*	*						*				-
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				
	+											*	*						*				
Quarter 1, 2010	-									*		*	*						*				
Quarter 2, 2010	-									*		*	T						*				-
Quarter 3, 2010	-									*		*							*				-
Quarter 4, 2010	_																						
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011					<u> </u>					ļ		*		ļ	ļ	ļ			*	ļ			<u> </u>
Quarter 4, 2011					<u> </u>						_	*		<u> </u>	<u> </u>				*				<u> </u>
Quarter 1, 2012											*	*	*						*				
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				$oxedsymbol{oxed}$
Quarter 4, 2012												*	*						*				
Quarter 1, 2013	\perp					L^{-}			L	*		*							*				L
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*	*						*				
Quarter 2, 2014												*							*				
Quarter 3, 2014	1					1			*			*	*						*				
Quarter 4, 2014	1				1	1						*	*	1	1				*				†
Quarter 1, 2015	1											*							*				1
Quarter 2, 2015	1					1						*							*				<u> </u>
Quarter 3, 2015	+		-	-		1						*						-	*				1
Quarter 4, 2015	1				-	1			*	-		*	1	-	-	-		*	*	-	1	1	
Zumiter 7, 2013					Щ_	<u> </u>			_т			т		Ц	Ц		<u> </u>		Ť				

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System			UCRS	3						1	URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	
Quarter 3, 2003													*										
Quarter 1, 2004				*																			
Quarter 3, 2010																					*		
Quarter 2, 2013										*													
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007											*											1	
Quarter 2, 2008												*										t	
Quarter 3, 2008												*										<u> </u>	

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System			UCRS	S							URGA	Α								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006	1											*							*				\vdash
Quarter 4, 2006	1										t	*							*				\vdash
Quarter 1, 2007	1										1	*							*				\vdash
Quarter 2, 2007	1										1	*							*				\vdash
Quarter 3, 2007	1										1	*							*				\vdash
Quarter 4, 2007	1											*							*				
Quarter 1, 2008	+											*							*				
Quarter 2, 2008	-											*							*				<u> </u>
Quarter 3, 2008	-											*							*				
` '	-											*							*				-
Quarter 4, 2008												*							*				
Quarter 1, 2009												*											
Quarter 2, 2009	_												- JL						*				<u> </u>
Quarter 3, 2009	-											*	*						*				
Quarter 4, 2009												*							*				<u> </u>
Quarter 1, 2010												*							*				
Quarter 2, 2010												*	*						*				
Quarter 3, 2010												*							*				<u> </u>
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011							L	L	L	L		*	\mathbb{L}^{-1}	\mathbb{L}^{-1}				L	*	L	L	L	L
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013	1										l	*							*				
Quarter 1, 2014	1																	*	*				\vdash
Quarter 2, 2014	1											*	*						*				\vdash
Quarter 3, 2014	1										1	*							*				\vdash
Quarter 4, 2014	+	 									 	*	*	\vdash					*				\vdash
Quarter 1, 2015	+	1	1	1			 	 			 	*	*	1				 	*	 	 	 	\vdash
Quarter 2, 2015	1										1	*							*				\vdash
Quarter 3, 2015	1										1	*							*				\vdash
Quarter 4, 2015	1											*							*				\vdash
Zumier 1, 2015					_	_	_	_					_	_			_	_	_		_	_	

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCR!	S						1	URGA	Α								LRGA	Α		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
MANGANESE																							
Quarter 4, 2002																					*		
Quarter 3, 2003							*	*															
Quarter 4, 2003							*	*															
Quarter 1, 2004							*																
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															
Quarter 1, 2005							*	-1-															
							т														*		
Quarter 3, 2005	-14																				不		
Quarter 3, 2009	*																						
OXIDATION-REDUCTION PO	TENT	TIAL																					
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*	1	*																				
Quarter 4, 2005	1	1	*						1		1											1	
Quarter 2, 2006		t	*																				
Quarter 3, 2006		1	*							-						 		*		-			
Quarter 4, 2006		\vdash	*															_					
Quarter 1, 2007			*																				
			*				*																
Quarter 2, 2007			*				*																
Quarter 3, 2007							不																
Quarter 4, 2007			*			-14																	
Quarter 1, 2008	L		*			*			*											L			
Quarter 2, 2008	*		*	*		*							*				*		*	*			
Quarter 3, 2008			*	*		*							*				*		*	*			
Quarter 4, 2008			*	*		*	*	*	*				*				*	*		*			
Quarter 1, 2009			*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*											*	*	*	*			
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*											*	*	*	*			
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*		*		*		*				*	*	*	*			
Quarter 4, 2011	*		*	*		-	*			-	*						*	*	-	*			
	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 1, 2012	*	 	*	_		\perp	*	т.	*	т.	*		*	*			*	*	*	*	*	-	
Quarter 2, 2012	*	1	*	-	-	*	*	JE.		34c	*		*	*		<u> </u>	*				*		
Quarter 3, 2012	*	<u> </u>	不	طد	-		不	*	*	*	ىد							*	*	*			
Quarter 4, 2012	_	<u> </u>		*		*		*	*	*	*		*	*			*	*	*	*	*		<u> </u>
Quarter 1, 2013	u.	<u> </u>		*		*	44-	*	*		*		*	*			4.	*	-44-	*	*	<u> </u>	
Quarter 2, 2013	*	<u> </u>		*		<u>.</u>	*		*	L.	*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*	<u> </u>	L.	*	L_			*	*	*	*	L	ļ	
Quarter 4, 2013		<u> </u>	*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		L
Quarter 3, 2014	*		*	*		*											*	*	*	*			
Quarter 4, 2014	*		*	*							*		*				*	*	*	*	*		
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*		*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*	t	*	*	*	*	*	*	*	*			*		*	*	*	*	*	*	*	*	*
Ouarter 4, 2015																							

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System		ì	UCRS	S						1	URG	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384		372	387	391	220	394	385	370	373	388	392	395	397
PCB, 1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												
Quarter 3, 2005							*				*												
Quarter 1, 2006											*												
Quarter 2, 2006											*												
Quarter 4, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007												*											
Quarter 3, 2007											*												
Quarter 2, 2008											*	*											
Quarter 3, 2008											*												
Quarter 4, 2008											*												-
Quarter 1, 2009											*												
Quarter 2, 2009											*												-
Quarter 3, 2009		 	 				 				*						 						
Quarter 4, 2009											*												-
Quarter 1, 2010						-					*		-	-		-			-				-
•											*												
Quarter 2, 2010		-	-				-				*						!						
Quarter 3, 2010																							
Quarter 4, 2010											*												_
PCB-1232											-1-												
Quarter 1, 2011											*												
PCB-1248												-1-											
Quarter 2, 2008												*											
PCB-1260																		444					
Quarter 2, 2006																		*					_
pH																							
Quarter 4, 2002																	*						<u> </u>
Quarter 2, 2003																	*						
Quarter 3, 2003							4										*						<u> </u>
Quarter 4, 2003							*										*						
Quarter 1, 2004							*										*						
Quarter 2, 2004																	*						<u> </u>
Quarter 3, 2004		ļ	ļ				ļ										*						Ь—
Quarter 4, 2004										44							*				44		
Quarter 3, 2005										*		ļ			ļ		*			ļ	*	ļ	<u> </u>
Quarter 4, 2005										*							*						<u> </u>
Quarter 1, 2006		ļ	ļ				ļ			<u> </u>		<u> </u>			<u> </u>		*			<u> </u>	<u> </u>	<u> </u>	—
Quarter 2, 2006																	*						
Quarter 3, 2006		ļ	ļ				ļ			<u> </u>		<u> </u>			<u> </u>		*			<u> </u>	<u> </u>	<u> </u>	—
Quarter 3, 2007		ļ	ļ				ļ										*						Ь—
Quarter 4, 2007												ļ			ļ		*			ļ	ļ	ļ	<u> </u>
Quarter 4, 2008																	*						
Quarter 1, 2009		<u> </u>	<u> </u>				<u> </u>																<u> </u>
Quarter 1, 2011											ىد	ļ			ļ		*			ļ	ļ	ļ	<u> </u>
Quarter 2, 2011		ļ	ļ				ļ			<u> </u>	*	<u> </u>			<u> </u>		<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>
Quarter 3, 2011		ļ	ļ				ļ			<u> </u>	*	<u> </u>		ماو	<u> </u>		<u> </u>			<u> </u>	<u> </u>	<u> </u>	
Quarter 1, 2012		ļ	ļ				ļ			410		<u> </u>	120	*	<u> </u>		,±-			<u> </u>	<u> </u>	<u> </u>	
Quarter 1, 2013		ļ	ļ				ļ			*		<u> </u>	*		<u> </u>		*			<u> </u>	44	<u> </u>	
Quarter 4, 2014	Щ	Щ	Щ			Щ	Щ					Щ			Щ		Щ			Щ	*	Щ	Щ
		•	•				•				•	•	•	•	•	•			•	•	•	•	

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCR:	S						1	URGA	A								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
POTASSIUM																							
Quarter 4, 2002																		*	*				
Quarter 3, 2004																			*				
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				İ
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				İ
Quarter 2, 2013																			*				
Quarter 3, 2013																			*				
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004																			*				1
Quarter 2, 2005									*														
Quarter 1, 2009											*												
Quarter 3, 2014									*			*											
Quarter 4, 2014			*								*							*					
Quarter 1, 2015			*				*			*		*						*					
Quarter 2, 2015			*				*			*		*						*					
Quarter 3, 2015			*																				
Quarter 4, 2015					*	*									*		*				*	*	
RADIUM-228																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
SELENIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003						1								1									
Quarter 3, 2003						1								1									
Quarter 4, 2003						1																	t

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

D 389	D 390	D 393	U 396	S 221	* *	\$ 223 *	* *	\$ 384 * * *	D 369 **	D 372	D 387	D 391	U 220	U 394	S 385	D 370	D 373 *	D 388	D 392 *	U 395	U 397
389	390	*	396	221	*		*	* * *	*	372		391	220	394	385	370		388		395	397
						*	*	*			*						*		*		
						*	*	*			*						*		*		-
						*	*	*			*										'
		*				*		*	*		*										
						*		*								\vdash		_			
					*											ı l	1				
							*	*													
												*									
								*													
								*													
					ı		*	*													
								*									*				
								*									*				
			1				*	*									*				
							*	*													
		1					*	*								\vdash					
	1	1					*									\vdash				-+	
	1						*	*		*						$\vdash \vdash$	*				
	1				-		*	*							*	$\vdash\vdash$	_				
							*	т		*					T	$\vdash \vdash$	₩				
							*	*		~						$\vdash\vdash$	\vdash				\vdash
 							*	*								$\vdash \vdash$	⊢				
																$\vdash \vdash$					<u> </u>
							*									ш	<u> </u>				<u> </u>
							*									ш	<u> </u>				<u> </u>
										*						Ш					<u> </u>
							*	*													
							*			*						Ш	*				
										*											
							*			*											
										*											
								*		*											
								*													
							*	*													
								*													
							*														
																П	*				
	1	1			1				*							\sqcap	Г			-	
	1									*						\vdash	*				
	1	1								*						\vdash				-+	
	1	 						*								$\vdash \vdash$	*			-	
	1				-											$\vdash\vdash$	_				
	-	-														$\vdash\vdash$	*			-+	
	1															${oldsymbol{arphi}}$					
	1															${oldsymbol{arphi}}$	*				-
	-	<u> </u>					JŁ.		JL.							ш	342				
	1	<u> </u>			ļ		不		不							igwdapsilon					<u> </u>
							,I.	3 14			J.					ш	*				<u> </u>
	1	<u> </u>					*	*		*						ш					<u> </u>
											*					ш	<u> </u>				<u> </u>
	1	<u> </u>														ш					<u> </u>
							<u>.</u>									ш	<u> </u>				<u> </u>
							*	*		*						ل					
								*	* *	* * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System		-	UCRS	S						1	URGA	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
STRONTIUM-90																							
Quarter 2, 2003																							
Quarter 1, 2004																							
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*					*	*				
Quarter 3, 2005										*		*	*				*	*	*				
Quarter 4, 2005	1	 	-				-	-		*	-	*	*		-		<u> </u>	*	*	*	-		
-	-	 	-				-	-		*	-	*	*		-		*	*	*	*	-		
Quarter 1, 2006	_	<u> </u>	ļ				ļ	ļ	ىد		ļ				ļ						ļ		
Quarter 2, 2006	_	<u> </u>	ļ				ļ	ļ	*	*	ļ	*	*		ļ		*	*	*	*	ļ		
Quarter 3, 2006									*	*		*	*				*		*	*			
Quarter 4, 2006		<u> </u>							*	*		*	*				*		*				
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
* .									*	*		*	*				*	*	*	*			
Quarter 3, 2009	- JL								不											不			
Quarter 4, 2009	*									*		*	*				*	*	*				
Quarter 1, 2010	*								*	*		*	*				*	L	*				
Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 3, 2010										*		*	*				*	*	*	*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*		-				-	-		*	-	*	*		-		*	*	*	*	-		
Quarter 3, 2012	*	 	 				 	 		*	 	*	*		 		*	*	*	*	 		
Quarter 4, 2012	-	 	-				-	-		*	-	*	*		-		*	*	*	*	-		
Quarter 4, 2012 Quarter 1, 2013	-	 	-				-	-		*	-	*	*		-		*	*	*	*	-		
		<u> </u>	<u> </u>				<u> </u>	<u> </u>			<u> </u>			ماد	<u> </u>						<u> </u>		
Quarter 2, 2013		<u> </u>								*		*	*	*			*	*	*	*			
Quarter 3, 2013		<u> </u>								*		*	*	*			*	*	*	*			
Quarter 4, 2013		<u> </u>								*		*	*				*	*	*	*			
Quarter 1, 2014								*		*		*	*				*	*	*	*			
Quarter 2, 2014									L	*		*	*	*			*	*	*	*			L
Quarter 3, 2014										*		*	*	*			*	*	*	*			
Quarter 4, 2014		1								*		*	*				*	*	*	*			
Quarter 1, 2015										*		*	*				*	*	*	*			
Quarter 2, 2015										*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2015								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2015										*		*	*	*			*		*	*			
																				1	1	1	1

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Gradient S D D D U S S S S D D D D U S S S S S D D D D	Groundwater Flow System		,	UCRS	S						1	URGA	Α								LRGA	A		
DECINITION	•	S				U	S	S	S	S				D	D	U	U	S	D				U	U
TECHNITIM-99		386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2003	TECHNETIUM-99																							
Quarter 2, 2003 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2001 Quarter 2, 2009 Quarter 3, 2001 Quarter 2, 2009 Quarter 3, 2001 Quarter 2, 2009 Quarter 3, 2001 Quarter 2, 2009 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2009 Quarter 3, 2001 Quarter 4, 2009 Quarter 3, 2001 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 200	Quarter 4, 2002																			*				
Quarter 1, 2003	Quarter 1, 2003													*				*		*				
Quarter 2, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 200	Quarter 2, 2003	*		*							*			*				*						
Quarter 2, 2004 Quarter 3, 2005 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 2, 200	Quarter 3, 2003			*										*				*			*			
Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2007 Quarter 5, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 7, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2001 Quarter 5, 2001 Quarter 6, 200	Quarter 4, 2003			*							*		*	*				*		*	*			
Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2009 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2008 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 7, 2009 Quarter 8, 2009 Quarter 9, 200	Quarter 1, 2004			*									*	*				*		*				
Quarter 4, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2001 Quarter 6, 2001 Quarter 6, 2001 Quarter 7, 2009 Quarter 7, 200	Quarter 2, 2004			*									*	*				*		*	*			
Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2011 Quarter 4, 2010 Quarter 6, 2010 Quarter 6, 2010 Quarter 6, 2010 Quarter 7, 2011 Quarter 6, 2010 Quarter 7, 2011 Quarter 6, 2010 Quarter 7, 2011 Quarter 7, 201	Quarter 3, 2004			*									*					*		*				
Ounter 2, 2008 Ounter 3, 2005 Ounter 4, 2005 Ounter 6, 2005 Ounter 7, 2006 Ounter 7, 2006 Ounter 7, 2006 Ounter 7, 2006 Ounter 8, 2006 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2007 Ounter 9, 2008 Ounter 9, 2008 Ounter 9, 2008 Ounter 9, 2008 Ounter 9, 2008 Ounter 9, 2008 Ounter 9, 2008 Ounter 9, 2008 Ounter 9, 2008 Ounter 9, 2008 Ounter 9, 2009 Ounter 9, 2001 Ounter 9, 2002 Ounter 9, 2002 Ounter 9, 2008 Ounter	Quarter 4, 2004			*							*		*	*				*	*	*				
Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 5, 2015 Quarter 4, 2015 Quarter 5, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 6, 2015 Quarter 7, 2014 Quarter 8, 2015 Quarter 9, 2015 Quarter 9, 2015 Quarter 1, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2015 Quarter 3, 2014 Quarter 3, 2015 Quarter 4, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 5, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 7, 2016 Quarter 9, 2016 Quarter 9, 201	Quarter 1, 2005			*							*		*	*				*			*			
Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006	Quarter 2, 2005			*							*			*				*	*	*	*			
Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 *	Quarter 3, 2005			*							*			*				*	*	*	*			
Quarter 2, 2006	Quarter 4, 2005			*							*		*	*				*		*	*			
Ouarter 2, 2006 Ouarter 3, 2006 Ouarter 3, 2006 Ouarter 3, 2006 Ouarter 1, 2007 Ouarter 3, 2008 Ouarter 1, 2008 Ouarter 1, 2008 Ouarter 1, 2008 Ouarter 1, 2009 Ouarter 3, 2009 Ouarter 4, 2009 Ouarter 4, 2010 Ouarter 3, 2011 Ouarter 3, 2011 Ouarter 3, 2011 Ouarter 4, 2011 Ouarter 3, 2011 Ouarte	Ouarter 1, 2006										*		*	*						*	*			
Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarte	•			*							*			*				*	*	*	*			
Quarter 1, 2006 Quarter 1, 2007 A			1		1			1		1		1	 		1	 								
Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2015 Quarter 3, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 201		*	 	<u> </u>			\vdash						*		 	_	-	<u> </u>	<u> </u>					
Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2000 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 5, 2001 Quarter 6, 200		-		*	-		<u> </u>	-		-		-	-			-		*						
Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2000 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 201													*						*	<u> </u>				
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 3, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 5, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 7, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 7, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 7, 2015 Quarter 6, 2015 Quarter 6, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 6, 2015 Quarter 7, 2015 Quarter 6, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 6, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 8, 2015 Quarter 8, 2015 Quarter 9, 201		-					-					*				-			*	*				
Quarter 1, 2008		_	<u> </u>									*			<u> </u>		-							
Quarter 2, 2008	•																		ų.					
Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2001 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 4, 2013 Quarter 3, 2014 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2011 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 201													木						*					
Quarter 1, 2008	,			*								*								*				
Quarter 1, 2009	,																							
Quarter 2, 2009	Quarter 4, 2008																		*	*	*			
Quarter 4, 2009	Quarter 1, 2009																							
Quarter 1, 2009	Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 2, 2010	Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 2, 2010	Quarter 4, 2009			*							*		*	*				*						
Quarter 4, 2010	Quarter 1, 2010			*							*		*	*				*						
Quarter 4, 2010	Quarter 2, 2010			*							*			*				*	*		*			
Quarter 1, 2011	Quarter 3, 2010			*							*	*	*	*				*						
Quarter 1, 2011 *	Quarter 4, 2010			*							*		*	*				*						
Quarter 3, 2011											*			*				*						
Quarter 3, 2011 *				*							*			*				*			*			
Quarter 4, 2011 *	,			*							*			*				*			*			
Quarter 1, 2012	•			*							*	*	*	*				*						
Quarter 2, 2012	,												-								*			
Quarter 3, 2012	•																			*				
Quarter 4, 2012	•			u u			_						*					¥		4	т.			
Quarter 1, 2013 Quarter 2, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quarter 7, 201		-		Ψ.	-		-	-		-		-				-				*	*			
Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Representation of the state of the		-					-						*			-								
Quarter 3, 2013	* .	_	<u> </u>										<u> 44</u>		<u> </u>		-							
Quarter 4, 2013		_	<u> </u>	- N											<u> </u>		-							
Quarter 1, 2014		<u> </u>					<u> </u>																	
Quarter 2, 2014	,	<u> </u>					<u> </u>					- JL	木											
Quarter 3, 2014			<u> </u>												<u> </u>									
Quarter 4, 2014												*			*					*				
Quarter 1, 2015			<u> </u>												<u> </u>									
Quarter 2, 2015	Quarter 4, 2014																			*				
Quarter 3, 2015	Quarter 1, 2015												*											
Quarter 4, 2015	Quarter 2, 2015			*							*	*		*				*			*			
THORIUM-230 Quarter 1, 2012 Quarter 4, 2014 * *	Quarter 3, 2015			*							*	*	*	*				*	*	*	*			
THORIUM-230 # <th< td=""><td>Quarter 4, 2015</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td>*</td><td>*</td><td>*</td><td></td><td></td><td></td><td>*</td><td>*</td><td></td><td>*</td><td></td><td></td><td></td></th<>	Quarter 4, 2015			*							*	*	*	*				*	*		*			
Quarter 4, 2014 * *	THORIUM-230																							
		*								*					*									
		*		*																				
		*								*	*			*		*								

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System		-	UCRS	S						1	URGA	١								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384		372	387	391	220	394	385	370	373	388	392	395	397
THORIUM-234																							
Ouarter 2, 2003						*			*					*									
Quarter 4, 2007									*														
TOLUENE																							
Quarter 2, 2014										*	*		*										
TOTAL ORGANIC CARBON																							
Quarter 4, 2002																					*		
Quarter 1, 2003				*						*	*							*	*		*		
Quarter 2, 2003										*	*		*								*		
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003							*		*	*													
Quarter 1, 2004										*													
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004			1					1		*	1				1								
Quarter 1, 2005										*	l												
Quarter 2, 2005										*											*		
Quarter 3, 2005										*	1	*									*		
Quarter 4, 2005						-				*	1										*		-
Quarter 1, 2006			-		-			-	-	*	1				-				-				
Quarter 1, 2006 Quarter 2, 2006		-				-				*	₩	*	-	-									-
•										т.		Ψ					*						
Quarter 4, 2006	.									J.							不						
Quarter 1, 2007	*						4	4		*			40	40			al.						
Quarter 3, 2007	*					*	*	*	*	*			*	*			*						
Quarter 2, 2011											*												
Quarter 3, 2012	*																						
TOTAL ORGANIC HALIDES																							
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*														*			*		
Quarter 3, 2003				*																	*		
Quarter 2, 2004																					*		
Quarter 3, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*																						
Quarter 4, 2005	*																						
Quarter 1, 2006	*										<u> </u>												
Quarter 2, 2006	*				ļ				ļ		<u> </u>								ļ				
Quarter 3, 2006	*										<u> </u>						all:						
Quarter 4, 2006	J .										<u> </u>						*						
Quarter 1, 2007	*				<u> </u>				<u> </u>		<u> </u>								<u> </u>				
Quarter 2, 2007	*				ļ				ļ		<u> </u>								ļ				
Quarter 3, 2007	*				<u> </u>				<u> </u>		<u> </u>								<u> </u>				
Quarter 4, 2007	*										<u> </u>										*		
Quarter 1, 2008	*				<u> </u>				<u> </u>		<u> </u>								<u> </u>				
Quarter 4, 2008	*				<u> </u>				<u> </u>		<u> </u>								<u> </u>				
Quarter 4, 2008	*										<u> </u>												
Quarter 1, 2009	*										<u> </u>										184		
Quarter 2, 2009	*				<u> </u>				<u> </u>		<u> </u>								ļ		*		
Quarter 3, 2009	*										<u> </u>												
Quarter 4, 2009	*										<u> </u>												
,	344	İ	l		l		1	l	l	1	i .	1	l	1						1	1	1	1
Quarter 1, 2010	*					_					<u> </u>			_		_	_			_			
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010	*																						

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						Ţ	URGA	4								LRG	4		$\overline{}$
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384		372		391	220	394	385	370		388	392	395	
TOTAL ORGANIC HALIDES																							
Quarter 4, 2010	*																						
Quarter 1, 2011	*																						
Quarter 3, 2013	1																				*		
TRICHLOROETHENE																					-		
Quarter 4, 2002																							
Quarter 1, 2003	1													Ī									
Quarter 2, 2003	1													Ī									-
Quarter 3, 2003														Ī									
Quarter 4, 2003																					F		
Quarter 1, 2004														┪							ī	ī	-
` '	1													ī								i	
Quarter 2, 2004	1																	ī					-
Quarter 3, 2004																							-
Quarter 4, 2004																							-
Quarter 1, 2005	 		-				-				-		-	-	-			_	-	 			
Quarter 2, 2005	!		ļ				ļ				ļ		ļ		ļ			_		<u> </u>			
Quarter 3, 2005	<u> </u>		ļ				ļ				ļ		ļ	_	ļ				-	<u> </u>			<u> </u>
Quarter 4, 2005														_				_					
Quarter 1, 2006	<u> </u>		<u> </u>				<u> </u>				<u> </u>		<u> </u>	_	<u> </u>			_		<u> </u>			<u> </u>
Quarter 2, 2006																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							-
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012	1																		Ē	\vdash	ī		
Quarter 4, 2012	1					 		-	-	-							-			\vdash			₩
Quarter 1, 2013	1-		 				 				Ι-		 	=	 				i	1	i		
Quarter 2, 2013	 		 				 				 	Ħ	 	=	 	-			i	1	i		
Quarter 3, 2013	 					-																	├
•	 		-				-				-		-		-					 			
Quarter 4, 2013	 —		 			 	 				 		 		 		<u> </u>			1		-	₩
Quarter 1, 2014	 		-				-				-		-		-	-	-		-	 			
Quarter 2, 2014	 		<u> </u>			-	<u> </u>				<u> </u>		<u> </u>		<u> </u>				_	<u> </u>			
Quarter 3, 2014	!													_					-	<u> </u>	•		<u> </u>
Quarter 4, 2014	<u> </u>											_		_					•	<u> </u>	•		<u> </u>
Quarter 1, 2015	<u> </u>											_		_						<u> </u>	•		ļ
Quarter 2, 2015														_						<u> </u>			
Quarter 3, 2015																							
Quarter 4, 2015														•									

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						Ţ	JRGA	A]	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														
* Statistical test results indicate an	alava	ted co	ncan	tration	ı (i a	a eta	tietice	illy ci	mific	ant in	rance	,											

* Statistical test results indicate an elevated concentration (i.e., a statistically significant increase)

■ MCL Exceedance

UCRS Upper Continental Recharge System

URGA Upper Regional Gravel Aquifer

LRGA Lower Regional Gravel Aquifer

S Sidegradient; D Downgradient; U Upgradient

APPENDIX H METHANE MONITORING DATA

C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	12/09/2	2015					Т	ime	:	1	1:3	5						M	onito	or:	T	amı	my	Sn	nith		
Weather Co Sunny and			e wii	th wi	inde	@ 4		nh	<u> </u>		√F +I	ha	201	th s		-+											
Monitoring	Equipm	ent:		LII VV	iius	<u>w</u> 4	1.2 11	iþii	-	11 (יו נו	IIE	1101	LII	WE	οι											
MSA Sirius	A3-129	81		*****																							
					N	loni	torir	ng L	.00	cat	ion)														adir LEI	
Ogden Landi Road Entran		Che	ecked	at o	round	d leve	el																	0			
North Landfi	ll Gato		ecked																					0			
West Side of Landfill:		Cite	SCKEC	ı al y	iounc	ı ievi	<u> </u>																	<u> </u>			
North 37° West 88°		Che	ecked	d at g	round	d leve	el																	0			
East Side of Landfill:		•								Allina Journal																	
North 37° West 88°			ecked					T _						1								, , <u>, , , , , , , , , , , , , , , , , </u>		0			
Cell 1 Gas Ve	ent (17)	0	0	3 0	0	5 0	6	7 0		8 0		9	10 0	11		12 0	13 0	1.		5	16 0	17	- 1	0			
Cell 2 Gas V	/ent (3)	1	2 0	3 0		•		•			•	•		•				•		•		•		0			
Cell 3 Gas V	/ent (7)	0	0	3 0	4 0	5 0	6	7 0																0			
	II Office	Che	ecked	d at fle	oor le	evel																		0			
Suspect or P	Problem Areas	No	areas	s note	ed																			B	12-9	2-13	
Remarks:												-															 -
ALL VENTS	S CHEC	CKEI	D 1"	FRO	I MC	MOI	JTH	OF	: T	ГНІ	ΕV	/E1	NΤ														
	0							· • ·	•																		
Performed I	hv.																					-					
. 5.15111164	~ , .			Ĭ	In 2m	me	۷ ـ ۲	Que.	" "	H	/											1:	2/0	9/2	2015	5	
					Si	gyra	ture																		Dat	e	

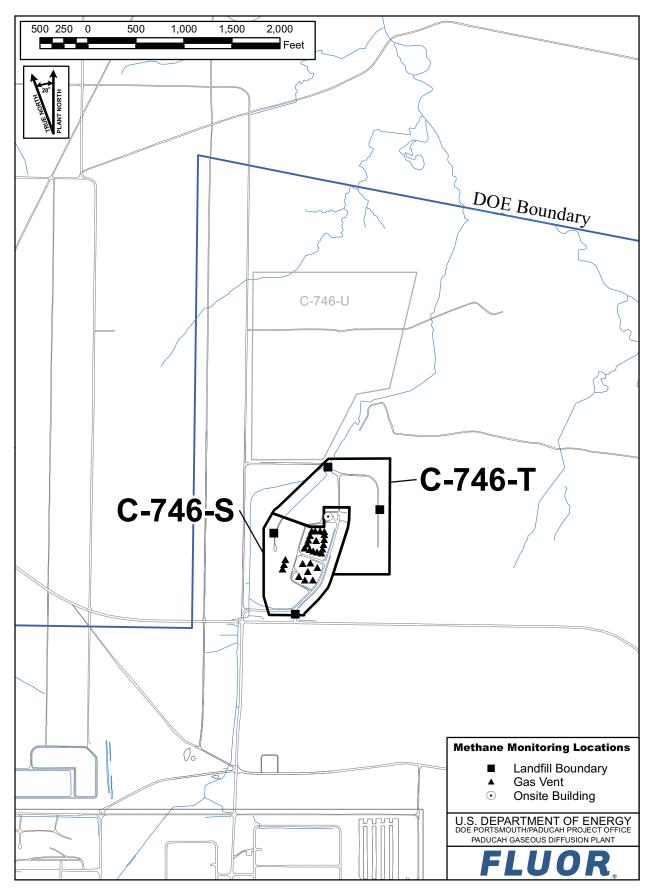


Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po	int	(KPDES Discharge Number, or "U	PST	REAM", or "DO	OWNSTREAM")	L135 UPSTREA	λM	L154 DOWNSTR	EAM	L136 AT SIT	Έ	F. BLAN	<
Sample Sequen	ce	#				1		1		1		1	
If sample is a	a Bl	ank, specify Type: (F)ield, (r)ri	.p, (M)ethod	, or (E)quipment	NA		NA		NA		F	
Sample Date a	ınd	Time (Month/Day/Year hour: m	inut	tes)		11/17/2015 09:	47	11/17/2015 09:	35	12/23/2015 13	3:18	11/17/2015 0	9:50
Duplicate ("Y	c	or "N") ¹				N		N		N		N	
Split ('Y' or	. "I	T") ²				N		N		N		N	
Facility Samp	le	ID Number (if applicable)				L135SS1-16		L154US1-16	5	L136SS1-10	6	FB1SS1-1	16
Laboratory Sa	mpl	e ID Number (if applicable)				385812001		385808003		388108002	2	38581200)2
Date of Analy	rsis	(Month/Day/Year)				12/12/2015		12/12/2015		1/6/2016		12/14/201	5
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G S ⁷
A200-00-0	0	Flow	Т	MGD	Field	0.22		0.39		1.78			*
16887-00-6	2	Chloride(s)	Т	mg/L	300.0	1.45		1.67		0.919		0.0778	J
14808-79-8	0	Sulfate	Т	mg/L	300.0	4.89		4.4		4.22		<0.4	
7439-89-6	0	Iron	Т	mg/L	200.8	0.518		0.656		1.34		<0.1	
7440-23-5	0	Sodium	Т	mg/L	200.8	1.57		1.66		0.655		<0.25	
s0268	0	Organic Carbon ⁶	Т	mg/L	9060	10.8		11.5		4.87			*
s0097	0	BOD ⁶	Т	mg/L	not applicable		*		*		*		*
s0130	0	Chemical Oxygen Demand	Т	mg/L	410.4	67.8		47.8		41.3			*

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Point (KPDES Discharge Number, or "UPSTREAM" or "DOWNSTREAM")						L135 UPSTREAM L154 DOWNSTREAM			L136 AT SI	re	F. BLANK		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G
s0145	1	Specific Conductance	Т	µhmo/cm	Field	105		97		91			*
s0270	0	Total Suspended Solids	т	mg/L	160.2	10.4		11.7		56			*
s0266	0	Total Dissolved Solids	т	mg/L	160.1	107		120		126			*
s0269	0	Total Solids	т	mg/L	SM-2540B	103		101		177			*
s0296	0	рН	т	Units	Field	7.28		7.27		7.33			*
7440-61-1		Uranium	т	mg/L	200.8	0.00154		0.00104		0.000561		<0.0002	
12587-46-1		Gross Alpha (α)	Т	pCi/L	9310	6.36	*	-4.22	*	-4.07	*	-3.89	*
12587-47-2		Gross Beta (β)	Т	pCi/L	9310	12.4	*	10.1	*	1.99	*	4.02	*
													\vdash
													\vdash
													\vdash

4

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

Frankfort, KY 40601 (502)564-6716

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po	int	(KPDES Discharge Number, or "U	L136 AT SITE										
Sample Sequer	ıce	#	2										
If sample is a	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment						NA						
Sample Date and Time (Month/Day/Year hour: minutes)						12/23/2015 13:18							
Duplicate ("Y	Duplicate ("Y" or "N") ¹						Y						
Split ('Y' or	. "1	V") ²				N							
Facility Samp	Facility Sample ID Number (if applicable)						16						
Laboratory Sa	mp]	le ID Number (if applicable)				388108001							
Date of Analy	Date of Analysis (Month/Day/Year)					1/20/2016							
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OF PQL ⁵	F A G S	DETECTED VALUE OR PQL ⁵	F L A G
A200-00-0	0	Flow	Т	MGD	Field	1.78							
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	0.905							
14808-79-8	0	Sulfate	Т	MG/L	300.0	4.22			\angle				
7439-89-6	0	Iron	т	MG/L	200.8	1.24							
7440-23-5	0	Sodium	т	MG/L	200.8	0.651							
s0268	0	Organic Carbon ⁶	т	MG/L	9060	11.4							
s0097	0	BOD ⁶	т	MG/L	not applicable		*						
s0130	0	Chemical Oxygen Demand	Т	MG/L	410.4	28.1							

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Point (KPDES Discharge Number, or "UPSTREAM" or "DOWNSTREAM")					L136 AT SI	TE						$\overline{/}$	
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQD ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G
s0145	1	Specific Conductance	т	µHMS/CM	Field	91							
s0270	0	Total Suspended Solids	Т	MG/L	160.1	56.6							
s0266	0	Total Dissolved Solids	Т	MG/L	160.2	120							
s0269	0	Total Solids	Т	MG/L	SM-2540B	173							
s0296	0	рН	Т	Units	Field	7.33							
7440-61-1		Uranium	Т	MG/L	200.8	0.000574							
12587-46-1		Gross Alpha (α)	Т	pCi/L	9310	-0.786	*						
12587-47-2		Gross Beta (β)	Т	pCi/L	9310	9.26	*						
												\setminus \top	
								/					\

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 & 073-00015

Finds/Unit:	KY8-890-008-982 /	/]						
LAB ID:	None	_						
For Official Use Only								

SURFACE WATER WRITTEN COMMENTS

Monitorii Point	ng Facility Sample ID	Constituent	Flag	Description
L135	L135SS1-16	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 6.56. Rad error is 6.47.
		Beta activity		TPU is 8.39. Rad error is 8.14.
L154	L154US1-16	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 3.5. Rad error is 3.49.
		Beta activity		TPU is 10. Rad error is 9.86.
L136	L136SS1-16	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 3.51. Rad error is 3.51.
		Beta activity		TPU is 5.53. Rad error is 5.52.
QC	FB1SS1-16	Flow Rate		Analysis of constituent not required and not performed.
		Total Organic Carbon (TOC)		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)		Analysis of constituent not required and not performed.
		Conductivity		Analysis of constituent not required and not performed.
		Suspended Solids		Analysis of constituent not required and not performed.
		Dissolved Solids		Analysis of constituent not required and not performed.
		Total Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 3.93. Rad error is 3.93.
		Beta activity		TPU is 9.25. Rad error is 9.23.
L136	L136DSS1-16	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 3.97. Rad error is 3.97.
		Beta activity		TPU is 6.57. Rad error is 6.39.

