

Department of Energy

RECEIVED

By Darla Bowen at 8:50 am, Dec 01, 2015

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

NOV 3 0 2015

Ms. Robin Green
Division of Waste Management
Kentucky Department for Environmental Protection
200 Fair Oaks Lane, 2nd Floor
Frankfort, Kentucky 40601

Mr. Todd Hendricks Division of Waste Management Kentucky Department for Environmental Protection 200 Fair Oaks Lane, 2nd Floor Frankfort, Kentucky 40601

Mr. Allan Shingleton Division of Waste Management Kentucky Department for Environmental Protection 625 Hospital Drive Madisonville, Kentucky 42431

Dear Ms. Green, Mr. Hendricks, and Mr. Shingleton:

C-746-S&T LANDFILLS THIRD QUARTER CALENDAR YEAR 2015 (JULY-SEPTEMBER) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, PAD-ENM-0094/V3, PERMIT NUMBER: SW07300014, SW07300015, SW07300045

Enclosed is the subject report for third quarter calendar year (CY) 2015, provided in accordance with Solid Waste Landfill Permit Number: SW07300014, SW07300015, SW07300045. The report includes groundwater and surface water analytical data, validation summary, groundwater flow rate and direction determination, figures depicting well locations, and methane monitoring results.

This report serves as the statistical increase notification for the third quarter CY 2015, in accordance with Condition GSTR0003, Standard Requirement 8, of the C-746-S&T Solid Waste Landfill Permit Number: SW07300014, SW07300015, SW07300045.

PPPO-02-3256724-16

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

> Sincerely, la Woodard

Jennifer Woodard Paducah Site Lead

Portsmouth/Paducah Project Office

Enclosure:

C-746-S&T Landfills Third Quarter Calendar Year 2015 Compliance Monitoring Report

e-copy w/enclosure:

april.webb@ky.gov, KDEP/Frankfort brian.begley@ky.gov, KDEP/Frankfort dave.dollins@lex.doe.gov, PPPO/PAD ffscorrespondence@ffspaducah.com, FFS/Kevil gary.hines@ffspaducah.com, FFS/Kevil gaye.brewer@ky.gov, KDEP/PAD jennifer.blewett@ffspaducah.com, FFS/Kevil jennifer.watson@ffspaducah.com, FFS/Kevil jennifer.woodard@lex.doe.gov, PPPO/PAD jessica.burnett@ffspaducah.com, FFS/Kevil joseph.towarnicky@ffspaducah.com, FFS/Kevil ken.davis@ffspaducah.com, FFS/Kevil leo.williamson@ky.gov, KDEP/Frankfort lisa.crabtree@ffspaducah.com, FFS/Kevil mark.duff@ffspaducah.com, FFS/Kevil michael.gerle@ffspaducah.com, FFS/Kevil mike.guffey@ky.gov, KDEP/Frankfort myrna.redfield@ffspaducah.com, FFS/Kevil reinhard.knerr@lex.doe.gov, PPPO/PAD stephaniec.brock@ky.gov, KYRHB/Frankfort

C-746-S&T Landfills
Third Quarter Calendar Year 2015
(July-September)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

FLUOR.

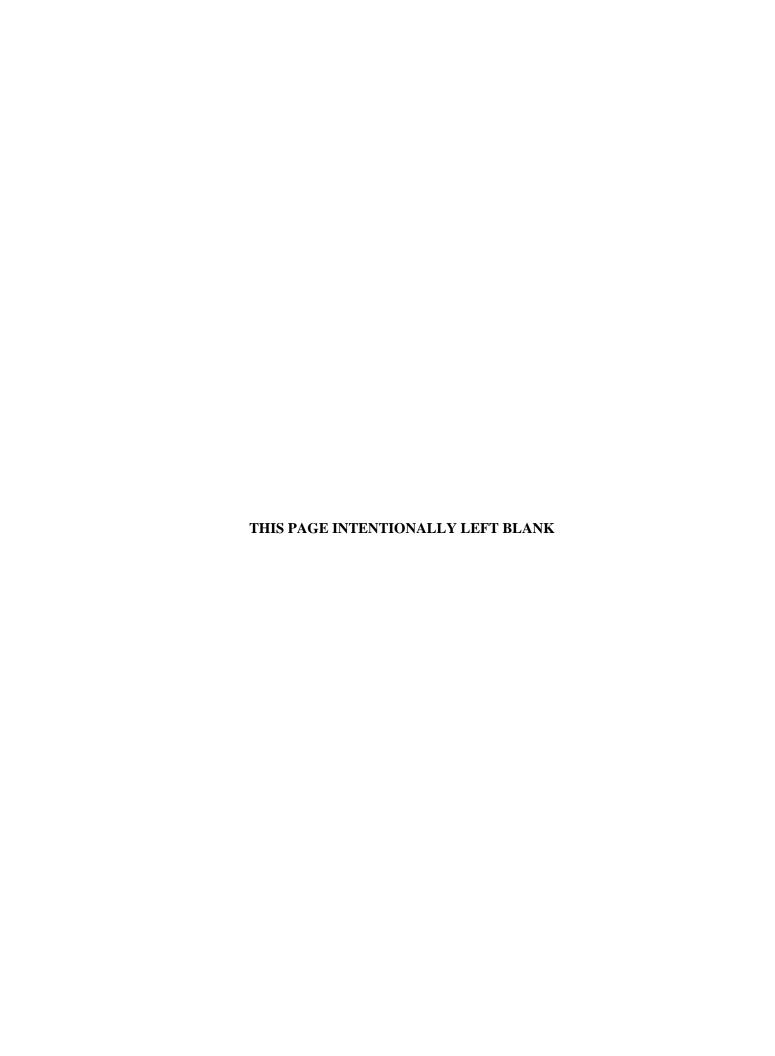
This document is approved for public release per review by:

FPDP Classification Support

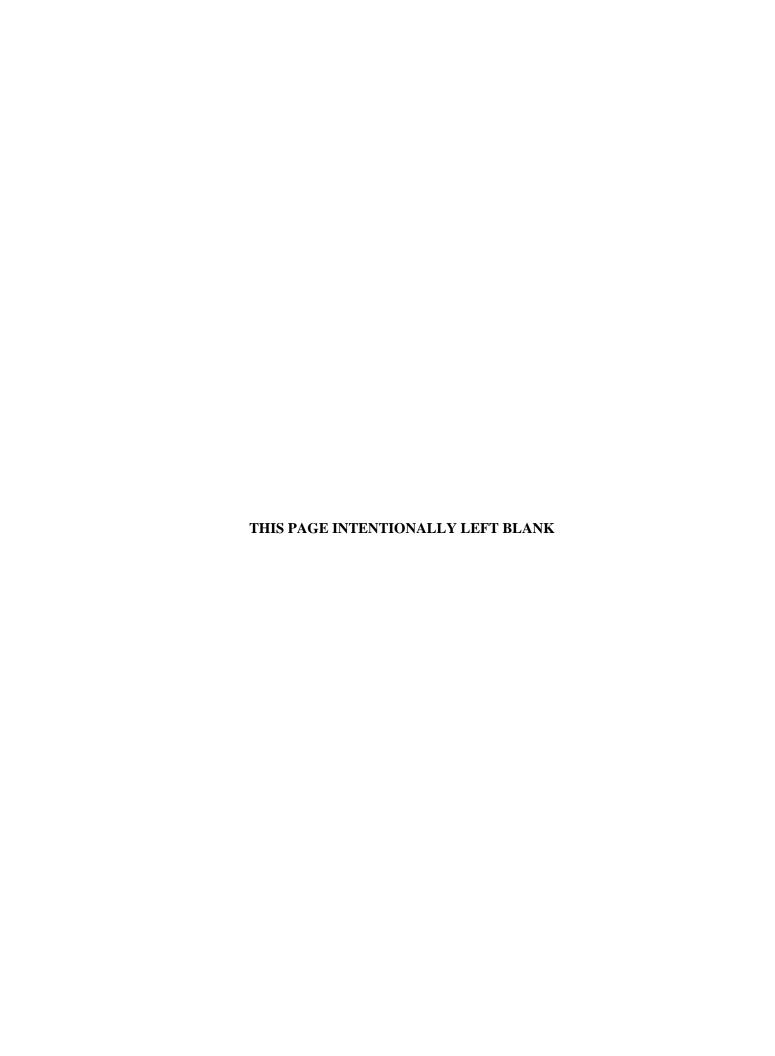
Date

C-746-S&T Landfills
Third Quarter Calendar Year 2015
(July–September)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—November 2015


U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FLUOR FEDERAL SERVICES, INC.,
Paducah Deactivation Project
managing the
Deactivation Project at the
Paducah Gaseous Diffusion Plant
under Task Order DE-DT0007774


CONTENTS

FI	GURES		v
TA	ABLES		v
ΑC	CRONYMS		vii
1.	INTRODU	CTION	1
		KGROUND	
	1.2 MON	ITORING PERIOD ACTIVITIES	
	1.2.1	Groundwater Monitoring	
	1.2.2	Methane Monitoring	4
	1.2.3 1.3 KEY	Surface Water Monitoring	4 4
2			
2.		ALUATION/STATISTICAL SYNOPSIS TISTICAL ANALYSIS OF GROUNDWATER DATA	
	2.1 STAT 2.1.1		
	2.1.1	Upper Continental Recharge System	
	2.1.2	Lower Regional Gravel Aquifer	
		A VERIFICATION AND VALIDATION	
3.	PROFESSI	ONAL GEOLOGIST AUTHORIZATION	15
4.	REFEREN	CES	17
AF	PPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑF	PPENDIX B:	FACILITY INFORMATION SHEET	B-1
ΑF	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑF	PPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑF	PPENDIX F:	NOTIFICATIONS	F-1
ΑF	PPENDIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑF	PPENDIX H:	METHANE MONITORING DATA	H-1
ΑF	PPENDIX I	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	T-1

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	3
2.	C-746-S&T Landfills Surface Water Monitoring Locations	5
	TABLES	
1.	Summary of MCL Exceedances	4
2.	Exceedances of Statistically Derived Historical Background Concentrations	6
	Exceedances of Current Background UTL in Downgradient Wells	
	C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	8
5.	Exceedances of Current Background UTL in UCRS Wells	9
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

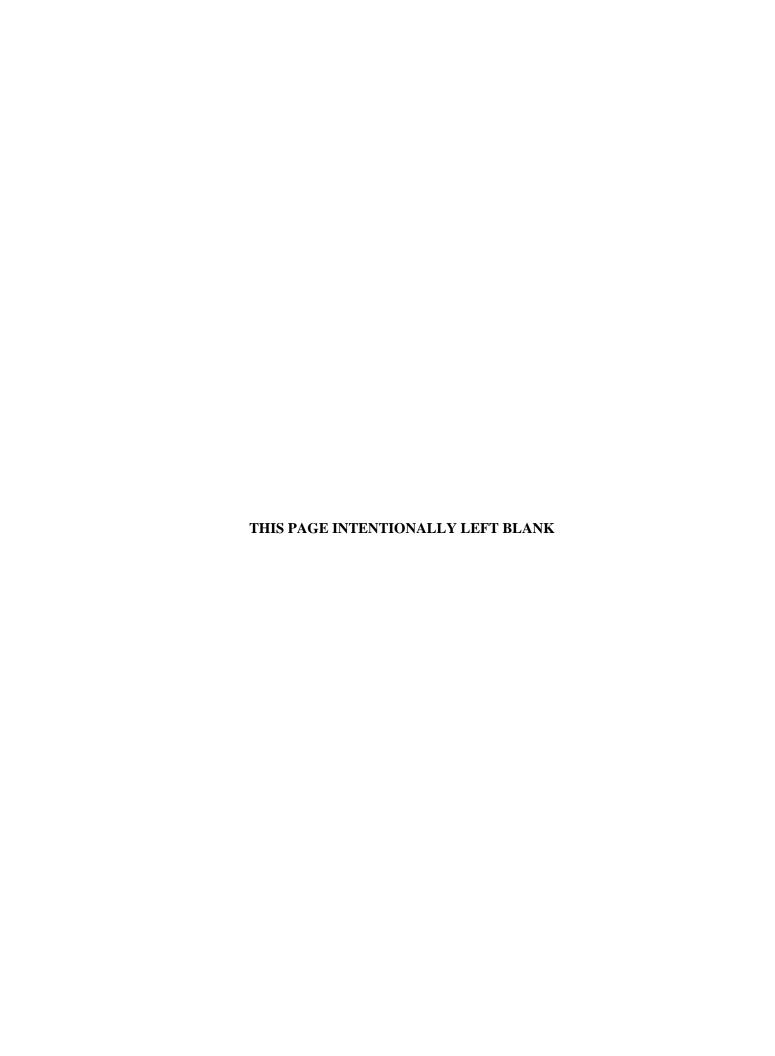
CFR Code of Federal Regulations

CY calendar year

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level


MW monitoring well

PGDP Paducah Gaseous Diffusion Plant

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills Third Quarter Calendar Year 2015 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 for the C-746-S Residential Landfill and for the C-746-T Inert Landfill. This report was written in accordance with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014), Technical Application Attachment 25 of the Solid Waste Landfill permit.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year (CY) 2002. Methane monitoring was conducted in accordance with 401 KAR 48:090 § 4 and the approved Explosive Gas Monitoring Program (KEEC 2011), Technical Application Attachment 12 of the Solid Waste Landfill permit. Methane monitoring results are documented on the approved C-746-S&T Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 4. Surface water was monitored, as specified in 401 KAR 48:300 § 2 and the approved Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and KY-073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), Technical Application Attachment 24 of the Solid Waste Landfill permit. Surface water results are provided in Appendix I.

1.1 BACKGROUND

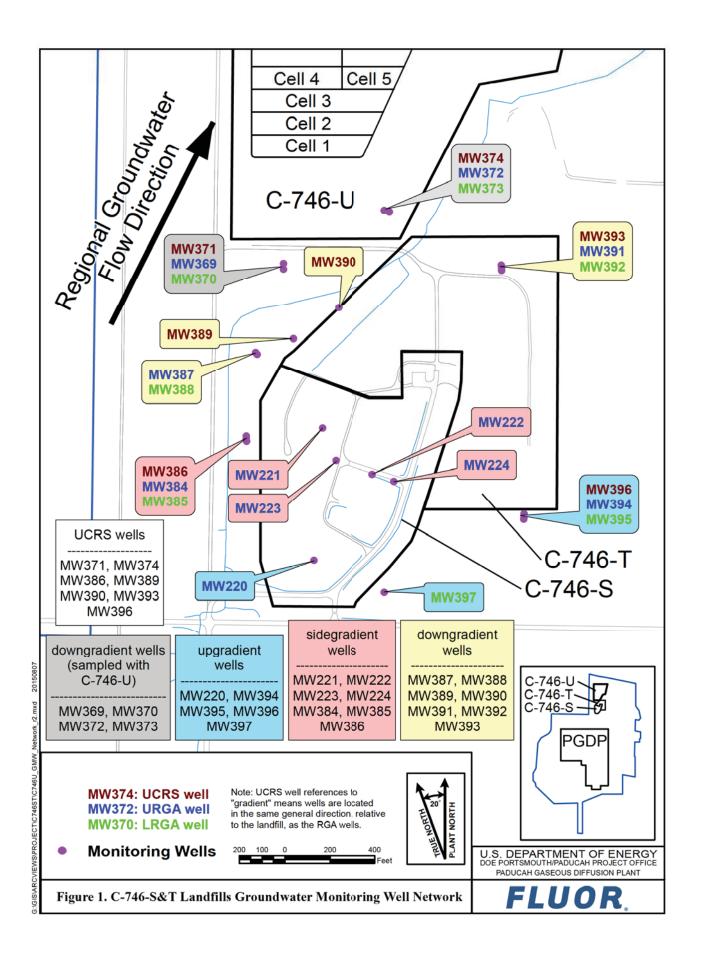
The C-746-S&T Landfills are closed solid waste landfills located north of the Paducah Gaseous Diffusion Plant (PGDP) and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for PGDP. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from PGDP. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for this location.


Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for the UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the RGA wells located in the same direction (relative to the landfill) as nearby UCRS wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within third quarter 2015 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled. Polychlorinated biphenyls, which are evaluated annually as required by Special Condition 1, also were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water measurements were collected on August 4, 2015; in MWs of the C-746-S&T Landfills (see Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is northeastward, toward the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in August was 3.09×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 1.42×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.24 to 0.90 ft/day (see Table E.3).

1.2.2 Methane Monitoring

In accordance with the Explosive Gas Monitoring Program (KEEC 2011), landfill operations staff monitored for the occurrence of methane in 1 on-site building location, 4 locations along the landfill

boundary, and 27 gas-passive vents located in Cells 1, 2, and 3 of the C-746-S Landfill on September 4, 2015. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the approved C-746-S&T Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was sampled in accordance with 401 *KAR* 48:300 § 2 and the approved Surface Water Monitoring Plan (PRS 2008). Sampling was performed at two of the three locations monitored for the C-746-S&T Landfills. The landfills have an upstream location, L135; a downstream location, L154; and a location capturing runoff from the landfill surface, L136. Location L136 could not be sampled due to insufficient flow during the reporting period. A map of the surface water monitoring locations is presented in Figure 2. The parameters identified in the Solid Waste Landfill Permit were analyzed for the two locations sampled for report only format, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Parameters that had concentrations that exceeded the respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were further evaluated against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL during the third quarter 2015, as well as parameters that exceeded their MCL (beta activity and trichloroethene) and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

UCRSURGALRGANoneMW220: TrichloroetheneMW373:TrichloroetheneMW372: TrichloroetheneMW385: Beta activityMW384: Beta activityMW388: Beta activityMW387: Beta activityMW392: TrichloroetheneMW391: Trichloroethene

Table 1. Summary of MCL Exceedances

The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

There was one new MCL exceedances for this quarter, trichloroethene, in URGA well MW220. Because the trichloroethene concentration did not represent typical conditions of the MW, a second sample for volatiles was collected from MW220 during the reporting period. The follow-up sample indicated no trichlorethene was present in the sample at the laboratory's reporting limit (i.e., result was nondetect). This sample represents typical conditions of MW220. MW220 is an upgradient well and therefore is not attributable to the C-746-S&T Landfills.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW372, MW373, MW391, and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfill.

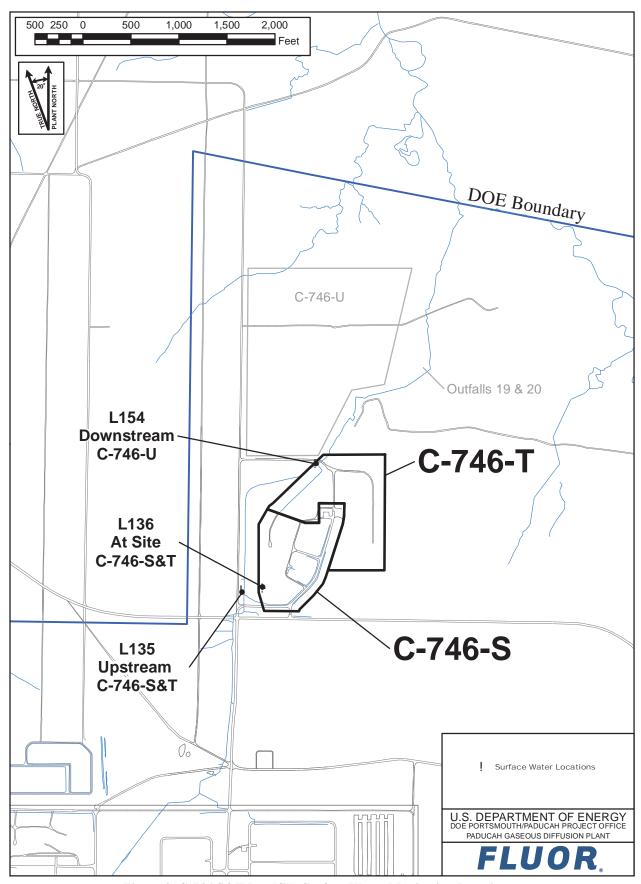


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Oxidation-reduction	MW220: Chemical oxygen demand,	MW370: Oxidation-reduction
potential, thorium-230	oxidation-reduction potential,	potential, sulfate, technetium-99
	sulfate, thorium-230	
MW390: Oxidation-reduction	MW221: Oxidation-reduction	MW373: Calcium, conductivity,
potential, radium-226,	potential	dissolved solids, magnesium,
technetium-99		oxidation-reduction potential,
		sulfate, technetium-99
MW393: Oxidation-reduction	MW222: Oxidation-reduction	MW385: Beta activity, ^a
potential	potential	oxidation-reduction potential,
		sulfate, technetium-99
MW396: Oxidation-reduction	MW223: Oxidation-reduction	MW388: Beta activity, ^a
potential	potential, sulfate	oxidation-reduction potential,
		sulfate, technetium-99
	MW224: Oxidation-reduction	MW392: Oxidation-reduction
	potential, thorium-230	potential
	MW369: Oxidation-reduction	MW395: Oxidation-reduction
	potential, technetium-99	potential
	MW372: Calcium, conductivity,	MW397: Oxidation-reduction
	dissolved solids, magnesium,	potential
	sodium, sulfate, technetium-99	
	MW384: Beta activity, a oxidation-	
	reduction potential, sodium, sulfate,	
	technetium-99, thorium-230	
	MW387: Beta activity, a oxidation-	
	reduction potential, sulfate,	
	technetium-99, thorium-230 MW391: Oxidation-reduction	
	potential, sulfate	
	MW394: Oxidation-reduction	
+6 +1 +1 +1000	potential PS gradient designations refer to locations of wells in	

^{*}Gradients in the UCRS are downward. UCRS gradient designations refer to locations of wells in the same direction, relative to the landfill as the

Table 3. Exceedances of Current Background UTL in **Downgradient Wells**

URGA	LRGA
MW372: Calcium, conductivity, magnesium, sodium, sulfate	MW370: Technetium-99
MW384: Beta activity, sodium, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate, technetium-99
MW387: Beta activity, sulfate, technetium-99	MW385: Beta activity, sulfate, technetium-99
MW391: Sulfate	MW388: Beta activity, sulfate, technetium-99

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393

Upgradient wells: MW220, MW394, MW395, MW396, bMW397

^a Beta activity has an MCL; the exceedances of the MCL were subjected to a comparison against the statistically derived historical background.

The MCL exceedances for beta activity in MW387 and MW388 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, they preliminarily were considered to be Type 2 exceedances because the source(s) of these exceedances is not determined. To further evaluate these preliminary Type 2 exceedances, these parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. These preliminary Type 2 exceedances in downgradient wells did not have an increasing trend and should be considered to be Type 1 exceedances (not attributable to the landfill).

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 8; and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as upgradient, to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance. Those constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and preliminarily are considered to be Type 2 exceedances per the approved Groundwater Monitoring Plan. To further evaluate these preliminary Type 2 exceedances, these parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All but one of these preliminary Type 2 exceedances in downgradient wells did not have an increasing trend and are considered to be Type 1 exceedances (not attributable to the landfill). Technetium-99 in MW388 shows an increasing trend during this reporting period after application of the Mann-Kendall statistical test; however, the source of the trend is unknown. Given the general groundwater flow direction is northeast at the landfill, MW388 is generally crossgradient from the general groundwater flow direction; therefore, the increasing trend does not appear to be landfill related. Results of this parameter from this well will be evaluated with the next quarter's results to identify if there is a persistent trend.

In accordance with Permit Condition GSTR0003, Variance 2, of the Solid Waste Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the Permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

Table 4. C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Var(S)4	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
	MW370	Technetium-99	8	0.05	0.402	3.000	64.33	1.008	0.109	No Trend
		Calcium	8	0.05	0.360	4.000	0.000	0.609	0.143	No Trend
		Conductivity	8	0.05	0.199	-8.000	0.000	-5.482	-0.286	No Trend
	MW372	Magnesium	8	0.05	0.360	4.000	0.000	0.600	0.143	No Trend
		Sodium	8	0.05	0.138	-10.00	0.000	-0.725	-0.357	No Trend
		Sulfate	8	0.05	0.089	-12.00	0.000	-6.667	-0.429	No Trend
		Calcium	8	0.05	0.227	-7.000	64.33	-0.599	-0.255	No Trend
		Conductivity	8	0.05	0.007	-20.00	0.000	-15.73	-0.714	Negative Trend
	MW373	Dissolved Solids	8	0.05	0.003	-22.00	0.000	-16.83	-0.786	Negative Trend
		Magnesium	8	0.05	0.402	3.000	64.33	0.110	0.109	No Trend
		Sulfate	8	0.05	0.007	-20.00	0.000	-7.375	-0.714	Negative Trend
		Technetium-99	8	0.05	0.138	-10.00	0.000	-2.200	-0.357	No Trend
	MW387	Beta Activity	8	0.05	0.089	12.00	0.000	6.310	0.429	No Trend
		Sulfate	8	0.05	0.402	-3.000	64.33	-0.725	-0.109	No Trend
		Technetium-99	8	0.05	0.067	13.00	64.33	14.50	0.473	No Trend
		Beta Activity	8	0.05	0.054	14.00	0.000	8.225	0.500	No Trend
	MW388	Sulfate	8	0.05	0.067	13.00	64.33	0.525	0.473	No Trend
		Technetium-99	8	0.05	0.040	15.00	64.33	9.941	0.546	Positive Trend
	MW391	Sulfate	8	0.05	0.089	12.00	0.000	2.292	0.429	No Trend

Footnotes:

Note: Statistics generated using XLSTAT Version 2015.2.01.16684

¹An alpha of 0.05 represents a 95% confidence interval.

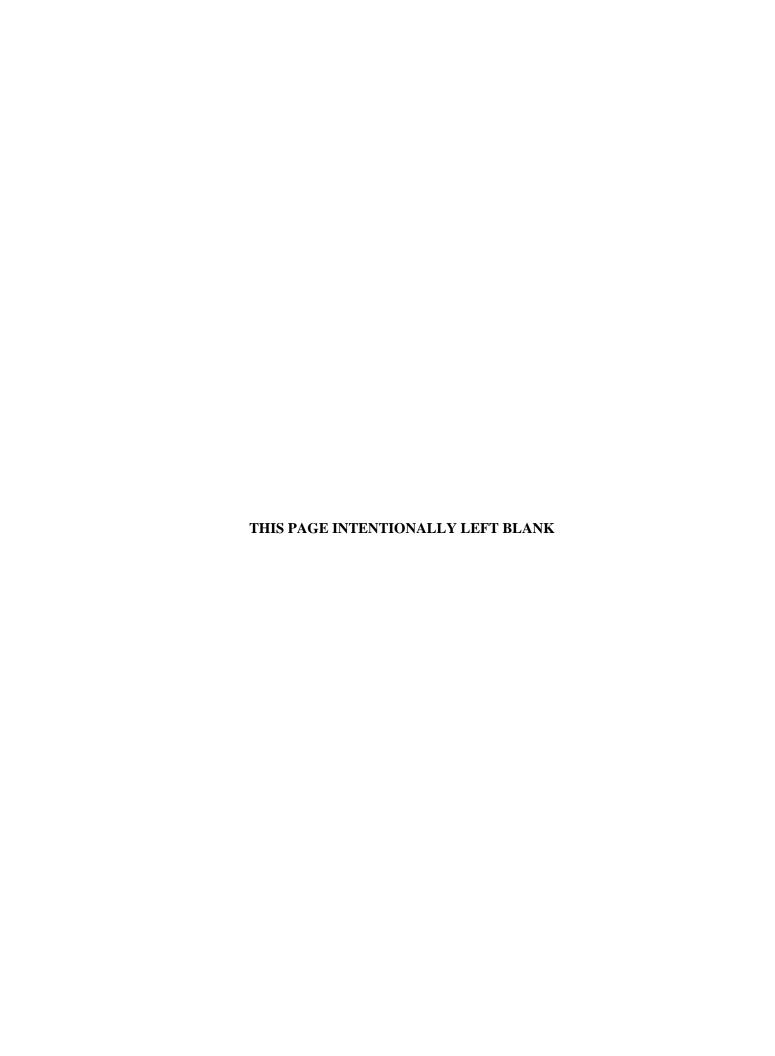
²The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

⁴VAR(S) represents the varience of S in the sample set and takes into account statistical ties.

⁵The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all $(x_i, x_k)/(j-k)$, where x is a data point and j and k are values of time.

⁶Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is postive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend.


 $^{^{7}}$ The Mann-Kendall decision operates on two hypothesis, the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend. Two different tests were run to test for positive or negative trends. This table reports the test with the lowest p-value.

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified a UCRS well with a technetium-99 value that exceeds both the historical and current background. Because this well is not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T sources and is considered a Type 1 exceedance (Table 5).

Table 5. Exceedances of Current Background UTL in UCRS Wells

UCRS
MW390: Technetium-99

All MCL and UTL exceedances, except for one parameter, reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills. While the source of an increasing trend for technetium-99 in MW388 is unknown, the trend does not appear to be landfill-related based on the location of the well being crossgradient of the general groundwater flow direction (i.e., northeast), while other crossgradient/downgradient wells do not have similar increases that would be expected if the landfills were the source of the exceedances.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the third quarter 2015 groundwater data collected from the C746-S&T Landfills MWs were performed in accordance with the *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).* The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the respective Kentucky solid waste facility MCL found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance.

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389***	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396**	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	, 10
	MW387	
	MW391	
	MW394 (upgradient)	

^{*}A map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the UCRS. During the third quarter, oxidation-reduction potential, radium-226, technetium-99, and thorium-230 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Technetium-99 exceeded the current background UTL and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 31 parameters, including those with MCLs, required statistical analysis in the URGA. During the third quarter, beta activity, calcium, chemical oxygen demand, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, technetium-99, and thorium-230 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, chemical oxygen demand, conductivity, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL and are included in Table 4.

^{**}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^{***}MW389 had insufficient water to permit a water level measurement and a water sample for laboratory analysis.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 26 parameters, including those with MCLs, required statistical analysis in the LRGA. During the third quarter, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99 exceeded the current background UTL and are included in Table 4.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices, and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples—such as matrix spikes, matrix spike duplicates, and method blanks—are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

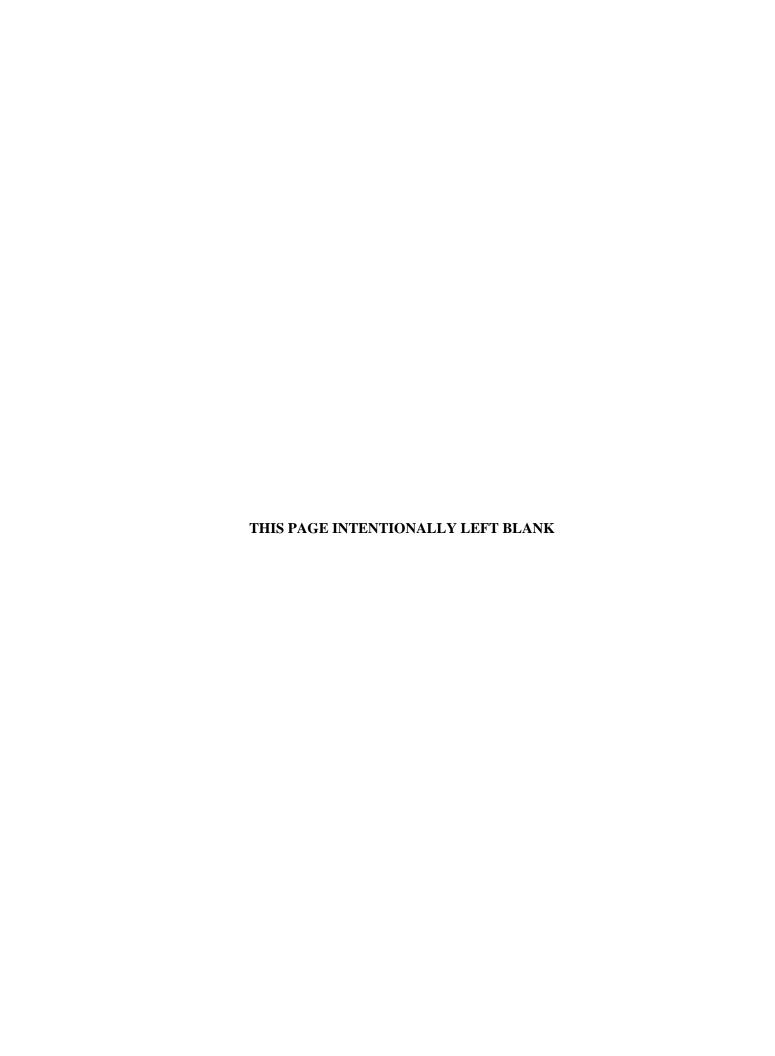
C-746-S&T Landfills

Third Quarter Calendar Year 2015 (July-September)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

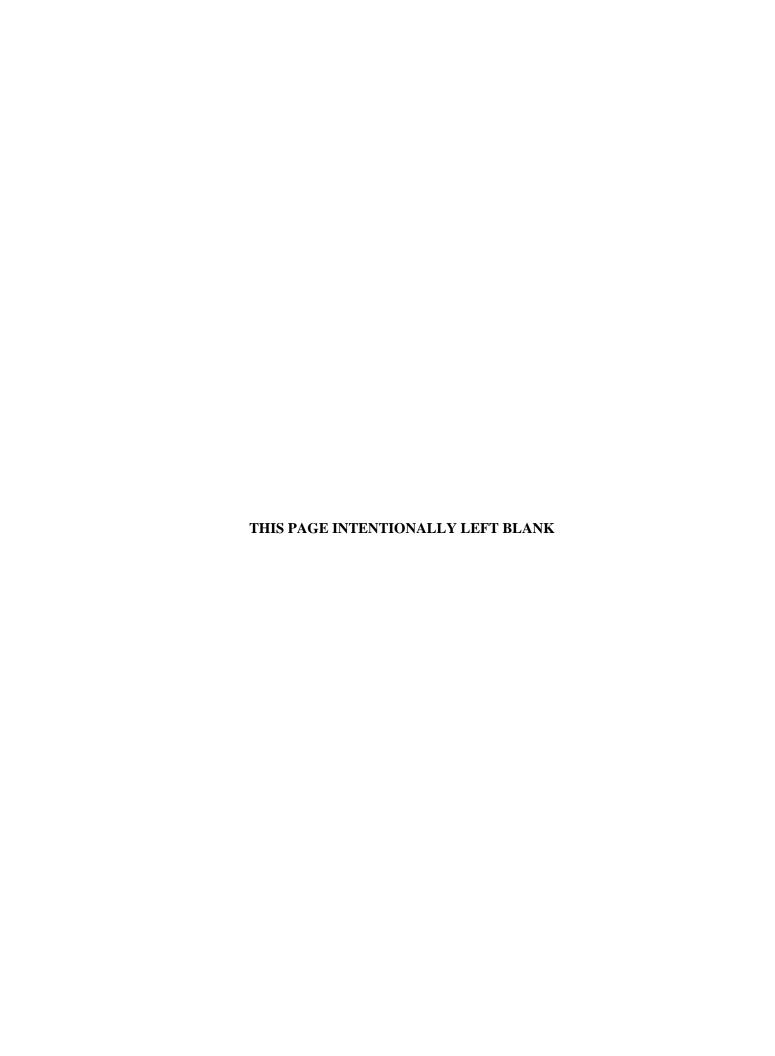
Paducah, Kentucky (PAD-ENM-0094/V3)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.



Kenneth R. Davis

PG1194


<u>November 20, 2015</u> Date

15

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and KY-073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Paducah Remediation Services, LLC, Kevil, KY, June.

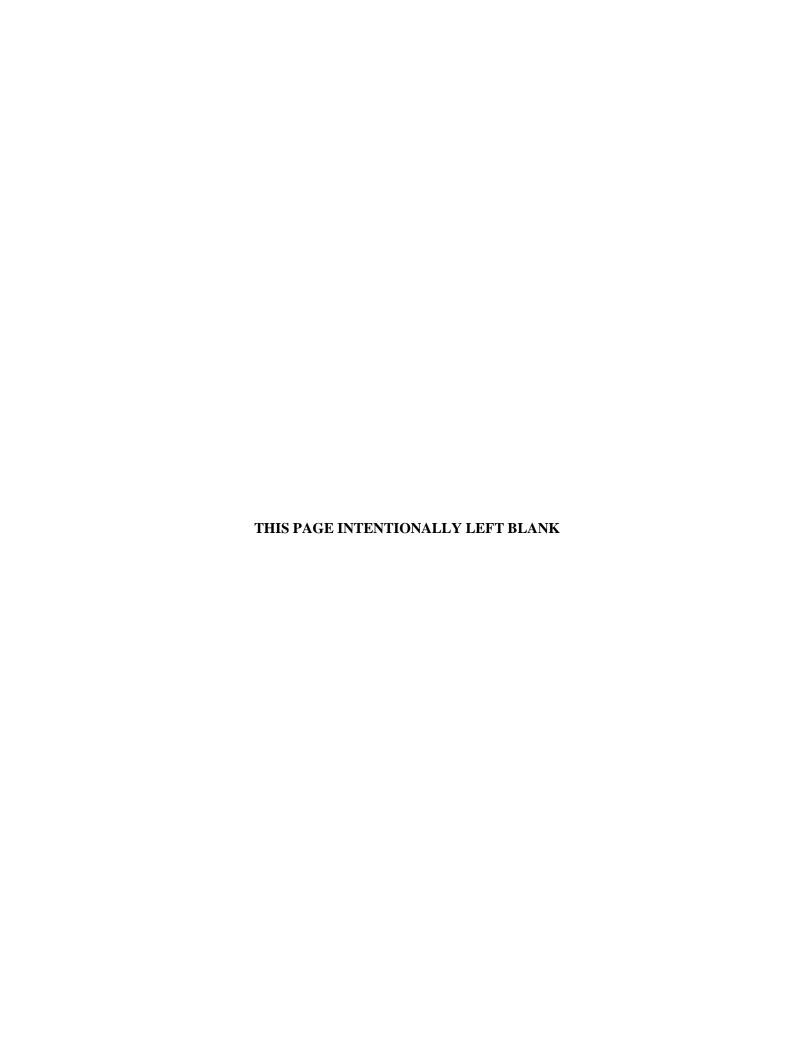
APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

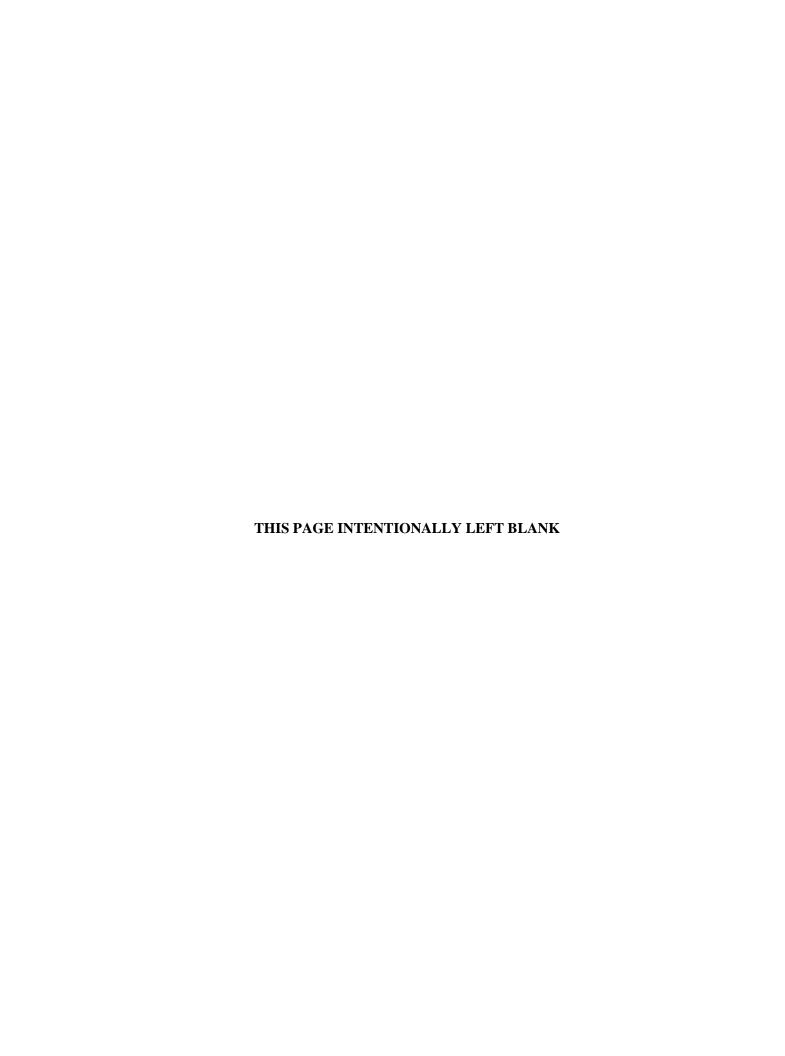
GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. E	OOE-Pad	lucah Gase	ous	Activity:	C-74	6-S&T Landfills	
	(A:	s officially	shown on DV	VM I	Permit Face)			
Permit No:	SW07300014, SW07300015, SW07300045			Fino	ds/Unit No:	Quarter & Year		rd Qtr. CY 2015
Please check the	following	as appli	cable:					
Character	rization	X	Quarterly		Semiannual	Annu	al	Assessment
Please check app	licable su	bmittal(s	s): <u> </u>	<u> </u>	Groundwater	X	Surfac	e Water
					Leachate	X	Metha	ne Monitoring
the lab report is No pages. I certify under pen accordance with a s Based on my inquir- pest of my knowled;	OT considerally of law system design of the perge and believed.	that the gned to a rson or pe	document issure that questions direct courate, and	and uali ly re	analyses, direct compar- tions for completing the all attachments were p fied personnel properly sponsible for gathering it uplete. I am aware that the nument for such violations	form are attached. orepared under my gather and evaluate information, the infere are significant	Do not s direction the information	n or supervision in ormation submitted.
Mark. J. Duff E Fluor Federal Se	1		nagement	: Di	rector	_//	-3E	9-15 Date
Jennifer Woodar U.S. Department	•		dara	L		_11/	30 _/	/15 Date



APPENDIX B FACILITY INFORMATION SHEET



FACILITY INFORMATION SHEET

Sampling Date:	Groundwater: July 2015 Methane: September 2015 Surface Water: July 2015	County: McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045
Facility Name:	U.S. DOE, Paducah Gaseous Diffusion	n Plant		
•	(As officially shown on	DWM Permit Face)		
Site Address:	5501 Hobbs Road	Kevil, Kentucky		42053
	Street	City/State		Zip
Phone No:	(270) 441-6800 Latitude:	N 37° 07' 37.70"	Longitude:	W 88° 47' 55.41"
	OWN	IER INFORMATION		
Facility Owner:	U.S. DOE, W. E. Murphie, Manager		Phone No:	(859) 219-4001
Contact Person:	Mark J. Duff		_	(270) 441-6127
Contact Person Ti	tle: Director, Environmental Manag	ement, Fluor Federal Services, Inc.		
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053
, and the second	Street	City/State		Zip
	(IF OTHER THA)	PLING PERSONNEL N LANDFILL OR LABORATORY)		
Company:	LATA Environmental Services of Ke	entucky, LLC		
Contact Person:	Jeff Boulton		Phone No:	(270) 441-5444
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky		42053
	Street	City/State		Zip
	LABO	RATORY RECORD #1		
Laboratory:	GEL Laboratories, LLC	Lab ID No:	KY90129	
Contact Person:	Valerie Davis		Phone No:	(843) 769-7391
Mailing Address:	2040 Savage Road	Charleston, South Carolina		29407
	Street	City/State		Zip
	LABO	RATORY RECORD #2		
Laboratory:		Lab ID No:		
Contact Person:			Phone No:	
Mailing Address:				
Maining Address.	Street	City/State		Zip
	LABO	RATORY RECORD #3		
Laboratory:		Lab ID No:		
Contact Person:		 -	Phone No:	
Mailing Address:				
	Street	City/State	· 	Zip

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-52	202	8000-52	242	8000-524	43
Facility's Loc	cal Well or Spring Number (e.g., 1	∕w-1	., MW-2, etc	:.)	220		221		222		223	
Sample Sequence	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/15/2015 12	2:02	7/15/2015	07:54	7/15/2015	09:34	7/15/2015 (08:48
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	eility Sample ID Number (if applicable)					-15	MW221S0	G4-15	MW222S0	G4-15	MW223SG	4-15
Laboratory Sar	boratory Sample ID Number (if applicable)					1	377295	003	377295	005	3772950	07
Date of Analys	ate of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis				7/20/2015		7/20/20	15	7/20/20	15	7/20/201	5
Gradient with	radient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)			IOWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.234		0.472		0.469		0.44	
16887-00-6	Chloride(s)	т	mg/L	9056	22.2		34		33.7		33.9	
16984-48-8	Fluoride	Т	mg/L	9056	0.21		0.19		0.262		0.197	
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.24		1.21		0.987		0.856	
14808-79-8	Sulfate	Т	mg/L	9056	18.6		13.9		12.1		19.9	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.91		29.86		29.89		29.86	
S0145	Specific Conductance	т	μ MH 0/cm	Field	339		334		359		404	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	2	8000-5243	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1,	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	328.25		328.27		328.23		328.24	
N238	Dissolved Oxygen	т	mg/L	Field	4.8		3.6		4.07		2.11	
s0266	Total Dissolved Solids	т	mg/L	160.1	224		213		210		224	
s0296	рн	Т	Units	Field	6.27		6.27		6.21		6.18	
NS215	Eh	т	mV	Field	590		701		638		649	
s0907	Temperature	Т	°C	Field	20.06		18.33		18.44		18.17	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		0.0372	J	<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.2		0.212		0.285		0.253	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.00577	J	0.0117	J	0.0112	J	0.00755	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	21.8		20.6		18.5		21.6	
7440-47-3	Chromium	т	mg/L	6020	0.00759	J	0.0388		<0.01		0.0158	
7440-48-4	Cobalt	т	mg/L	6020	0.00012	J	0.0016		0.00032	J	0.00214	
7440-50-8	Copper	Т	mg/L	6020	0.00075	J	0.00098	J	0.00039	J	0.00108	
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.141		0.0791	J	<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	9.16		9.07		8.39		9.24	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.00822		0.0155		0.0375	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8000-52	01	8000-52	:02	8000-52	42	8000-52	43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	0.00172		0.00456		0.00031	J	0.00442	
7440-02-0	Nickel	Т	mg/L	6020	0.0419		0.124		0.068		0.666	
7440-09-7	Potassium	т	mg/L	6020	6.88		1.28		0.482		2.07	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	38.3	*	43	*	41.6	*	43.2	*
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	0.00388	BJ	0.00487	BJ	0.00403	BJ	0.00401	BJ
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520)2	8000-52	242	8000-52	243
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00762		<0.001		<0.001		0.00062	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	12	8000-524	43
Facility's Lo	cal Well or Spring Number (e.g., 1	w-1	L, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000206		<0.0000202		<0.0000204		<0.0000205	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5201		8000-5202	2	8000-524	2	8000-524	13
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	0.937	*	2.39	*	-2.62	*	-1.9	*
12587-47-2	Gross Beta	Т	pCi/L	9310	9.31	*	-5.09	*	10.9	*	-4.37	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.709	*	0.534	*	0.771	*	0.851	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	1.03	*	-1.9	*	-1.16	*	-0.917	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	14.8	*	12.3	*	-0.133	*	-2.14	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.729	*	0.171	*	0.322	*	0.373	*
10028-17-8	Tritium	Т	pCi/L	906.0	177	*	134	*	145	*	153	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	120		<20		<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.89	J	0.812	J	0.715	J	0.781	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00468	J	0.00372	J	0.00558	J	0.00348	J

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	318	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g., 1	MW−1	, MW-2, etc	:.)	224		369		370		372	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/15/2015 10	0:10	7/14/2015	09:06	7/14/2015	09:52	7/13/2015 (09:35
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW224SG4	-15	MW369U	G4-15	MW370U0	G4-15	MW372UG	4-15
Laboratory San	boratory Sample ID Number (if applicable)					9	377182	009	377182	011	3770620	03
Date of Analys	ate of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis				7/20/2015		7/17/20	15	7/17/20	15	7/16/201	5
Gradient with	radient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)			IOWN)	SIDE		DOW	N	DOW	N	DOWN	I
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.504		0.43		0.477		0.582	
16887-00-6	Chloride(s)	Т	mg/L	9056	37.5		35.2		39.7		44	
16984-48-8	Fluoride	т	mg/L	9056	0.249		0.197		0.154		0.17	
s0595	Nitrate & Nitrite	т	mg/L	9056	1		0.444		1.22		0.108	J
14808-79-8	Sulfate	т	mg/L	9056	16.6		8.09		19		135	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.89		29.75		29.75		29.89	
s0145	Specific Conductance	Т	μ MH0/cm	Field	445		390		424		758	

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

	GWA NUMBER ¹ , Facility Well/Spring Number						0004.400		2004 4046		1 0004 4000	
AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., M	V-1,	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	328.23		327.92		328.9		327.75	
N238	Dissolved Oxygen	Т	mg/L	Field	3.91		3.28		3.63		0.76	
S0266	Total Dissolved Solids	т	mg/L	160.1	243		226		230		441	
s0296	рн	т	Units	Field	6.19		6.12		6.05		6.13	
NS215	Eh	т	mV	Field	623		410		388		220	
s0907	Temperature	т	°C	Field	19.61		20.89		20.5		19.72	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0723		<0.05		0.0241	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00179	J	0.0021	J
7440-39-3	Barium	Т	mg/L	6020	0.22		0.365		0.184		0.0491	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0208		0.0136	J	0.0329		1.35	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	23.2		17.8		27.4		62.6	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00021	J	0.00617		0.00047	J	0.00044	J
7440-50-8	Copper	Т	mg/L	6020	0.0005	J	0.00133		0.00057	J	<0.001	
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.146		<0.1		0.384	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	10.2		7.73		12.4		24.8	
7439-96-5	Manganese	Т	mg/L	6020	0.00567		0.0129		0.00151	J	0.0161	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	t ¹ , Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	,08
Facility's I	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	0.00063		<0.0005		<0.0005		0.00046	J
7440-02-0	Nickel	т	mg/L	6020	0.00374		0.0114		0.00101	J	0.00121	J
7440-09-7	Potassium	т	mg/L	6020	0.874		0.608		2.44		2.55	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	57.9	*	57.7		44		63.3	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	0.00392	BJ	<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8000-524	4	8004-482	20	8004-4	818	8004-4	808
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	224		369		370)	372	2
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	<0.001		0.00081	J	0.00083	J	0.0082	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None
For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number			8000-5244	4	8004-4820)	8004-48	18	8004-480	08
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2,	etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	T mg/L	8260	<0.005		0.00122	J	0.0012	J	<0.005	
108-10-1	Methyl isobutyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	T mg/L	8011	<0.0000202		<0.0000189		<0.0000191		<0.0000189	
78-87-5	Propane, 1,2-Dichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	T ug/L	8082		*	<0.0971		<0.0952		0.0523	J
12674-11-2	PCB-1016	T ug/L	8082		*	<0.0971		<0.0952		<0.0952	
11104-28-2	PCB-1221	T ug/L	8082		*	<0.0971		<0.0952		<0.0952	
11141-16-5	PCB-1232	T ug/L	8082		*	<0.0971		<0.0952		<0.0952	
53469-21-9	PCB-1242	T ug/L	8082		*	<0.0971		<0.0952		0.0523	J
12672-29-6	PCB-1248	T ug/L	8082		*	<0.0971		<0.0952		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244	ļ	8004-4820)	8004-481	8	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0971		<0.0952		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0971		<0.0952		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0971		<0.0952		<0.0952	
12587-46-1	Gross Alpha	т	pCi/L	9310	9.86	*	1.35	*	2.39	*	-0.0562	*
12587-47-2	Gross Beta	Т	pCi/L	9310	0.754	*	21.1	*	36.1	*	13.9	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.521	*	0.726	*	1.35	*	0.422	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.69	*	0.424	*	0.603	*	0.889	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	9.12	*	36.7	*	60.3	*	37	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.684	*	0.604	*	0.623	*	0.563	*
10028-17-8	Tritium	Т	pCi/L	906.0	167	*	-123	*	28.9	*	49.5	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	1	J	0.978	J	0.68	J	1.25	J
s0586	Total Organic Halides	т	mg/L	9020	<0.01		0.0143		<0.01		0.00716	J

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-48	309	8004-48	310	8004-480	04
Facility's Loc	cal Well or Spring Number (e.g., 1	/IW-1	, MW-2, etc	١.)	373		384		385		386	
Sample Sequence	ce #				1		1		1		1	
If sample is a F	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/13/2015 12	2:43	7/16/2015	07:27	7/16/2015	07:54	7/16/2015 0)8:25
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	Le ID Number (if applicable)				MW373UG4	-15	MW384S0	G4-15	MW385S0	G4-15	MW386SG	4-15
Laboratory Sam	mple ID Number (if applicable)		37706200	5	377439	001	377439	003	3774390	05		
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ganics Anal	ysis	7/16/2015	5	7/21/20	15	7/21/20	15	7/21/201	5	
Gradient with	respect to Monitored Unit (UP, Do	, NWC	, SIDE, UNKN	IOWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.607		0.421		0.279		0.156	J
16887-00-6	Chloride(s)	Т	mg/L	9056	44		41.6		34.2		16.4	
16984-48-8	Fluoride	т	mg/L	9056	0.175		0.234		0.146		0.611	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.928		1.3		1.15		<0.1	
14808-79-8	Sulfate	Т	mg/L	9056	149		20.6		23.7		44.4	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.85		29.95		29.95		29.95	
s0145	Specific Conductance	т	μ MHO/cm	Field	813		474		421		553	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

0110	ONDMATER SAMPLE	77.47.77.7	PIP -	(COIIC	• /							
AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	cal Well or Spring Number (e.g., M	N-1, 1	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.76		327.78		327.71		347.95	
N238	Dissolved Oxygen	т	mg/L	Field	2		4.31		2.6		2.29	
S0266	Total Dissolved Solids	т	mg/L	160.1	500		240		226		381	
s0296	рн	т	Units	Field	6.11		6.39		6.25		6.39	
NS215	Eh	т	mV	Field	468		728		637		627	
s0907	Temperature	т	°C	Field	20.17		18.67		18.06		18.5	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		0.0262	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		0.00184	J	<0.005		0.00189	J
7440-39-3	Barium	Т	mg/L	6020	0.0223		0.114		0.187		0.163	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	1.62		0.0108	J	0.0101	J	<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	71.4		27		22.7		23.4	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		0.00549	J	<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		<0.001		0.00129	
7440-50-8	Copper	Т	mg/L	6020	<0.001		0.00043	J	0.00059	J	0.00086	J
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.0845	J	0.0399	J	0.0579	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	26.2		11.1		8.66		10.3	
7439-96-5	Manganese	Т	mg/L	6020	0.00222	J	0.00914		0.00133	J	0.588	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-47	92	8004-48	809	8004-48	10	8004-48	04
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.00035	J	<0.0005		0.00057	
7440-02-0	Nickel	т	mg/L	6020	0.00142	J	0.00128	J	0.00073	J	0.00178	J
7440-09-7	Potassium	т	mg/L	6020	2.51		1.15		1.71		0.324	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00235	J	<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	57.1		58.7		46.5		104	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01		0.0038	J	<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-479	2	8004-480	09	8004-4	810	8004-4	804
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	373		384		385	i	386	;
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	0.00835		0.00051	J	0.00053	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-4809	9	8004-48	10	8004-48	804
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.000019		<0.0000202		<0.0000205		<0.00002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.5			*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.5			*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082	<0.5			*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082	<0.5			*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082	<0.5			*		*		*
12672-29-6	PCB-1248	т	ug/L	8082	<0.5			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-4809)	8004-481	0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.5			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.5			*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.5			*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-2.18	*	6.68	*	3.38	*	-1.69	*
12587-47-2	Gross Beta	Т	pCi/L	9310	21.8	*	100	*	139	*	-0.073	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.413	*	0.333	*	0.852	*	1.04	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	3.9	*	-0.952	*	-0.312	*	1.01	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	37.3	*	182	*	222	*	-6.37	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.0174	*	0.728	*	0.179	*	0.739	*
10028-17-8	Tritium	Т	pCi/L	906.0	-102	*	147	*	98.9	*	169	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		<20		18.5	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	0.936	J	0.917	J	0.942	J	5.87	
s0586	Total Organic Halides	Т	mg/L	9020	0.00702	J	<0.01		<0.01		0.167	

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	5	8004-48	316	8004-481	12	8004-481	1
Facility's Loc	cal Well or Spring Number (e.g., 1	/W-1	L, MW-2, etc	.)	387		388		389		390	
Sample Sequence	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		7/16/2015 09	0:01	7/16/2015	10:00	NA		7/16/2015 12	2:56
Duplicate ("Y'	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)		MW387SG4	-15	MW388S0	34-15	NA		MW390SG4	l-15		
Laboratory Sam	mple ID Number (if applicable)		37743900	9	377439	011	NA		37743901	3		
Date of Analys	sis (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	7/23/2015	i	7/23/20	15	NA		7/23/2015	5
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	OWN)	DOWN		DOW	N	SIDE		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.531		0.307			*	0.693	
16887-00-6	Chloride(s)	т	mg/L	9056	46.1		31.9			*	73.2	
16984-48-8	Fluoride	т	mg/L	9056	0.521		0.263			*	0.272	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.43		1.07			*	2.79	
14808-79-8	Sulfate	т	mg/L	9056	24.4		24			*	36.8	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30		30			*	29.98	
s0145	Specific Conductance	т	μ MH 0/cm	Field	514		422			*	713	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Lo	ocal Well or Spring Number (e.g., MV	I-1,	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.43		327.35			*	327.88	
N238	Dissolved Oxygen	т	mg/L	Field	4.28		4.51			*	5.58	
s0266	Total Dissolved Solids	т	mg/L	160.1	263		230			*	401	
s0296	рн	т	Units	Field	6.19		6.12			*	6.33	
NS215	Eh	т	mV	Field	405		378			*	397	
s0907	Temperature	т	°C	Field	19.61		18.72			*	19.56	
7429-90-5	Aluminum	т	mg/L	6020	0.0661		0.0347	J		*	0.102	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00267	J	0.00192	J		*	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.13		0.153			*	0.227	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0237		0.0185			*	0.00726	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	31		24.8			*	31.3	
7440-47-3	Chromium	т	mg/L	6020	0.00322	J	<0.01			*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00019	J	<0.001			*	0.00022	J
7440-50-8	Copper	т	mg/L	6020	0.00048	J	0.00058	J		*	0.00105	
7439-89-6	Iron	т	mg/L	6020	0.339		0.122			*	0.0856	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	13.1		11.1			*	13.7	
7439-96-5	Manganese	Т	mg/L	6020	0.0372		0.00166	J		*	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-48	15	8004-48	316	8004-48	12	8004-4811	ı
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005		<0.0005			*	0.00047	J
7440-02-0	Nickel	т	mg/L	6020	0.00067	J	0.00113	J		*	0.00143	J
7440-09-7	Potassium	Т	mg/L	6020	1.53		1.73			*	0.342	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	т	mg/L	6020	55.6		42.1			*	96.1	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	0.00011	J
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01			*	<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-48	16	8004-4	811		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	387		388		390			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00088	J	0.00062	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

IAP ID: None

LAB ID: None
For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-4810	6	8004-48	12	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g., 1	/W-	L, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000206		<0.0000202			*	<0.0000201	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815		8004-4816	6	8004-4812		8004-4811	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-3.83	*	5.77	*		*	1.19	*
12587-47-2	Gross Beta	Т	pCi/L	9310	169	*	107	*		*	29.2	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.359	*	0.837	*		*	2.04	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.292	*	0.377	*		*	4.18	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	277	*	143	*		*	64	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.513	*	0.58	*		*	0.191	*
10028-17-8	Tritium	т	pCi/L	906.0	147	*	162	*		*	70.9	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20			*	<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.01	J	0.923	J		*	2.08	
s0586	Total Organic Halides	Т	mg/L	9020	0.00632	J	0.0049	J		*	0.0171	

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number						8004-48	306	8004-4807		8004-480	02
Facility's Loc	cal Well or Spring Number (e.g., 1	∕w-1	, MW-2, etc	:.)	391		392		393		394	
Sample Sequence	ce #				1		1		1		1	
If sample is a D	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment						NA		NA		NA	
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)					9:34	7/17/2015	08:42	7/17/2015	09:12	7/17/2015 (07:32
Duplicate ("Y	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or "N") ³					N		N		N		N	
Facility Sampl	Facility Sample ID Number (if applicable)						MW392S0	G4-15	MW393S0	G4-15	MW394SG	4-15
Laboratory Sar	Laboratory Sample ID Number (if applicable)					1	377494	003	3774940	005	3774940	07
Date of Analys	Date of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					7/22/2015 7/22/		2015 7/22/20		15	7/22/201	15
Gradient with	respect to Monitored Unit (UP, Do	OWN,	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOWI	N	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.553		0.599		0.182	J	0.607	
16887-00-6	Chloride(s)	т	mg/L	9056	42.2		48.9		15.9		50	
16984-48-8	Fluoride	Т	mg/L	9056	0.142		0.226		0.157		0.127	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.938		<0.4		0.121	J	1.76	
14808-79-8	Sulfate	т	mg/L	9056	46.6		6.16		15.6		10.4	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.91		29.91		29.91		29.91	
s0145	Specific Conductance	Т	μ MH0/cm	Field	460		440		411		395	

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

 7 Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AVCWA MIMPEP	8004-480	5	8004-4806		8004-4807		8004-4802					
	Facility Well/Spring Number				391		392		393		394	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)		_						
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	322.13		320.76		334.3		333.1	
N238	Dissolved Oxygen	Т	mg/L	Field	3.91		1.21		1.89		4.69	
s0266	Total Dissolved Solids	Т	mg/L	160.1	257		203		237		201	
s0296	рн	Т	Units	Field	6.03		6.3		6.2		5.71	
NS215	Eh	Т	mV	Field	430		339		394		608	
s0907	Temperature	т	°C	Field	20.67		19.22		19.72		19.61	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0158	J	<0.05		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		0.00285	J	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.255		0.188		0.0806		0.239	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.114		0.0316		0.0184		0.0233	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		0.00199		<0.001	
7440-70-2	Calcium	т	mg/L	6020	30		28		11.6		26.8	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00035	J	<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	<0.001		0.00037	J	0.00057	J	0.00073	J
7439-89-6	Iron	Т	mg/L	6020	0.0444	J	0.583		0.817		0.0515	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	13.6		10.7		3.56		11.9	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.215		0.0242		0.00201	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-480	05	8004-48	06	8004-48	07	8004-48	02
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.00031	J	0.00022	J	0.00032	J
7440-02-0	Nickel	Т	mg/L	6020	<0.002		0.00065	J	<0.002		0.00237	
7440-09-7	Potassium	т	mg/L	6020	1.6		1.89		0.403		1.41	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	41		43.9		79.3		31.2	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	0.00529	BJ	0.00523	BJ	0.00686	BJ	0.00387	BJ
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		0.00359	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-480	5	8004-4806		8004-4807		8004-4	802	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2,	etc.)	391		392		393		394	
CAS RN⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	0.00043	J	0.00068	J	<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	0.0104		0.017		0.00039	J	0.00485	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number					5	8004-4806		8004-4807		8004-48	02
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	0.00144	J	0.00145	J	0.00145	J	0.00144	J
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000205		<0.0000199		<0.0000206		<0.0000207	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number						8004-4806	5	8004-480)7	8004-480	02
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	8.72	*	1.55	*	-2.95	*	-1.95	*
12587-47-2	Gross Beta	Т	pCi/L	9310	2.48	*	-2.5	*	1.77	*	5.97	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.529	*	1.35	*	1.27	*	0.928	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-2.29	*	0.945	*	-3.81	*	7.69	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-3.47	*	6.26	*	-10.3	*	3.11	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.206	*	0.494	*	0.481	*	0.407	*
10028-17-8	Tritium	т	pCi/L	906.0	93	*	-37	*	30.5	*	207	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.856	J	1.3	J	2.1		0.698	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00886	J	0.0344		0.0154		0.00752	J

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number						8004-48	303	8004-4817		0000-000	0
Facility's Loc	cal Well or Spring Number (e.g., M	ſW−1	., MW-2, etc	١.)	395		396		397		E. BLANI	K
Sample Sequence	ce #				1		1		1		1	
If sample is a B	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment						NA		NA		Е	
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)					3:04	7/16/2015	13:39	7/15/2015	12:42	7/16/2015 0	8:05
Duplicate ("Y'	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or	N		N		N		N					
Facility Sampl	Facility Sample ID Number (if applicable)						MW396S0	G4-15	MW397S0	G4-15	RI1SG4-1	15
Laboratory San	mple ID Number (if applicable)				37749400	9	377439	015	3772950	012	37743901	18
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	7/22/2015 7/23/20		15	7/20/2015		7/20/201	5	
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
24959-67-9	Bromide	т	mg/L	9056	0.595		1.22		0.461			*
16887-00-6	Chloride(s)	т	mg/L	9056	48.1		80.7		40			*
16984-48-8	Fluoride	т	mg/L	9056	0.113		0.605		0.217	J		*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.69		<0.1		1.2			*
14808-79-8	Sulfate	т	mg/L	9056	10.2		24.9		11.4			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.91		29.96		29.91			*
s0145	Specific Conductance	т	μ MH0/cm	Field	390		763		334			*

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

	OID -	8004-480		8004-480	2	8004-4817	7	0000-0000				
AKGWA NUMBER ¹	, Facility Well/Spring Number					' 1		J				
Facility's Lo	ocal Well or Spring Number (e.g., M	V-1, 1	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	333.95		369.91		327.9			*
N238	Dissolved Oxygen	т	mg/L	Field	5.53		0.7		5.04			*
S0266	Total Dissolved Solids	т	mg/L	160.1	203		437		190			*
s0296	рн	Т	Units	Field	5.96		6.62		6.15			*
NS215	Eh	Т	mV	Field	468		330		599			*
s0907	Temperature	Т	°C	Field	19.44		19.17		19.83			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.038	J	0.0612		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.236		0.384		0.144		<0.002	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0243		0.00516	J	0.00793	J	<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	26.5		34.7		17.7		<0.2	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00091	J	<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00046	J	0.00223		0.00046	J	<0.001	
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.34		0.138		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	11.8		16		7.55		<0.03	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.198		0.00308	J	<0.005	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.,	, MW-	1, MW-2, e	tc.)	395		396		397		E. BLAN	١K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.00053		<0.0005		<0.0005	
7440-02-0	Nickel	т	mg/L	6020	<0.002		0.00183	J	0.00084	J	<0.002	
7440-09-7	Potassium	Т	mg/L	6020	1.59		0.89		1.61		<0.3	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	31.7		115		30.3	*	<0.25	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005	*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.00015	J	<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	0.00489	BJ	<0.01		0.00544	BJ	<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		0.00573	J	<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	03	8004-4	817	0000-0	000
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	., MW-2, et	.c.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0038		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None
For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number		8004-480	1	8004-4803	3	8004-48	17	0000-000	00		
Facility's Lo	cal Well or Spring Number (e.g., N	MW-	1, MW-2, et	:c.)	395		396		397		E. BLAN	ΙΚ
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00139	J	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000204		<0.0000203		<0.0000203		<0.0000201	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4801		8004-4803	3	8004-481	7	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	395		396		397		E. BLAN	IK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.64	*	5.32	*	-3.59	*	-3.43	*
12587-47-2	Gross Beta	Т	pCi/L	9310	3.79	*	4.83	*	17	*	-2.84	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	1.2	*	0.785	*	0.516	*	0.733	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.14	*	3.27	*	0.0194	*	-0.296	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	14.7	*	0.171	*	13.2	*	-11.6	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.645	*	0.415	*	0.504	*	0.255	*
10028-17-8	Tritium	Т	pCi/L	906.0	72.4	*	99	*	166	*	125	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20			*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		0.257	J	<0.5			*
S0268	Total Organic Carbon	Т	mg/L	9060	0.565	J	4.64		0.688	J		*
s0586	Total Organic Halides	т	mg/L	9020	0.00644	J	0.0657		<0.01			*

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				000-000	00	0000-00	00	0000-000	00	0000-000	0
Facility's Loc	al Well or Spring Number (e.g., M	W-1	, MW-2, etc	:.)	F. BLAN	K	T. BLAN	K 1	T. BLAN	(2	T. BLANK	3
Sample Sequence	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	F		Т		Т		Т	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		7/16/2015 0	9:25	7/15/2015	07:00	7/16/2015 0	6:45	7/16/2015 0	8:00
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				FB1SG4-	15	TB1SG4	-15	TB2SG4-	15	TB3SG4-1	15
Laboratory Sam	uple ID Number (if applicable)		3774390	17	3772950	11	3774390	19	37743902	20		
Date of Analys	sis (Month/Day/Year) For Volatile	ysis	7/23/201	5	7/20/20	15	7/20/201	5	7/23/201	5		
Gradient with	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	μ MHO/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

	, Facility Well/Spring Number				0000-000		0000-000	0	0000-0000)	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., M	W-1, 1	MW-2, BLANK-	F, etc.)	F. BLANI	K	T. BLANK	1	T. BLANK	2	T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	Т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	Т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	Т	mg/L	6020	<0.002			*		*		*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	Т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	Т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	Т	mg/L	6020	0.00043	J		*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	Т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	Т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				0000-00	00	0000-00	000	0000-00	00	0000-00	00
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	F. BLAN	١K	T. BLAN	K 1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	Т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	Т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	т	mg/L	6020	<0.01			*		*		*
7440-66-6	Zinc	Т	mg/L	6020	<0.01			*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000	0	0000-000	00	0000-00	000	0000-00	000
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	F. BLAN	<	T. BLANI	< 1	T. BLAN	NK 2	T. BLAN	1K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MV	W-2, etc	.)	F. BLANK		T. BLANK	1	T. BLAN	ζ2	T. BLAN	₹3
CAS RN ⁴	CONSTITUENT	D	nit OF ASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	T m	ıg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	T m	ıg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	T m	ıg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	T m	ıg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	T m	ıg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	T m	ıg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	T m	ıg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	T m	ıg/L	8011	<0.0000203		<0.0000204		<0.0000203		<0.0000203	
78-87-5	Propane, 1,2-Dichloro-	T m	ıg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T m	ıg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	T m	ıg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	T m	ıg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	T m	ıg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	T m	ıg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	T m	ıg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	T m	ng/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	T u	ıg/L	8082		*		*		*		*
12674-11-2	PCB-1016	T u	ıg/L	8082		*		*		*		*
11104-28-2	PCB-1221	T u	ıg/L	8082		*		*		*		*
11141-16-5	PCB-1232	T u	ıg/L	8082		*		*		*		*
53469-21-9	PCB-1242	T u	ıg/L	8082		*		*		*		*
12672-29-6	PCB-1248	T u	ıg/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-0000		0000-0000)	0000-000	0
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	F. BLANK	(T. BLANK 1		T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-2.27	*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310	9.13	*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.212	*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.06	*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	9.72	*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.55	*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0	157	*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*		*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	8004-481	5	\overline{N}			/
	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	:.)	T. BLANK	(4	387					
Sample Sequence					1	•	2					-/-
	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod. or (E)	nuipment	т		NA NA					$\overline{}$
	nd Time (Month/Day/Year hour: minu			1417	7/17/2015 0	ne-20	7/16/2015 0	9:01			/	/
-		ces)			0.20					/	
Duplicate ("Y'	" or "N") ²				N		Y		\\			
Split ("Y" or	"N") ³				N		N		\	\		
Facility Sampl	le ID Number (if applicable)		TB4SG4-	15	MW387DSG	G4-15						
Laboratory San	mple ID Number (if applicable)		3774940	11	37743900	07						
Date of Analys	of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analys					5	7/21/201	5			/	
Gradient with	respect to Monitored Unit (UP, DC	WN,	side, UNKN	IOWN)	NA		DOWN			1	(
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*	0.534		/	/		
16887-00-6	Chloride(s)	т	mg/L	9056		*	46.1					
16984-48-8	Fluoride	т	mg/L	9056		*	0.532					
s0595	Nitrate & Nitrite	т	mg/L	9056		*	1.47				,	/
14808-79-8	Sulfate	т	mg/L	9056		*	24.3					
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*	30					
S0145	Specific Conductance	т	μ MH 0/cm	Field		*	514		/			

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

3 rows 3 rows 1	Tarihi a Wali (Garia a Wali				0000-000		8004-481	5			<u> </u>	
AKGWA NUMBER	, Facility Well/Spring Number				T. BLANK		387					
Facility's Lo	ocal Well or Spring Number (e.g., MV	7-1,	MW-2, BLANK-	F, etc.)	I. BLAINN	4	367					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*	327.43					
N238	Dissolved Oxygen	т	mg/L	Field		*	4.28					
S0266	Total Dissolved Solids	т	mg/L	160.1		*	279					
S0296	рн	т	Units	Field		*	6.19					
NS215	Eh	т	mV	Field		*	405					
s0907	Temperature	т	°C	Field		*	19.61					
7429-90-5	Aluminum	Т	mg/L	6020		*	0.0747					
7440-36-0	Antimony	т	mg/L	6020		*	<0.003					
7440-38-2	Arsenic	т	mg/L	6020		*	0.00262	J				
7440-39-3	Barium	Т	mg/L	6020		*	0.127					
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005					
7440-42-8	Boron	т	mg/L	6020		*	0.0239					
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001					
7440-70-2	Calcium	т	mg/L	6020		*	31.2					
7440-47-3	Chromium	т	mg/L	6020		*	0.00318	J				
7440-48-4	Cobalt	т	mg/L	6020		*	0.00017	J				
7440-50-8	Copper	Т	mg/L	6020		*	0.0005	J				
7439-89-6	Iron	т	mg/L	6020		*	0.38					
7439-92-1	Lead	т	mg/L	6020		*	<0.002					
7439-95-4	Magnesium	т	mg/L	6020		*	13.4					
7439-96-5	Manganese	т	mg/L	6020		*	0.0363					
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				0000-000	00	8004-48	315	\			
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLAN	K 4	387					
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7		Molybdenum	Т	mg/L	6020		*	<0.0005				/	
7440-02-0		Nickel	Т	mg/L	6020		*	0.00071	J				
7440-09-7		Potassium	Т	mg/L	6020		*	1.48					
7440-16-6		Rhodium	Т	mg/L	6020		*	<0.005					
7782-49-2		Selenium	Т	mg/L	6020		*	<0.005		\			
7440-22-4		Silver	т	mg/L	6020		*	<0.001					
7440-23-5		Sodium	Т	mg/L	6020		*	48.3					
7440-25-7		Tantalum	Т	mg/L	6020		*	<0.005					
7440-28-0		Thallium	т	mg/L	6020		*	<0.002			$ \hspace{.05cm}\rangle$		
7440-61-1		Uranium	Т	mg/L	6020		*	<0.0002					
7440-62-2		Vanadium	Т	mg/L	6020		*	<0.01					
7440-66-6		Zinc	Т	mg/L	6020		*	<0.01			/		
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		/			
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005					
107-02-8		Acrolein	т	mg/L	8260	<0.005		<0.005					
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005					
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001					
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001				\	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003					
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001					
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001					
74-97-5		Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	8004-48	15	\		
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	T. BLANK	4	387				/
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED F L COR PQL ⁶ G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001				/
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001				/
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001				/
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005				
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005				/
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\overline{\ }$	/
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001				
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001				
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001				X
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001				
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001				
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001				
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001				
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001				
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001				
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001				
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001				\
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001				\
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001				
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001				
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001				
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		0.00082	J	V		

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	8004-481	5	Λ			$\overline{}$
Facility's Loc	cal Well or Spring Number (e.g.,)	MW-1	., MW-2, et	.c.)	T. BLANK	4	387					$\overline{\mathcal{L}}$
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR RQL ⁶	F L A G	VALUE OR	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001				/	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005					
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005					
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001					
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001					
75-09-2	Dichloromethane	т	mg/L	8260	0.00153	J	<0.005					
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005					
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000204		<0.0000202					
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001				X L	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001					
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001					
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001					
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001			/		
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001					
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001					
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001					
1336-36-3	PCB,Total	т	ug/L	8082		*		*				
12674-11-2	PCB-1016	т	ug/L	8082		*		*			\	
11104-28-2	PCB-1221	т	ug/L	8082		*		*				
11141-16-5	PCB-1232	т	ug/L	8082		*		*				
53469-21-9	PCB-1242	т	ug/L	8082		*		*				
12672-29-6	PCB-1248	Т	ug/L	8082		*		*				7

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	8004-4815		\		,
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	T. BLANK	4	387				/
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR POL ⁶	F L A G	DETECTED F L C A A G S
11097-69-1	PCB-1254	Т	ug/L	8082		*		*			
11096-82-5	PCB-1260	Т	ug/L	8082		*		*			
11100-14-4	PCB-1268	Т	ug/L	8082		*		*			
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	-1.75	*	\	\	
12587-47-2	Gross Beta	Т	pCi/L	9310		*	189	*			
10043-66-0	Iodine-131	Т	pCi/L			*		*			
13982-63-3	Radium-226	Т	pCi/L	HASL 300		*	0.718	*			
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	-0.0627	*			/
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	290	*		/	
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	0.71	*			
10028-17-8	Tritium	Т	pCi/L	906.0		*	178	*		\mathcal{I}	
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*	<20				
57-12-5	Cyanide	Т	mg/L	9012		*	<0.2		/		
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5				
s0268	Total Organic Carbon	Т	mg/L	9060		*	1.18	J			
s0586	Total Organic Halides	Т	mg/L	9020		*	0.00562	J			
											V
											\
		П									
									/		
		П							/		'

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5201 MW22	20 MW220SG4-15	Sodium	Х	Other specific flags and footnotes may be required to properly define the results.
		Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.81. Rad error is 5.8.
		Gross beta		TPU is 6.42. Rad error is 6.23.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		TPU is 0.538. Rad error is 0.537.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.57. Rad error is 1.56.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.3. Rad error is 12.2.
		Thorium-230		TPU is 0.572. Rad error is 0.555.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 120. Rad error is 115.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5202 MW22	1 MW221SG4-15	Sodium	Х	Other specific flags and footnotes may be required to properly define the results.
		Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.6. Rad error is 5.58.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.6. Rad error is 8.6.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.441. Rad error is 0.441.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.59. Rad error is 1.59.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.3. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.452. Rad error is 0.448.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 114. Rad error is 111.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5242 MW22	2 MW222SG4-15	Sodium	Х	Other specific flags and footnotes may be required to properly define the results.
		Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.33. Rad error is 5.33.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.23. Rad error is 9.05.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.502. Rad error is 0.501.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.37. Rad error is 1.36.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.529. Rad error is 0.522.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 118. Rad error is 115.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5243 MW22	23 MW223SG4-15	Sodium	Х	Other specific flags and footnotes may be required to properly define the results.
		Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.31. Rad error is 4.31.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.45. Rad error is 3.45.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		TPU is 0.539. Rad error is 0.538.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.868. Rad error is 0.868.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.7. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.438. Rad error is 0.43.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 118. Rad error is 114.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5244 MW224 M	1W224SG4-15	Sodium	Х	Other specific flags and footnotes may be required to properly define the results.
		Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.93. Rad error is 8.78.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.24. Rad error is 6.23.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		TPU is 0.431. Rad error is 0.43.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.32. Rad error is 1.32.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.7. Rad error is 13.7.
		Thorium-230		TPU is 0.533. Rad error is 0.517.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 118. Rad error is 114.
8004-4820 MW369 M	1W369UG4-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.34. Rad error is 5.33.
		Gross beta		TPU is 9.23. Rad error is 8.58.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		TPU is 0.562. Rad error is 0.561.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.82. Rad error is 1.82.
		Technetium-99		TPU is 14.4. Rad error is 13.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.573. Rad error is 0.559.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 127. Rad error is 127.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4818 MW370	MW370UG4-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.91. Rad error is 5.89.
		Gross beta		TPU is 11.6. Rad error is 10.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.685. Rad error is 0.683.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.06. Rad error is 2.05.
		Technetium-99		TPU is 15.9. Rad error is 14.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.62. Rad error is 0.606.
		Tritium L		Indicates analyte/nuclide was analyzed for, but not detected. TPU is 130. Rad error is 130.
3004-4808 MW372	MW372UG4-15	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5. Rad error is 5.
		Gross beta		TPU is 7.62. Rad error is 7.24.
		Iodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.341. Rad error is 0.341.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.26. Rad error is 2.25.
		Technetium-99		TPU is 13.3. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.677. Rad error is 0.663.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 134. Rad error is 133.
3004-4792 MW373	MW373UG4-15	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.76. Rad error is 4.76.
		Gross beta		TPU is 8.68. Rad error is 7.85.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.338. Rad error is 0.338.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.61. Rad error is 2.54.
		Technetium-99		TPU is 13.2. Rad error is 12.5.
		Thorium-230 U		Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.381. Rad error is 0.38.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 128. Rad error is 128.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4809 MW38	84 MW384SG4-15	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.38. Rad error is 6.28.
		Gross beta		TPU is 21.4. Rad error is 13.9.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.393. Rad error is 0.393.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.06. Rad error is 1.06.
		Technetium-99		TPU is 27.3. Rad error is 18.3.
		Thorium-230		TPU is 0.559. Rad error is 0.542.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 117. Rad error is 113.
8004-4810 MW3	85 MW385SG4-15	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.77. Rad error is 4.73.
		Gross beta		TPU is 27.7. Rad error is 16.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.555. Rad error is 0.554.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.37. Rad error is 1.37.
		Technetium-99		TPU is 30.6. Rad error is 18.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.523. Rad error is 0.52.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 112. Rad error is 110.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4804 MW386	MW386SG4-15	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.52. Rad error is 5.52.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.91. Rad error is 4.91.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.629. Rad error is 0.628.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.19. Rad error is 2.19.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.9. Rad error is 11.9.
		Thorium-230		TPU is 0.544. Rad error is 0.526.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 118. Rad error is 114.
8004-4815 MW387	MW387SG4-15	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.1. Rad error is 5.1.
		Gross beta		TPU is 32.8. Rad error is 18.1.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.366. Rad error is 0.366.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.1. Rad error is 2.1.
		Technetium-99		TPU is 35.8. Rad error is 18.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.483. Rad error is 0.472.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 116. Rad error is 113.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4816 MW388 MW388SG4-15		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.51. Rad error is 5.43.
		Gross beta		TPU is 22.5. Rad error is 14.4.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.605. Rad error is 0.604.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.64. Rad error is 1.64.
		Technetium-99		TPU is 22. Rad error is 15.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.544. Rad error is 0.531.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 135. Rad error is 131.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no samp was collected.
		Chloride		During sampling, the well was dry; therefore, no samp was collected.
		Fluoride		During sampling, the well was dry; therefore, no samp was collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no samp was collected.
		Sulfate		During sampling, the well was dry; therefore, no samp was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no samp was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no samp was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no samp was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no samp was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no samp was collected.
		рН		During sampling, the well was dry; therefore, no samp was collected.
		Eh		During sampling, the well was dry; therefore, no samp was collected.
		Temperature		During sampling, the well was dry; therefore, no samp was collected.
		Aluminum		During sampling, the well was dry; therefore, no samp was collected.
		Antimony		During sampling, the well was dry; therefore, no samp was collected.
		Arsenic		During sampling, the well was dry; therefore, no samp was collected.
		Barium		During sampling, the well was dry; therefore, no samp was collected.
		Beryllium		During sampling, the well was dry; therefore, no samp was collected.
		Boron		During sampling, the well was dry; therefore, no samp was collected.
		Cadmium		During sampling, the well was dry; therefore, no samp was collected.
		Calcium		During sampling, the well was dry; therefore, no samp was collected.
		Chromium		During sampling, the well was dry; therefore, no samp was collected.
		Cobalt		During sampling, the well was dry; therefore, no samp was collected.
		Copper		During sampling, the well was dry; therefore, no samp was collected.
		Iron		During sampling, the well was dry; therefore, no samp was collected.
		Lead		During sampling, the well was dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Magnesium		During sampling, the well was dry; therefore, no samp was collected.
		Manganese		During sampling, the well was dry; therefore, no samp was collected.
		Mercury		During sampling, the well was dry; therefore, no samp was collected.
		Molybdenum		During sampling, the well was dry; therefore, no samp was collected.
		Nickel		During sampling, the well was dry; therefore, no samp was collected.
		Potassium		During sampling, the well was dry; therefore, no samp was collected.
		Rhodium		During sampling, the well was dry; therefore, no samp was collected.
		Selenium		During sampling, the well was dry; therefore, no samp was collected.
		Silver		During sampling, the well was dry; therefore, no samp was collected.
		Sodium		During sampling, the well was dry; therefore, no samp was collected.
		Tantalum		During sampling, the well was dry; therefore, no sam was collected.
		Thallium		During sampling, the well was dry; therefore, no sam was collected.
		Uranium		During sampling, the well was dry; therefore, no sam was collected.
		Vanadium		During sampling, the well was dry; therefore, no sam was collected.
		Zinc		During sampling, the well was dry; therefore, no sam was collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sam was collected.
		Acetone		During sampling, the well was dry; therefore, no sam was collected.
		Acrolein		During sampling, the well was dry; therefore, no sam was collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sam was collected.
		Benzene		During sampling, the well was dry; therefore, no sam was collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sam was collected.
		Xylenes		During sampling, the well was dry; therefore, no sam was collected.
		Styrene		During sampling, the well was dry; therefore, no sam was collected.
		Toluene		During sampling, the well was dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sam was collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sam was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Tribromomethane		During sampling, the well was dry; therefore, no sampl was collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sampl was collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sampl was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sampl was collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sampl was collected.
		Chloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		Chloroform		During sampling, the well was dry; therefore, no sampl was collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sampl was collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sampl was collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sampl was collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no samp was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no samp was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no samp was collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no samp was collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no samp was collected.
		Trichloroethene		During sampling, the well was dry; therefore, no samp was collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no samp was collected.
		2-Hexanone		During sampling, the well was dry; therefore, no samp was collected.
		lodomethane		During sampling, the well was dry; therefore, no samp was collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no samp was collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Dichloromethane		During sampling, the well was dry; therefore, no samp was collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no samp was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no samp was collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no samp was collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no samp was collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well was dry; therefore, no sam was collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well was dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well was dry; therefore, no samp was collected.
		Gross beta		During sampling, the well was dry; therefore, no sam was collected.
		lodine-131		During sampling, the well was dry; therefore, no sample was collected.
		Radium-226		During sampling, the well was dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well was dry; therefore, no sam was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW38	39	Thorium-230		During sampling, the well was dry; therefore, no sample was collected.
		Tritium		During sampling, the well was dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample was collected.
		Cyanide		During sampling, the well was dry; therefore, no sample was collected.
		lodide		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample was collected.
8004-4811 MW39	00 MW390SG4-15	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.05. Rad error is 6.05.
		Gross beta		TPU is 9.33. Rad error is 8.03.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.846. Rad error is 0.842.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.24. Rad error is 3.17.
		Technetium-99		TPU is 15.3. Rad error is 13.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.399. Rad error is 0.394.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 111. Rad error is 110.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4805 MW391	MW391SG4-15	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.42. Rad error is 9.29.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.13. Rad error is 6.11.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.455. Rad error is 0.455.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.74. Rad error is 1.73.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.7. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.385. Rad error is 0.38.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 161. Rad error is 160.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4806 MW392 MW392SG4-15		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.43. Rad error is 5.42.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.86. Rad error is 4.86.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.642. Rad error is 0.64.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.9. Rad error is 2.9.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.6. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.49. Rad error is 0.48.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 155. Rad error is 155.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4807 MW393 MW393SG4-15		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.9. Rad error is 3.9.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.88. Rad error is 5.88.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.69. Rad error is 0.689.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.69. Rad error is 2.69.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.8. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.367. Rad error is 0.357.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 158. Rad error is 158.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
B004-4802 MW394 MW394SG4-15		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.53. Rad error is 4.53.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.67. Rad error is 9.62.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.487. Rad error is 0.486.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.2. Rad error is 5.06.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.447. Rad error is 0.438.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 168. Rad error is 163.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4801 MW39	5 MW395SG4-15	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.61. Rad error is 5.59.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.74. Rad error is 5.69.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.57. Rad error is 0.568.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.01. Rad error is 2.01.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.2. Rad error is 13.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.542. Rad error is 0.528.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 160. Rad error is 160.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4803 MW396 MW396SG4-15		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.14. Rad error is 7.08.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.48. Rad error is 9.45.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.627. Rad error is 0.626.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.98. Rad error is 2.93.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.8. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.522. Rad error is 0.513.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 113. Rad error is 111.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4817 MW397 MW397SG4-15		Sodium	Х	Other specific flags and footnotes may be required to properly define the results.
		Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performe
	PCB-1254		Analysis of constituent not required and not performe	
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.03. Rad error is 5.03.
		Gross beta		TPU is 10.1. Rad error is 9.7.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.411. Rad error is 0.41.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.38. Rad error is 1.38.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.6. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.518. Rad error is 0.507.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 119. Rad error is 114.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG4-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.98. Rad error is 3.98.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.04. Rad error is 7.04.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.505. Rad error is 0.505.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.93. Rad error is 1.93.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.7. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.402. Rad error is 0.397.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 115. Rad error is 113.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performe
		Total Organic Halides		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG4-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.54. Rad error is 2.54.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.22. Rad error is 9.09.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.343. Rad error is 0.343.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.72. Rad error is 2.72.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.8. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.506. Rad error is 0.494.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 116. Rad error is 112.
		Chemical Oxygen Demand		Analysis of constituent not required and not performe
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performe
		Total Organic Carbon		Analysis of constituent not required and not performe
		Total Organic Halides		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG4-15	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG4-15	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG4-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG4-15	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG4-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG4-15	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG4-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG4-15	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4815 MW38	87 MW387DSG4-15	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.75. Rad error is 4.74.
		Gross beta		TPU is 35.5. Rad error is 18.2.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.62. Rad error is 0.619.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.55. Rad error is 1.55.
		Technetium-99		TPU is 37.1. Rad error is 18.3.
		Thorium-230		TPU is 0.526. Rad error is 0.51.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 119. Rad error is 114.

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

. 1									N			
AKGWA NUMBER	, Facility Well/Spring Number				8000-520	1	0000-00	000	1			/
Facility's Lo	cal Well or Spring Number (e.g., N	ſW−1	L, MW-2, etc	:.)	220		T. BLANK 10					/_
Sample Sequen	ce #				2		1					
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		Ţ					
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		9/3/2015	80:80	9/3/2015 0	7:00			/	
Duplicate ("Y	Duplicate ("Y" or "N") ²						N					
Split ("Y" or	"N") ³				N		N		\	\		
Facility Samp	le ID Number (if applicable)				MW220SG4-	-15R	TB10SG4	-15				
Laboratory San	mple ID Number (if applicable)				38062500)1	3806250	02				
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis.	9/8/2015		9/8/20	15				
Gradient with	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	IOWN)	UP		NA			1	V	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L Zd G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*	,	/		
16887-00-6	Chloride(s)	т	mg/L	9056		*		*				
16984-48-8	Fluoride	т	mg/L	9056		*		*				
S0595 Nitrate & Nitrite T mg/L 9056					*		*					
14808-79-8	Sulfate	т	mg/L	9056		*		*				
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.04			*				
s0145	Specific Conductance	т	μ MHO /cm	Field	343			*				

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^2}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

01101	GROOMDWATER DAMFIE AMADIDID											
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	0000-000	0	\			/
Facility's Loca	al Well or Spring Number (e.g., Mw	I-1, I	MW-2, BLANK-	F, etc.)	220		T. BLANK	10				
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.54			*			/	
N238	Dissolved Oxygen	т	mg/L	Field	5.2			*				
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*				
s0296	рН	т	Units	Field	6.38			*				
NS215	Eh	т	mV	Field	672			*		$\overline{\ \ }$		
s0907	Temperature	т	°C	Field	18.44			*				
7429-90-5	Aluminum	Т	mg/L	6020		*		*				
7440-36-0	Antimony	т	mg/L	6020		*		*			/	
7440-38-2	Arsenic	т	mg/L	6020		*		*			X	
7440-39-3	Barium	т	mg/L	6020		*		*				
7440-41-7	Beryllium	т	mg/L	6020		*		*				
7440-42-8	Boron	т	mg/L	6020		*		*				
7440-43-9	Cadmium	т	mg/L	6020		*		*	<u> </u>			
7440-70-2	Calcium	т	mg/L	6020		*		*				
7440-47-3	Chromium	т	mg/L	6020		*		*				
7440-48-4	Cobalt	т	mg/L	6020		*		*				
7440-50-8	Copper	т	mg/L	6020		*		*			\	
7439-89-6	Iron	т	mg/L	6020		*		*			·	\
7439-92-1	Lead	т	mg/L	6020		*		*				
7439-95-4	Magnesium	т	mg/L	6020		*		*				
7439-96-5	Manganese	т	mg/L	6020		*		*				
7439-97-6	Mercury	Т	mg/L	7470		*		*	/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8000-520	01	0000-0000		<u> </u>			
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		T. BLANK 10)				
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020		*		*			/	
7440-02-0	Nickel	Т	mg/L	6020		*		*				
7440-09-7	Potassium	т	mg/L	6020		*		*				
7440-16-6	Rhodium	Т	mg/L	6020		*		*				
7782-49-2	Selenium	Т	mg/L	6020		*		*	\			
7440-22-4	Silver	Т	mg/L	6020		*		*				
7440-23-5	Sodium	т	mg/L	6020		*		*				
7440-25-7	Tantalum	Т	mg/L	6020		*		*			/	
7440-28-0	Thallium	Т	mg/L	6020		*		*		X		
7440-61-1	Uranium	Т	mg/L	6020		*		*				
7440-62-2	Vanadium	т	mg/L	6020		*		*				
7440-66-6	Zinc	Т	mg/L	6020		*		*		/		
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		/			
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005					
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005					
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005					
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001					
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001					
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003					Λ
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001					
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001					
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		/			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	0000-0000		\land			/
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	, MW-2, et	.c.)	220		T. BLANK 10					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001				/	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001				/	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001					
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005					
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			$\overline{\ }$		
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005					
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001					
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001					
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001				X	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001					
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001					
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			/		
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			/		
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001					
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001					
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001					
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001				\	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001					
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001					
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		/			
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001					
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00051	J	<0.001		/			

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8000-520	1	0000-0000		\			7
Facility's Loc	al Well or Spring Number (e.g., 1	W-1, MW-	2, etc.)	220		T. BLANK 1)				\mathcal{I}
CAS RN ⁴	CONSTITUENT	T Uni D OF MEAS		DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	T mg/	L 8260	<0.001		<0.001					
591-78-6	2-Hexanone	T mg/	L 8260	<0.005		<0.005					
74-88-4	Iodomethane	T mg/	L 8260	<0.005		<0.005					
124-48-1	Methane, Dibromochloro-	T mg/	L 8260	<0.001		<0.001		\			
56-23-5	Carbon Tetrachloride	T mg/	L 8260	<0.001		<0.001					
75-09-2	Dichloromethane	T mg/	L 8260	<0.005		<0.005					
108-10-1	Methyl isobutyl ketone	T mg/	L 8260	<0.005		<0.005					
96-12-8	Propane, 1,2-Dibromo-3-chloro	T mg/	L 8011		*		*		\		
78-87-5	Propane, 1,2-Dichloro-	T mg/	L 8260	<0.001		<0.001				X L	
10061-02-6	trans-1,3-Dichloro-1-propene	T mg/	L 8260	<0.001		<0.001					
10061-01-5	cis-1,3-Dichloro-1-propene	T mg/	L 8260	<0.001		<0.001					
156-60-5	trans-1,2-Dichloroethene	T mg/	L 8260	<0.001		<0.001					
75-69-4	Trichlorofluoromethane	T mg/	L 8260	<0.001		<0.001			/		
96-18-4	1,2,3-Trichloropropane	T mg/	L 8260	<0.001		<0.001					
95-50-1	Benzene, 1,2-Dichloro-	T mg/	L 8260	<0.001		<0.001					
106-46-7	Benzene, 1,4-Dichloro-	T mg/	L 8260	<0.001		<0.001					
1336-36-3	PCB,Total	T ug/	L 8082		*		*	/			
12674-11-2	PCB-1016	T ug/	L 8082		*		*				
11104-28-2	PCB-1221	T ug/	L 8082		*		*	/			
11141-16-5	PCB-1232	T ug/	L 8082		*		*				
53469-21-9	PCB-1242	T ug/	L 8082		*		*				$\sqrt{}$
12672-29-6	PCB-1248	T ug/	L 8082		*		*	/			

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitorir Point	ng	Facility Sample ID	Constituent	Flag	Description
3000-5201	MW220	MW220SG4-15R	Bromide		Analysis of constituent not required and not performe
			Chloride		Analysis of constituent not required and not performe
			Fluoride		Analysis of constituent not required and not performe
			Nitrate & Nitrite		Analysis of constituent not required and not performe
			Sulfate		Analysis of constituent not required and not performe
			Total Dissolved Solids		Analysis of constituent not required and not performe
			Aluminum		Analysis of constituent not required and not performe
			Antimony		Analysis of constituent not required and not performe
			Arsenic		Analysis of constituent not required and not performe
			Barium		Analysis of constituent not required and not performe
			Beryllium		Analysis of constituent not required and not performe
			Boron		Analysis of constituent not required and not performe
			Cadmium		Analysis of constituent not required and not performe
			Calcium		Analysis of constituent not required and not performe
			Chromium		Analysis of constituent not required and not performe
			Cobalt		Analysis of constituent not required and not performe
			Copper		Analysis of constituent not required and not performe
			Iron		Analysis of constituent not required and not performe
			Lead		Analysis of constituent not required and not performe
			Magnesium		Analysis of constituent not required and not performe
			Manganese		Analysis of constituent not required and not performe
			Mercury		Analysis of constituent not required and not performed
			Molybdenum		Analysis of constituent not required and not performe
			Nickel		Analysis of constituent not required and not performe
			Potassium		Analysis of constituent not required and not performe
			Rhodium		Analysis of constituent not required and not performe
			Selenium		Analysis of constituent not required and not performe
			Silver		Analysis of constituent not required and not performe
			Sodium		Analysis of constituent not required and not performe
			Tantalum		Analysis of constituent not required and not performe
			Thallium		Analysis of constituent not required and not performe
			Uranium		Analysis of constituent not required and not performe
			Vanadium		Analysis of constituent not required and not performe
			Zinc		Analysis of constituent not required and not performe
			1,2-Dibromo-3-chloropropane		Analysis of constituent not required and not performe
			PCB, Total		Analysis of constituent not required and not performe
			PCB-1016		Analysis of constituent not required and not performe
			PCB-1221		Analysis of constituent not required and not performe
			PCB-1232		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5201 MW22	0 MW220SG4-15R	PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

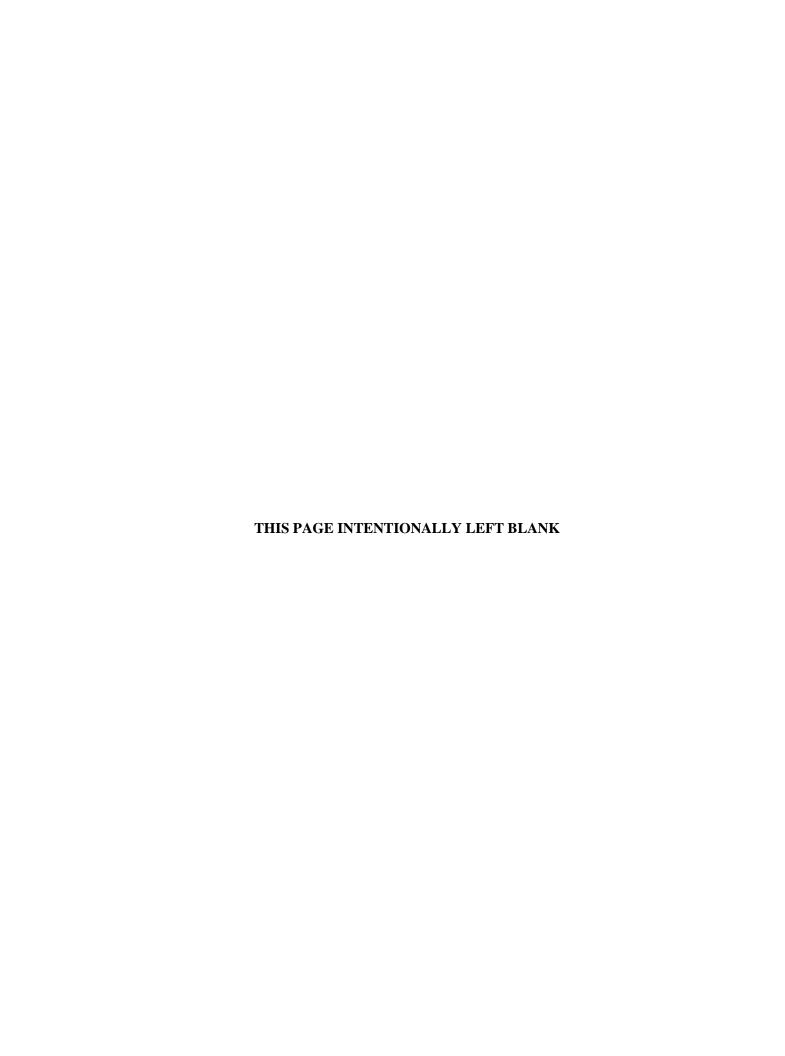
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB10SG4-15	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>


LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB10SG4-15	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/INERT—QUARTERLY, 3rd CY 2015

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-980-008-982/1</u>

Lab ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the third quarter 2015 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The third quarter 2015 data used to conduct the statistical analyses were collected in July 2015. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that exceeded the historical background using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the

current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper tolerance limit using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower tolerance limit to determine if the current pH is different from the current background level to a statistically significant level.

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:¹

- 1. The tolerance limit (TL) is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be lognormally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit is calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells is compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well concentration exceeds the historical background.

lower $TL = X - (K \times S)$

-

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 lists the parameters from the available data set for which a statistically derived historical background concentration was developed using the one-sided tolerance interval and the statistical test performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, third quarter 2015. The observations are representative of the current quarter data. Background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a well is sampled on two different dates, the most current available data are used. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
$MW390^1$	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

NOTE: The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells **TW**: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters

Aluminum

Beta Activity

Boron

Bromide

Calcium

Chemical Oxygen Demand

Chloride

cis-1,2-Dichloroethene

Cobalt

Conductivity

Copper

Dissolved Oxygen

Dissolved Solids

Iodide

Iron

Magnesium

Manganese

Molybdenum

Nickel

Oxidation-Reduction Potential

PCB, Total

PCB-1242

рН*

Potassium

Radium-226

Sodium

Sulfate

Technetium-99

Thorium-230

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

Trichloroethene

Uranium

Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	2	2	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Boron	4	1	3	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	3	1	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	1	3	Yes
Conductivity	4	0	4	Yes
Copper	4	3	1	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No
Iodide	4	3	1	Yes
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	1	3	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	0	4	Yes
Nickel	4	1	3	Yes
Oxidation-Reduction Potential	4	0	4	Yes
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	3	1	Yes
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	3	1	Yes
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichloroethene	4	4	0	No
Trichlorofluoromethane	4	2	2	Yes
Uranium	4	4	0	No
Vanadium	4	4	0	No
Vinyl Acetate	4	3	1	Yes
Zinc	4	4	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	7	4	Yes
Antimony	11	11	0	No
Aroclor-1268	2	2	0	No
Beryllium	11	11	0	No
Beta activity	11	6	5	Yes
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	10	1	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	10	1	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	3	8	Yes
Conductivity	11	0	11	Yes
Copper	11	10	1	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	3	8	Yes
Magnesium	11	0	11	Yes
Manganese	11	2	9	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	3	8	Yes
Nickel	11	1	10	Yes
Oxidation-Reduction Potential	11	0	11	Yes
PCB, Total	2	1	1	Yes
PCB-1016	2	2	0	No
PCB-1221	2	2	0	No
PCB-1232	2	2	0	No
PCB-1242	2	1	1	Yes
PCB-1248	2	2	0	No
PCB-1254	2	2	0	No
PCB-1260	2	2	0	No
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	7	4	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	7	4	Yes
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	2	9	Yes
trans-1,2-Dichloroethene	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	3	8	Yes
Trichlorofluoromethane	11	11	0	No
Uranium	11	11	0	No
Vanadium	11	11	0	No
Vinyl Acetate	11	11	0	No
Zinc	11	10	1	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	3	4	Yes
Antimony	7	7	0	No
Aroclor-1268	2	2	0	No
Beryllium	7	7	0	No
Beta activity	7	2	5	Yes
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	7	0	No
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	5	2	Yes
Conductivity	7	0	7	Yes
Copper	7	6	1	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	3	4	Yes
Magnesium	7	0	7	Yes
Manganese	7	1	6	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	7	0	No
Nickel	7	1	6	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	2	2	0	No
PCB-1016	2	2	0	No
PCB-1221	2	2	0	No
PCB-1232	2	2	0	No
PCB-1242	2	2	0	No
PCB-1248	2	2	0	No
PCB-1254	2	2	0	No
PCB-1260	2	2	0	No
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	3	4	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	3	4	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	1	6	Yes
Trichlorofluoromethane	7	7	0	No

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Uranium	7	7	0	No
Vanadium	7	7	0	No
Vinyl Acetate	7	7	0	No
Zinc	7	6	1	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 29, 31, and 26 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background UTL for oxidation-reduction potential, radium-226, technetium-99, and thorium-230.

<u>URGA</u>

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, chemical oxygen demand, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, technetium-99, and thorium-230.

LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

	•	
UCRS	URGA	LRGA
MW386: Oxidation-reduction potential, thorium-230	MW220: Chemical oxygen demand, oxidation-reduction potential, sulfate, thorium-230	MW370: Oxidation-reduction potential, sulfate, technetium-99
MW390: Oxidation-reduction potential, radium-226, technetium-99	MW221: Oxidation-reduction potential	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, technetium-99
MW393: Oxidation-reduction potential	MW222: Oxidation-reduction potential	MW385: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW223: Oxidation-reduction potential, sulfate	MW388: Beta activity, oxidation-reduction potential, sulfate, technetium-99
	MW224: Oxidation-reduction potential, thorium-230	MW392: Oxidation-reduction potential
	MW369: Oxidation-reduction potential, technetium-99	MW395: Oxidation-reduction potential
	MW372: Calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW397: Oxidation-reduction potential
	MW384: Beta activity, oxidation-reduction potential, sodium, sulfate, technetium-99, thorium-230	
	MW387: Beta activity, oxidation-reduction potential, sulfate, technetium-99, thorium-230	
	MW391: Oxidation-reduction potential, sulfate	
	MW394: Oxidation-reduction potential	

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.50	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	1.78	Current results exceed statistically derived historical background concentration in MW390.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Thorium-230	Tolerance Interval	2.01	Current results exceed statistically derived historical background concentration in MW386.
Total Organic Carbon	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Zinc CV: coefficient of variation	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentration in MW384 and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentration in MW220.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220, MW221, MW222, MW223, MW224, MW369, MW384, MW387, MW391, and MW394.
PCB, Total	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW372 and MW384.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW220, MW223, MW372, MW384, MW387, and MW391.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW372, MW384, and MW387.
Thorium-230	Tolerance Interval	1.65	Current results exceed statistically derived historical background concentration in MW220, MW224, MW384, and MW387.
Total Organic Carbon	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Total Organic Halides	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW385 and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.
Manganese CV: coefficient of variation	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, MW395, and MW397.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Total Organic Carbon	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Zinc CV: coefficient of variation	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the one-sided tolerance limit calculated using the most recent eight quarters of data and are presented in Attachment D2 and the statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 4, 11, and 8 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10, presented by well number.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW220: Chemical oxygen demand	MW370: Technetium-99
MW372: Calcium, conductivity, magnesium, sodium, sulfate	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate, technetium-99
MW384: Beta activity, sodium, technetium-99	MW385: Beta activity, sulfate, technetium-99
MW387: Beta activity, sulfate, technetium-99	MW388: Beta activity, sulfate, technetium-99
MW391: Sulfate	

UCRS

Because gradients in the UCRS are downward, there are no hydrogeologically downgradient UCRS wells that exceed the current background TL derived using the most recent eight quarters of data. NOTE: Technetium-99 concentrations in one UCRS well (i.e., MW390) exceeded the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, chemical oxygen demand, conductivity, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.41	No exceedance of statistically derived current background concentration.
Radium-226	Tolerance Interval	0.88	No exceedance of statistically derived current background concentration.
Technetium-99	Tolerance Interval	1.74	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill. However, technetium-99 concentrations exceeded the TL calculated using current background data in MW390.
Thorium-230	Tolerance Interval	2.51	No exceedance of statistically derived current background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.60	Current results exceed statistically derived current background concentration in MW384 and MW387.
Calcium	Tolerance Interval	0.13	Current results exceed statistically derived current background concentration in MW372.
Chemical Oxygen Demand	Tolerance Interval	0.40	Current results exceed statistically derived current background concentration in MW220.
Conductivity	Tolerance Interval	0.08	Current results exceed statistically derived current background concentration in MW372.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived current background concentration.
Magnesium	Tolerance Interval	0.13	Current results exceed statistically derived current background concentration in MW372.
Oxidation-Reduction Potential	Tolerance Interval	0.32	No exceedance of statistically derived current background concentration.
Sodium	Tolerance Interval	0.16	Current results exceed statistically derived current background concentration in MW372 and MW384.
Sulfate	Tolerance Interval	0.27	Current results exceed statistically derived current background concentration in MW372, MW387, and MW391.
Technetium-99	Tolerance Interval	0.49	Current results exceed statistically derived current background concentration MW384 and MW387.
Thorium-230	Tolerance Interval	6.29	No exceedance of statistically derived current background concentration.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.60	Current results exceed statistically derived current background concentration in MW385 and MW388.
Calcium	Tolerance Interval	0.18	Current results exceed statistically derived current background concentration in MW373.
Conductivity	Tolerance Interval	0.08	Current results exceed statistically derived current background concentration in MW373.
Dissolved Solids	Tolerance Interval	0.15	Current results exceed statistically derived current background concentration in MW373.
Magnesium	Tolerance Interval	0.19	Current results exceed statistically derived current background concentration in MW373.
Oxidation-Reduction Potential	Tolerance Interval	0.28	No exceedance of statistically derived current background concentration.
Sulfate	Tolerance Interval	0.30	Current results exceed statistically derived current background concentration in MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.49	Current results exceed statistically derived current background concentration in MW370, MW373, MW385, and MW388.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.320

S= 0.182 **CV(1)**=0.567

K factor=** 3.188

TL(1)= 0.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.259

S= 0.503

CV(2) = -0.400

K factor**= 3.188

TL(2) = 0.345

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.393 -0.9349/16/2002 0.2 -1.60910/16/2002 0.2 -1.6091/13/2003 0.501 -0.691-1.609 4/8/2003 0.2 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/14/2004 0.668 -0.403

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A			
MW390	Downgradien	t Yes	0.102	NO	-2.283	N/A			
MW393	Downgradien	t No	0.05	N/A	-2.996	N/A			
MW396	Ungradient	Ves	0.038	NO	-3 270	N/Δ			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison Boron** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.425

CV(1)=1.497 S = 0.636

K factor=** 3.188

TL(1) = 2.454

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.322 S = 0.814

CV(2) = -0.616

K factor=** 3.188

TL(2) = 1.274

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

	Well Number:	MW396	
•	Date Collected	Result	LN(Result)
	8/13/2002	2	0.693
	9/16/2002	0.2	-1.609
	10/16/2002	0.2	-1.609
	1/13/2003	0.2	-1.609
	4/8/2003	0.2	-1.609
	7/16/2003	0.2	-1.609
	10/14/2003	0.2	-1.609
	1/14/2004	0.2	-1.609

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	0.015	N/A	-4.200	N/A		
MW390	Downgradien	t Yes	0.00726	N/A	-4.925	NO		
MW393	Downgradien	t Yes	0.0184	N/A	-3.995	NO		
MW396	Upgradient	Yes	0.00516	N/A	-5.267	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.388

CV(1)=0.236

K factor=** 3.188

TL(1) = 2.430

LL(1)=N/A

Statistics-Transformed Background Data

X= 0.301

S = 0.327S = 0.252

CV(2)=0.838

K factor=** 3.188

TL(2) = 1.105

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	0.156	NO	-1.858	N/A			
MW390	Downgradien	t Yes	0.693	NO	-0.367	N/A			
MW393	Downgradien	t Yes	0.182	NO	-1.704	N/A			
MW396	Upgradient	Yes	1.22	NO	0.199	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis H Calcium UNITS: mg/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.825 S = 8.445 CV(1) = 0.202

K factor=** 3.188 **TL**(

TL(1) = 68.748

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.711

S = 0.241 CV(2) = 0.065

K factor=** 3.188

TL(2) = 4.479

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 38.4 3.648 9/16/2002 42.9 3.759 10/16/2002 40.2 3.694 1/13/2003 46.7 3.844 4/8/2003 49.8 3.908 7/16/2003 43.3 3.768 10/14/2003 49.7 3.906 1/14/2004 23.6 3.161

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	23.4	NO	3.153	N/A		
MW390	Downgradien	t Yes	31.3	NO	3.444	N/A		
MW393	Downgradien	t Yes	11.6	NO	2.451	N/A		
MW396	Upgradient	Yes	34.7	NO	3.547	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.375 S = 0.744

CV(1)=0.021

K factor=** 3.188

TL(1)= 37.747

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.566

CV(2)=0.006

K factor=** 3.188

TL(2)= 3.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Partially Dry Wells

Well No. Gradient

S = 0.021

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	18.5	NO	2.918	N/A			
MW390	Downgradien	t No	20	N/A	2.996	N/A			
MW393	Downgradien	t No	20	N/A	2.996	N/A			
MW396	Upgradient	No	20	N/A	2.996	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historic Chloride UNITS: mg/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 101.725 S = 5.245 CV(1) = 0.052

K factor=** 3.188

TL(1)= 118.447

LL(1)=N/A

Statistics-Transformed Background Data

X= 4.621

S= 0.053 **CV(2)**=0.011

K factor=** 3.188

TL(2)= 4.789

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 91.6 4.517 9/16/2002 98.3 4.588 10/16/2002 101.4 4.619 1/13/2003 108.3 4.685 100.5 4/8/2003 4.610 7/16/2003 102.5 4.630 10/14/2003 106.8 4.671 1/14/2004 104.4 4.648

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	16.4	NO	2.797	N/A			
MW390	Downgradien	t Yes	73.2	NO	4.293	N/A			
MW393	Downgradien	t Yes	15.9	NO	2.766	N/A			
MW396	Upgradient	Yes	80.7	NO	4.391	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.008

S = 0.011 CV(1) = 1.340

K factor=** 3.188

TL(1)= 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.645 S = 1.339

CV(2) = -0.237

K factor=** 3.188

TL(2) = -1.377

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	0.00129	N/A	-6.653	NO			
MW390	Downgradien	t Yes	0.00022	N/A	-8.422	NO			
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A			
MW396	Upgradient	Yes	0.00091	N/A	-7.002	NO			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 922.500 S = 107.616 CV(1) = 0.117

K factor=** 3.188

TL(1)= 1265.579 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.822

 $S = 0.111 \quad CV(2) = 0.016$

K factor=** 3.188

TL(2) = 7.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 784 6.664 9/30/2002 871 6.770 10/16/2002 868 6.766 1/13/2003 912 6.816 4/8/2003 942 6.848 7/16/2003 910 6.813 10/14/2003 935 6.841 1/14/2004 1158 7.054

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	553	NO	6.315	N/A			
MW390	Downgradien	t Yes	713	NO	6.569	N/A			
MW393	Downgradien	t Yes	411	NO	6.019	N/A			
MW396	Upgradient	Yes	763	NO	6.637	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

S = 0.014 CV(1) = 0.481

K factor=** 3.188

TL(1) = 0.072

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.650 S = 0.414

CV(2) = -0.113

K factor=** 3.188

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

(Current Quarter Data							
W	ell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
N	AW386	Sidegradient	No	0.00086	N/A	-7.059	N/A	
N	AW390	Downgradien	t No	0.00105	N/A	-6.859	N/A	
N	AW393	Downgradien	t No	0.00057	N/A	-7.470	N/A	
N	AW396	Upgradient	Yes	0.00223	NO	-6.106	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.395

CV(1)=1.202

K factor=** 3.188

TL(1)= 6.743 **I**

LL(1)=N/A

Statistics-Transformed Background Data

X= -0.043 **S**= 0.814

314 **CV(2)=**-18.867

K factor=** 3.188

TL(2)= 2.553

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Partially Dry Wells

Well No. Gradient

S = 1.677

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	2.29	N/A	0.829	NO	
MW390	Downgradien	t Yes	5.58	N/A	1.719	NO	
MW393	Downgradien	t Yes	1.89	N/A	0.637	NO	
MW396	Upgradient	Yes	0.7	N/A	-0.357	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

K factor=** 3.188

TL(1)= 882.980 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.298

S = 0.162 CV(2) = 0.026

K factor=** 3.188

TL(2) = 6.815

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	381	NO	5.943	N/A		
MW390	Downgradien	t Yes	401	NO	5.994	N/A		
MW393	Downgradien	t Yes	237	NO	5.468	N/A		
MW396	Upgradient	Yes	437	NO	6.080	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.150

CV(1)=0.132

K factor=** 3.188

TL(1) = 3.052

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.759 S

S= 0.123

S = 0.283

CV(2)=0.162

K factor=** 3.188

TL(2)=1.150

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	2	0.693
1/13/2003	2	0.693
4/8/2003	2	0.693
7/16/2003	2.7	0.993
10/14/2003	2.5	0.916
1/14/2004	2	0.693

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A	
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A	
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A	
MW396	Upgradient	Yes	0.257	NO	-1.359	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.796

S= 3.723 **CV(1)**=0.478

K factor=** 3.188

TL(1)= 19.666

LL(1)=N/A

Statistics-Transformed Background Data

X= 1.880

S = 0.723

CV(2) = 0.384

K factor=** 3.188

TL(2) = 4.184

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.8	0.588
9/16/2002	9.53	2.254
10/16/2002	7.43	2.006
1/13/2003	9.93	2.296
4/8/2003	10.2	2.322
7/16/2003	9.16	2.215
10/14/2003	11.9	2.477
1/14/2004	2.42	0.884

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.0579	NO	-2.849	N/A	
MW390	Downgradien	t Yes	0.0856	NO	-2.458	N/A	
MW393	Downgradien	t Yes	0.817	NO	-0.202	N/A	
MW396	Upgradient	Yes	0.34	NO	-1.079	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 16.876 **S**= 3.313

CV(1)=0.196

K factor=** 3.188

TL(1) = 27.438

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.804

S= 0.240

CV(2) = 0.086

K factor=** 3.188

TL(2) = 3.569

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	10.3	NO	2.332	N/A	
MW390	Downgradien	t Yes	13.7	NO	2.617	N/A	
MW393	Downgradien	t Yes	3.56	NO	1.270	N/A	
MW396	Upgradient	Yes	16	NO	2.773	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.774

S = 0.353 CV(1) = 0.456

K factor=** 3.188

TL(1)= 1.900

LL(1)=N/A

Statistics-Transformed Background Data

X= -0.566 **S**= 1.192

2 **CV(2)=**-2.105

K factor=** 3.188

TL(2) = 3.235

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.588	NO	-0.531	N/A
MW390	Downgradien	t No	0.005	N/A	-5.298	N/A
MW393	Downgradien	t Yes	0.0242	NO	-3.721	N/A
MW396	Upgradient	Yes	0.198	NO	-1.619	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.011 CV(1) = 1.507

K factor=** 3.188

TL(1)= 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.928

S= 1.420

CV(2) = -0.240

K factor=** 3.188

TL(2) = -1.400

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.68910/16/2002 0.001 -6.9081/13/2003 0.00128 -6.661 0.00271 -5.911 4/8/2003 7/16/2003 0.00117 -6.75110/14/2003 0.001 -6.908 1/14/2004 0.001 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

MW396 Upgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

-7.543

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.00057	N/A	-7.470	NO	
MW390	Downgradien	t Yes	0.00047	N/A	-7.663	NO	
MW393	Downgradien	t Yes	0.00022	N/A	-8.422	NO	

N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

0.00053

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

S = 0.021

CV(1) = 1.272

K factor=** 3.188

TL(1) = 0.083

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.706 S = 1.057

CV(2) = -0.225

K factor=** 3.188

TL(2) = -1.338

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:		MW396			
	Date Collected	Result	LN(Result)		
	8/13/2002	0.05	-2.996		
	9/16/2002	0.05	-2.996		
	10/16/2002	0.005	-5.298		
	1/13/2003	0.005	-5.298		
	4/8/2003	0.00571	-5.166		
	7/16/2003	0.005	-5.298		
	10/14/2003	0.005	-5.298		
	1/14/2004	0.005	-5.298		

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.00178	N/A	-6.331	NO	
MW390	Downgradien	t Yes	0.00143	N/A	-6.550	NO	
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A	
MW396	Upgradient	Yes	0.00183	N/A	-6.303	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Oxidation-Reduction Potential UNITS: mV**

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.000 S = 61.952 CV(1) = 4.766

K factor=** 3.188

TL(1)= 210.502 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.364

S = 0.333

CV(2) = 0.076

K factor=** 3.188

TL(2) = 4.736

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: Date Collected		MW396			
		Result	LN(Result)		
	8/13/2002	60	4.094		
	4/8/2003	71	4.263		
	7/16/2003	-56	#Func!		
	10/14/2003	-54	#Func!		
	1/14/2004	-22	#Func!		
	4/12/2004	-6	#Func!		
	7/20/2004	-3	#Func!		
	10/12/2004	114	4.736		

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	627	N/A	6.441	YES
MW390	Downgradien	t Yes	397	N/A	5.984	YES
MW393	Downgradien	t Yes	394	N/A	5.976	YES
MW396	Upgradient	Yes	330	N/A	5.799	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386

MW390 MW393

MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.460

S= 0.350 **CV(1)**=0.054

K factor=** 3.736

TL(1) = 7.766

LL(1)=5.1541

Statistics-Transformed Background Data

X= 1.864

S = 0.054

CV(2)=0.029

K factor**= 3.736

TL(2) = 2.067

LL(2)=1.6621

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data	ta	Da	rter	Oua	rent	Cui
----------------------	----	----	------	-----	------	-----

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	6.39	NO	1.855	N/A
MW390	Downgradien	t Yes	6.33	NO	1.845	N/A
MW393	Downgradien	t Yes	6.2	NO	1.825	N/A
MW396	Upgradient	Yes	6.62	NO	1.890	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison Potassium** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.411

CV(1)=0.282

K factor=** 3.188

TL(1) = 2.682

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.311

S = 0.271

S = 0.399

CV(2) = 0.870

K factor=** 3.188

TL(2) = 1.175

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.693 2. 9/16/2002 2 0.693 0.978 -0.022 10/16/2002 1/13/2003 1.08 0.077 0.113 4/8/2003 1.12 7/16/2003 1.38 0.322 10/14/2003 0.215 1.24 0.399 1/14/2004 1.49

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter D	ata
Well No.	Gradient	Detected?

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.324	NO	-1.127	N/A
MW390	Downgradien	t Yes	0.342	NO	-1.073	N/A
MW393	Downgradien	t Yes	0.403	NO	-0.909	N/A
MW396	Upgradient	Yes	0.89	NO	-0.117	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.157

 $S = 0.280 \quad CV(1) = 1.782$

K factor=** 3.188

TL(1)=1.050

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.836 S = 1.229

CV(2) = -0.669

K factor=** 3.188

TL(2) = -0.371

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
10/16/2002	0.69	-0.371
1/13/2003	-0.00693	#Func!
10/14/2003	-0.0514	#Func!
1/14/2004	0.494	-0.705
4/12/2004	-0.082	#Func!
7/20/2004	0.0879	-2.432
10/12/2004	0.0408	-3.199
1/18/2005	0.0844	-2.472

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	1.04	N/A	0.039	N/A
MW390	Downgradien	t Yes	2.04	N/A	0.713	YES
MW393	Downgradien	t No	1.27	N/A	0.239	N/A
MW396	Upgradient	No	0.785	N/A	-0.242	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historica Sodium UNITS: mg/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

K factor**= 3.188 **TL**(

TL(1)= 208.973 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.595 S = 0.492

CV(2) = 0.107

K factor=** 3.188

TL(2) = 6.163

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well N	lumber:	MW396	
Date C	ollected	Result	LN(Result)
8/13/20	002	115	4.745
9/16/20	002	116	4.754
10/16/2	2002	117	4.762
1/13/20	003	122	4.804
4/8/200	03	106	4.663
7/16/20	003	117	4.762
10/14/2	2003	132	4.883
1/14/20	004	29.6	3.388

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	104	NO	4.644	N/A
MW390	Downgradien	t Yes	96.1	NO	4.565	N/A
MW393	Downgradien	t Yes	79.3	NO	4.373	N/A
MW396	Upgradient	Yes	115	NO	4.745	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.463 S = 8.876

CV(1)=0.395

K factor=** 3.188

TL(1) = 50.759

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.054

S= 0.351

CV(2) = 0.115

K factor=** 3.188

TL(2) = 4.173

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	44.4	NO	3.793	N/A
MW390	Downgradien	t Yes	36.8	NO	3.605	N/A
MW393	Downgradien	t Yes	15.6	NO	2.747	N/A
MW396	Upgradient	Yes	24.9	NO	3.215	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.624

CV(1)=0.860

K factor=** 3.188

TL(1) = 28.531

LL(1)=N/A

Statistics-Transformed Background Data

X= 1.498 **S**= 1.321

CV(2)=0.882

K factor=** 3.188

TL(2) = 5.710

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells

Well No. Gradient

S = 6.558

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

C	uı	rrei	ıt (Įu	arte	er D	ata	
** 7	11	a r		_	1.			_

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW386	Sidegradient	No	-6.37	N/A	#Error	N/A
MW390	Downgradien	t Yes	64	YES	4.159	N/A
MW393	Downgradien	t No	-10.3	N/A	#Error	N/A
MW396	Upgradient	No	0.171	N/A	-1.766	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison** Thorium-230 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.103

S = 0.206CV(1)=2.010 **K factor**=** 3.188

TL(1) = 0.760

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.743 S = 2.515

CV(2) = -0.917

K factor=** 3.188

TL(2) = -0.611

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
10/12/2004	0.543	-0.611
1/18/2005	0.00196	-6.235
4/19/2005	0.285	-1.255
7/11/2005	-0.0108	#Func!
10/17/2005	0.0566	-2.872
1/19/2006	-0.00122	#Func!
4/11/2006	-0.049	#Func!
7/17/2006	-0.0049	#Func!

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.739	N/A	-0.302	YES
MW390	Downgradien	t No	0.191	N/A	-1.655	N/A
MW393	Downgradien	t No	0.481	N/A	-0.732	N/A
MW396	Upgradient	No	0.415	N/A	-0.879	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.988

CV(1)=0.470

K factor=** 3.188

TL(1) = 24.959

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.210

S = 0.454

S = 4.696

CV(2) = 0.205

K factor=** 3.188

TL(2) = 3.657

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	19	2.944
9/16/2002	14.6	2.681
10/16/2002	10.4	2.342
1/13/2003	4.4	1.482
4/8/2003	7	1.946
7/16/2003	7.3	1.988
10/14/2003	9.1	2.208
1/14/2004	8.1	2.092

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	5.87	NO	1.770	N/A		
MW390	Downgradien	t Yes	2.08	NO	0.732	N/A		
MW393	Downgradien	t Yes	2.1	NO	0.742	N/A		
MW396	Upgradient	Yes	4.64	NO	1.535	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 142.650 S = 53.533 CV(1) = 0.375

K factor=** 3.188

TL(1)= 313.314 LL(1)=N/A

Statistics-Transformed Background Data

X = 4.896S = 0.390 CV(2) = 0.080

K factor=** 3.188

TL(2) = 6.138

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 193 5.263 9/16/2002 190 5.247 10/16/2002 221 5.398 1/13/2003 106 4.663 4/8/2003 77.8 4.354 7/16/2003 122 4.804 10/14/2003 4.459 86.4 1/14/2004 145 4.977

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	167	NO	5.118	N/A		
MW390	Downgradien	t Yes	17.1	NO	2.839	N/A		
MW393	Downgradien	t Yes	15.4	NO	2.734	N/A		
MW396	Ungradient	Ves	65.7	NO	4 185	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TLUpper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison** Uranium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.001

S = 0.000CV(1)=0.314 **K factor**=** 3.188

TL(1) = 0.002

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.821 S = 0.245

CV(2) = -0.036

K factor=** 3.188

TL(2) = -6.040

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.002 -6.2159/16/2002 0.001 -6.90810/16/2002 0.001 -6.9081/13/2003 0.001 -6.908 -6.908 4/8/2003 0.001 7/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/14/2004 0.001 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	0.0002	N/A	-8.517	N/A		
MW390	Downgradien	t Yes	0.00011	NO	-9.115	N/A		
MW393	Downgradien	t No	0.0002	N/A	-8.517	N/A		
MW396	Upgradient	Yes	0.00015	NO	-8.805	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.044

S= 0.035 **CV(1)**=0.786

K factor=** 3.188

TL(1)= 0.156

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.342 S = 0.682

CV(2) = -0.204

K factor=** 3.188

TL(2) = -1.168

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.1 -2.3039/16/2002 0.1 -2.30310/16/2002 0.025 -3.6891/13/2003 0.035 -3.352 0.035 4/8/2003 -3.3527/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 1/14/2004 0.02 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW390	Downgradien	t No	0.01	N/A	-4.605	N/A		
MW393	Downgradien	t No	0.01	N/A	-4.605	N/A		
MW396	Upgradient	Yes	0.00573	NO NO	-5.162	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 0.221S = 0.061CV(1)=0.277TL(1) = 0.376LL(1)=N/A **Statistics-Transformed Background** X = -1.534 S = 0.212

Data

CV(2) = -0.138

K factor=** 2.523

TL(2) = -0.999

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.2 -1.6097/14/2003 0.2 -1.609-0.851 10/13/2003 0.427 1/13/2004 0.309 -1.1744/13/2004 0.2 -1.609 7/21/2004 0.202 -1.599Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.2 -1.6099/16/2002 0.2 -1.609 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW220	Upgradient	No	0.05	N/A	-2.996	N/A		
MW221	Downgradien	t No	0.05	N/A	-2.996	N/A		
MW222	Downgradien	t Yes	0.0372	NO	-3.291	N/A		
MW223	Downgradien	t No	0.05	N/A	-2.996	N/A		
MW224	Downgradien	t No	0.05	N/A	-2.996	N/A		
MW369	Downgradien	t Yes	0.0723	NO	-2.627	N/A		
MW372	Downgradien	t Yes	0.0241	NO	-3.726	N/A		
MW384	Sidegradient	No	0.05	N/A	-2.996	N/A		
MW387	Downgradien	t Yes	0.0747	NO	-2.594	N/A		
MW391	Downgradien	t No	0.05	N/A	-2.996	N/A		
MW394	Upgradient	No	0.05	N/A	-2.996	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 14.273 S = 13.883 CV(1) = 0.973

K factor=** 2.523

TL(1)= 49.300 **LL(**

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.213 S = 1.033 CV

CV(2) = 0.467

K factor=** 2.523

TL(2) = 4.819

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	15.2	2.721
1/15/2003	42.5	3.750
4/10/2003	45.4	3.816
7/14/2003	8.53	2.144
10/13/2003	11.7	2.460
1/13/2004	13.5	2.603
4/13/2004	33.5	3.512
7/21/2004	13.7	2.617
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.615
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 5.03	1.615
Date Collected 8/13/2002 9/16/2002	Result 5.03 5.57	1.615 1.717
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 5.03 5.57 12.8	1.615 1.717 2.549
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 5.03 5.57 12.8 4.3	1.615 1.717 2.549 1.459
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.03 5.57 12.8 4.3 9.52	1.615 1.717 2.549 1.459 2.253

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW220	Upgradient	Yes	9.31	N/A	2.231	N/A		
MW221	Downgradien	t No	-5.09	N/A	#Error	N/A		
MW222	Downgradien	t No	10.9	N/A	2.389	N/A		
MW223	Downgradien	t No	-4.37	N/A	#Error	N/A		
MW224	Downgradien	t No	0.754	N/A	-0.282	N/A		
MW369	Downgradien	t Yes	21.1	N/A	3.049	N/A		
MW372	Downgradien	t Yes	13.9	N/A	2.632	N/A		
MW384	Sidegradient	Yes	100	YES	4.605	N/A		
MW387	Downgradien	t Yes	189	YES	5.242	N/A		
MW391	Downgradien	t No	2.48	N/A	0.908	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

5.97

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

N/A

MW384 MW387

1.787

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW394 Upgradient

No

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.425 S = 0.615 CV(1) = 1.447 K factor** = 2.523
 TL(1) = 1.976 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.322 S = 0.786 CV(2) = -0.595 K factor** = 2.523
 TL(2) = 0.663 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.2 -1.6097/14/2003 0.2 -1.609-1.609 10/13/2003 0.2 1/13/2004 0.2 -1.6094/13/2004 0.2 -1.609 7/21/2004 0.2 -1.609Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW220	Upgradient	Yes	0.00577	N/A	-5.155	NO			
MW221	Downgradien	t Yes	0.0117	N/A	-4.448	NO			
MW222	Downgradien	t Yes	0.0112	N/A	-4.492	NO			
MW223	Downgradien	t Yes	0.00755	N/A	-4.886	NO			
MW224	Downgradien	t Yes	0.0208	N/A	-3.873	NO			
MW369	Downgradien	t Yes	0.0136	N/A	-4.298	NO			
MW372	Downgradien	t Yes	1.35	N/A	0.300	NO			
MW384	Sidegradient	Yes	0.0108	N/A	-4.528	NO			
MW387	Downgradien	t Yes	0.0239	N/A	-3.734	NO			
MW391	Downgradien	t Yes	0.114	N/A	-2.172	NO			
MW394	Upgradient	Yes	0.0233	N/A	-3.759	NO			
37/4 5									

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A

Historical Racksmannd Data from

Data

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	,
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.234	NO	-1.452	N/A		
MW221	Downgradien	t Yes	0.472	NO	-0.751	N/A		
MW222	Downgradien	t Yes	0.469	NO	-0.757	N/A		
MW223	Downgradien	t Yes	0.44	NO	-0.821	N/A		
MW224	Downgradien	t Yes	0.504	NO	-0.685	N/A		
MW369	Downgradien	t Yes	0.43	NO	-0.844	N/A		
MW372	Downgradien	t Yes	0.582	NO	-0.541	N/A		
MW384	Sidegradient	Yes	0.421	NO	-0.865	N/A		
MW387	Downgradien	t Yes	0.534	NO	-0.627	N/A		
MW391	Downgradien	t Yes	0.553	NO	-0.592	N/A		
MW394	Upgradient	Yes	0.607	NO	-0.499	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 27.638 S = 4.743 CV(1) = 0.172 K factor** = 2.523
 TL(1) = 39.604 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.304 S = 0.183 CV(2) = 0.055 K factor** = 2.523
 TL(2) = 3.765 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 23.6 3.161 1/15/2003 25.9 3.254 4/10/2003 30.4 3.414 7/14/2003 33.9 3.523 10/13/2003 21.3 3.059 1/13/2004 20.3 3.011 4/13/2004 23.8 3.170 7/21/2004 19 2.944 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 29.5 3.384 9/16/2002 29.9 3.398 10/16/2002 31.2 3.440 1/13/2003 30.7 3.424 4/10/2003 34.4 3.538 7/16/2003 29.6 3.388 10/14/2003 30.3 3.411 1/13/2004 28.4 3.346

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW220	Upgradient	Yes	21.8	NO	3.082	N/A		
MW221	Downgradien	t Yes	20.6	NO	3.025	N/A		
MW222	Downgradien	t Yes	18.5	NO	2.918	N/A		
MW223	Downgradien	t Yes	21.6	NO	3.073	N/A		
MW224	Downgradien	t Yes	23.2	NO	3.144	N/A		
MW369	Downgradien	t Yes	17.8	NO	2.879	N/A		
MW372	Downgradien	t Yes	62.6	YES	4.137	N/A		
MW384	Sidegradient	Yes	27	NO	3.296	N/A		
MW387	Downgradien	t Yes	31.2	NO	3.440	N/A		
MW391	Downgradien	t Yes	30	NO	3.401	N/A		
MW394	Upgradient	Yes	26.8	NO	3.288	N/A		
M/A Dogg	lts identified as N	Ion Dotoots	lurina lah	orotory analysis or	data validation	and ware not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 35.000 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 35.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 3.555 S = 0.000 CV(2) = 0.000 K factor** = 2.523
 TL(2) = 3.555 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35 3.555 1/15/2003 35 3.555 4/10/2003 35 3.555 7/14/2003 35 3.555 10/13/2003 35 3.555 1/13/2004 35 3.555 4/13/2004 35 3.555 7/21/2004 35 3.555 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 10/16/2002 35 3.555 1/13/2003 35 3.555 4/10/2003 35 3.555 7/16/2003 35 3.555

35

35

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	120	YES	4.787	N/A	
MW221	Downgradien	t No	20	N/A	2.996	N/A	
MW222	Downgradien	t No	20	N/A	2.996	N/A	
MW223	Downgradien	t No	20	N/A	2.996	N/A	
MW224	Downgradien	t No	20	N/A	2.996	N/A	
MW369	Downgradien	t No	20	N/A	2.996	N/A	
MW372	Downgradien	t No	20	N/A	2.996	N/A	
MW384	Sidegradient	No	20	N/A	2.996	N/A	
MW387	Downgradien	t No	20	N/A	2.996	N/A	
MW391	Downgradien	t No	20	N/A	2.996	N/A	
MW394	Upgradient	No	20	N/A	2.996	N/A	
N/A - Resu	lts identified as N	Ion-Detects (lurino lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

3.555

3.555

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW220

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison** Chloride UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.044 S = 11.278 CV(1) = 0.230

K factor=** 2.523

TL(1) = 77.499LL(1)=N/A

Statistics-Transformed Background Data

X = 3.866 S = 0.244

CV(2) = 0.063

K factor=** 2.523

TL(2) = 4.482

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	44.6	3.798
1/15/2003	43.2	3.766
4/10/2003	31.5	3.450
7/14/2003	30.8	3.428
10/13/2003	40.9	3.711
1/13/2004	40.8	3.709
4/13/2004	37.5	3.624
7/21/2004	40.8	3.709
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.101
Date Collected	Result	
Date Collected 8/13/2002	Result 60.4	4.101
Date Collected 8/13/2002 9/16/2002	Result 60.4 60.3	4.101 4.099
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 60.4 60.3 58	4.101 4.099 4.060
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 60.4 60.3 58 60.7	4.101 4.099 4.060 4.106
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 60.4 60.3 58 60.7 62.9	4.101 4.099 4.060 4.106 4.142

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	22.2	NO	3.100	N/A	
MW221	Downgradien	t Yes	34	NO	3.526	N/A	
MW222	Downgradien	t Yes	33.7	NO	3.517	N/A	
MW223	Downgradien	t Yes	33.9	NO	3.523	N/A	
MW224	Downgradien	t Yes	37.5	NO	3.624	N/A	
MW369	Downgradien	t Yes	35.2	NO	3.561	N/A	
MW372	Downgradien	t Yes	44	NO	3.784	N/A	
MW384	Sidegradient	Yes	41.6	NO	3.728	N/A	
MW387	Downgradien	t Yes	46.1	NO	3.831	N/A	
MW391	Downgradien	t Yes	42.2	NO	3.742	N/A	
MW394	Upgradient	Yes	50	NO	3.912	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor**= 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.609 5 1/15/2003 5 1.609 4/10/2003 5 1.609 7/14/2003 5 1.609 5 10/13/2003 1.609 1/13/2004 5 1.609 4/13/2004 5 1.609 5 7/21/2004 1.609 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	1	N/A	0.000	N/A	
MW221	Downgradien	t No	1	N/A	0.000	N/A	
MW222	Downgradien	t No	1	N/A	0.000	N/A	
MW223	Downgradien	t No	1	N/A	0.000	N/A	
MW224	Downgradien	t No	1	N/A	0.000	N/A	
MW369	Downgradien	t No	1	N/A	0.000	N/A	
MW372	Downgradien	t No	1	N/A	0.000	N/A	
MW384	Sidegradient	No	1	N/A	0.000	N/A	
MW387	Downgradien	t No	1	N/A	0.000	N/A	
MW391	Downgradien	t Yes	0.43	NO	-0.844	N/A	
MW394	Upgradient	No	1	N/A	0.000	N/A	
N/A Pagu	Ite identified as N	Ion Detects	luring lab	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.016 S = 0.040 CV(1) = 2.440 K factor** = 2.523
 TL(1) = 0.116 LL(1) = N/A

 Statistics-Transformed Background
 X = -5.582 S = 1.573 CV(2) = -0.282 K factor** = 2.523
 TL(2) = -1.613 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0041 -5.4971/15/2003 0.00496 -5.3060.00289 4/10/2003 -5.8467/14/2003 0.161 -1.826-3.790 0.0226 10/13/2003 1/13/2004 0.00464 -5.3734/13/2004 0.001 -6.908 7/21/2004 0.00264 -5.937Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/16/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/10/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00012	N/A	-9.028	NO	
MW221	Downgradien	t Yes	0.0016	N/A	-6.438	NO	
MW222	Downgradien	t Yes	0.00032	N/A	-8.047	NO	
MW223	Downgradien	t Yes	0.00214	N/A	-6.147	NO	
MW224	Downgradien	t Yes	0.00021	N/A	-8.468	NO	
MW369	Downgradien	t Yes	0.00617	N/A	-5.088	NO	
MW372	Downgradien	t Yes	0.00044	N/A	-7.729	NO	
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW387	Downgradien	t Yes	0.00019	N/A	-8.568	NO	
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW394	Upgradient	No	0.001	N/A	-6.908	N/A	
N/A - Resu	lts identified as N	Ion-Detects	luring labo	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 382.132 S = 107.134 CV(1) = 0.280

K factor=** 2.523

TL(1)= 652.432

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.716 S = 1.164 CV(2) = 0.204

K factor=** 2.523

TL(2) = 8.652

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 5.908 368 1/15/2003 433.2 6.071 489 4/10/2003 6.192 7/14/2003 430 6.064 10/13/2003 346 5.846 1/13/2004 365 5.900 4/13/2004 416 6.031 7/21/2004 353 5.866 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 406 6.006 9/16/2002 418 6.035 10/16/2002 411 6.019 1/13/2003 6.045 422 4/10/2003 420 6.040 7/16/2003 6.082 438 10/14/2003 3.91 1.364 5.979 1/13/2004 395

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	343	NO	5.838	N/A	
MW221	Downgradien	t Yes	334	NO	5.811	N/A	
MW222	Downgradien	t Yes	359	NO	5.883	N/A	
MW223	Downgradien	t Yes	404	NO	6.001	N/A	
MW224	Downgradien	t Yes	445	NO	6.098	N/A	
MW369	Downgradien	t Yes	390	NO	5.966	N/A	
MW372	Downgradien	t Yes	758	YES	6.631	N/A	
MW384	Sidegradient	Yes	474	NO	6.161	N/A	
MW387	Downgradien	t Yes	514	NO	6.242	N/A	
MW391	Downgradien	t Yes	460	NO	6.131	N/A	
MW394	Upgradient	Yes	395	NO	5.979	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.010 CV(1) = 0.429 K factor**= 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.794 S = 0.312 CV(2) = -0.082 K factor**= 2.523
 TL(2) = -3.007 LL(2) = N/A

Historical Poolsonound Data from

Data

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Historical Background Data from				
Upgradient Wells with Transformed Result				

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0211	-3.858
1/15/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/14/2003	0.02	-3.912
10/13/2003	0.02	-3.912
1/13/2004	0.02	-3.912
4/13/2004	0.02	-3.912
7/21/2004	0.02	-3.912
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	` ,
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.05 0.05 0.02	-2.996 -2.996 -3.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.05 0.05 0.02 0.02	-2.996 -2.996 -3.912 -3.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.05 0.05 0.02 0.02 0.02	-2.996 -2.996 -3.912 -3.912

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.00075	N/A	-7.195	N/A	
MW221	Downgradien	t No	0.00098	N/A	-6.928	N/A	
MW222	Downgradien	t No	0.00039	N/A	-7.849	N/A	
MW223	Downgradien	t No	0.00108	N/A	-6.831	N/A	
MW224	Downgradien	t No	0.0005	N/A	-7.601	N/A	
MW369	Downgradien	t Yes	0.00133	NO	-6.623	N/A	
MW372	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW384	Sidegradient	No	0.00043	N/A	-7.752	N/A	
MW387	Downgradien	t No	0.0005	N/A	-7.601	N/A	
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW394	Upgradient	No	0.00073	N/A	-7.222	N/A	
N/A Pogui	lts identified as N	Ion Dotoots	during lob	oratory analysis or	data validation	and ware not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 3.784
 S= 1.887
 CV(1)=0.499 K factor**= 2.523
 TL(1)=8.545 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.182
 S= 0.612
 CV(2)=0.518 K factor**= 2.523
 TL(2)=2.727 LL(2)=N/A

Data

10/14/2003

1/13/2004

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.915 6.79 1/15/2003 7.25 1.981 4/10/2003 3.6 1.281 7/14/2003 0.94 -0.0620.501 10/13/2003 1.65 1/13/2004 3.48 1.247 4/13/2004 1.05 0.049 7/21/2004 4.46 1.495 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 6.09 1.807 9/16/2002 3.85 1.348 10/16/2002 5.11 1.631 1/13/2003 1.343 3.83 4/10/2003 4.15 1.423 7/16/2003 0.604 1.83

3.33

3.14

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	5.2	NO	1.649	N/A	
MW221	Downgradien	t Yes	3.6	NO	1.281	N/A	
MW222	Downgradien	t Yes	4.07	NO	1.404	N/A	
MW223	Downgradien	t Yes	2.11	NO	0.747	N/A	
MW224	Downgradien	t Yes	3.91	NO	1.364	N/A	
MW369	Downgradien	t Yes	3.28	NO	1.188	N/A	
MW372	Downgradien	t Yes	0.76	NO	-0.274	N/A	
MW384	Sidegradient	Yes	4.31	NO	1.461	N/A	
MW387	Downgradien	t Yes	4.28	NO	1.454	N/A	
MW391	Downgradien	t Yes	3.91	NO	1.364	N/A	
MW394	Upgradient	Yes	4.69	NO	1.545	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.203

1.144

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 232.688 S = 27.490 CV(1) = 0.118

K factor=** 2.523

TL(1) = 302.045 LL(1) = N/A

Statistics-Transformed Background Data

X = 5.443 S = 0.118 CV(2) = 0.022

K factor=** 2.523

TL(2) = 5.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	224	NO	5.412	N/A	
MW221	Downgradien	t Yes	213	NO	5.361	N/A	
MW222	Downgradien	t Yes	210	NO	5.347	N/A	
MW223	Downgradien	t Yes	224	NO	5.412	N/A	
MW224	Downgradien	t Yes	243	NO	5.493	N/A	
MW369	Downgradien	t Yes	226	NO	5.421	N/A	
MW372	Downgradien	t Yes	441	YES	6.089	N/A	
MW384	Sidegradient	Yes	240	NO	5.481	N/A	
MW387	Downgradien	t Yes	279	NO	5.631	N/A	
MW391	Downgradien	t Yes	257	NO	5.549	N/A	
MW394	Upgradient	Yes	201	NO	5.303	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.897 S = 1.050 CV(1) = 1.170 K factor** = 2.523
 TL(1) = 3.545 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.565 S = 0.951 CV(2) = -1.683 K factor** = 2.523
 TL(2) = 1.834 LL(2) = N/A

Data Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.2 -1.6091/15/2003 0.2 -1.6094/10/2003 0.429 -0.8467/14/2003 4.33 1.466 0.593 10/13/2003 1.81 1/13/2004 0.793 -0.2324/13/2004 0.13 -2.040 7/21/2004 0.382 -0.962Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 1.34 0.293 9/16/2002 0.328 -1.115 0.322 10/16/2002 1.38 1/13/2003 0.262 1.3 4/10/2003 0.494 -0.7057/16/2003 0.62 -0.47810/14/2003 0.37 -0.9941/13/2004 0.251 -1.382

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.1	N/A	-2.303	N/A
MW221	Downgradien	t Yes	0.141	N/A	-1.959	NO
MW222	Downgradien	t Yes	0.0791	N/A	-2.537	NO
MW223	Downgradien	t No	0.1	N/A	-2.303	N/A
MW224	Downgradien	t No	0.1	N/A	-2.303	N/A
MW369	Downgradien	t Yes	0.146	N/A	-1.924	NO
MW372	Downgradien	t Yes	0.384	N/A	-0.957	NO
MW384	Sidegradient	Yes	0.0845	N/A	-2.471	NO
MW387	Downgradien	t Yes	0.38	N/A	-0.968	NO
MW391	Downgradien	t Yes	0.0444	N/A	-3.115	NO
MW394	Upgradient	Yes	0.0515	N/A	-2.966	NO
N/A - Resul	lts identified as N	Ion-Detects	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 10.796 S = 1.703 CV(1) = 0.158 K factor**= 2.523
 TL(1) = 15.092 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.368 X = 0.158 X = 0.158 X = 0.0067 X = 0.

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 9.16 2.215 1/15/2003 10 2.303 4/10/2003 10.8 2.380 7/14/2003 14.7 2.688 9.03 10/13/2003 2.201 1/13/2004 8.49 2.139 4/13/2004 9.7 2.272 7/21/2004 8.06 2.087 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 11.8 2.468 9/16/2002 12.1 2.493 10/16/2002 11.3 2.425 1/13/2003 10.3 2.332 4/10/2003 11.7 2.460 7/16/2003 12 2.485 10/14/2003 2.501 12.2 1/13/2004 11.4 2.434

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	9.16	NO	2.215	N/A	
MW221	Downgradien	t Yes	9.07	NO	2.205	N/A	
MW222	Downgradien	t Yes	8.39	NO	2.127	N/A	
MW223	Downgradien	t Yes	9.24	NO	2.224	N/A	
MW224	Downgradien	t Yes	10.2	NO	2.322	N/A	
MW369	Downgradien	t Yes	7.73	NO	2.045	N/A	
MW372	Downgradien	t Yes	24.8	YES	3.211	N/A	
MW384	Sidegradient	Yes	11.1	NO	2.407	N/A	
MW387	Downgradien	t Yes	13.4	NO	2.595	N/A	
MW391	Downgradien	t Yes	13.6	NO	2.610	N/A	
MW394	Upgradient	Yes	11.9	NO	2.477	N/A	
N/A - Resu	lts identified as N	Ion-Detects	during lab	oratory analysis or	data validatior	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.287 S = 0.619 CV(1) = 2.156 K factor** = 2.523
 TL(1) = 1.848 LL(1) = N/A

 Statistics-Transformed Background
 X = -2.455 S = 1.619 CV(2) = -0.659 K factor** = 2.523
 TL(2) = 1.630 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0306 -3.4871/15/2003 0.0291 -3.5370.0137 -4.290 4/10/2003 7/14/2003 2.54 0.932 -0.97310/13/2003 0.378 1/13/2004 0.159 -1.8394/13/2004 0.00707 -4.952 7/21/2004 0.0841 -2.476Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.542 -0.6129/16/2002 0.155 -1.864 10/16/2002 0.103 -2.2731/13/2003 0.128 -2.056 4/10/2003 0.005 -5.2987/16/2003 0.272 -1.30210/14/2003 0.0795 -2.532 1/13/2004 0.0658 -2.721

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.005	N/A	-5.298	N/A
MW221	Downgradien	t Yes	0.00822	N/A	-4.801	NO
MW222	Downgradien	t Yes	0.0155	N/A	-4.167	NO
MW223	Downgradien	t Yes	0.0375	N/A	-3.283	NO
MW224	Downgradien	t Yes	0.00567	N/A	-5.173	NO
MW369	Downgradien	t Yes	0.0129	N/A	-4.351	NO
MW372	Downgradien	t Yes	0.0161	N/A	-4.129	NO
MW384	Sidegradient	Yes	0.00914	N/A	-4.695	NO
MW387	Downgradien	t Yes	0.0372	N/A	-3.291	NO
MW391	Downgradien	t No	0.005	N/A	-5.298	N/A
MW394	Upgradient	Yes	0.00201	N/A	-6.210	NO
M/A Dogg	lta identified on N	Ion Datasta	dumin a labe	motomi omolivaje om	data validation	and rroma not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.006 S = 0.008 CV(1) = 1.261 K factor** = 2.523
 TL(1) = 0.026 LL(1) = N/A

 Statistics-Transformed Background
 X = -5.747 S = 1.205 CV(2) = -0.210 K factor** = 2.523
 TL(2) = -2.708 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.00558 -5.1891/15/2003 0.00983 -4.6220.0109 -4.519 4/10/2003 7/14/2003 0.00245 -6.012 0.00566 -5.174 10/13/2003 1/13/2004 0.00572 -5.1644/13/2004 0.001 -6.908 7/21/2004 0.00392 -5.542Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.689 10/16/2002 0.001 -6.9081/13/2003 0.001 -6.908 4/10/2003 0.001 -6.9087/16/2003 0.001 -6.90810/14/2003 0.001 -6.908 1/13/2004 0.001 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00172	N/A	-6.365	NO	
MW221	Downgradien	t Yes	0.00456	N/A	-5.390	NO	
MW222	Downgradien	t Yes	0.00031	N/A	-8.079	NO	
MW223	Downgradien	t Yes	0.00442	N/A	-5.422	NO	
MW224	Downgradien	t Yes	0.00063	N/A	-7.370	NO	
MW369	Downgradien	t No	0.0005	N/A	-7.601	N/A	
MW372	Downgradien	t Yes	0.00046	N/A	-7.684	NO	
MW384	Sidegradient	Yes	0.00035	N/A	-7.958	NO	
MW387	Downgradien	t No	0.0005	N/A	-7.601	N/A	
MW391	Downgradien	t No	0.0005	N/A	-7.601	N/A	
MW394	Upgradient	Yes	0.00032	N/A	-8.047	NO	
N/A - Resu	lts identified as N	Ion-Detects o	luring labo	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.127 S = 0.228 CV(1) = 1.790 K factor** = 2.523
 TL(1) = 0.701 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.617 S = 1.837 CV(2) = -0.508 K factor** = 2.523
 TL(2) = 1.019 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.418 -0.8721/15/2003 0.738 -0.3044/10/2003 0.544 -0.6097/14/2003 0.106-2.244-2.93910/13/2003 0.0529 1/13/2004 0.0209 -3.8684/13/2004 0.005 -5.298 7/21/2004 0.0192 -3.953Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.99610/16/2002 0.005 -5.2981/13/2003 0.005 -5.298 4/10/2003 0.005 -5.2987/16/2003 0.005 -5.29810/14/2003 0.005 -5.2981/13/2004 0.005 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0419	N/A	-3.172	NO
MW221	Downgradien	t Yes	0.124	N/A	-2.087	NO
MW222	Downgradien	t Yes	0.068	N/A	-2.688	NO
MW223	Downgradien	t Yes	0.666	N/A	-0.406	NO
MW224	Downgradien	t Yes	0.00374	N/A	-5.589	NO
MW369	Downgradien	t Yes	0.0114	N/A	-4.474	NO
MW372	Downgradien	t Yes	0.00121	N/A	-6.717	NO
MW384	Sidegradient	Yes	0.00128	N/A	-6.661	NO
MW387	Downgradien	t Yes	0.00071	N/A	-7.250	NO
MW391	Downgradien	t No	0.002	N/A	-6.215	N/A
MW394	Upgradient	Yes	0.00237	N/A	-6.045	NO
N/A - Resul	lts identified as N	Ion-Detects o	luring labo	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 179.872 **S**= 86.318 **CV(1)**=0.480

K factor=** 2.523

TL(1)= 397.652 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 4.861

 $S= 1.252 \quad CV(2)=0.258$

K factor=** 2.523

TL(2)= 8.021

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 205 5.323 1/15/2003 1.95 0.668 203 4/10/2003 5.313 7/14/2003 30 3.401 10/13/2003 107 4.673 1/13/2004 295 5.687 4/13/2004 190 5.247 7/21/2004 319 5.765 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 90 4.500 9/16/2002 240 5.481 10/16/2002 185 5.220 1/13/2003 220 5.394 4/10/2003 196 5.278 7/16/2003 5.147 172 10/14/2003 175 5.165 1/13/2004 249 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	672	YES	6.510	N/A		
MW221	Downgradien	t Yes	701	YES	6.553	N/A		
MW222	Downgradien	t Yes	638	YES	6.458	N/A		
MW223	Downgradien	t Yes	649	YES	6.475	N/A		
MW224	Downgradien	t Yes	623	YES	6.435	N/A		
MW369	Downgradien	t Yes	410	YES	6.016	N/A		
MW372	Downgradien	t Yes	220	NO	5.394	N/A		
MW384	Sidegradient	Yes	728	YES	6.590	N/A		
MW387	Downgradien	t Yes	405	YES	6.004	N/A		
MW391	Downgradien	t Yes	430	YES	6.064	N/A		
MW394	Upgradient	Yes	608	YES	6.410	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW220

MW221

MW222

MW223

MW224

MW369 MW384

MW387 MW391

MW394

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison** PCB, Total UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.212

S = 0.152CV(1)=0.715 **K factor**=** 2.523

TL(1) = 0.594

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.655 S = 0.376

CV(2) = -0.227

K factor=** 2.523

TL(2) = -0.706

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
7/14/2003	0.78	-0.248
10/13/2003	0.17	-1.772
7/21/2004	0.18	-1.715
7/14/2005	0.18	-1.715
7/17/2006	0.18	-1.715
7/18/2007	0.17	-1.772
10/24/2007	0.17	-1.772
1/24/2008	0.17	-1.772
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -1.772
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 0.17	-1.772
Date Collected 8/13/2002 9/16/2002	Result 0.17 0.17	-1.772 -1.772
Date Collected 8/13/2002 9/16/2002 7/16/2003	Result 0.17 0.17 0.17	-1.772 -1.772 -1.772
Date Collected 8/13/2002 9/16/2002 7/16/2003 10/14/2003	Result 0.17 0.17 0.17 0.17	-1.772 -1.772 -1.772 -1.772
Date Collected 8/13/2002 9/16/2002 7/16/2003 10/14/2003 7/20/2004	Result 0.17 0.17 0.17 0.17 0.18	-1.772 -1.772 -1.772 -1.772 -1.715

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradien	t No	0.0971	N/A	-2.332	N/A
MW372	Downgradien	t Yes	0.0523	NO	-2.951	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison PCB-1242 UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.146

S= 0.170 **CV(1)**=1.164

K factor=** 2.523

TL(1) = 0.573

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.149 S = 0.517

CV(2)=-0.241

K factor=** 2.523

TL(2)= -0.844

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
7/14/2003	0.78	-0.248
10/13/2003	0.09	-2.408
7/21/2004	0.1	-2.303
7/14/2005	0.1	-2.303
7/17/2006	0.1	-2.303
7/18/2007	0.1	-2.303
10/24/2007	0.1	-2.303
1/24/2008	0.1	-2.303
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -2.207
Date Collected	Result	
Date Collected 8/13/2002	Result 0.11	-2.207
Date Collected 8/13/2002 9/16/2002	Result 0.11 0.13	-2.207 -2.040
Date Collected 8/13/2002 9/16/2002 7/16/2003	Result 0.11 0.13 0.13	-2.207 -2.040 -2.040
Date Collected 8/13/2002 9/16/2002 7/16/2003 10/14/2003	Result 0.11 0.13 0.13 0.09	-2.207 -2.040 -2.040 -2.408
Date Collected 8/13/2002 9/16/2002 7/16/2003 10/14/2003 7/20/2004	Result 0.11 0.13 0.13 0.09 0.1	-2.207 -2.040 -2.040 -2.408 -2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradien	t No	0.0971	N/A	-2.332	N/A
MW372	Downgradien	t Yes	0.0523	N/A	-2.951	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.138 S = 0.282 CV(1) = 0.046 K factor** = 2.904 TL(1) = 6.957 LL(1) = 5.3179

Statistics-Transformed Background Data

X= 1.813 **S**= 0.047 **CV(2)**= 0.026

K factor**= 2.904

TL(2)= 1.950

LL(2)=1.6765

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.798 6.04 1/15/2003 6.31 1.842 4/10/2003 6.5 1.872 7/14/2003 6.3 1.841 10/13/2003 6.34 1.847 1/13/2004 6.33 1.845 4/13/2004 6.3 1.841 7/21/2004 5.9 1.775 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 5.8 1.758 9/30/2002 5.93 1.780 10/16/2002 5.42 1.690 1.792 1/13/2003 6 4/10/2003 6.04 1.798 7/16/2003 6.2 1.825 10/14/2003 1.856 6.4 1/13/2004 6.39 1.855

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	6.38	NO	1.853	N/A
MW221	Downgradien	t Yes	6.27	NO	1.836	N/A
MW222	Downgradien	t Yes	6.21	NO	1.826	N/A
MW223	Downgradien	t Yes	6.18	NO	1.821	N/A
MW224	Downgradien	t Yes	6.19	NO	1.823	N/A
MW369	Downgradien	t Yes	6.12	NO	1.812	N/A
MW372	Downgradien	t Yes	6.13	NO	1.813	N/A
MW384	Sidegradient	Yes	6.39	NO	1.855	N/A
MW387	Downgradien	t Yes	6.19	NO	1.823	N/A
MW391	Downgradien	t Yes	6.03	NO	1.797	N/A
MW394	Upgradient	Yes	5.71	NO	1.742	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.654 S = 9.310 CV(1) = 1.399 K factor** = 2.523
 TL(1) = 30.144 LL(1) = N/A

 Statistics-Transformed Background
 X = 1.130 X = 1.208 X

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.902 6.7 1/15/2003 29.7 3.391 4/10/2003 24.9 3.215 7/14/2003 1.13 0.122 10/13/2003 3.43 1.233 1/13/2004 6.71 1.904 4/13/2004 19.3 2.960 7/21/2004 3.97 1.379 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 1.03 0.030 1/13/2003 0.095 1.1 4/10/2003 1.24 0.215 7/16/2003 1.14 0.131 10/14/2003 1.05 0.049 1/13/2004 1.07 0.068

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	6.88	N/A	1.929	NO	
MW221	Downgradien	t Yes	1.28	N/A	0.247	NO	
MW222	Downgradien	t Yes	0.482	N/A	-0.730	NO	
MW223	Downgradien	t Yes	2.07	N/A	0.728	NO	
MW224	Downgradien	t Yes	0.874	N/A	-0.135	NO	
MW369	Downgradien	t Yes	0.608	N/A	-0.498	NO	
MW372	Downgradien	t Yes	2.55	N/A	0.936	NO	
MW384	Sidegradient	Yes	1.15	N/A	0.140	NO	
MW387	Downgradien	t Yes	1.53	N/A	0.425	NO	
MW391	Downgradien	t Yes	1.6	N/A	0.470	NO	
MW394	Upgradient	Yes	1.41	N/A	0.344	NO	
N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 36.363 S = 8.666 CV(1) = 0.238 K factor**= 2.523
 TL(1) = 58.227 LL(1) = N/A

 Statistics-Transformed Background
 X = 3.570 S = 0.222 CV(2) = 0.062 K factor**= 2.523
 TL(2) = 4.129 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35.4 3.567 1/15/2003 40.6 3.704 4/10/2003 51 3.932 7/14/2003 58.2 4.064 10/13/2003 38.1 3.640 1/13/2004 37 3.611 4/13/2004 43.2 3.766 7/21/2004 33.8 3.520 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 32.9 3.493 9/16/2002 29.9 3.398 10/16/2002 29 3.367 1/13/2003 27.1 3.300 4/10/2003 24.8 3.211 7/16/2003 3.572 35.6 10/14/2003 3.523 33.9 1/13/2004 31.3 3.444

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	38.3	NO	3.645	N/A
MW221	Downgradien	t Yes	43	NO	3.761	N/A
MW222	Downgradien	t Yes	41.6	NO	3.728	N/A
MW223	Downgradien	t Yes	43.2	NO	3.766	N/A
MW224	Downgradien	t Yes	57.9	NO	4.059	N/A
MW369	Downgradien	t Yes	57.7	NO	4.055	N/A
MW372	Downgradien	t Yes	63.3	YES	4.148	N/A
MW384	Sidegradient	Yes	58.7	YES	4.072	N/A
MW387	Downgradien	t Yes	55.6	NO	4.018	N/A
MW391	Downgradien	t Yes	41	NO	3.714	N/A
MW394	Upgradient	Yes	31.2	NO	3.440	N/A
NI/A Dogg	lta idantified on N	Ion Dotooto	dumin a lab	orotory analysis or	data validation	and man not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW384

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 10.481
 S= 2.648
 CV(1)=0.253
 K factor**= 2.523
 TL(1)= 17.161
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.322
 S= 0.239
 CV(2)=0.103
 K factor**= 2.523
 TL(2)= 2.925
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 10.4 2.342 1/15/2003 9.8 2.282 4/10/2003 15.4 2.734 7/14/2003 14.9 2.701 10/13/2003 13.5 2.603 1/13/2004 10.3 2.332 4/13/2004 14.3 2.660 7/21/2004 10.5 2.351 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 11.2 2.416 9/16/2002 8.3 2.116 2.079 10/16/2002 8 1/13/2003 2.140 8.5 4/10/2003 7.9 2.067 7/16/2003 2.128 8.4 10/14/2003 2.104 8.2 1/13/2004 8.1 2.092

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	18.6	YES	2.923	N/A
MW221	Downgradien	t Yes	13.9	NO	2.632	N/A
MW222	Downgradien	t Yes	12.1	NO	2.493	N/A
MW223	Downgradien	t Yes	19.9	YES	2.991	N/A
MW224	Downgradien	t Yes	16.6	NO	2.809	N/A
MW369	Downgradien	t Yes	8.09	NO	2.091	N/A
MW372	Downgradien	t Yes	135	YES	4.905	N/A
MW384	Sidegradient	Yes	20.6	YES	3.025	N/A
MW387	Downgradien	t Yes	24.4	YES	3.195	N/A
MW391	Downgradien	t Yes	46.6	YES	3.842	N/A
MW394	Upgradient	Yes	10.4	NO	2.342	N/A
N/A - Resu	lts identified as N	Ion-Detects	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW220	
MW223	
MW372	
MW384	
MW387	
MW391	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 9.354 S = 9.280 CV(1) = 0.992 K factor** = 2.523
 TL(1) = 32.768 LL(1) = N/A

 Statistics-Transformed Background
 X = 2.270 X = 0.849 X =

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 2.981 19.7 1/15/2003 26.1 3.262 1.270 4/10/2003 3.56 7/14/2003 0 #Func! 3.045 10/13/2003 2.1 1/13/2004 6.32 1.844 4/13/2004 3 1.099 7/21/2004 14.6 2.681 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 14 2.639 9/16/2002 5.45 1.696 0.912 10/16/2002 2.49 1/13/2003 2.907 18.3 4/10/2003 -1.45#Func! 7/16/2003 -1.71#Func! 10/14/2003 18.3 2.907 1/13/2004 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	14.8	N/A	2.695	N/A
MW221	Downgradien	t No	12.3	N/A	2.510	N/A
MW222	Downgradien	t No	-0.133	N/A	#Error	N/A
MW223	Downgradien	t No	-2.14	N/A	#Error	N/A
MW224	Downgradien	t No	9.12	N/A	2.210	N/A
MW369	Downgradien	t Yes	36.7	YES	3.603	N/A
MW372	Downgradien	t Yes	37	YES	3.611	N/A
MW384	Sidegradient	Yes	182	YES	5.204	N/A
MW387	Downgradien	t Yes	290	YES	5.670	N/A
MW391	Downgradien	t No	-3.47	N/A	#Error	N/A
MW394	Upgradient	No	3.11	N/A	1.135	N/A
N/A - Resu	lts identified as N	Ion-Detects o	luring lah	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369 MW372 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Thorium-230 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.103

CV(1)=1.652

K factor=** 2.523

TL(1) = 0.535

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.248 S = 1.154

S = 0.171

CV(2) = -0.513

K factor=** 2.523

TL(2) = -0.573

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/11/2004	0.267	-1.321
1/20/2005	0.251	-1.382
4/25/2005	0.348	-1.056
7/14/2005	-0.0428	#Func!
10/20/2005	-0.00586	#Func!
1/18/2006	-0.00543	#Func!
4/11/2006	-0.0295	#Func!
7/17/2006	-0.0311	#Func!
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -0.573
Date Collected	Result	
Date Collected 10/12/2004	Result 0.564	-0.573
Date Collected 10/12/2004 1/18/2005	Result 0.564 0.106	-0.573 -2.244
Date Collected 10/12/2004 1/18/2005 4/18/2005	Result 0.564 0.106 -0.022	-0.573 -2.244 #Func!
Date Collected 10/12/2004 1/18/2005 4/18/2005 7/11/2005	Result 0.564 0.106 -0.022 0.127	-0.573 -2.244 #Func! -2.064
Date Collected 10/12/2004 1/18/2005 4/18/2005 7/11/2005 10/17/2005	Result 0.564 0.106 -0.022 0.127 0.0291	-0.573 -2.244 #Func! -2.064 -3.537

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.729	N/A	-0.316	YES		
MW221	Downgradien	t No	0.171	N/A	-1.766	N/A		
MW222	Downgradien	t No	0.322	N/A	-1.133	N/A		
MW223	Downgradien	t No	0.373	N/A	-0.986	N/A		
MW224	Downgradien	t Yes	0.684	N/A	-0.380	YES		
MW369	Downgradien	t No	0.604	N/A	-0.504	N/A		
MW372	Downgradien	t No	0.563	N/A	-0.574	N/A		
MW384	Sidegradient	Yes	0.728	N/A	-0.317	YES		
MW387	Downgradien	t Yes	0.71	N/A	-0.342	YES		
MW391	Downgradien	t No	0.206	N/A	-1.580	N/A		
MW394	Upgradient	No	0.407	N/A	-0.899	N/A		
NI/A D	14- : -14:C:1 N	T D-44-	1	1!	4-41:4-4:	1 .		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW220 MW224

MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.494 S = 0.737 CV(1) = 0.493 K factor**= 2.523 TL(1) = 3.353 LL(1) = N/A Statistics-Transformed Background X = 0.315 S = 0.402 CV(2) = 1.279 K factor**= 2.523 TL(2) = 1.330 LL(2) = N/A Data

Historical Background Data from

Upgradient Wells with Transformed Result

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1.1	0.095
4/10/2003	1	0.000
7/14/2003	3.3	1.194
10/13/2003	1.8	0.588
1/13/2004	1	0.000
4/13/2004	2	0.693
7/21/2004	3.1	1.131
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.262
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 1.3	0.262
Date Collected 8/13/2002 9/16/2002	Result 1.3 1	0.262 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.3 1 1	0.262 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.3 1 1.6	0.262 0.000 0.000 0.470
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.3 1 1 1.6 1	0.262 0.000 0.000 0.470 0.000

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.89	NO	-0.117	N/A		
MW221	Downgradien	t Yes	0.812	NO	-0.208	N/A		
MW222	Downgradien	t Yes	0.715	NO	-0.335	N/A		
MW223	Downgradien	t Yes	0.781	NO	-0.247	N/A		
MW224	Downgradien	t Yes	1	NO	0.000	N/A		
MW369	Downgradien	t Yes	0.978	NO	-0.022	N/A		
MW372	Downgradien	t Yes	1.25	NO	0.223	N/A		
MW384	Sidegradient	Yes	0.917	NO	-0.087	N/A		
MW387	Downgradien	t Yes	1.18	NO	0.166	N/A		
MW391	Downgradien	t Yes	0.856	NO	-0.155	N/A		
MW394	Upgradient	Yes	0.698	NO	-0.360	N/A		
M/A Dogg	lta idantified on N	Ion Dotooto	lumin a lah	orotory analysis or	data validation	and woman at		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 63.475 S = 163.135 CV(1) = 2.570

K factor=** 2.523

TL(1)= 475.063 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.103 S = 1.145 CV(2) = 0.369

K factor=** 2.523

TL(2)= 5.992

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	50	3.912
1/15/2003	10	2.303
4/10/2003	10	2.303
7/14/2003	10	2.303
10/13/2003	10	2.303
1/13/2004	10	2.303
4/13/2004	10	2.303
7/21/2004	10	2.303
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 672	3.912 6.510
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 50 672 50	3.912 6.510 3.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 50 672 50 36.1	3.912 6.510 3.912 3.586
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 50 672 50 36.1 10	3.912 6.510 3.912 3.586 2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	4.68	N/A	1.543	NO		
MW221	Downgradien	t Yes	3.72	N/A	1.314	NO		
MW222	Downgradien	t Yes	5.58	N/A	1.719	NO		
MW223	Downgradien	t Yes	3.48	N/A	1.247	NO		
MW224	Downgradien	t No	10	N/A	2.303	N/A		
MW369	Downgradien	t Yes	14.3	N/A	2.660	NO		
MW372	Downgradien	t Yes	7.16	N/A	1.969	NO		
MW384	Sidegradient	No	10	N/A	2.303	N/A		
MW387	Downgradien	t Yes	6.32	N/A	1.844	NO		
MW391	Downgradien	t Yes	8.86	N/A	2.182	NO		
MW394	Upgradient	Yes	7.52	N/A	2.018	NO		
N/A Dogu	lts identified as N	Ion Dotoots	luring lab	orotory analysis or	data validation	and ware not		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison Trichloroethene** UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 8.813**S**= 8.376 CV(1)=0.951TL(1) = 29.946LL(1)=N/A **Statistics-Transformed Background** X = 1.395S = 1.449CV(2) = 1.039**K factor**=** 2.523 TL(2) = 5.052LL(2)=N/AData

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1 0.000 0.000 4/10/2003 7/14/2003 1 0.000 1 0.000 10/13/2003 1/13/2004 1 0.000 4/13/2004 1 0.000 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 16 2.773 9/30/2002 20 2.996 10/16/2002 17 2.833 1/13/2003 15 2.708 4/10/2003 10 2.303 19

20

16

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	7.62	NO	2.031	N/A
MW221	Downgradien	t No	1	N/A	0.000	N/A
MW222	Downgradien	t No	1	N/A	0.000	N/A
MW223	Downgradien	t Yes	0.62	N/A	-0.478	N/A
MW224	Downgradien	t No	1	N/A	0.000	N/A
MW369	Downgradien	t Yes	0.81	N/A	-0.211	N/A
MW372	Downgradien	t Yes	8.2	NO	2.104	N/A
MW384	Sidegradient	Yes	0.51	N/A	-0.673	N/A
MW387	Downgradien	t Yes	0.88	N/A	-0.128	N/A
MW391	Downgradien	t Yes	10.4	NO	2.342	N/A
MW394	Upgradient	Yes	4.85	N/A	1.579	N/A
M/A Pagu	lte identified as N	Ion Detects	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.944

2.996

2.773

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.036 S = 0.026 CV(1) = 0.722 K factor**= 2.523 TL(1) = 0.101 LL(1) = N/A Statistics-Transformed Background X = -3.485 S = 0.525 CV(2) = -0.151 K factor**= 2.523 TL(2) = -2.162 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.025 -3.6891/15/2003 0.035 -3.3524/10/2003 0.035 -3.3527/14/2003 0.0389 -3.2470.026 10/13/2003 -3.6501/13/2004 0.02 -3.9124/13/2004 0.02 -3.912 7/21/2004 0.02 -3.912Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.1 -2.303 9/16/2002 0.1 -2.30310/16/2002 0.025 -3.6891/13/2003 0.035 -3.352 4/10/2003 0.035 -3.3527/16/2003 0.02 -3.91210/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	No	0.01	N/A	-4.605	N/A
MW221	Downgradien	t No	0.01	N/A	-4.605	N/A
MW222	Downgradien	t No	0.01	N/A	-4.605	N/A
MW223	Downgradien	t No	0.01	N/A	-4.605	N/A
MW224	Downgradien	t No	0.01	N/A	-4.605	N/A
MW369	Downgradien	t No	0.01	N/A	-4.605	N/A
MW372	Downgradien	t No	0.01	N/A	-4.605	N/A
MW384	Sidegradient	No	0.01	N/A	-4.605	N/A
MW387	Downgradien	t No	0.01	N/A	-4.605	N/A
MW391	Downgradien	t No	0.01	N/A	-4.605	N/A
MW394	Upgradient	Yes	0.00359) NO	-5.630	N/A
NI/A Dans	14- : 14:£: - 1 N	T D-44-	J 1 . 1.	1 !	4-41:4-4:	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.258

S= 0.221 **CV(1)**=0.856

K factor=** 2.523

TL(1) = 0.815

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.266 S = 2.485

CV(2) = -1.097

K factor=** 2.523

TL(2) = 4.003

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.194
Date Collected	Result	
Date Collected 8/13/2002	Result 0.824	-0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	-0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	-0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	-0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	-0.194 -1.609 -8.517 -1.013 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	No	0.05	N/A	-2.996	N/A		
MW373	Downgradient	No	0.05	N/A	-2.996	N/A		
MW385	Sidegradient	Yes	0.0262	NO	-3.642	N/A		
MW388	Downgradient	Yes	0.0347	NO	-3.361	N/A		
MW392	Downgradient	Yes	0.0158	NO	-4.148	N/A		
MW395	Upgradient	No	0.05	N/A	-2.996	N/A		
MW397	Upgradient	Yes	0.0612	NO	-2.794	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 7.183
 S= 2.612
 CV(1)=0.364 K factor**= 2.523
 TL(1)=13.773 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.870
 S= 0.552
 CV(2)=0.295 K factor**= 2.523
 TL(2)=3.261 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.086 1.09 9/16/2002 5.79 1.756 1.920 10/16/2002 6.82 1/13/2003 5.01 1.611 4/10/2003 6.1 1.808 7/16/2003 8.51 2.141 10/14/2003 4.99 1.607 1/13/2004 6.58 1.884 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 9.57 2.259 9/16/2002 11 2.398 10/17/2002 9.3 2.230 1/13/2003 8.63 2.155 4/8/2003 10 2.303 7/16/2003 1.930 6.89 10/14/2003 2.313 10.1 1/13/2004 4.55 1.515

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	36.1	N/A	3.586	N/A		
MW373	Downgradient	Yes	21.8	N/A	3.082	N/A		
MW385	Sidegradient	Yes	139	YES	4.934	N/A		
MW388	Downgradient	Yes	107	YES	4.673	N/A		
MW392	Downgradient	No	-2.5	N/A	#Error	N/A		
MW395	Upgradient	No	3.79	N/A	1.332	N/A		
MW397	Upgradient	Yes	17	N/A	2.833	N/A		
37/4 D	1. 11 .10 1 37				1 . 11			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.650 S = 0.805 CV(1) = 1.238 K factor**= 2.523
 TL(1) = 2.681 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.034 X = 1.030 X = 0.805 X =

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 2. 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.6090.2 -1.609 4/10/2003 7/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/17/2002 0.2 -1.6091/13/2003 0.2 -1.609 4/8/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	0.0329	N/A	-3.414	NO
MW373	Downgradient	Yes	1.62	N/A	0.482	NO
MW385	Sidegradient	Yes	0.0101	N/A	-4.595	NO
MW388	Downgradient	Yes	0.0185	N/A	-3.990	NO
MW392	Downgradient	Yes	0.0316	N/A	-3.455	NO
MW395	Upgradient	Yes	0.0243	N/A	-3.717	NO
MW397	Upgradient	Yes	0.00793	N/A	-4.837	NO
17/4 D	1. 11 .10 1 3.7	ъ			1 . 11	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.000 S= 0.000 CV(1)=0.000 K factor**= 2.523 TL(1)=1.000 LL(1)=N/A

 Statistics-Transformed Background
 X= 0.000 S= 0.000 CV(2)=#Num! K factor**= 2.523 TL(2)=0.000 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.000 9/16/2002 1 0.000 0.000 10/16/2002 1 1/13/2003 1 0.000 1 0.000 4/10/2003 7/16/2003 1 0.000 10/14/2003 1 0.000 1/13/2004 1 0.000 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/17/2002 1 0.000 1/13/2003 0.000 4/8/2003 0.000 7/16/2003 1 0.000 10/14/2003 0.000 1 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW370	Downgradien	t Yes	0.477	NO	-0.740	N/A				
MW373	Downgradien	t Yes	0.607	NO	-0.499	N/A				
MW385	Sidegradient	Yes	0.279	NO	-1.277	N/A				
MW388	Downgradien	t Yes	0.307	NO	-1.181	N/A				
MW392	Downgradien	t Yes	0.599	NO	-0.512	N/A				
MW395	Upgradient	Yes	0.595	NO	-0.519	N/A				
MW397	Upgradient	Yes	0.461	NO	-0.774	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 23.103 **S**= 11.538 **CV(1)**=0.499

K factor=** 2.523

TL(1) = 52.213

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.357

 $S= 2.411 \quad CV(2)=1.023$

K factor**= 2.523

TL(2) = 8.439

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.965
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW370	Downgradient	Yes	27.4	NO	3.311	N/A			
MW373	Downgradient	Yes	71.4	YES	4.268	N/A			
MW385	Sidegradient	Yes	22.7	NO	3.122	N/A			
MW388	Downgradient	Yes	24.8	NO	3.211	N/A			
MW392	Downgradient	Yes	28	NO	3.332	N/A			
MW395	Upgradient	Yes	26.5	NO	3.277	N/A			
MW397	Upgradient	Yes	17.7	NO	2.874	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.844 S = 11.652 CV(1) = 0.225

K factor**= 2.523

TL(1)= 81.242 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 3.924 **S**= 0.229

CV(2) = 0.058

K factor=** 2.523

TL(2) = 4.501

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	62.2	4.130
9/16/2002	64.7	4.170
10/16/2002	62.2	4.130
1/13/2003	63.5	4.151
4/10/2003	64.1	4.160
7/16/2003	64	4.159
10/14/2003	63.2	4.146
1/13/2004	60.6	4.104
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.661
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 38.9	3.661
Date Collected 8/13/2002 9/16/2002	Result 38.9 39.8	3.661 3.684
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 38.9 39.8 39.3	3.661 3.684 3.671
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 38.9 39.8 39.3 40.5	3.661 3.684 3.671 3.701
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 38.9 39.8 39.3 40.5 42.1	3.661 3.684 3.671 3.701 3.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW370	Downgradient	Yes	39.7	NO	3.681	N/A				
MW373	Downgradient	Yes	44	NO	3.784	N/A				
MW385	Sidegradient	Yes	34.2	NO	3.532	N/A				
MW388	Downgradient	Yes	31.9	NO	3.463	N/A				
MW392	Downgradient	Yes	48.9	NO	3.890	N/A				
MW395	Upgradient	Yes	48.1	NO	3.873	N/A				
MW397	Upgradient	Yes	40	NO	3.689	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor** = 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor** = 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.609 5 9/30/2002 5 1.609 10/16/2002 5 1.609 1/13/2003 5 1.609 5 4/10/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 5 1/13/2004 1.609 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 5 1.609 1/13/2003 5 1.609 5 4/8/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW370	Downgradient	No	1	N/A	0.000	N/A				
MW373	Downgradient	No	1	N/A	0.000	N/A				
MW385	Sidegradient	No	1	N/A	0.000	N/A				
MW388	Downgradient	No	1	N/A	0.000	N/A				
MW392	Downgradient	Yes	0.68	NO	-0.386	N/A				
MW395	Upgradient	No	1	N/A	0.000	N/A				
MW397	Upgradient	No	1	N/A	0.000	N/A				
	10		1							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.011

CV(1) = 1.515

K factor=** 2.523

TL(1) = 0.034

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.053 S = 1.416

CV(2) = -0.234

K factor=** 2.523

TL(2) = -2.480

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW370	Downgradient	Yes	0.00047	N/A	-7.663	NO			
MW373	Downgradient	No	0.001	N/A	-6.908	N/A			
MW385	Sidegradient	No	0.001	N/A	-6.908	N/A			
MW388	Downgradient	No	0.001	N/A	-6.908	N/A			
MW392	Downgradient	Yes	0.00035	N/A	-7.958	NO			
MW395	Upgradient	No	0.001	N/A	-6.908	N/A			
MW397	Upgradient	No	0.001	N/A	-6.908	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison Conductivity UNITS:** umho/cm **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

K factor=** 2.523

TL(1)= 509.326 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.926 S = 0.136 CV(2) = 0.023

K factor=** 2.523

TL(2) = 6.270

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.775
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

,	Current Quarter Data									
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
	MW370	Downgradient	t Yes	424	NO	6.050	N/A			
	MW373	Downgradient	t Yes	813	YES	6.701	N/A			
	MW385	Sidegradient	Yes	421	NO	6.043	N/A			
	MW388	Downgradient	t Yes	422	NO	6.045	N/A			
	MW392	Downgradient	t Yes	440	NO	6.087	N/A			
	MW395	Upgradient	Yes	390	NO	5.966	N/A			
	MW397	Upgradient	Yes	334	NO	5.811	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.028 S = 0.013 CV(1) = 0.474 K factor** = 2.523
 TL(1) = 0.061 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.662 S = 0.406 CV(2) = -0.111 K factor** = 2.523
 TL(2) = -2.638 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.99610/16/2002 0.0281 -3.5721/13/2003 0.02 -3.9120.02 -3.912 4/10/2003 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 1/13/2004 0.02 -3.912Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.99610/17/2002 0.02 -3.9121/13/2003 0.02 -3.912 4/8/2003 0.02 -3.912 7/16/2003 0.02 -3.912 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data									
,	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
	MW370	Downgradient	Yes	0.00057	NO	-7.470	N/A			
	MW373	Downgradient	No	0.001	N/A	-6.908	N/A			
	MW385	Sidegradient	No	0.00059	N/A	-7.435	N/A			
	MW388	Downgradient	No	0.00058	N/A	-7.452	N/A			
	MW392	Downgradient	t No	0.00037	N/A	-7.902	N/A			
	MW395	Upgradient	No	0.00046	N/A	-7.684	N/A			
	MW397	Upgradient	No	0.00046	N/A	-7.684	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 4.678 S = 2.431 CV(1) = 0.520 K factor**= 2.523
 TL(1) = 10.812 LL(1) = N/A

 Statistics-Transformed Background
 X = 1.414 X = 0.550 X =

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 7.29 1.987 9/30/2002 4.03 1.394 10/16/2002 3.85 1.348 1/13/2003 2.36 0.859 4/10/2003 1.14 0.131 7/16/2003 1.76 0.565 10/14/2003 4.05 1.399 1/13/2004 4.26 1.449 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 11.56 2.448 9/16/2002 5.86 1.768 10/17/2002 5.94 1.782 1/13/2003 1.539 4.66 4/8/2003 3.77 1.327 7/16/2003 3.47 1.244 10/14/2003 5.34 1.675 1/13/2004 5.51 1.707

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW370	Downgradien	t Yes	3.63	NO	1.289	N/A				
MW373	Downgradien	t Yes	2	NO	0.693	N/A				
MW385	Sidegradient	Yes	2.6	NO	0.956	N/A				
MW388	Downgradien	t Yes	4.51	NO	1.506	N/A				
MW392	Downgradien	t Yes	1.21	NO	0.191	N/A				
MW395	Upgradient	Yes	5.53	NO	1.710	N/A				
MW397	Upgradient	Yes	5.04	NO	1.617	N/A				
NT/A D	1, 11 ,:C 1 N	. D.	1 1 1 1		1.4	1 .				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

K factor=** 2.523

TL(1)= 305.301

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.379 S = 0.152 CV(2) = 0.028

K factor=** 2.523

TL(2) = 5.762

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.231
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW370	Downgradient	Yes	230	NO	5.438	N/A
MW373	Downgradient	Yes	500	YES	6.215	N/A
MW385	Sidegradient	Yes	226	NO	5.421	N/A
MW388	Downgradient	Yes	230	NO	5.438	N/A
MW392	Downgradient	Yes	203	NO	5.313	N/A
MW395	Upgradient	Yes	203	NO	5.313	N/A
MW397	Upgradient	Yes	190	NO	5.247	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.400 S = 0.514 CV(1) = 1.286 K factor**= 2.523
 TL(1) = 1.698 LL(1) = N/A

 Statistics-Transformed Background
 X = -2.197 S = 2.634 CV(2) = -1.199 K factor**= 2.523
 TL(2) = 4.449 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.294 -1.2249/16/2002 0.2 -1.6090.0002 10/16/2002 -8.517 1/13/2003 1.33 0.285 0.270 4/10/2003 1.31 7/16/2003 0.2 -1.60910/14/2003 0.1 -2.303 1/13/2004 0.1 -2.303Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 1.58 0.457 9/16/2002 0.232 -1.461 10/17/2002 0.0002 -8.517 1/13/2003 0.453 -0.792 4/8/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 -2.3030.11/13/2004 0.1 -2.303

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	0.1	N/A	-2.303	N/A
MW373	Downgradien	t No	0.1	N/A	-2.303	N/A
MW385	Sidegradient	Yes	0.0399	N/A	-3.221	NO
MW388	Downgradien	t Yes	0.122	N/A	-2.104	NO
MW392	Downgradien	t Yes	0.583	N/A	-0.540	NO
MW395	Upgradient	No	0.1	N/A	-2.303	N/A
MW397	Upgradient	Yes	0.138	N/A	-1.981	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 9.102 S = 4.685 CV(1) = 0.515 K factor**= 2.523 TL(1) = 20.922 LL(1) = N/A Statistics-Transformed Background X = 1.423 S = 2.408 CV(2) = 1.692 K factor**= 2.523 TL(2) = 7.500 LL(2) = N/A Data

Historical Poolsonand Data from

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	12.5	2.526
9/16/2002	13	2.565
10/16/2002	0.0127	-4.366
1/13/2003	11.2	2.416
4/10/2003	17.5	2.862
7/16/2003	12.9	2.557
10/14/2003	13.4	2.595
1/13/2004	12.4	2.518
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.058
Date Collected	Result	
Date Collected 8/13/2002	Result 7.83	2.058
Date Collected 8/13/2002 9/16/2002	Result 7.83 7.64	2.058 2.033
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 7.83 7.64 0.00658	2.058 2.033 -5.024
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 7.83 7.64 0.00658 6.69	2.058 2.033 -5.024 1.901
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 7.83 7.64 0.00658 6.69 7.28	2.058 2.033 -5.024 1.901 1.985

landfill.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	12.4	NO	2.518	N/A
MW373	Downgradient	Yes	26.2	YES	3.266	N/A
MW385	Sidegradient	Yes	8.66	NO	2.159	N/A
MW388	Downgradient	Yes	11.1	NO	2.407	N/A
MW392	Downgradient	Yes	10.7	NO	2.370	N/A
MW395	Upgradient	Yes	11.8	NO	2.468	N/A
MW397	Upgradient	Yes	7.55	NO	2.022	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Manganese

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(2) = -0.493

CV(1)=1.487 Statistics-Background Data X = 0.131S = 0.195

K factor=** 2.523

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.104 S = 1.529

K factor=** 2.523

TL(2) = 0.755

TL(1) = 0.624

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
	141 44 37 1	
Date Collected	Result	LN(Result)
Date Collected 8/13/2002		LN(Result) -0.764
	Result	` ,
8/13/2002	Result 0.466	-0.764
8/13/2002 9/16/2002	Result 0.466 0.077	-0.764 -2.564
8/13/2002 9/16/2002 10/17/2002	Result 0.466 0.077 0.028	-0.764 -2.564 -3.576
8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.466 0.077 0.028 0.0164	-0.764 -2.564 -3.576 -4.110
8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.466 0.077 0.028 0.0164 0.0407	-0.764 -2.564 -3.576 -4.110 -3.202

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradien	t Yes	0.00151	N/A	-6.496	NO
MW373	Downgradien	t Yes	0.00222	N/A	-6.110	NO
MW385	Sidegradient	Yes	0.00133	N/A	-6.623	NO
MW388	Downgradien	t Yes	0.00166	N/A	-6.401	NO
MW392	Downgradien	t Yes	0.215	N/A	-1.537	NO
MW395	Upgradient	No	0.005	N/A	-5.298	N/A
MW397	Upgradient	Yes	0.00308	N/A	-5.783	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 Statistics-Background Data X = 0.018S = 0.020CV(1)=1.089 TL(1) = 0.068LL(1)=N/A **Statistics-Transformed Background** X = -4.540 S = 1.020CV(2) = -0.225

Data

K factor=** 2.523

TL(2) = -1.965

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.99610/16/2002 0.00702 -4.9591/13/2003 0.029 -3.5400.0091 4/10/2003 -4.6997/16/2003 0.00627 -5.07210/14/2003 0.005 -5.298 1/13/2004 0.005 -5.298Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.99610/17/2002 0.005 -5.2981/13/2003 0.00502 -5.294 4/8/2003 0.005 -5.2987/16/2003 0.005 -5.29810/14/2003 0.005 -5.2981/13/2004 0.005 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	0.00101	N/A	-6.898	NO
MW373	Downgradient	Yes	0.00142	N/A	-6.557	NO
MW385	Sidegradient	Yes	0.00073	N/A	-7.222	NO
MW388	Downgradient	Yes	0.00113	N/A	-6.786	NO
MW392	Downgradient	Yes	0.00065	N/A	-7.339	NO
MW395	Upgradient	No	0.002	N/A	-6.215	N/A
MW397	Upgradient	Yes	0.00084	N/A	-7.082	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 157.250 S = 52.376 CV(1) = 0.333

K factor=** 2.523

TL(1)= 289.395

LL(1)=N/A

Statistics-Transformed Background Data

X= 5.003 **S**= 0.348

CV(2) = 0.069

K factor=** 2.523

TL(2) = 5.880

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 4.745
Date Collected	Result	
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	388	YES	5.961	N/A
MW373	Downgradient	Yes	468	YES	6.148	N/A
MW385	Sidegradient	Yes	637	YES	6.457	N/A
MW388	Downgradient	Yes	378	YES	5.935	N/A
MW392	Downgradient	Yes	339	YES	5.826	N/A
MW395	Upgradient	Yes	468	YES	6.148	N/A
MW397	Upgradient	Yes	599	YES	6.395	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW370
MW373
MW385
MW388
MW392
MW395
MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.048 S = 0.248 CV(1) = 0.041 K factor** = 2.904 TL(1) = 6.767 LL(1) = 5.3289

Statistics-Transformed Background Data

X= 1.799 **S**= 0.042 **CV(2)**= 0.023

K factor=** 2.904 **TL**

TL(2)= 1.920

LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	5.8	1.758
9/16/2002	6	1.792
10/16/2002	5.47	1.699
1/13/2003	6	1.792
4/10/2003	6.18	1.821
7/16/2003	6	1.792
10/14/2003	6.31	1.842
1/13/2004	6.24	1.831
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 8/13/2002	Result 5.84	1.765
Date Collected 8/13/2002 9/30/2002	Result 5.84 6	1.765 1.792
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5.84 6 5.75	1.765 1.792 1.749
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5.84 6 5.75 6	1.765 1.792 1.749 1.792
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5.84 6 5.75 6 6.3	1.765 1.792 1.749 1.792 1.841

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) > TL(2)?
				Result <ll(1)?< td=""><td></td><td>LN(Result) <ll(2)?< td=""></ll(2)?<></td></ll(1)?<>		LN(Result) <ll(2)?< td=""></ll(2)?<>
MW370	Downgradien	t Yes	6.05	NO	1.800	N/A
MW373	Downgradien	t Yes	6.11	NO	1.810	N/A
MW385	Sidegradient	Yes	6.25	NO	1.833	N/A
MW388	Downgradien	t Yes	6.12	NO	1.812	N/A
MW392	Downgradien	t Yes	6.3	NO	1.841	N/A
MW395	Upgradient	Yes	5.96	NO	1.785	N/A
MW397	Upgradient	Yes	6.15	NO	1.816	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.590 S = 0.642 CV(1) = 0.404 K factor**= 2.523
 TL(1) = 3.208 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.306 S = 2.457 CV(2) = -8.028 K factor**= 2.523
 TL(2) = 5.892 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 2. 9/16/2002 2 0.693 0.00129 10/16/2002 -6.6531/13/2003 1.51 0.412 0.513 4/10/2003 1.67 7/16/2003 1.73 0.548 10/14/2003 1.7 0.531 1/13/2004 1.58 0.457 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2.03 0.708 9/16/2002 0.693 2 0.00145 10/17/2002 -6.5361/13/2003 1.69 0.525 4/8/2003 1.73 0.548 7/16/2003 2 0.693 10/14/2003 1.92 0.652 1/13/2004 1.87 0.626

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	2.44	NO	0.892	N/A
MW373	Downgradient	t Yes	2.51	NO	0.920	N/A
MW385	Sidegradient	Yes	1.71	NO	0.536	N/A
MW388	Downgradient	t Yes	1.73	NO	0.548	N/A
MW392	Downgradient	t Yes	1.89	NO	0.637	N/A
MW395	Upgradient	Yes	1.59	NO	0.464	N/A
MW397	Upgradient	Yes	1.61	NO	0.476	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Historical Background Comparison Sodium** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 29.560 S = 13.894 CV(1) = 0.470

K factor=** 2.523

TL(1)= 64.616

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.615 S = 2.411

CV(2) = 0.922

K factor=** 2.523

TL(2)= 8.699

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.561
Date Collected	Result	•
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradien	t Yes	44	NO	3.784	N/A
MW373	Downgradien	t Yes	57.1	NO	4.045	N/A
MW385	Sidegradient	Yes	46.5	NO	3.839	N/A
MW388	Downgradien	t Yes	42.1	NO	3.740	N/A
MW392	Downgradien	t Yes	43.9	NO	3.782	N/A
MW395	Upgradient	Yes	31.7	NO	3.456	N/A
MW397	Upgradient	Yes	30.3	NO	3.411	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.756 S = 2.147 CV(1) = 0.200

K factor=** 2.523

TL(1)= 16.173

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.356

S = 0.203 CV(2) = 0.086

K factor=** 2.523

TL(2) = 2.869

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	10.3	2.332
9/16/2002	9.1	2.208
10/16/2002	8.8	2.175
1/13/2003	9	2.197
4/10/2003	8.3	2.116
7/16/2003	8.2	2.104
10/14/2003	8.3	2.116
1/13/2004	8.2	2.104
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.639
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 12.8	2.639 2.549
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 14 12.8 12.3	2.639 2.549 2.510
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 14 12.8 12.3 12.7	2.639 2.549 2.510 2.542
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 14 12.8 12.3 12.7 12.8	2.639 2.549 2.510 2.542 2.549

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	19	YES	2.944	N/A
MW373	Downgradient	Yes	149	YES	5.004	N/A
MW385	Sidegradient	Yes	23.7	YES	3.165	N/A
MW388	Downgradient	Yes	24	YES	3.178	N/A
MW392	Downgradient	Yes	6.16	NO	1.818	N/A
MW395	Upgradient	Yes	10.2	NO	2.322	N/A
MW397	Upgradient	Yes	11.4	NO	2.434	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 11.359 S = 9.138 CV(1) = 0.805 K factor** = 2.523
 TL(1) = 34.414 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 2.398 S = 0.859 CV(2) = 0.358 K factor** = 2.523
 TL(2) = 3.246 LL(2) = N/A

Γ-----

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	20.8	3.035
9/16/2002	16.2	2.785
10/16/2002	8.28	2.114
1/13/2003	13	2.565
4/10/2003	-9.37	#Func!
7/16/2003	0.826	-0.191
10/14/2003	14.1	2.646
1/13/2004	0	#Func!
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.802
Date Collected	Result	,
Date Collected 8/13/2002	Result 6.06	1.802
Date Collected 8/13/2002 9/16/2002	Result 6.06 17.3	1.802 2.851
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 6.06 17.3 25.7	1.802 2.851 3.246
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 6.06 17.3 25.7 20.9	1.802 2.851 3.246 3.040
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 6.06 17.3 25.7 20.9 20.1	1.802 2.851 3.246 3.040 3.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

(Current	Quarter Data					
W	ell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
N	1W370	Downgradien	t Yes	60.3	YES	4.099	N/A
N	1 W373	Downgradien	t Yes	37.3	YES	3.619	N/A
N	1W385	Sidegradient	Yes	222	YES	5.403	N/A
N	1 W388	Downgradien	t Yes	143	YES	4.963	N/A
N	1W392	Downgradien	t No	6.26	N/A	1.834	N/A
N	IW395	Upgradient	No	14.7	N/A	2.688	N/A
N	1W397	Upgradient	No	13.2	N/A	2.580	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.544 S = 0.856 CV(1) = 0.554 K factor**= 2.523 TL(1) = 3.702 LL(1) = N/A Statistics-Transformed Background X = 0.325 S = 0.452 CV(2) = 1.393 K factor**= 2.523 TL(2) = 1.465 LL(2) = N/A Data

Historical Background Data from

Upgradient Wells with Transformed Result

 Well Number:
 MW395

 Date Collected
 Result
 LN(Result)

 8/13/2002
 1.6
 0.470

 9/16/2002
 1.1
 0.095

 10/16/2002
 1
 0.000

 1/13/2003
 2
 0.693

 4/10/2003
 3.4
 1.224

 7/16/2003
 2
 0.693

 10/14/2003
 1
 0.000

 1/13/2004
 1
 0.000

Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/17/2002 1 0.000 1/13/2003 1.281 4/8/2003 1.9 0.642 7/16/2003 1.1 0.095

1

1

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	0.68	NO	-0.386	N/A
MW373	Downgradient	Yes	0.936	NO	-0.066	N/A
MW385	Sidegradient	Yes	0.942	NO	-0.060	N/A
MW388	Downgradient	Yes	0.923	NO	-0.080	N/A
MW392	Downgradient	Yes	1.3	NO	0.262	N/A
MW395	Upgradient	Yes	0.565	NO	-0.571	N/A
MW397	Upgradient	Yes	0.688	NO	-0.374	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 31.513 S = 18.609 CV(1) = 0.591

K factor=** 2.523

TL(1)= 78.462

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.240 **S**=

S = 0.707 CV(2) = 0.218

K factor=** 2.523

TL(2)= 5.024

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	50	3.912
9/16/2002	50	3.912
10/16/2002	50	3.912
1/13/2003	18.3	2.907
4/10/2003	51.2	3.936
7/16/2003	42.6	3.752
10/14/2003	12.3	2.510
1/13/2004	10	2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 50	3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 50 50 50	3.912 3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 50 50 12	3.912 3.912 3.912 2.485
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 50 50 12 19.9	3.912 3.912 3.912 2.485 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	10	N/A	2.303	N/A	
MW373	Downgradient	Yes	7.02	NO	1.949	N/A	
MW385	Sidegradient	No	10	N/A	2.303	N/A	
MW388	Downgradient	Yes	4.9	NO	1.589	N/A	
MW392	Downgradient	Yes	34.4	NO	3.538	N/A	
MW395	Upgradient	Yes	6.44	NO	1.863	N/A	
MW397	Upgradient	No	10	N/A	2.303	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=7.313
 S= 5.701 CV(1)=0.780
 K factor**= 2.523
 TL(1)= 21.695
 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.467 S= 1.213 CV(2)=0.827
 K factor**= 2.523 TL(2)= 4.528 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 11 2.398 9/30/2002 14 2.639 10/16/2002 12 2.485 1/13/2003 14 2.639 14 4/10/2003 2.639 7/16/2003 13 2.565 10/14/2003 12 2.485 1/13/2004 11 2.398 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 1 0.000 1/13/2003 0.000 4/8/2003 0.000 7/16/2003 1 0.000 10/14/2003 0.000 1 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	0.83	N/A	-0.186	N/A
MW373	Downgradient	Yes	8.35	NO	2.122	N/A
MW385	Sidegradient	Yes	0.53	N/A	-0.635	N/A
MW388	Downgradient	Yes	0.62	N/A	-0.478	N/A
MW392	Downgradient	Yes	17	NO	2.833	N/A
MW395	Upgradient	Yes	3.8	N/A	1.335	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A
3.T/A D	1. 11 1 33				1 . 11 1 .1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.044 S = 0.034 CV(1) = 0.760 K factor** = 2.523
 TL(1) = 0.129 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.342 S = 0.659 CV(2) = -0.197 K factor** = 2.523
 TL(2) = -1.679 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.1 -2.3039/16/2002 0.1 -2.30310/16/2002 0.025 -3.6891/13/2003 0.035 -3.3520.035 4/10/2003 -3.3527/16/2003 0.02 -3.91210/14/2003 0.02 -3.912 1/13/2004 0.02 -3.912Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 0.1 -2.303 9/16/2002 0.1 -2.30310/17/2002 0.025 -3.6891/13/2003 0.035 -3.352 4/8/2003 0.035 -3.352 7/16/2003 0.02 -3.91210/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	No	0.01	N/A	-4.605	N/A
MW373	Downgradient	No	0.01	N/A	-4.605	N/A
MW385	Sidegradient	Yes	0.0038	NO	-5.573	N/A
MW388	Downgradient	No	0.01	N/A	-4.605	N/A
MW392	Downgradient	No	0.01	N/A	-4.605	N/A
MW395	Upgradient	No	0.01	N/A	-4.605	N/A
MW397	Upgradient	No	0.01	N/A	-4.605	N/A
37/4 B	1. 11 1 3.7				1 . 11 1	1

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-S/T Third Quarter 2015 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 354.875 S = 146.711 CV(1) = 0.413

K factor=** 3.188 **T**

TL(1)= 822.590 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.780 S = 0.483 CV(2) = 0.084

K factor**= 3.188

TL(2) = 7.320

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396			
Date Collected	Result	LN(Result)		
7/10/2013	472	6.157		
10/3/2013	323	5.778		
1/22/2014	549	6.308		
4/9/2014	427	6.057		
7/17/2014	265	5.580		
10/27/2014	141	4.949		
1/8/2015	193	5.263		
4/22/2015	469	6.151		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	627	NO	6.441	N/A	
MW390	Downgradient	t Yes	397	NO	5.984	N/A	
MW393	Downgradient	t Yes	394	NO	5.976	N/A	
MW396	Upgradient	Yes	330	NO	5.799	N/A	

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis

Analysis Current Background Comparison UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Radium-226

X = 0.742

S = 0.651 CV(1) = 0.878

K factor=** 3.188

TL(1) = 2.818

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.537 S = 0.692 CV(2) = -1.287

K factor=** 3.188

TL(2)= 1.668

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396			
Date Collected	Result	LN(Result)		
7/10/2013	0.28	-1.273		
10/3/2013	0.404	-0.906		
1/22/2014	0.255	-1.366		
4/9/2014	2.28	0.824		
7/17/2014	0.709	-0.344		
10/27/2014	0.633	-0.457		
1/8/2015	0.585	-0.536		
4/22/2015	0.786	-0.241		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Current	Qual ttl	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW390	Downgradien	Yes	2.04	NO	0.713	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Technetium-99 UNITS: p

Analysis Current Background Comparison UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 2.985
 S= 5.199
 CV(1)=1.742
 K factor**= 3.188
 TL(1)= 19.560
 LL(1)=N/A

 Statistics-Transformed Background
 X= 0.873
 S= 1.328
 CV(2)=1.522
 K factor**= 3.188
 TL(2)= 2.416
 LL(2)=N/A

Data

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
7/10/2013	0.223	-1.501
10/3/2013	2.12	0.751
1/22/2014	8.86	2.182
4/9/2014	-5.67	#Func!
7/17/2014	1.03	0.030
10/27/2014	3.28	1.188
1/8/2015	11.2	2.416
4/22/2015	2.84	1.044

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW390	Downgradien	t Yes	64	N/A	4.159	YES

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Analysis Current Background Comparison UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.350	S = 0.879	CV(1)= 2.508	K factor**= 3.188	TL(1)= 3.153	LL(1)= N/A
Statistics-Transformed Background	X = -1.708	S = 1.902	CV(2) =-1.113	K factor** = 3.188	TL(2) = 0.708	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Thorium-230

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
7/10/2013	0.0256	-3.665
10/3/2013	0.0212	-3.854
1/22/2014	0.0299	-3.510
4/9/2014	0.768	-0.264
7/17/2014	0.541	-0.614
10/27/2014	-1.08	#Func!
1/8/2015	2.03	0.708
4/22/2015	0.468	-0.759

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.739	N/A	-0.302	NO

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Beta activity UNITS: pCi/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.189 **S**= 6.728

CV(1)=0.601

K factor**= 2.523

TL(1)= 28.164

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.254

S = 0.579 CV(2) = 0.257

K factor**= 2.523

TL(2) = 3.715

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 7/15/2013 13.4 2.595 10/1/2013 23.4 3.153 3.054 1/22/2014 21.2 4/7/2014 7.94 2.072 7/17/2014 20.3 3.011 10/21/2014 9.99 2.302 1/5/2015 21.8 3.082 2.434 4/14/2015 11.4

1/11/2013	11	2.131	
Well Number:	MW394		
Date Collected	Result	LN(Result)	
7/10/2013	5.21	1.651	
10/3/2013	7.39	2.000	
1/22/2014	5.63	1.728	
4/9/2014	6.27	1.836	
7/17/2014	6.9	1.932	
10/27/2014	3.99	1.384	
1/8/2015	5.07	1.623	
4/22/2015	9.13	2.212	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW384	Sidegradient	Yes	100	YES	4.605	N/A
MW387	Downgradient	Yes	189	YES	5.242	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 24.256 **S**= 3.060

CV(1)=0.126

K factor**= 2.523

TL(1)= 31.976

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.181

S = 0.132 CV(2) = 0.042

K factor**= 2.523

TL(2) = 3.514

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
7/15/2013	23.3	3.148
10/1/2013	19.7	2.981
1/22/2014	22.9	3.131
4/7/2014	25.6	3.243
7/17/2014	21.6	3.073
10/21/2014	18.4	2.912
1/5/2015	20	2.996
4/14/2015	23	3.135

4/14/2013	23	3.133		
Well Number:	MW394			
Date Collected	Result	LN(Result)		
7/10/2013	28.5	3.350		
10/3/2013	25.7	3.246		
1/22/2014	25.6	3.243		
4/9/2014	27.3	3.307		
7/17/2014	26.3	3.270		
10/27/2014	26.5	3.277		
1/8/2015	27.2	3.303		
4/22/2015	26.5	3.277		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	62.6	YES	4 137	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances
MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Chemical Oxygen Demand (COD)

UNITS: mg/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 25.888 S = 10.395 CV(1) = 0.402

V(1)=0.402 K factor**= 2.523

3 **TL(1)=** 52.115

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.169 S = 0.441 CV(2) = 0.139

K factor**= 2.523

TL(2) = 4.281

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
7/15/2013	36	3.584
10/1/2013	36	3.584
1/22/2014	36	3.584
4/7/2014	20	2.996
7/17/2014	20	2.996
10/21/2014	10.2	2.322
1/5/2015	20	2.996
4/14/2015	20	2.996

4/14/2015	20	2.996
Well Number:	MW394	
Date Collected	Result	LN(Result)
7/10/2013	36	3.584
10/3/2013	36	3.584
1/22/2014	36	3.584
4/9/2014	16.1	2.779
7/17/2014	18.8	2.934
10/27/2014	20	2.996
1/8/2015	11.7	2.460
4/22/2015	41.4	3.723

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Ungradient	Yes	120	YES	4 787	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances
MW220

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Analysis Current Background Comparison UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Conductivity

X = 381.625 S = 31.037 CV(1) = 0.081

:0.081 **K factor**=** 2.523

TL(1) = 459.932

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.941

S = 0.085 CV(2) = 0.014

K factor**= 2.523

TL(2) = 6.156

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
7/15/2013	392	5.971
10/1/2013	353	5.866
1/22/2014	386	5.956
4/7/2014	403	5.999
7/17/2014	407	6.009
10/21/2014	316	5.756
1/5/2015	330	5.799
4/14/2015	422	6.045

4/14/2015	422	6.045
Well Number:	MW394	
Date Collected	Result	LN(Result)
7/10/2013	405	6.004
10/3/2013	386	5.956
1/22/2014	382	5.945
4/9/2014	404	6.001
7/17/2014	391	5.969
10/27/2014	397	5.984
1/8/2015	397	5.984
4/22/2015	335	5.814

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW372	Downgradien	t Yes	758	YES	6.631	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances
MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Dissolved Solids URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 222.125 S = 93.479 CV(1) = 0.421

K factor=** 2.523

TL(1)= 457.972 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.351

S= 0.299 CV(2) = 0.056 **K** factor**= 2.523

TL(2)= 6.106

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
7/15/2013	233	5.451
10/1/2013	200	5.298
1/22/2014	219	5.389
4/7/2014	226	5.421
7/17/2014	556	6.321
10/21/2014	159	5.069
1/5/2015	140	4.942
4/14/2015	197	5.283

4/14/2015	197	5.283
Well Number:	MW394	
Date Collected	Result	LN(Result)
7/10/2013	246	5.505
10/3/2013	226	5.421
1/22/2014	208	5.338
4/9/2014	214	5.366
7/17/2014	196	5.278
10/27/2014	187	5.231
1/8/2015	166	5.112
4/22/2015	181	5.198

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Qual ttl	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	441	NO	6.089	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.941

CV(1)=0.133

K factor**= 2.523

TL(1)= 13.268

URGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.288

S = 0.141 CV(2) = 0.062

S= 1.319

K factor**= 2.523

TL(2)= 2.644

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 7/15/2013 9.07 2.205 10/1/2013 7.7 2.041 2.259 1/22/2014 9.57 4/7/2014 10.5 2.351 7/17/2014 8.95 2.192 10/21/2014 7.41 2.003 1/5/2015 8.05 2.086 10.2 2.322 4/14/2015

Well Number:	MW394	
Date Collected	Result	LN(Result)
7/10/2013	11.1	2.407
10/3/2013	10.7	2.370
1/22/2014	10.3	2.332
4/9/2014	11	2.398
7/17/2014	11.1	2.407
10/27/2014	11	2.398
1/8/2015	11.3	2.425
4/22/2015	11.1	2.407

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW372	Downgradien	t Yes	24.8	YES	3 211	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances
MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Quarter Data

MW387 Downgradient Yes

Upgradient

Downgradient

MW391

MW394

Statistics-Background Data

X = 542.000 S = 171.952 CV(1) = 0.317

S = 0.300

K factor=** 2.523

TL(1)= 975.836 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.251

CV(2)=0.048

K factor**= 2.523

TL(2) = 7.008

LL(2)=N/A

N/A

N/A

N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 7/15/2013 467 6.146 10/1/2013 777 6.655 1/22/2014 381 5.943 4/7/2014 400 5.991 7/17/2014 395 5.979 10/21/2014 401 5.994 1/5/2015 733 6.597 4/14/2015 488 6.190 Well Number: MW394 Date Collected Result LN(Result) 7/10/2013 756 6.628 10/3/2013 803 6.688 1/22/2014 832 6.724 4/9/2014 516 6.246 7/17/2014 356 5.875 10/27/2014 6.116 453 1/8/2015 453 6.116

461

4/22/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	672	NO	6.510	N/A
MW221	Downgradien	t Yes	701	NO	6.553	N/A
MW222	Downgradien	t Yes	638	NO	6.458	N/A
MW223	Downgradien	t Yes	649	NO	6.475	N/A
MW224	Downgradien	t Yes	623	NO	6.435	N/A
MW369	Downgradien	t Yes	410	NO	6.016	N/A
MW384	Sidegradient	Yes	728	NO	6.590	N/A

NO

NO

NO

6.004

6.064

6.410

405

430

608

Yes

Conclusion of Statistical Analysis on Current Data

6.133

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.063 S = 5.444

K factor**= 2.523

TL(1)= 48.797

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.546 **S**= 0.153

CV(2) = 0.043

CV(1)=0.155

K factor**= 2.523

TL(2)= 3.932

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 7/15/2013 40.5 3.701 10/1/2013 34.6 3.544 1/22/2014 39.5 3.676 4/7/2014 43.9 3.782 7/17/2014 39.1 3.666 10/21/2014 36 3.584 1/5/2015 38.1 3.640 4/14/2015 3 804

4/14/2015	44.9	3.804
Well Number:	MW394	
Date Collected	Result	LN(Result)
7/10/2013	29.3	3.378
10/3/2013	28.8	3.360
1/22/2014	28.8	3.360
4/9/2014	29.9	3.398
7/17/2014	29.6	3.388
10/27/2014	33.9	3.523
1/8/2015	33.8	3.520
4/22/2015	30.3	3.411

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	63.3	YES	4.148	N/A
MW384	Sidegradient	Yes	58.7	YES	4.072	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW384

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Analysis Current Background Comparison UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Sulfate

X= 13.413 **S**= 3.675

CV(1)=0.274

K factor**= 2.523

TL(1)= 22.686

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.562

S= 0.266 **CV(2)**=0.104

K factor**= 2.523

TL(2) = 3.234

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 7/15/2013 17 2.833 10/1/2013 14 2.639 1/22/2014 18 2.890 4/7/2014 18.9 2.939 7/17/2014 19.4 2.965 10/21/2014 13.5 2.603 1/5/2015 14 2.639

4/14/2015	17.9	2.885
Well Number:	MW394	
Date Collected	Result	LN(Result)
7/10/2013	9.7	2.272
10/3/2013	10	2.303
1/22/2014	10	2.303
4/9/2014	10	2.303
7/17/2014	10.3	2.332
10/27/2014	11.1	2.407
1/8/2015	10.5	2.351
4/22/2015	10.3	2.332

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	18.6	NO	2.923	N/A
MW223	Downgradient	t Yes	19.9	NO	2.991	N/A
MW372	Downgradient	t Yes	135	YES	4.905	N/A
MW384	Sidegradient	Yes	20.6	NO	3.025	N/A
MW387	Downgradient	t Yes	24.4	YES	3.195	N/A
MW391	Downgradient	t Yes	46.6	YES	3.842	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis **Technetium-99** UNITS: pCi/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.486 K factor**= 2.523 Statistics-Background Data X = 18.406 S = 8.945TL(1) = 40.975LL(1)=N/A **Statistics-Transformed Background** X = 2.789TL(2) = 4.158

MW387 Downgradient Yes

Data

S = 0.543CV(2)=0.195 **K** factor**= 2.523

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 7/15/2013 21.3 3.059 10/1/2013 20.7 3.030 1/22/2014 32.1 3.469 4/7/2014 24.8 3.211 7/17/2014 12.1 2.493 10/21/2014 35 3.555 1/5/2015 32.5 3.481 4/14/2015 2.501 12.2 Well Number: MW394 Date Collected Result LN(Result) 7/10/2013 15 2.708 10/3/2013 9.68 2.270

18.8

4.32

10.1

17.2

17.2

11.5

1/22/2014

4/9/2014

7/17/2014

10/27/2014

1/8/2015

4/22/2015

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

5.670

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW369	Downgradient	t Yes	36.7	NO	3.603	N/A		
MW372	Downgradient	t Yes	37	NO	3.611	N/A		
MW384	Sidegradient	Yes	182	YES	5.204	N/A		

YES

290

Conclusion of Statistical Analysis on Current Data

2.934

1.463

2.313

2.845

2.845

2.442

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

N/A

MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Analysis Current Background Comparison UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 0.275	S = 1.733	CV(1) =6.293	K factor**= 2.523	TL(1)= 4.648	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.874	S = 2.266	CV(2)= -1.209	K factor**= 2.523	TL(2)= 1.782	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result

Thorium-230

Well Number:	MW220	
Date Collected	Result	LN(Result)
7/15/2013	0.00796	-4.833
10/1/2013	0.0576	-2.854
1/22/2014	0.0212	-3.854
4/7/2014	-1.05	#Func!
7/17/2014	-0.622	#Func!
10/21/2014	1.29	0.255
1/5/2015	5.94	1.782
4/14/2015	0.145	-1.931
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) #Func!
Date Collected	Result	` '
Date Collected 7/10/2013	Result -0.0296	#Func!
Date Collected 7/10/2013 10/3/2013	Result -0.0296 0.0834	#Func! -2.484
Date Collected 7/10/2013 10/3/2013 1/22/2014	Result -0.0296 0.0834 0.00975	#Func! -2.484 -4.630
Date Collected 7/10/2013 10/3/2013 1/22/2014 4/9/2014	Result -0.0296 0.0834 0.00975 -1.65	#Func! -2.484 -4.630 #Func!
Date Collected 7/10/2013 10/3/2013 1/22/2014 4/9/2014 7/17/2014	Result -0.0296 0.0834 0.00975 -1.65 1.41	#Func! -2.484 -4.630 #Func! 0.344

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.729	N/A	-0.316	NO
MW224	Downgradient	Yes	0.684	N/A	-0.380	NO
MW384	Sidegradient	Yes	0.728	N/A	-0.317	NO
MW387	Downgradient	Yes	0.71	N/A	-0.342	NO

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Beta activity UNITS: p

Analysis Current Background Comparison UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 9.426

CV(1)=0.593

K factor**= 2.523

TL(1) = 23.537

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.011

S= 0.800 **CV(2)**=0.398

S = 5.593

K factor=** 2.523

TL(2) = 4.030

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected Result LN(Result) 7/11/2013 6.34 1.847 10/3/2013 10.3 2.332 1/22/2014 9.4 2.241 4/9/2014 2.09 0.737 7/17/2014 11.5 2.442 10/27/2014 19.1 2.950 1/6/2015 5.98 1.788 0.030 4/22/2015 1.03

4/22/2013	1.03	0.030
Well Number:	MW397	
Date Collected	Result	LN(Result)
7/8/2013	16.2	2.785
10/2/2013	17.6	2.868
1/22/2014	10	2.303
4/8/2014	4.03	1.394
7/16/2014	5.18	1.645
10/21/2014	10.4	2.342
1/7/2015	16.3	2.791
4/22/2015	5.37	1.681

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW385	Sidegradient	Yes	139	YES	4.934	N/A
MW388	Downgradien	t Yes	107	YES	4.673	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

LRGA Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.838 S = 4.201

CV(1)=0.184

K factor=** 2.523

TL(1)= 33.436

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.112**S**= 0.186 CV(2) = 0.060

K factor**= 2.523

TL(2) = 3.582

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
7/11/2013	28.1	3.336
10/3/2013	26.7	3.285
1/22/2014	27	3.296
4/9/2014	27.7	3.321
7/17/2014	26.5	3.277
10/27/2014	26.6	3.281
1/6/2015	25.8	3.250
4/22/2015	26.4	3.273

Well Number:	MW397	
Date Collected	Result	LN(Result)
7/8/2013	18.2	2.901
10/2/2013	18.6	2.923
1/22/2014	19.5	2.970
4/8/2014	19.4	2.965
7/16/2014	17.8	2.879
10/21/2014	19.8	2.986
1/7/2015	18.6	2.923
4/22/2015	18.7	2.929

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW373	Downgradien	t Yes	71.4	YES	4 268	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Analysis Current Background Comparison UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Conductivity

X = 360.438 S = 27.809 CV(1) = 0.077

).077 **K factor**=** 2.523

TL(1)= 430.599

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.885 S = 0.077

CV(2) = 0.013

K factor**= 2.523

TL(2)= 6.078

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 7/11/2013 394 5.976 10/3/2013 376 5.930 1/22/2014 387 5.958 4/9/2014 402 5.996 7/17/2014 401 5.994 10/27/2014 387 5.958 1/6/2015 376 5.930 4/22/2015 338 5.823

Current Quarter Data

Well No. Gradient Detected? Result Result >TL(1)? LN(Result) LN(Result) >TL(2)

MW373 Downgradient Yes 813 YES 6.701 N/A

utilizing TL(1).

Well Number: MW397 Date Collected Result LN(Result) 7/8/2013 335 5.814 10/2/2013 353 5.866 1/22/2014 338 5.823 4/8/2014 328 5.793 7/16/2014 336 5.817 10/21/2014 5.820 337 1/7/2015 354 5.869 4/22/2015 325 5.784

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Dissolved Solids UNITS: mg/L

LRGA
sults are compared to the twell result is compared to

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 181.250 S = 26.732 CV(1) = 0.147

K factor**= 2.523 TL(1

TL(1)= 248.695 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.190 S = 0.144 CV(2) = 0.028

K factor**= 2.523

TL(2) = 5.554

Because CV(1) is less than or equal to

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected Result LN(Result) 7/11/2013 229 5.434 10/3/2013 225 5.416 1/22/2014 213 5.361 4/9/2014 217 5.380 7/17/2014 166 5.112 10/27/2014 181 5.198 1/6/2015 147 4.990 179 5.187 4/22/2015

1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Qual tel	Dutu

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	Yes	500	YES	6.215	N/A

Well Number:	MW397	
Date Collected	Result	LN(Result)
7/8/2013	182	5.204
10/2/2013	169	5.130
1/22/2014	190	5.247
4/8/2014	171	5.142
7/16/2014	167	5.118
10/21/2014	161	5.081
1/7/2015	159	5.069
4/22/2015	144	4.970

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Magnesium UNITS: mg/L LRGA

S = 1.747

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.376

CV(1)=0.186

K factor**= 2.523

TL(1)= 13.785

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.222

 $S = 0.188 \quad CV(2) = 0.084$

K factor**= 2.523

TL(2) = 2.695

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
7/11/2013	10.9	2.389
10/3/2013	10.4	2.342
1/22/2014	10.8	2.380
4/9/2014	12.2	2.501
7/17/2014	11	2.398
10/27/2014	11.3	2.425
1/6/2015	9.96	2.299
4/22/2015	11.3	2.425

Well Number:	MW397	
Date Collected	Result	LN(Result)
7/8/2013	7.1	1.960
10/2/2013	7.32	1.991
1/22/2014	8.08	2.089
4/8/2014	8.36	2.123
7/16/2014	7.49	2.014
10/21/2014	8.07	2.088
1/7/2015	7.64	2.033
4/22/2015	8.09	2.091

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW373	Downgradien	t Ves	26.2	VES	3 266	N/Δ

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 494.188 S = 136.645 CV(1) = 0.277

K factor=** 2.523

TL(1)= 838.943 I

LL(1)=N/A

Statistics-Transformed Background Data

X = 6.169

S = 0.266 CV(2) = 0.043

Current Quarter Data

MW395 Upgradient

MW397 Upgradient

K factor**= 2.523

TL(2) = 6.839

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
7/11/2013	495	6.205
10/3/2013	542	6.295
1/22/2014	803	6.688
4/9/2014	537	6.286
7/17/2014	381	5.943
10/27/2014	307	5.727
1/6/2015	586	6.373
4/22/2015	474	6.161
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 6.094
Date Collected	Result	` ′
Date Collected 7/8/2013	Result 443	6.094
Date Collected 7/8/2013 10/2/2013	Result 443 679	6.094 6.521
Date Collected 7/8/2013 10/2/2013 1/22/2014	Result 443 679 389	6.094 6.521 5.964
Date Collected 7/8/2013 10/2/2013 1/22/2014 4/8/2014	Result 443 679 389 363	6.094 6.521 5.964 5.894
Date Collected 7/8/2013 10/2/2013 1/22/2014 4/8/2014 7/16/2014	Result 443 679 389 363 382	6.094 6.521 5.964 5.894 5.945

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

6.148

6.395

N/A

N/A

04110110						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	388	NO	5.961	N/A
MW373	Downgradient	Yes	468	NO	6.148	N/A
MW385	Sidegradient	Yes	637	NO	6.457	N/A
MW388	Downgradient	Yes	378	NO	5.935	N/A
MW392	Downgradient	Yes	339	NO	5.826	N/A

NO

NO

468

599

Yes

Yes

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Sulfate UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 12.111
 S= 3.601 CV(1)=0.297
 K factor**= 2.523
 TL(1)= 21.197
 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.463
 S= 0.241 CV(2)=0.098
 K factor**= 2.523
 TL(2)= 3.072
 LL(2)=N/A

Data

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 7/11/2013 9.7 2.272 10/3/2013 20 2.996 1/22/2014 9.8 2.282 4/9/2014 9.77 2.279 7/17/2014 10.1 2.313 10/27/2014 10.6 2.361 1/6/2015 10.1 2.313 4/22/2015 10.1 2.313 Well Number: MW397 Date Collected Result LN(Result) 7/8/2013 11 2.398 10/2/2013 22 3.091 1/22/2014 12 2.485 4/8/2014 11.7 2.460 7/16/2014 11.7 2.460 10/21/2014 2.534 12.6 1/7/2015 11.7 2.460 4/22/2015 10.9 2.389

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

3.178

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW370	Downgradient	Yes	19	NO	2.944	N/A				
MW373	Downgradient	Yes	149	YES	5.004	N/A				
MW385	Sidegradient	Yes	23.7	YES	3.165	N/A				

YES

24

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW388

Downgradient Yes

Wells with Exceedances

N/A

MW373 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T Third Quarter 2015 Statistical Analysis Technetium-99 UNITS: pCi/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 13.894 **S**= 6.830

CV(1)=0.492

K factor**= 2.523

TL(1) = 31.125

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.529

S = 0.469 CV(2) = 0.186

K factor**= 2.523

TL(2) = 3.713

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
7/11/2013	10.7	2.370
10/3/2013	10.6	2.361
1/22/2014	20	2.996
4/9/2014	11.2	2.416
7/17/2014	8.05	2.086
10/27/2014	14.4	2.667
1/6/2015	17	2.833
4/22/2015	7.25	1.981
Well Number	MW397	

7.25	1.981
MW397	
Result	LN(Result)
14.6	2.681
19.1	2.950
33.7	3.517
16.5	2.803
10.6	2.361
14.7	2.688
4.58	1.522
9.32	2.232
	MW397 Result 14.6 19.1 33.7 16.5 10.6 14.7 4.58

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	60.3	YES	4.099	N/A
MW373	Downgradien	t Yes	37.3	YES	3.619	N/A
MW385	Sidegradient	Yes	222	YES	5.403	N/A
MW388	Downgradien	t Yes	143	YES	4.963	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

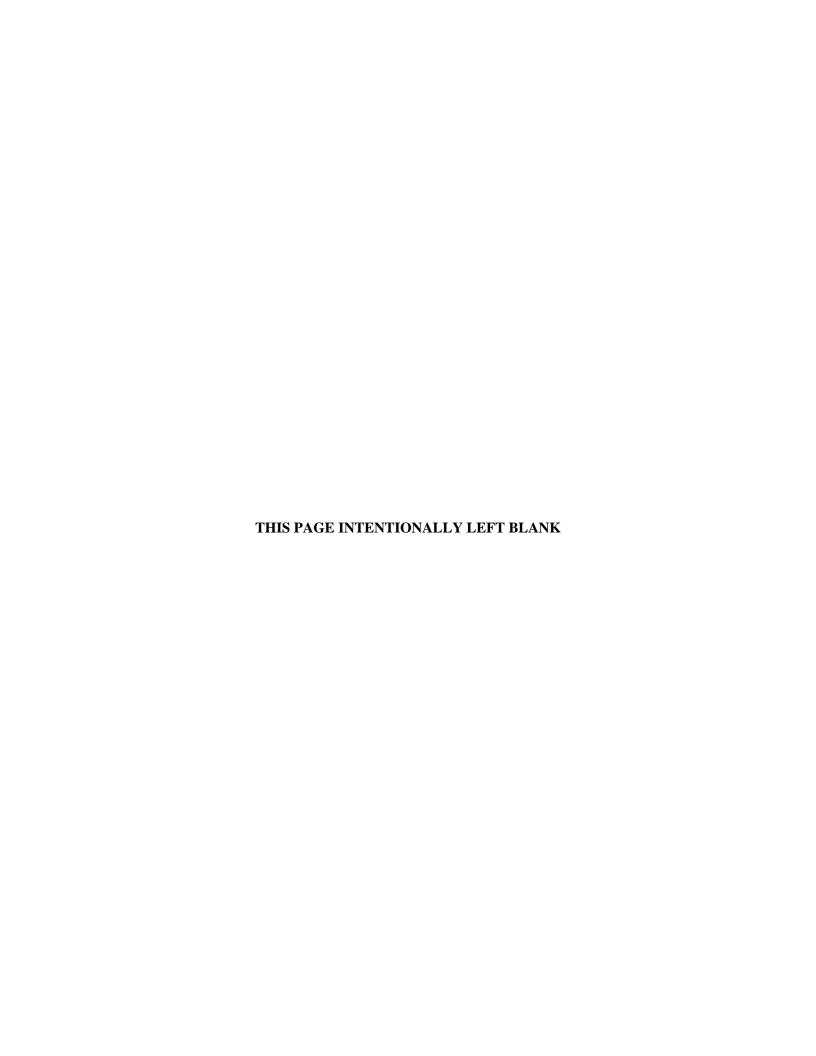
MW370 MW373

MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.


S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

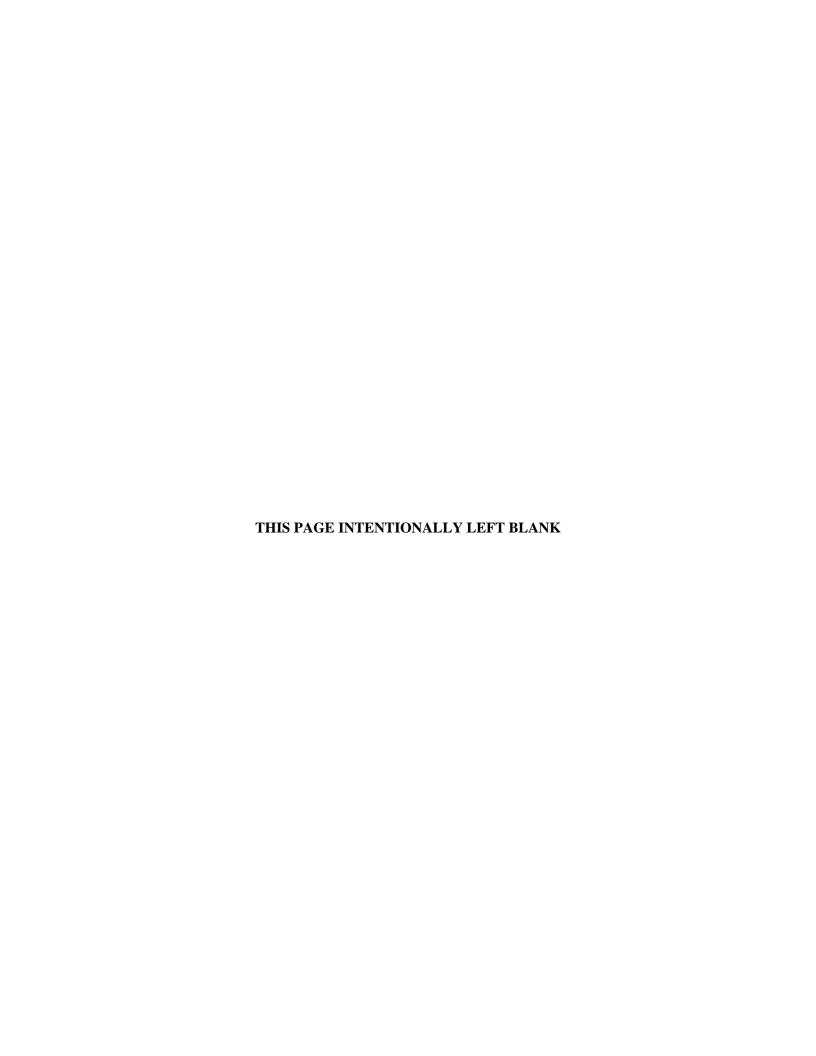
^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

October 20, 2015

Ms. Myrna Redfield Fluor Federal Services, Inc. 5511 Hobbs Road Kevil, Kentucky 42053

Dear Ms. Redfield:


This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in biology, I have over twenty years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Fluor Federal Services, Inc.

For this project, the statistical analyses conducted on the third quarter 2015 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Jennifer R. Blewett

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/INERT—OUARTERLY, 3rd CY 2015

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Numbers: SW07300014, SW07300015, SW07300045 For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Finds/Unit: KY8-890-008-982/1

LAB ID: None

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the third quarter 2015 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on August 4, 2015. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both a measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill is 1.42×10^{-4} ft/ft. Additional water level measurements in August (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 3.09×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for August 2015, the groundwater flow direction in the immediate area of the landfill conforms to the typical regional flow direction.

-

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

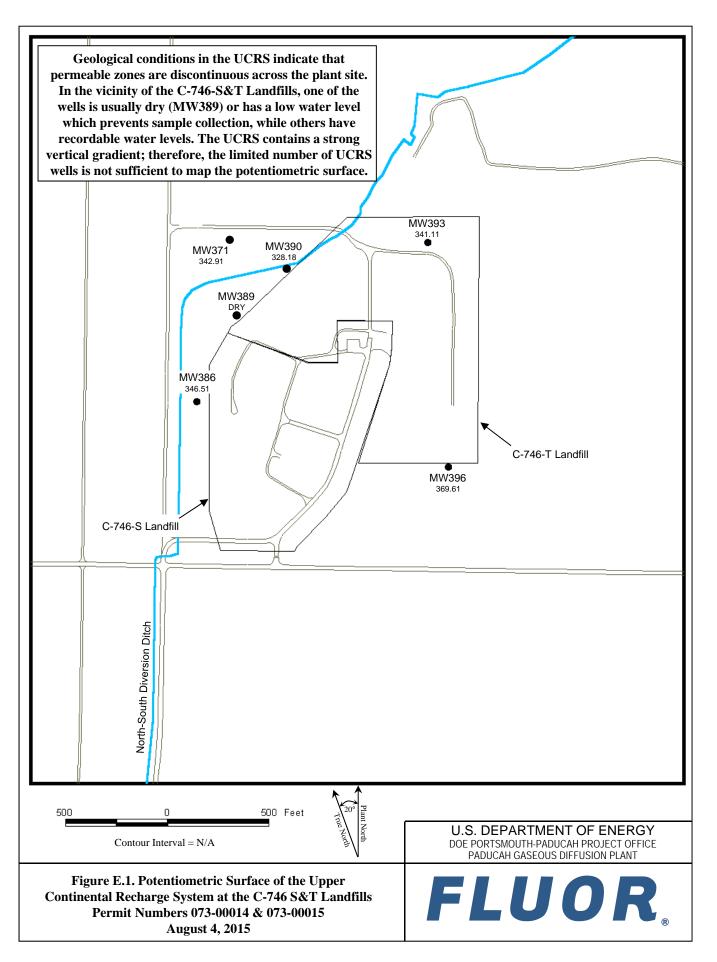


Table E.1. C-746-S&T Landfills Third Quarter 2015 (August) Water Levels

C-746-S&T Landfills (August 2015) Water Levels										
							Rav	w Data	*Corre	ected Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
8/4/2015	8:42	MW220	URGA	381.44	30.01	0.00	53.13	328.31	53.13	328.31
8/4/2015	8:52	MW221	URGA	390.83	30.01	0.00	62.63	328.20	62.63	328.20
8/4/2015	8:49	MW222	URGA	394.87	30.01	0.00	66.70	328.17	66.70	328.17
8/4/2015	8:50	MW223	URGA	394.03	30.01	0.00	65.85	328.18	65.85	328.18
8/4/2015	8:47	MW224	URGA	395.41	30.01	0.00	67.21	328.20	67.21	328.20
8/4/2015	8:44	MW225	URGA	385.55	30.01	0.00	57.34	328.21	57.34	328.21
8/4/2015	9:01	MW353	LRGA	374.86	30.01	0.00	46.56	328.30	46.56	328.30
8/4/2015	8:14	MW369	URGA	364.48	30.01	0.00	36.26	328.22	36.26	328.22
8/4/2015	8:16	MW370	LRGA	365.35	30.01	0.00	37.14	328.21	37.14	328.21
8/4/2015	8:15	MW371	UCRS	364.88	30.01	0.00	21.97	342.91	21.97	342.91
8/4/2015		MW372	URGA	359.66	30.01	0.00	ND		ND	
8/4/2015	8:07	MW373	LRGA	359.95	30.01	0.00	31.81	328.14	31.81	328.14
8/4/2015	8:38	MW384	URGA	365.06	30.01	0.00	36.86	328.20	36.86	328.20
8/4/2015	8:40	MW385	LRGA	365.54	30.01	0.00	37.34	328.20	37.34	328.20
8/4/2015	8:39	MW386	UCRS	365.21	30.01	0.00	18.7	346.51	18.70	346.51
8/4/2015	8:35	MW387	URGA	363.27	30.01	0.00	35.05	328.22	35.05	328.22
8/4/2015	8:36	MW388	LRGA	363.25	30.01	0.00	35.03	328.22	35.03	328.22
8/4/2015		MW389	UCRS	363.82	30.01	0.00	DRY		DRY	
8/4/2015	8:33	MW390	UCRS	360.36	30.01	0.00	32.18	328.18	32.18	328.18
8/4/2015	14:10	MW391	URGA	366.54	29.97	0.05	38.43	328.11	38.48	328.06
8/4/2015	8:18	MW392	LRGA	365.67	30.01	0.00	37.60	328.07	37.60	328.07
8/4/2015	8:19	MW393	UCRS	366.59	30.01	0.00	25.48	341.11	25.48	341.11
8/4/2015	8:27	MW394	URGA	378.32	30.01	0.00	50.16	328.16	50.16	328.16
8/4/2015	8:25	MW395	LRGA	379.01	30.01	0.00	50.82	328.19	50.82	328.19
8/4/2015	8:26	MW396	UCRS	378.64	30.01	0.00	9.03	369.61	9.03	369.61
8/4/2015	8:29	MW397	LRGA	386.90	30.01	0.00	58.74	328.16	58.74	328.16
8/4/2015	14:12	MW418	URGA	366.78	29.97	0.05	38.64	328.14	38.69	328.09
8/4/2015	14:13	MW419	LRGA	366.68	29.97	0.05	38.57	328.11	38.62	328.06

Initial Barometric Pressure

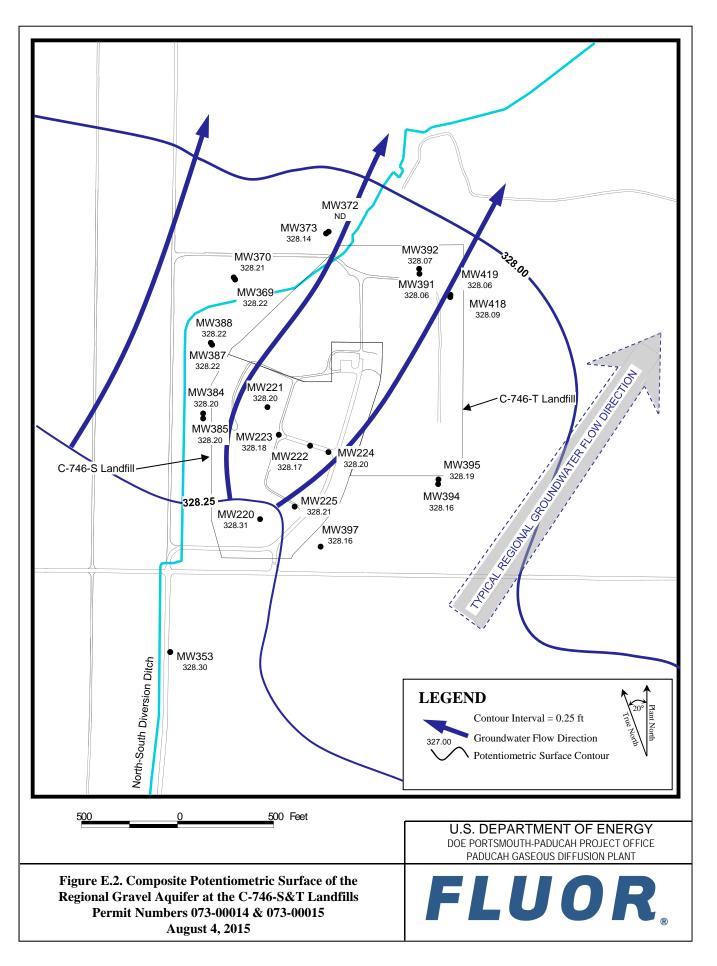
30.01

Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum

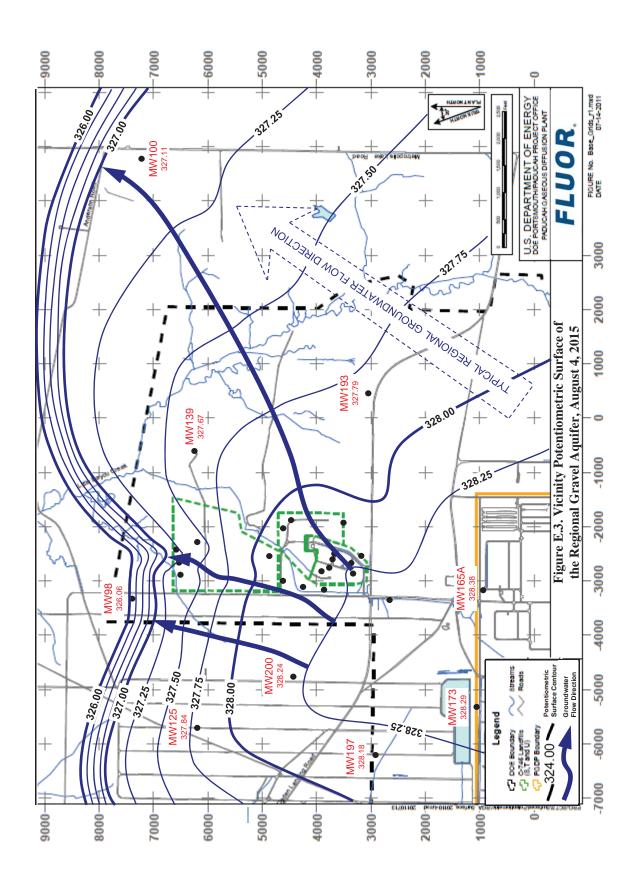

URGA = Upper Regional Gravel Aquifer

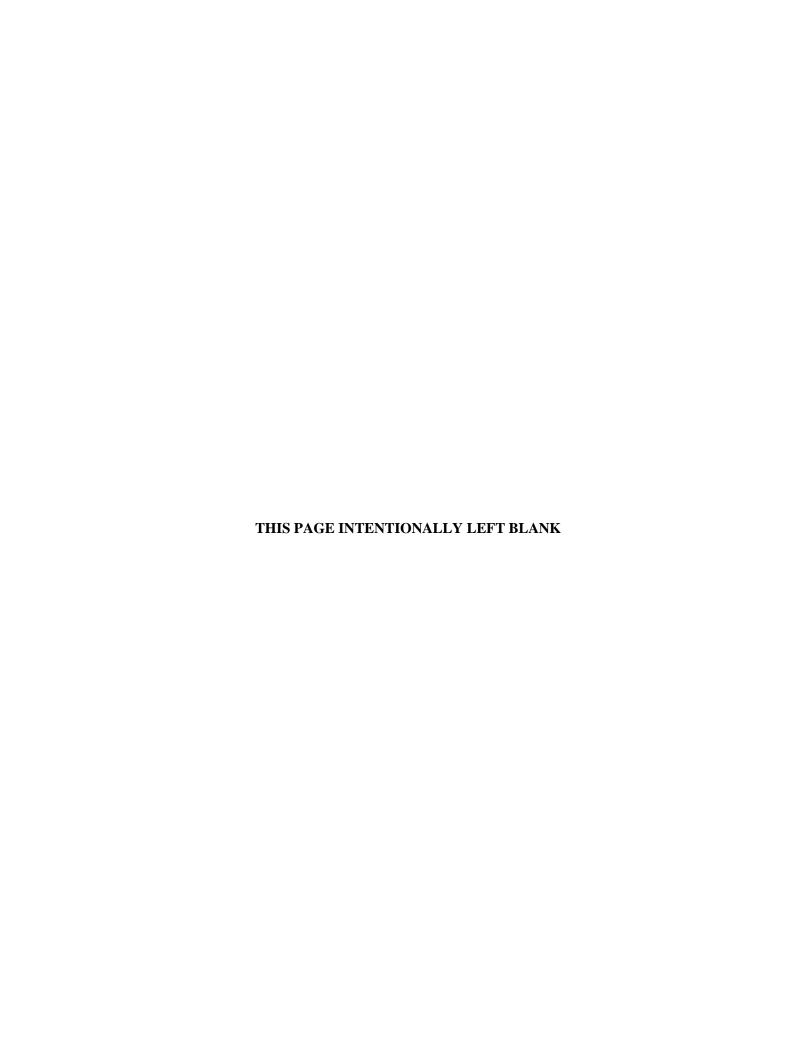
LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

ND = No Data acquired

*Assumes a barometric efficiency of 1.0




Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft	
Beneath Landfill Mound	1.42×10^{-4}	
Vicinity	3.09×10^{-4}	

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Conductivity (K)		Specific Discharge (q)		Average Linear Velocity (v)	
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Beneath Landfill Mound					
725	0.256	0.10	3.64×10^{-5}	0.41	1.46×10^{-4}
425	0.150	0.06	2.14×10^{-5}	0.24	8.54×10^{-5}
<u>Vicinity</u>					
725	0.256	0.22	7.92×10^{-5}	0.90	3.17×10^{-4}
425	0.150	0.13	4.64×10^{-5}	0.53	1.86×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the third quarter 2015 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Sodium Technetium-99	MW372, MW384 MW369, MW372, MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW370, MW373, MW385, MW388

8/31/2015

Fluor Federal Services PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S and -T LANDFILLS PERMIT NUMBERS 073-00014 and 073-00015 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8000-5201	MW220	Trichloroethene	8260B	7.62	ug/L	5
8004-4808	MW372	Trichloroethene	8260B	8.2	ug/L	5
8004-4792	MW373	Trichloroethene	8260B	8.35	ug/L	5
8004-4809	MW384	Beta activity	900.0	100	pCi/L	50
8004-4810	MW385	Beta activity	900.0	139	pCi/L	50
8004-4815	MW387	Beta activity Beta activity	900.0 900.0	189 169	pCi/L pCi/L	50 50
8004-4816	MW388	Beta activity	900.0	107	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	10.4	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	17	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills

Groundwater Flow System			UCR:	S						1	URGA	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
ACETONE																							
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
ALPHA ACTIVITY																							
Quarter 4, 2002																							
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*						*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003							*	*			*			*									
Quarter 1, 2004			*				*	*			*												
Quarter 2, 2004							*							*									
Quarter 3, 2004							*							*									
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*				*																
Quarter 3, 2005			*				*			*											*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
Quarter 1, 2007							*										*						
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																
Quarter 4, 2007	1						*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009	-		*				*				*												
Quarter 1, 2010	-		*				*				*												
Quarter 2, 2010	-		*								*												
Quarter 3, 2010	-		*								*			*			*			*			
Quarter 1, 2011	-		-				*				*						-			-			
Quarter 2, 2011	-		*			1	-				*			-	-							-	
Quarter 2, 2011 Quarter 2, 2012	-		*																				
Quarter 3, 2012			<u> </u>				*																
							*				*												
Quarter 1, 2013 Quarter 3, 2013	-		*			-	*				*			-	-							-	<u> </u>
	_		*			-	*																
Quarter 1, 2014						_	不				34c			ļ	ļ							ļ	<u> </u>
Quarter 2, 2014	_		4			<u> </u>					*												₽
Quarter 4, 2014			*																				
BARIUM																							
Quarter 3, 2003	_					_					<u> </u>			<u> </u>	<u> </u>						<u> </u>	<u> </u>	₩
Quarter 4, 2003																							Ц

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	•							URGA	۸								LRG/	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Ouarter 2, 2003																							
Quarter 3, 2003				_																			
Quarter 4, 2003																	_						-
Quarter 1, 2004										-													-
Quarter 2, 2004																	H						
Quarter 2, 2004 Ouarter 3, 2004																	i		-	-			
,																							-
Quarter 4, 2004												-	=										-
Quarter 1, 2005										_													<u> </u>
Quarter 2, 2005										_							_						<u> </u>
Quarter 3, 2005										_													<u> </u>
Quarter 4, 2005	!		ļ				ļ			_	ļ		_		ļ				_	<u> </u>			<u> </u>
Quarter 1, 2006	!		L_				ļ			_	ļ		-		ļ		•		•				<u> </u>
Quarter 2, 2006										_		L_	_						_				<u> </u>
Quarter 3, 2006	L_		L																_				<u> </u>
Quarter 4, 2006										_									_				
Quarter 1, 2007																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011	1									Ŧ							Ħ						
Quarter 3, 2011	1		_							=							H						
Quarter 4, 2011	!	-	-				-				-			-	-		i		-	-			
Quarter 1, 2012	1	-					1				1	-		-	1				-				
•		-				-								-					-				
Quarter 2, 2012		-	-			-								-					-	-			
Quarter 3, 2012	!		-				-				-				-								<u> </u>
Quarter 4, 2012	 	-												-			-						
Quarter 1, 2013			<u> </u>				<u> </u>				<u> </u>	_			<u> </u>				-				
Quarter 2, 2013			<u> </u>				<u> </u>			-	<u> </u>	_			<u> </u>				_	-			
Quarter 3, 2013			<u> </u>				<u> </u>			-	<u> </u>				<u> </u>								├—
Quarter 4, 2013	!		_				ļ				ļ				ļ								<u> </u>
Quarter 1, 2014										_										L_			<u> </u>
Quarter 2, 2014										_							•			-			<u> </u>
Quarter 3, 2014												L											
Quarter 4, 2014																							
Quarter 1, 2015																							
Quarter 2, 2015																							
Quarter 3, 2015																							L

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System	T		UCR	S						1	URGA	A								LRGA	١		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390		396			_	224		369	372	387	391	220	394	385	370	373	388		395	397
BROMIDE																							
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003	1		*									-											
Quarter 4, 2003	1		*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004	1		*									*							*				\vdash
Quarter 3, 2004	1		*									*							*				
Quarter 4, 2004	1		*									*							*				
Quarter 1, 2005	1		<u> </u>		-					-		*	-	-	-				*	-	-	-	
Quarter 2, 2005	1	 		 								*							*				\vdash
Quarter 3, 2005	1			-	-	<u> </u>				-		*	-	-	-				*	-	-	-	
Quarter 4, 2005	-											*							*				₩
*	-											*							*				
Quarter 1, 2006	-											*							*				<u> </u>
Quarter 2, 2006												*							*				<u> </u>
Quarter 3, 2006	-																		*				
Quarter 4, 2006												*											<u> </u>
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				<u> </u>
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Ouarter 3, 2010												*							*				
Quarter 4, 2010	1											*							*				t
Quarter 1, 2011	1											*							*				
Quarter 2, 2011	1			-	-					-		*	*	-	-				*	-	-	-	
Quarter 3, 2011	1					 						*							*				
Quarter 4, 2011	1	-		-	-	 				-		*	-	-	-	-			*	-	-	-	\vdash
Quarter 1, 2012	+	 	-			-						*							*				₩
	-											*							*				
Quarter 2, 2012 Quarter 3, 2012	-	 		-								*							*				₩
	-	<u> </u>																	*				
Quarter 4, 2012	_	<u> </u>		ļ								*											<u> </u>
Quarter 1, 2013		<u> </u>			ļ					ļ		*	ļ	ļ	ļ	ļ			*	ļ	<u> </u>	<u> </u>	<u> </u>
Quarter 2, 2013												*							*				Щ
Quarter 3, 2013												*							*				<u> </u>
Quarter 4, 2013												*							*				
Quarter 3, 2015												*				_			*				

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	A								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CALCIUM																							
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*						*	*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*	*						*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
CARBON DISULFIDE																							
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		
CHEMICAL OXYGEN DEMA	ND																						
Quarter 1, 2003	T			*																			
Quarter 2, 2003				*																			
Quarter 3, 2003	1			*			*			*													<u> </u>
Quarter 4, 2003	1			*																			
Quarter 1, 2004	*			*																			
Quarter 4, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*									*		*									*		
Quarter 4, 2005	*									*													
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																						
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						<u> </u>
Quarter 1, 2009	*																						<u> </u>
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*			-			-							-									
Quarter 3, 2010	*			-			-							-									
Quarter 4, 2010	*																						<u> </u>
Quarter 3, 2011	*																						<u> </u>
Quarter 4, 2011	*			-		-	-				-			-	-								
Quarter 1, 2012	*			-		-	-				-			-	-								
Quarter 1, 2012 Quarter 1, 2013	*																						
Quarter 3, 2013	*																						
Quarter 3, 2013 Quarter 3, 2014	*								*				*					*					
	*	<u> </u>			-		*		*				*					*	-		-		<u> </u>
Quarter 4, 2014	-	<u> </u>			-		*									*			-		-		<u> </u>
Quarter 2, 2015	-	<u> </u>													JŁ.	不							<u> </u>
Quarter 3, 2015	1		1		1	Ī		1	1	1	l	1	1		*	l		1	1	1	1		<u> </u>

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						ì	URGA	A								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHLORIDE																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				
Quarter 3, 2005			*																				
Quarter 4, 2005			*																				
Quarter 1, 2006	1																	*					-
Quarter 2, 2006	-	-	*			 												Ë					\vdash
Quarter 3, 2006	1		*		-			-			-			-						-	-	-	\vdash
Quarter 4, 2006	-		*			-																	\vdash
Quarter 1, 2007			*																				
Quarter 2, 2007 Quarter 2, 2007			*																				
			*																				├
Quarter 3, 2007			*																				<u> </u>
Quarter 4, 2007																							
Quarter 1, 2008			*																				<u> </u>
Quarter 2, 2008			*																				
Quarter 3, 2008			*																				
Quarter 4, 2008			*																				
Quarter 1, 2009			*																				
Quarter 2, 2009			*																				
Quarter 3, 2009			*																				
Quarter 4, 2009			*																				
Quarter 1, 2010			*																				
Quarter 2, 2010			*																				
Quarter 3, 2010			*																				
Quarter 4, 2010			*																				
Quarter 2, 2011			*																				
Quarter 3, 2011			*																				
Quarter 4, 2011	1		*																				
Quarter 3, 2012	1		*																				
Quarter 3, 2013	1		*					1			1												
Quarter 4, 2013	1		*					1			1												
Quarter 4, 2014	1		*																				
CHROMIUM																							
Quarter 4, 2002																							
Quarter 1, 2003	1																						
Quarter 2, 2003																							
Quarter 3, 2009	1																						
COBALT																							
Quarter 3, 2003							*																
	_																						

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System		1	UCRS	S						Ţ	JRGA	4								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396		222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																					1		
Quarter 4, 2002				1	1					*		1		1				1	*		1		
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003	-		*					*		*									*				
Quarter 4, 2003	-		*					-		*									*				
Quarter 1, 2004	-																		*				
Quarter 2, 2004										*									*				-
Quarter 3, 2004	-									*									*				
Quarter 4, 2004			*							*									*				<u> </u>
Quarter 1, 2005			-							*		*							*				<u> </u>
` '	-									*		*							*				
Quarter 2, 2005												不											
Quarter 3, 2005										¥		4							*				
Quarter 4, 2005										*		*							*				<u> </u>
Quarter 1, 2006	4											*						ļ	*				<u> </u>
Quarter 2, 2006												*							*				Щ
Quarter 3, 2006												*							*				Щ
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007												*					*		*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010												*							*				
Quarter 2, 2010	1											*							*				\vdash
Quarter 3, 2010	1											*							*				\vdash
Quarter 4, 2010	-											*							*				
Quarter 1, 2011	-									*		*							*				
Quarter 2, 2011	-									-		*							*				
Quarter 3, 2011												*							*				-
Quarter 4, 2011	-											*							*				
Quarter 1, 2012	-										*	*							*				
	-										т	*							*				-
Quarter 2, 2012 Quarter 3, 2012	+					-						*	-				-		*	-		-	\vdash
	-											*							*				
Quarter 4, 2012	-											*						-	*				
Quarter 1, 2013	_												-							-		-	
Quarter 2, 2013												*						<u> </u>	*				₩
Quarter 3, 2013	_			<u> </u>								*		<u> </u>				<u> </u>	*		<u> </u>		₩
Quarter 4, 2013	4											*						ļ	*				<u> </u>
Quarter 1, 2014												*							*				<u> </u>
Quarter 2, 2014				ļ								*		ļ					*		ļ		₩
Quarter 3, 2014												*							*				Щ
Quarter 4, 2014												*							*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	3						1	URGA	1								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004			*									*							*				
Quarter 2, 2004										*		*							*				
Quarter 3, 2004										*		*							*				
Quarter 4, 2004										*		*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005	1																*	*	*	*	*		
Quarter 1, 2006	+					1											*	*	*	*	*		\vdash
Quarter 2, 2006	+	-			-	 	-			-	-		-	-			*	*	*	*	*	-	₩
Quarter 3, 2006 Quarter 3, 2006	+	-															*	*	*	*	*	-	₩
	-					!	-			*	-	*	-				*	*	*	*	*		₩
Quarter 4, 2006							<u> </u>			*	<u> </u>	不	<u> </u>				*						₩
Quarter 1, 2007	_											ala.							*				<u> </u>
Quarter 2, 2007										*		*							*				<u> </u>
Quarter 3, 2007										*		*							*				
Quarter 4, 2007												*							*				<u> </u>
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008										*		*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*	*						*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010										*		*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011	1											*	*						*				
Quarter 3, 2011	1					1	1				1	*	1						*				<u> </u>
Quarter 4, 2011	1											*							*				\vdash
Quarter 1, 2012	1										*	*	*						*				\vdash
Quarter 2, 2012	1					1	1				1	*	1						*				<u> </u>
Quarter 3, 2012	1					1	1			*	1	*	*						*				<u> </u>
Quarter 4, 2012	1					1	1				1	*	*						*				<u> </u>
Quarter 1, 2013	1					1	1			*	1	*	1						*				<u> </u>
Quarter 2, 2013	1											*							*				\vdash
Quarter 3, 2013	1											*							*				\vdash
Quarter 4, 2013	1											*							*				\vdash
Quarter 1, 2014	1											*	*						*				\vdash
Quarter 2, 2014	1											*							*				\vdash
Quarter 3, 2014	1				1	1	1		*		1	*	*	1				1	*				
Quarter 4, 2014	1										 	*	*						*				
Quarter 1, 2015	1											*							*				\vdash
Quarter 2, 2015	1				-	1	-				-	*	-	-				-	*				1
Quarter 3, 2015	-					1		-				*			-		-		*				\vdash
Z						<u> </u>				l													Щ_

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	3						1	URGA	1								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	
Quarter 3, 2003													*										
Quarter 1, 2004				*																			
Quarter 3, 2010																					*		
Quarter 2, 2013						*																	
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007											*												
Quarter 2, 2008						*																	
Quarter 3, 2008												*											

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

D D 389 39 *** ** ** ** **	390 390 390 390 390 390 390 390 390 390	_	S 221	*	S 223	S 224	S 384	D 369	D 372 * * * * * * *	D 387	D 391	U 220	U 394	S 385	D 370	* *	D 388	D 392	U 395	U 397
**	**	33 396	221		223	224	384	369	* * *	387		220	394	385	370	* *	388	392	395	397
***	* * * * * * * * * * * * * * * * * * * *			*					* * *		*					*				
***	* * * * * * * * * * * * * * * * * * * *			*					* * *		*					*				
**	* * * * * * *			*					* * *		*					*				
*	* * * * * *			*					* *		*					*				
*	* *								*		*					*				
*	*								*		*									Г
*	*															31.	$\vdash \vdash$			
									*							*	1 1			
*	*							_			l					*				
									*							*				
									*							*				
					1				*							*				
									*							*				
									*							*				
			1						*							*			_	
				 	1			\vdash	*					\vdash	\vdash	*	$\vdash\vdash$			_
			1	1				\vdash	*							*	${oldsymbol{dash}}$		-	
		1	╌	<u> </u>	₩			\vdash	*					$\vdash\vdash$	\vdash	*	$\vdash \vdash \vdash$			
	+		1	<u> </u>	1				*					\vdash		*	$\vdash \vdash \vdash$			
			-						*					\vdash	\vdash	*				₩
			-											\vdash	 		 			Н—
									*					\vdash	\vdash	*				—
									*						lacksquare	*				Ь—
									*							*	ш			<u> </u>
									*							*				<u> </u>
									*							*				<u> </u>
									*							*				<u> </u>
									*							*				<u> </u>
									*							*				
									*	*						*				
									*							*				
									*							*				
									*	*						*				
									*							*				
									*							*				
									*							*				
									*	*						*				
									*							*				
	+								*							*				
									*							*	\vdash			\vdash
			1																_	
			1							*							$\vdash \vdash$			
			1						•	f							$\vdash \vdash$			
			1							~				$\vdash\vdash$	\vdash		$\vdash \vdash$			
			1											$\vdash\vdash$	\vdash		$\vdash \vdash$			
	-		-											\vdash	\vdash					₩
_			-											\vdash	 		 			Н—
	_		1	<u> </u>	<u> </u>				不					$\vdash \vdash \vdash$	ماد		ш			—
	4	-	1—	<u> </u>	<u> </u>				J.	J .				oxdot	*		Ш			Ь—
			1	<u> </u>	<u> </u>					*							╙			├
														Ш			Ш			<u> </u>
				<u> </u>	<u> </u>												Ш			<u> </u>
				<u> </u>	<u> </u>					*							Ш			<u> </u>
				<u> </u>										1	1	*	L			<u> </u>
			1	1	i					_	_				-					l
										***	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

MANGANESE Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POTE Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2009 OXIDATION-REDUCTION POTE Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	* **	D 389	* * * * * *	D 393	U 396	S 2211	* * * * *	\$ 223 * *	S 224	S 384	D 369	D 372	D 387	D 391	U 220	U 394	S 385	D 370	D	D 388	392 *	U 395	U 397
Monitoring Well MANGANESE Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POTE Quarter 4, 2004 Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2009 OXIDATION-REDUCTION POTE Quarter 4, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	** **		* * * * * *				* * * * *	* *													392		
MANGANESE Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POTE Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2009 OXIDATION-REDUCTION POTE Quarter 4, 2003 Quarter 3, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	* **		* * * * * *				* * * *	*															
Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POTF Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2009 OXIDATION-REDUCTION POTF Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	*	TIAL	* * * *				* * *	*													*		
Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POTE Quarter 4, 2004 Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	*	FIAL	* * * *				* * *	*															
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POTE Quarter 4, 2004 Quarter 4, 2004 Quarter 3, 2009 OXIDATION-REDUCTION POTE Quarter 4, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	*	YIAL	* * * *				* *																
Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POTE Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	*	TIAL	* * * *				*	*															
Quarter 2, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POTE Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	*	TIAL	* * * *				*	*															
Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POTE Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	*	TIAL	* * * *					*														\vdash	
Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POTE Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	*	FIAL	* * * *				*																
Quarter 3, 2005 Quarter 3, 2009 OXIDATION-REDUCTION POTE Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	*	FIAL	* * * *																				
Quarter 3, 2009 OXIDATION-REDUCTION POTE Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	*	FIAL	* * * *																		*		
OXIDATION-REDUCTION POTE Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	*	TIAL	* * * *																		-		
Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010	*		* * * *																				
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010			* * * *				1																
Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010			* * *																			\vdash	
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010			* *															*				\vdash	
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010			*	<u> </u>		*	-											*	 			\vdash	
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010			*	i		*		-		-								*		-		┝─┤	
Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010				 	 	-				-								*	₩	-		$\vdash \vdash \vdash$	├
Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010	**************************************		*	 	 	-				-									₩	-		$\vdash \vdash \vdash$	├
Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010					<u> </u>																	 	Н—
Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010		1	*	<u> </u>	 					<u> </u>										<u> </u>		$\vdash \vdash$	<u> </u>
Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010			*		<u> </u>	_		ļ										3 <u>4</u> 2	<u> </u>				<u> </u>
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010		<u> </u>	*	<u> </u>	<u> </u>	_		<u> </u>		ļ								*	<u> </u>	ļ		$\vdash \vdash$	—
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010																						\vdash	⊢
Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010			*				4															\vdash	—
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010			*				*												<u> </u>			\vdash	—
Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010			*				*												<u> </u>				Ь—
Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010			*			-11			-1-										<u> </u>				Ь—
Quarter 3, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010			*			*			*														Ь—
Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010	*		*	*		*							*				*		*	*			<u> </u>
Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010			*	*		*							*				*		*	*			<u> </u>
Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010			*	*		*	*	*	*				*				*	*		*			<u> </u>
Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010			*				*	*	*				*	*				*		*			<u> </u>
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010			*	*		*											*	*	*	*			<u> </u>
Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010			*			*			*									*		*			<u> </u>
Quarter 3, 2010 Quarter 4, 2010	*		*																	*			<u> </u>
Quarter 4, 2010	*		*	*					*				*				*	*		*			<u> </u>
	*		*	*		*											*	*	*	*			<u> </u>
			*					*			*			*			*	*	*	*			<u> </u>
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		<u> </u>
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		<u> </u>
Quarter 3, 2011	*		*	*			*		*		*		*				*	*	*	*			<u> </u>
Quarter 4, 2011	*		*	*			*				*						*	*		*			<u> </u>
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		<u> </u>
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		<u> </u>
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*	$oxed{oxed}$	Щ
Quarter 4, 2012		<u> </u>	<u> </u>	*		*		*	*	*	*		*	*			*	*	*	*	*		<u></u>
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*	Ш	
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		L
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		
Quarter 3, 2014	*		*	*		*											*	*	*	*			
Quarter 4, 2014	*		*	*							*		*				*	*	*	*	*		
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	-14		*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
									_			_				_			_				

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System	T		UCRS	S						1	URG	4								LRGA	Α		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384		372		391		394	385	370	373	388	392	395	397
PCB, 1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004	1										*												
Quarter 3, 2005	1						*				*												-
Quarter 1, 2006	1										*												-
Quarter 2, 2006	1										*												
Quarter 4, 2006	1										*												
Quarter 1, 2007	t										*	*											
Quarter 2, 2007	1											*											
Quarter 3, 2007	t										*												
Quarter 2, 2008	t										*	*											
Quarter 3, 2008	1										*												
Quarter 4, 2008	1										*												
Quarter 1, 2009	1										*												-
Quarter 2, 2009	\vdash										*												
Quarter 3, 2009	1										*												
•	1										*												
Quarter 4, 2009 Quarter 1, 2010	\vdash		-			-			-		*												-
	-										*												
Quarter 2, 2010	├										*												
Quarter 3, 2010	!																						
Quarter 4, 2010	_										*												
PCB-1232	_										-14												
Quarter 1, 2011	_										*												
PCB-1248																							
Quarter 2, 2008												*											
PCB-1260																							
Quarter 2, 2006	$oldsymbol{oldsymbol{oldsymbol{eta}}}$																	*					
pН																							
Quarter 4, 2002																	*						
Quarter 2, 2003	└																*						
Quarter 3, 2003							-1-										*						
Quarter 4, 2003	└						*										*						
Quarter 1, 2004	₩						*										*						<u> </u>
Quarter 2, 2004																	*						
Quarter 3, 2004	└																*						
Quarter 4, 2004	ـــــ																*						<u> </u>
Quarter 3, 2005	ـــــ									*							*				*		<u> </u>
Quarter 4, 2005										*							*						
Quarter 1, 2006	ـــــ																*						<u> </u>
Quarter 2, 2006																	*						
Quarter 3, 2006	ـــــ																*						<u> </u>
Quarter 3, 2007	ـــــ																*						<u> </u>
Quarter 4, 2007	—																*						<u> </u>
Quarter 4, 2008	₩		ļ			!			ļ								*						Ь—
Quarter 1, 2009	₩		ļ			!			ļ								*						Ь—
Quarter 1, 2011	₩										at-						*						<u> </u>
Quarter 2, 2011	₩				ļ					ļ	*									ļ	ļ		<u> </u>
Quarter 3, 2011	₩				ļ					ļ	*			,14						ļ	ļ		<u> </u>
Quarter 1, 2012	└									L.				*			L						
Quarter 1, 2013	└									*			*				*				<u> </u>		
Quarter 4, 2014	<u> </u>		<u> </u>		<u> </u>	<u> </u>			<u> </u>	<u> </u>										<u> </u>	*		<u> </u>

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System		Ì	UCRS URG																	LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
POTASSIUM																							
Quarter 4, 2002																		*	*				
Quarter 3, 2004																			*				
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				
Quarter 3, 2013																			*				
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004																			*				
Quarter 2, 2005									*														
Quarter 1, 2009											*												
Quarter 3, 2014									*			*											
Quarter 4, 2014			*								*							*					
Quarter 1, 2015			*				*			*		*						*					
Quarter 2, 2015			*				*			*		*						*					
Quarter 3, 2015			*																				
RADIUM-228																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
SELENIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCR	S		L^{-}				1	URGA	Α								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SODIUM																							
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*												
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*		*													
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*													
Quarter 1, 2006									*	*													\vdash
Quarter 2, 2006	1								*														
Quarter 3, 2006	-								*	*		*	-						*				\vdash
Quarter 4, 2006	-			-		1			*	*							*		<u> </u>				\vdash
Quarter 1, 2007									*	-4-		*											
Quarter 2, 2007									*	*													
-									*	т.													₩
Quarter 3, 2007									*														₩
Quarter 4, 2007																							<u> </u>
Quarter 1, 2008									*			-11											<u> </u>
Quarter 3, 2008									.4.	.4.		*											<u> </u>
Quarter 4, 2008									*	*													<u> </u>
Quarter 1, 2009									*			*							*				<u> </u>
Quarter 3, 2009												*											<u> </u>
Quarter 4, 2009									*			*											
Quarter 1, 2010												*											
Quarter 2, 2010										*		*											
Quarter 3, 2010										*													
Quarter 4, 2010									*	*													
Quarter 1, 2011										*													
Quarter 2, 2011									*														<u> </u>
Quarter 4, 2011																			*				<u> </u>
Quarter 1, 2012											*												<u> </u>
Quarter 3, 2012												*							*				1
Quarter 4, 2012												*											
Quarter 1, 2013	-				1					*	 	*			 				*				\vdash
Quarter 2, 2013	-											*							<u> </u>				\vdash
	-	-	-	-	 	-	-					-1-		-			-	-	*				\vdash
Quarter 3, 2013 Quarter 4, 2013	-				 	-					-	*			-				*				₩
	-				 	-					-	*			-				*				₩
Quarter 1, 2014					<u> </u>	_		<u> </u>	- سر	<u> </u>	ىد		<u> </u>		ļ	<u> </u>			ىد				₩
Quarter 2, 2014	_				<u> </u>	_			*		*	*			ļ				*				Щ
Quarter 3, 2014					<u> </u>				L.	L.		*	L.						*				<u> </u>
Quarter 4, 2014					<u> </u>				*	*		*	*										<u> </u>
Quarter 1, 2015													*										Щ
Quarter 2, 2015					<u> </u>					<u> </u>		*											<u> </u>
Quarter 3, 2015									<u></u>	*		*	<u></u>										<u> </u>

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCRS	S						-	URGA	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
STRONTIUM-90																							
Ouarter 2, 2003																							
Quarter 1, 2004																							
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005	-									*		*	*					*	*				
Quarter 3, 2005	-									*		*	*				*	*	*				-
Quarter 4, 2005	+		-	-	-					*		*	*	-	-	-	-	*	*	*	 	-	-
•	+									*		*	*			_	*	*	*	*			<u> </u>
Quarter 1, 2006	+								*	*		*	*				*	*	*	*	<u> </u>		<u> </u>
Quarter 2, 2006	-															<u> </u>		ボ					<u> </u>
Quarter 3, 2006	\perp								*	*		*	*				*		*	*			<u> </u>
Quarter 4, 2006									*	*		*	*				*		*				<u> </u>
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
Quarter 4, 2009	*									*		*	*				*	*	*				
Quarter 1, 2010	*								*	*		*	*				*		*				
Quarter 2, 2010									*	*		*	*				*	*	*	*			-
Quarter 3, 2010										*		*	*				*	*	*	*			-
Quarter 4, 2010	*									*		*	*				*	*	*	-			-
	*									*		*	*				*	*	*				-
Quarter 1, 2011	*									*		*		*			*	*	*	*			
Quarter 2, 2011													*	*						*			
Quarter 3, 2011	*									*		*	*	不			*	*	*				<u> </u>
Quarter 4, 2011	*									*		*	*				*	*	*	*			<u> </u>
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012										*		*	*				*	*	*	*			
Quarter 1, 2013										*		*	*				*	*	*	*			
Quarter 2, 2013										*		*	*	*			*	*	*	*			
Quarter 3, 2013										*		*	*	*			*	*	*	*	1		
Quarter 4, 2013										*		*	*				*	*	*	*			
Quarter 1, 2014								*		*		*	*				*	*	*	*			
Quarter 2, 2014										*		*	*	*			*	*	*	*			\vdash
Quarter 3, 2014	+	-	1	1	 					*		*	*	*	-	 	*	*	*	*	 	 	
Quarter 4, 2014	+									*		*	*	H			*	*	*	*	 		
Quarter 1, 2015	+		 	 						*		*	*				*	*	*	*	 		
Quarter 2, 2015	+									*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2015	_							*	-	*	-	*	*	*	*		*	*	*	*	1		1
Zumici 3, 2013	1						i l				İ			1							1		

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\ and\ T\ Landfills\ (Continued)$

Groundwater Flow System			UCRS	S						Ţ	URGA	4								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003			*										*				*			*			
Quarter 4, 2003			*							*		*	*				*		*	*			
Quarter 1, 2004			*									*	*				*		*				
Quarter 2, 2004			*									*	*				*		*	*			
Quarter 3, 2004			*									*					*		*				
Quarter 4, 2004			*							*		*	*				*	*	*				
Quarter 1, 2005			*							*		*	*				*			*			
Quarter 2, 2005			*							*			*				*	*	*	*			
Quarter 3, 2005			*							*			*				*	*	*	*			
Quarter 4, 2005			*							*		*	*				*	***	*	*			
•			т.							*		*	*				Ψ.		*	*			
Quarter 1, 2006			4									不					4	4					
Quarter 2, 2006	_		*							*			*				*	*	*	*			
Quarter 3, 2006	Ļ		*							*		<u> </u>	*				*	*	*	*			
Quarter 4, 2006	*									*		*	*						*	*			
Quarter 1, 2007			*							*			*				*		*	*			
Quarter 2, 2007			*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
•			*							*		*	*				*	-	т.	*			
Quarter 1, 2009			*							*		*	*				*	*		*			
Quarter 2, 2009											<u>.</u>							不		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*						
Quarter 1, 2010			*							*		*	*				*						
Quarter 2, 2010			*							*			*				*	*		*			
Quarter 3, 2010			*							*	*	*	*				*						
Quarter 4, 2010			*							*		*	*				*						
Quarter 1, 2011										*			*				*						
Quarter 2, 2011			*							*			*				*			*			
Quarter 3, 2011			*							*			*				*			*			
Quarter 4, 2011			*							*	*	*	*				*						
Quarter 1, 2012			*							*	-	-	*				*			*			
` '			*							*			*				*		*	*			
Quarter 2, 2012			*					-		*	-	*	*				*		Ψ.	_	<u> </u>	-	
Quarter 3, 2012	<u> </u>		*			<u> </u>				*		*	*				*		*	*			
Quarter 4, 2012								ļ			ļ	不									<u> </u>	ļ	<u> </u>
Quarter 1, 2013										*		,1.	*				*		*	*	ļ		ļ
Quarter 2, 2013								<u> </u>		*	<u> </u>	*	*				*		*	*		<u> </u>	
Quarter 3, 2013			*							*		*	*				*		*	*			
Quarter 4, 2013			*							*		*	*				*		*	*			
Quarter 1, 2014			*							*	*		*				*		*	*			
Quarter 2, 2014			*							*	*		*	*			*		*	*			
Quarter 3, 2014			*							*			*				*			*			
Quarter 4, 2014			*							*	*	*	*				*		*	*			
Quarter 1, 2015			*					1		*	*	*	*				*			*		1	
Quarter 2, 2015			*							*	*		*				*			*			
Quarter 3, 2015		-	*				-	1		*	*	*	*	-			*	*	*	*	 	1	
THORIUM-230																							
Quarter 1, 2012	*								*					*									
Quarter 1, 2012 Quarter 4, 2014	*		*					-	-T		-	-		44							-	-	-
Quarter 4, 2014 Quarter 3, 2015	*	-	T			-	-		*	*			*	-	*				-	-			
Quarter 3, 2013						_			*	*					_ T		_						

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Gradient S D D D U S S S S D D D U U S S D D D U U S D D D U	Groundwater Flow System	T		UCR	S						1	URGA	4								LRGA	A.		
Monitoring Well	•	S				U	S	S	S	S				D	D	U	U	S	D				U	U
THORIUM-234																							395	397
Quarter 2, 2003 Quarter 2, 2007 TOLUENE Quarter 2, 2001 TOTAL ORGANIC CARBON Quarter 2, 2003 Quarter 3, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2006 Quarter 2, 2005 Quarter 3, 2006 Quarter 2, 2005 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Q																								
Quarter 4, 2007 TOTALURENE Quarter 2, 2014 Quarter 1, 2003 Quarter 2, 2004 Quarter 1, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 2, 2001 Quarter 2, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 5, 2007 Quarter 5, 2007 Quarter 5, 2007 Quarter 5, 2007 Quarter 4, 2006 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2007 Quarter 3, 2009							*			*					*									
TOLLENE	-	1								*														
Quarter 4, 2002 Quarter 1, 2003 Quarter 3, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2008 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2009 Quarter 3, 200																								
TOTAL ORGANIC CARBON Quarter 4, 2002 Quarter 2, 2003											*	*		*										
Quarter 4, 2002 Quarter 2, 2003 Quarter 3, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2001 Quarter 1, 2005 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2009 Quarter 3, 200	-																							
Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2001 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 1, 2007 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2009 Quarter 1, 2006 Quarter 1, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2000 Quarter 6, 200																						*		
Quarter 2, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2001 Quarter 3, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6,	` '	1			*						*	*							*	*		*		
Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 4, 2007 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2000 Quarter 6, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 8, 2000 Qua		1												*								*		
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 5, 2007 Quarter 6, 2007 Quarter 7, 2007 Quarter 8, 2007 Quarter 8, 2007 Quarter 9, 2007 Quarter 9, 2007 Quarter 1, 2008 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 200	-	1						*	*	*	*	*	*											
Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2001 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2002 Quarter 1, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2009 Quarter 2, 2000 Quarter 2, 2009 Quarter 2, 2000 Quarter 2, 2009 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 200		1						*		*	*													
Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2007 * * * * * * * * * * * * * * * * * *		1									*													
Quarter 4, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2001 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 5, 2007 Quarter 6, 2007 Quarter 9, 2007 Quarter 9, 2007 Quarter 1, 2008 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2006 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2008 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009	•	1									*	*												
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 W W W W W W W W W W W W W	-	1									*													
Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 * Quarter 1, 2007 Quarter 2, 2011 Quarter 3, 2012 * TOTAL ORGANIC HALIDES Quarter 1, 2003 * Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2003 * Quarter 3, 2003 * Quarter 3, 2004 * Quarter 3, 2005 * Quarter 3, 2005 * Quarter 3, 2006 * Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 * Quarter 4, 2006 Quarter 4, 2006 Quarter 5, 2006 Quarter 6, 2006 * Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 * Quarter 1, 2006 Quarter 2, 2006 * Quarter 2, 2006 * Quarter 2, 2006 * Quarter 3, 2007 * Quarter 2, 2006 * Quarter 2, 2007 * Quarter 2, 2007 * Quarter 2, 2007 * Quarter 1, 2007 * Quarter 1, 2008 * Quarter 1, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 3, 2009 * Quarter 4, 20		1									*													
Quarter 3, 2005 Quarter 4, 2005 Quarter 5, 2005 Quarter 5, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 * Quarter 3, 2007 * * * * * * * * * * * * * * * * * *		 																						
Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 * Quarter 3, 2007 * Quarter 3, 2007 * Quarter 2, 2011 Quarter 2, 2011 * * * * * * * * * * * * * * * * * *		 	1	 	1			1					1	 	-	 			1	 		*		
Quarter 1, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 3, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 3, 2004 Quarter 1, 2005 Quarter 4, 2005 Quarter 3, 2004 Quarter 1, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 5, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 8, 2010 Quarter 9, 2010 Quarter 9, 2010 Quarter 9, 2010 Quarter 9, 201		\vdash	\vdash										*											
Quarter 1, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 3, 2007 * * * * * * * * * * * * * * * * * *	,	\vdash		-	-			-					-	-		-			-	-				
Quarter 2, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2011 Quarter 3, 2007 ** ** ** ** ** ** ** Quarter 3, 2007 ** Quarter 3, 2012 ** TOTAL ORGANIC HALIDES Quarter 1, 2003 Quarter 4, 2002 Quarter 1, 2003 ** Quarter 2, 2004 Quarter 3, 2003 ** Quarter 2, 2004 Quarter 3, 2004 ** Quarter 3, 2005 ** Quarter 3, 2005 ** Quarter 3, 2005 ** Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 ** Quarter 1, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 ** Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 ** Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 ** Quarter 5, 2009 ** Quarter 6, 2009 ** Quarter 6	•	\vdash		-	-			-					-	-		-			-	-		-		
Quarter 3, 2006 Quarter 4, 2007	,	 											*											<u> </u>
Quarter 1, 2007	` '	 	<u> </u>								*		*					34c						<u> </u>
Quarter 3, 2007											- JL							不						
Quarter 3, 2011	,							4	40	40				40	40			46						
Quarter 3, 2012	,	*					*	*	*	*	*			*	*			*						
TOTAL ORGANIC HALIDES Quarter 4, 2002 Quarter 1, 2003 ** Quarter 3, 2003 Quarter 3, 2004 Quarter 1, 2005 ** Quarter 1, 2005 ** Quarter 2, 2005 ** Quarter 2, 2005 ** Quarter 4, 2005 Quarter 1, 2006 ** Quarter 1, 2006 ** Quarter 2, 2006 ** Quarter 2, 2006 ** Quarter 2, 2006 ** Quarter 3, 2006 ** Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 ** Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 ** Quarter 4, 2007 ** Quarter 4, 2008 ** Quarter 4, 2008 ** Quarter 4, 2009 ** Quarter 3, 2009 ** Quarter 3, 2009 ** Quarter 4, 2009 ** Quarter 2, 2009 ** Quarter 3, 2009 ** Quarter 4, 2009 ** Quarter 2, 2010 ** Quarter 2, 2010 ** Quarter 2, 2010 ** Quarter 2, 2010	` '	<u> </u>										*												
Quarter 4, 2002 *		*																						
Quarter 1, 2003																								
Quarter 3, 2003																				*				
Quarter 2, 2004																			*					
Quarter 3, 2004					*																			
Quarter 1, 2005																						*		
Quarter 2, 2005	Quarter 3, 2004																							
Quarter 3, 2005	Quarter 1, 2005																							
Quarter 4, 2005																								
Quarter 1, 2006 * Quarter 2, 2006 * Quarter 3, 2006 * Quarter 4, 2006 * Quarter 1, 2007 * Quarter 2, 2007 * Quarter 3, 2007 * Quarter 4, 2007 * Quarter 1, 2008 * Quarter 4, 2008 * Quarter 1, 2009 * Quarter 2, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 *																								
Quarter 2, 2006			<u> </u>																					
Quarter 3, 2006 * Quarter 4, 2006 * Quarter 1, 2007 * Quarter 2, 2007 * Quarter 3, 2007 * Quarter 4, 2007 * Quarter 1, 2008 * Quarter 4, 2008 * Quarter 4, 2008 * Quarter 1, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 *	` '																							
Quarter 4, 2006 Quarter 2, 2007 * Quarter 3, 2007 * Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 * Quarter 2, 2010 * Quarter 3, 2009 A Quarter 4, 2009 A Quarter 4, 2009 A Quarter 2, 2010 A																								
Quarter 1, 2007		*																						
Quarter 2, 2007		<u> </u>	<u> </u>															*						
Quarter 3, 2007 * Quarter 4, 2007 * Quarter 1, 2008 * Quarter 4, 2008 * Quarter 4, 2008 * Quarter 1, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 *																								
Quarter 4, 2007		不																						
Quarter 1, 2008 * Quarter 4, 2008 * Quarter 4, 2008 * Quarter 1, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 *																								
Quarter 4, 2008 * Quarter 4, 2008 * Quarter 1, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 *			<u> </u>																			*		
Quarter 4, 2008 * Quarter 1, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 *																								
Quarter 1, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 *																								
Quarter 2, 2009 * Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 *																								
Quarter 3, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 *			<u> </u>																					
Quarter 4, 2009																						*		
Quarter 1, 2010 * Quarter 2, 2010 *			<u> </u>																					
Quarter 2, 2010 *																								
Ouarter 3, 2010 * *																								
	Quarter 3, 2010	*																						

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

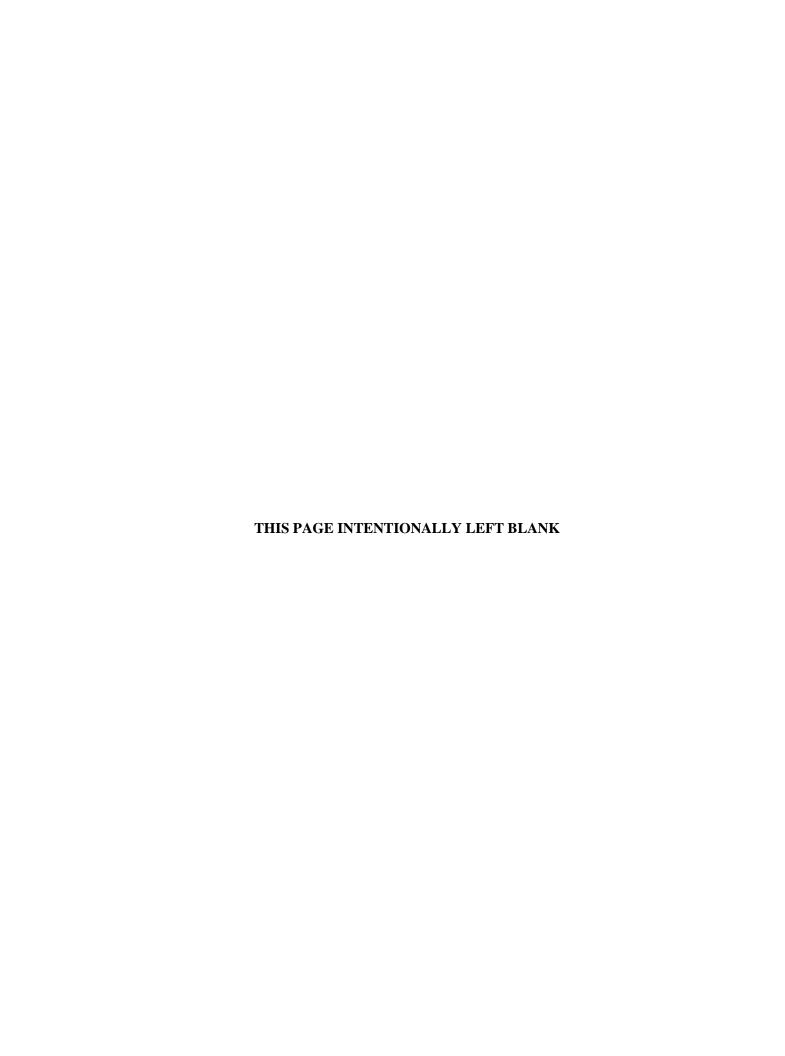
Groundwater Flow System		Ì	UCRS	3						ì	URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TOTAL ORGANIC HALIDES																							
Quarter 4, 2010	*																						
Quarter 1, 2011	*																						
Quarter 3, 2013																					*		
TRICHLOROETHENE																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							\vdash
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							_
Quarter 4, 2004																							-
Quarter 1, 2005																		Ī			Ī		-
Quarter 2, 2005	 	 	 				 				 	F		i				i	i	 	ī	Ħ	\vdash
Quarter 3, 2005	!	-	-				-			-	-		-		-			i		-			├
Quarter 4, 2005																		=	-				-
Quarter 1, 2006	!	-	-				-			-	-		-					-		-	÷		├
Quarter 1, 2006 Quarter 2, 2006																		i	i		ī	Ħ	-
Quarter 2, 2006 Quarter 2, 2007																		-					
` '																					i		
Quarter 3, 2007														-							-		-
Quarter 4, 2007																						-	-
Quarter 1, 2008																							-
Quarter 2, 2008																							<u> </u>
Quarter 3, 2008																							<u> </u>
Quarter 4, 2008																=			-		=		<u> </u>
Quarter 1, 2009																_							
Quarter 2, 2009																					_		
Quarter 3, 2009											_										_		
Quarter 4, 2009														_					_		_		
Quarter 1, 2010														_		_			_		_		┞—
Quarter 2, 2010																			_		_	_	<u> </u>
Quarter 3, 2010																			_		_		
Quarter 4, 2010																			_		_		
Quarter 1, 2011										<u> </u>									_		_		₩
Quarter 2, 2011																					_		<u> </u>
Quarter 3, 2011																					_		
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																					-		
Quarter 2, 2014																							
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015																							
Quarter 2, 2015																							
Quarter 3, 2015																							

Chart of MCL and Historical UTL Exceedances for the C-746-S and T Landfills (Continued)

Groundwater Flow System			UCR	S						Ţ	JRGA	A]	LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														
* Statistical test results indicate an	alaya	tod o	onaan	tratio	n (i a	o ete	tistis	11v ei	onific	ont ir	orano	0)											

* Statistical test results indicate an elevated concentration (i.e., a statistically significant increase)

■ MCL Exceedance

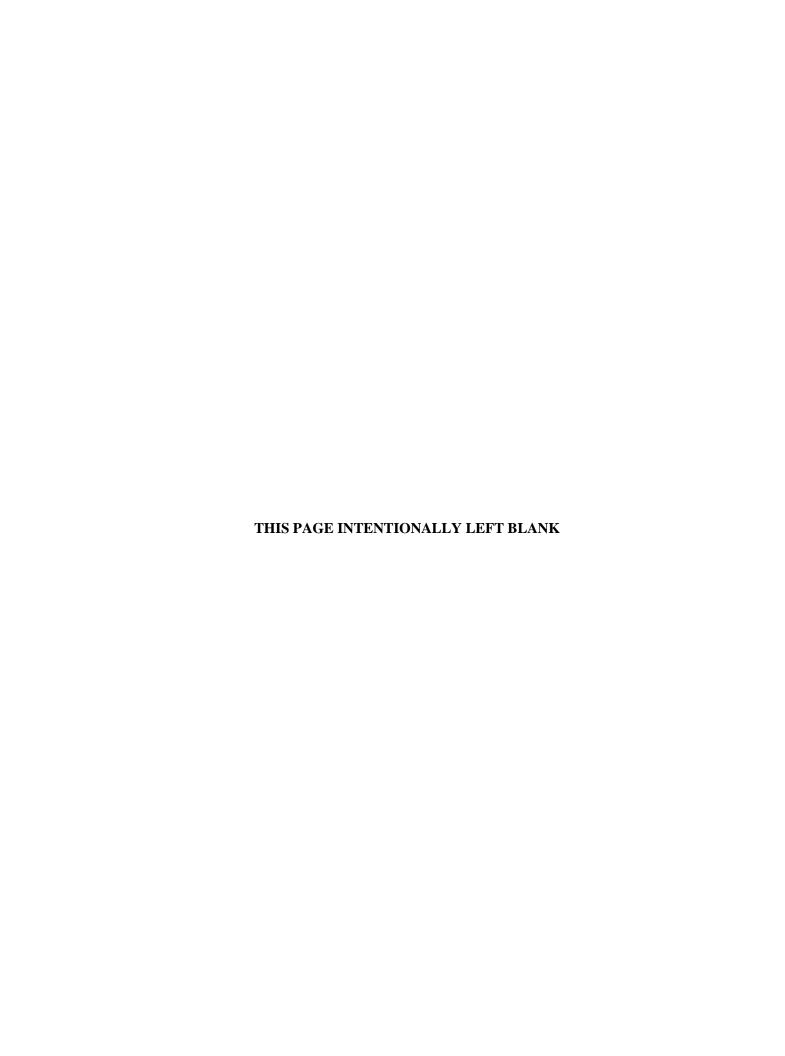

UCRS Upper Continental Recharge System

URGA Upper Regional Gravel Aquifer

LRGA Lower Regional Gravel Aquifer

S Sidegradient; D Downgradient; U Upgradient

APPENDIX H METHANE MONITORING DATA



C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	9/04/20						_ Ti	me:	10):05					Mor	itor:		Tam	my 	Smith	
Weather Co Sunny at 87																					
Monitoring MSA Sirius	Equipm	ent:																			
					N	/lonit	orin	g Lo	cati	on										Reading	
Ogden Landi Road Entran		Che	cked	l at gi	round	d leve	:1													0	
North Landfi	II Gate	Che	cked	<u>l at</u> gi	round	d leve														0	
West Side of Landfill: North 37° West 88°	07.652					d leve														0	
East Side of Landfill: North 37° West 88°	07.628'					d leve	el													0	
Cell 1 Gas V	ent (17)	1 0	2	3	4 0	5 0	6 0	7	8 0	9	10 0	11 0	12 0	13 0	14 0	15 0	10		_ 1	0	
Cell 2 Gas V	'ent (3)	1 0	2 0	3 0																0	
Cell 3 Gas V	/ent (7)	1 0	2	3	4 0	5 0	6	7 0												0	
	II Office	Che	ecked	l at fl	oor le	evel														0	,
Suspect or F	Problem Areas	No	areas	s note	ed														s	18 9-4-15	
Remarks: ALL VENT	S CHEC			FRO	OM ·					F TH	IE VI	≣NT									-
Performed	by:			£	l mm	uf ignat	Su	uit	Z									9	7/2	04/2013 Date	5
					Si	nat	ture												_	Date	

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L135 UPSTRE	AM	L154 DOWNSTF	REAM	L136 AT SIT	E		
Sample Sequer	ıce	#				1		1		1			
If sample is	a Bl	lank, specify Type: (F)ield, (T)r	ip, (M)ethod	, or (E)quipment	NA		NA		NA			\Box
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		7/7/2015 08:2	28	7/7/2015 08:	12	NA			\mathcal{T}
Duplicate (")	?" c	or "N") ¹				N		N		N			\mathcal{T}
Split ('Y' or	: "1	\") ²				N		N		N			
Facility Samp	ole	ID Number (if applicable)				L135SS4-15	5	L154US4-1	5	NA		\ /	
Laboratory Sa	amp]	le ID Number (if applicable)				376569001		376539002	2	NA		\ /	
Date of Analy	sis	s (Month/Day/Year)				7/29/2015		7/31/2015		NA			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQI	F L A G
A200-00-0	0	Flow	Т	MGD	Field	0.9		0.92			*		
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	2.15		2.35			*		
14808-79-8	0	Sulfate	Т	MG/L	300.0	3.74		3.47			*		\
7439-89-6	0	Iron	Т	MG/L	200.8	0.969		0.863			*		
7440-23-5	0	Sodium	Т	MG/L	200.8	2.22		2.33			*		
s0268	0	Organic Carbon ⁶	Т	MG/L	9060	11.2		14.2			*		
s0097	0	BOD ⁶	Т	MG/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	Т	MG/L	410.4	51.7		55.9			*		\setminus

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{4&}quot;T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required

⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	: (KPDES Discharge Number, o	r "(JPSTREAM" or	"DOWNSTREAM")	L135 UPSTRE	EAM	L154 DOWNSTRE	AM	L136 AT SI	TE		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G
s0145	1	Specific Conductance	Т	µнмѕ/см	Field	106		100			*		
s0270	0	Total Suspended Solids	Т	mg/L	160.1	19.6		12.5			*		
s0266	0	Total Dissolved Solids	Т	mg/L	160.2	129		107			*		
s0269	0	Total Solids	Т	mg/L	SM-2540 B 17	134		127			*		
s0296	0	рН	Т	Units	Field	7.27		7.34			*		
7440-61-1		Uranium	т	mg/L	200.8	0.00164		0.00128			*		
12587-46-1		Gross Alpha (α)	Т	pCi/L	900.0	0.488	*	-2.69	*		*	l V	
12587-47-2		Gross Beta (β)	Т	pCi/L	900.0	4.21	*	6.4	*		*	\setminus	
													ļ
													\
													<u> </u>
													\sqcup
													$\vdash \vdash$
												/	\sqcup
												<u> </u>	<u> </u>

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 & 073-00015

Finds/Unit:	KY8-890-008-982 /	<u>' 1</u>
LAB ID:	None	_
For Official U	se Only	

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ing Facility Sample ID	Constituent	Flag	Description
L135	L135SS4-15	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.54. Rad error is 5.54.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.36. Rad error is 8.32.
L154	L154US4-15	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.48. Rad error is 3.48.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.11. Rad error is 6.02

